KR20190093822A - 미생물을 이용한 PCBs의 처리 방법 - Google Patents

미생물을 이용한 PCBs의 처리 방법 Download PDF

Info

Publication number
KR20190093822A
KR20190093822A KR1020180012987A KR20180012987A KR20190093822A KR 20190093822 A KR20190093822 A KR 20190093822A KR 1020180012987 A KR1020180012987 A KR 1020180012987A KR 20180012987 A KR20180012987 A KR 20180012987A KR 20190093822 A KR20190093822 A KR 20190093822A
Authority
KR
South Korea
Prior art keywords
pcbs
strain
insulating oil
concentration
conditions
Prior art date
Application number
KR1020180012987A
Other languages
English (en)
Other versions
KR102045301B1 (ko
Inventor
이성기
이성호
송미경
Original Assignee
이성기
송미경
이성호
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 이성기, 송미경, 이성호 filed Critical 이성기
Priority to KR1020180012987A priority Critical patent/KR102045301B1/ko
Priority to PCT/KR2019/001360 priority patent/WO2019151799A1/ko
Publication of KR20190093822A publication Critical patent/KR20190093822A/ko
Application granted granted Critical
Publication of KR102045301B1 publication Critical patent/KR102045301B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G32/00Refining of hydrocarbon oils by electric or magnetic means, by irradiation, or by using microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1062Lubricating oils

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Zoology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Virology (AREA)
  • Biomedical Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서, 특정 미생물 균체를 투여하고, 이를 특정 조건에서 배양하여 생분해를 시킬 수 있으므로, 효과적으로 절연유의 PCBs를 처리할 수 있다.

Description

미생물을 이용한 PCBs의 처리 방법{A method for treating PCBs using a microorganism}
본 발명은 특정 미생물을 이용한 PCBs 처리 방법에 관한 것이다.
폴리염화비페닐(PolyChlorinated Biphenyls. PCBs)은 두 개의 벤젠고리가 연결된 바이페닐의 10개 수소원자중 2∼10개가 염소원자로 치환된 화합물을 말한다. 이 화합물은 물에 불용성이며 유기용매에 대한 용해도가 좋으며 산과 알칼리에도 안정적이고 휘발성이 낮으며 높은 점도를 보이며 열에 대한 안정성이 매우 높기 때문에 PCBs는 변압기 및 축전지의 절연유에 포함되어 사용 되거나 열교환기의 열교환매체로서 되었으며 페인트, 잉크, 농약 등의 산업분야에 널리 사용되었어 왔다.
그러나 1970년대 중반에 PCBs가 건강과 환경에 심각한 악영향을 미치는 것으로 알려진 이래 이미 생산되어 폐기 되어야 할 PCBs를 효과적으로 처리하는 방법의 개발에 많은 연구가 이루어져 왔다.
다염소화비페닐(Polychlorinated Biphenyls : PCBs)은 발전소에서 사용 중인 변압기, 콘덴서 등의 절연유에 함유되어 있으며, 잔류성유기오염물질 관리법 시행(2008.1.27)에 따라 PCBs 오염기기절연유의 사용금지와 2015년까지 의무적으로 처리토록 규정하고 있었으나, 기술적, 환경적인 문제로 인하여 완전히 끝나지 않고 있다.
미국, 일본, 유럽 등은 이미 자국 내 PCBs 처리를 위해 소각, 화학처리설비를 설치하여 운영하고 있다. 국내에는 소규모의 화학적 처리설비가 설치되었으나 PCBs 처리효율 등의 문제가 남아 있어 가동을 위해 설비를 보완 중에 있다.
환경부 주관으로 국내 PCBs 처리설비를 설치 운영하기 위해 소각처리, 화학처리를 위한 연구 및 실증시범사업을 추진하여 왔으나 소각처리 방식은 PCBs 분해율에 대한 미검증, 다이옥신 배출에 의한 환경영향 등이 평가되지 못하여 추가적으로 고온소각 실증사업을 계획하고 있으며, 화학처리방식은 고상 폐기물 및 토양 등의 PCBs 오염물질을 처리할 수 없는 문제가 있다.
국내 처리 동향은 다음과 같다. 현재 우리나라에서는 「폐기물 관리법」및「잔류성 유기오염물질관리법」에 따라 고온소각법 또는 화학적 처리방법으로 처리해야 하나, 고온소각은 연소조건이 불량할 때(연소온도 1100미만이거나 그 지속시간이 2초 미만일 때, 소각로 내 잉여 산소가 6% 미만 일 때)에는 다이옥신 등의 유독성 기체가 발생할 가능성이 높기 때문에 국내 소각처리시설에 대한 환경단체, 시민 등의 반대여론으로 가동되지 못하고 있는 실정이다. 구체적으로 국내적으로 하기와 같은 기술이 있다.
가. 초임계수산화공정을 이용한 난분해성 폐기물 처리기술
한국전력연구원에서 2005. 3월부터 약 20억원의 예산으로 연구개발과제를 수행하였으며, 분해공정은 폐절연유유화제 희석(3%) 예열 가압 산소첨가 혼합초임계 산화(1020 4000psi)감온감압 기액 분리 배출로 이루어진다. 절연유 희석(약 3%) 처리에 따라 처리대상 폐기물이 33배 증가하게 되며, 분해속도가 늦고, 다량의 산소첨가로 처리비용이 많이 들며, 초임계상태의 운영에 따른 안전성 문제와 배출되는 가스 및 응축수 처리를 위한 2차 설비가 추가로 필요하다는 문제점이 있다.
나. E-Beam(전자빔)을 이용한 PCBs 처리기술
원자력연구소 정읍방사선연구소에서 개발한 기술로 전자선의 강력한 에너지를 이용 상온, 고압 상태에서 PCBs를 구성하는 다량의 염소를 탈리시켜 처리하는 기술이다. 그러나, 이와 같은 처리 기술은 처리효율이 국제수준(99.9999%)에 미치지 못하고, 대규모 처리에 적합하지 않는 것으로 평가되고 있다.
다. 화학촉매방법, NaCl-원자력연구소
이외에 화학촉매 방법이 있으나, 시설비용, 처리용량, 결과의 문제점 등이 산재하고 있다.
해외 처리 동향은 다음과 같다. 해외에서는 PCBs 처리기술로 분해처리기술, 대체처리기술, 재활용기술 등 연구개발 활동이 활발히 진행되고 있고, 미국, 캐나다, 유럽 등 대부분의 국가가 고온소각 처리방법을 선호하고 있다. 소각은 가장 확실한 방법이지만 연소조건이 불량할 때에는 다이옥신 등의 유독성 기체의 발생 가능성이 높기 때문에 이 문제를 해결하기 위한 다양한 소각기술 및 방지설비 등이 연구되어 왔다. 그 결과, 소각분해 기술은 1) Grate incinerate 사용법, 2) Fluidized Bed 이용법, 3) 순산소 공급 액체 소각법, 4) Rotary-kiln 소각로 이용법 등이 개발 또는 개발 중에 있으며, 대체기술로는 1) 열(Pyroliser 이용)분해법, 2) UV(infrared furnace)사용법, 3) 응용나트륨(molten salt-glasser)처리법, 4) 플라즈마(plasma technology)이용법, 5) 미생물분해법이 있으며, 재활용기술로는 1) 촉매 탈염소법, 2) oxidative UV light treatment, 3) MC(methylene chloride)공법 처리 등이 연구개발되어 운영되고 있다.
미국의 EPA에서는 PCBs 처리와 관련하여 고온연소기술, 화학적 탈염소기술, 매립기술 그리고 열분해법 등의 대체기술을 PCBs 처리기술로 인정하고 있으며, 유럽지역 또한 소각법이 선호되고 있고, 화학적 방법으로 Solvent Decontamination, Sodium Reduction 기술을 적용하고 있다. 일본의 경우 탈염소화 분해기술, 수열산화 분해기술, 환원열화학 분해기술, 광분해기술, 플라즈마 분해기술 등 총 17개 기술을 처리지침으로 명시하고 있다.
그러나, 상기에서 언급한 바와 같이, 국내외의 PCBs 처리 기술들은 PCBs 분해율에 대한 미검증, 다이옥신 배출의 문제, 고상 폐기물 및 토양 등의 PCBs 오염물질을 처리할 수 없는 문제가 남아 있다
이에 본 발명의 발명자들은 특정 미생물을 이용한 PCBs 정화 처리기술을 이용하여 PCBs 오염 절연유의 처리효율 및 재현성을 입증하고 이를 통하여 처리설비로 발전시킬 수 있음을 알게 되어 본 발명에 이르게 되었다.
대한민국 등록특허 10-0848137호 대한민국 등록특허 10-0612225호 대한민국 등록특허 10-0864632호 대한민국 등록특허 10-1021690호 대한민국 등록특허 10-1085553호 대한민국 공개특허 10-2006-0036261호 대한민국 등록특허 10-0782543호 대한민국 등록특허 10-0798410호
본 발명의 일측면은 상기와 같은 문제점을 해결한 새로운 PCBs 처리 방법을 제공하고자 한다.
본 발명의 일측면은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서, 특정 세균 공동체를 투여하는 방법을 제공하고자 한다.
또한, 본 발명의 일측면은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서, 세균 공동체 투여 후, 특정 조건의 생분해 단계를 포함하는, PCBs 처리 방법을 제공하고자 한다.
상기 목적을 달성하기 위하여,
본 발명의 일측면은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서,
PCBs 처리 세균공동체를 투여하는 단계를 포함하며,
상기 PCBs 처리 세균공동체는 기탁번호가 KCTC 10623 BP인 NBC2000 세균공동체에서 선택된 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주 및 유황 균주인 Nz2001 균주 중 어느 하나 이상을 포함하고; 기탁번호가 KCTC 0652 BP인 EBC1000 세균공동체에서 선택된 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주 중 어느 하나 이상;을 포함하는 것을 특징으로 하는, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균공동체는 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주, 유황 균주인 Nz2001 균주, 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주를 포함하는, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균공동체는 균체수가 109 CFU/ml 이상으로 배양한 후 투여하는 것인, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 배양은 루리아-베르타니(Luria-Bertani)영양배지에서 박토-효모 추출물-(bacto-yeast extract)과 함께 4 내지 5일간 배양 하는, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 절연유의 PCBs 처리 방법은 PCBs 처리 세균공동체를 투여 후, 생분해 시키는 단계를 더 포함하는, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 24℃ 내지 26℃의 온도 조건; pH 5.3 내지 8.5의 pH 조건; 및 용존 산소의 농도가 73% 내지 95%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 24℃ 내지 25℃의 온도 조건; pH 6 내지 8의 pH 조건; 및 용존 산소의 농도가 80% 내지 90%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 생분해 중 회전수 150 rpm 내지 250 rpm의 교반기를 이용하여 교반하는 조건을 추가적으로 포함하는, 절연유의 PCBs 처리 방법을 제공하고자 한다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 50일 이상의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법을 제공하고자 한다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 70일 내지 200일의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법을 제공하고자 한다.
본 발명의 일측면에 있어서, 상기 절연유는 변압기에 포함되는 절연유인, 절연유의 PCBs 처리 방법을 제공하고자 한다.
본 발명의 일측면에 있어서, 상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시키는, 절연유의 PCBs 처리 방법을 제공하고자 한다.
본 발명의 일측면에 있어서, 상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시킴과 동시에 다이옥신을 3 ng-TEQ/g 의 농도 미만으로 발생시키는, 절연유의 PCBs 처리 방법을 제공하고자 한다.
본 발명의 일 측면에 따른 방법은 다이옥신의 배출을 법적 기준보다 매우 낮게 하면서, 동시에 절연유 내 PCBs의 농도를 획기적으로 줄일 수 있다.
본 발명의 일 측면에 따른 방법은 고상 폐기물 및 토양 등의 오염 문제가 없이 절연유 내 PCBs의 농도를 획기적으로 줄일 수 있다.
본 발명의 일 측면에 따른 방법은 경제적인 시설비용으로 절연유 내 PCBs의 농도를 획기적으로 줄일 수 있다.
본 발명의 일 측면에 따른 방법은 한꺼번에 많은 양의 절연유 내 PCBs의 농도를 줄일 수 있다.
본 발명의 일 측면에 따른 방법은 국제수준과 동일한 수준으로 절연유 내 PCBs의 농도를 줄일 수 있다.
본 발명의 일 측면에 따른 방법은 기존 기술보다 비교적 빠른 시간안에 절연유 내 PCBs의 농도를 줄일 수 있다.
본 발명의 일 측면에 따른 방법은 2차 설비의 추가적인 설치 없이 변압기 등의 현장에서 바로 사용할 수 있는 절연유 내 PCBs 처리 방법을 제공한다.
도 1a 내지 도 1d는 반응조의 pH, 온도, DO, 교반속도의 변화 그래프이다.
도 2a는 고농도 PCBs 함유 절연유 주 반응조 GX-1 관찰결과이다
도 2b는 저농도 PCBs 함유 절연유 주 반응조 GX-2 관찰결과이다
도 2c는 고농도 PCBs 함유 절연유 예비 반응조 GR-1관찰결과이다.
도 2d는 고농도 PCBs 함유 절연유 대조구 예비 반응조 GR-2관찰결과이다.
도 3은 GC-ECD 분석법을 적용한 반응시간 경과에 따른 PCBs 농도 변화 (주 반응조-GX)를 그래프로 나타낸 것이다.
도 4a는 Non-PCBs 절연유 GC-ECD법 피크 패턴 (랩프론티어)이다.
도 4b는 Non-PCBs 절연유+미생물균주 GC-ECD법 피크 패턴 (랩프론티어)이다.
본 명세서에 있어서, 범위가 변수에 대해 기재되는 경우, 상기 변수는 상기 범위의 기재된 종료점들을 포함하는 기재된 범위 내의 모든 값들을 포함하는 것으로 이해될 것이다. 예를 들면, "5 내지 10"의 범위는 5, 6, 7, 8, 9, 및 10의 값들뿐만 아니라 6 내지 10, 7 내지 10, 6 내지 9, 7 내지 9 등의 임의의 하위 범위를 포함하고, 5.5, 6.5, 7.5, 5.5 내지 8.5 및 6.5 내지 9 등과 같은 기재된 범위의 범주에 타당한 정수들 사이의 임의의 값도 포함하는 것으로 이해될 것이다. 또한 예를 들면, "10% 내지 30%"의 범위는 10%, 11%, 12%, 13% 등의 값들과 30%까지를 포함하는 모든 정수들뿐만 아니라 10% 내지 15%, 12% 내지 18%, 20% 내지 30% 등의 임의의 하위 범위를 포함하고, 10.5%, 15.5%, 25.5% 등과 같이 기재된 범위의 범주 내의 타당한 정수들 사이의 임의의 값도 포함하는 것으로 이해될 것이다.
이하, 본 발명에 대해 상세히 설명한다.
본 발명의 일측면은 PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서,
PCBs 처리 세균공동체를 투여하는 단계를 포함하며,
상기 PCBs 처리 세균공동체는 기탁번호가 KCTC 10623 BP인 NBC2000 세균공동체에서 선택된 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주 및 유황 균주인 Nz2001 균주 중 어느 하나 이상을 포함하고; 기탁번호가 KCTC 0652 BP인 EBC1000 세균공동체에서 선택된 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주 중 어느 하나 이상;을 포함하는 것을 특징으로 하는, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균공동체는 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주, 유황 균주인 Nz2001 균주, 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주를 포함하는, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, PCBs 처리 세균공동체는, 수도모나스 속(Pseudomonas sp .) Cy100 균주(이하, "Cy100"으로 약칭함), 수도모나스 속(Pseudomonas sp .) EBC107 균주(이하, "EBC107"로 약칭함), 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주(이하, "Tnh"로 약칭함), 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주(이하, "Cy101"로 약칭함), 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주(이하, "Cy102"로 약칭함), 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy103 균주(이하, "Cy103"로 약칭함), 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주(이하, "Cy104"로 약칭함), 바실러스 속(Bacillus sp.) Cy107 균주(이하, "Cy107"로 약칭함), 바실러스 세레우스(Bacillus cereus) EBC106 균주(이하, "EBC106"로 약칭함), 유황 균주인 Nz2001 균주(이하, "Nz2001"로 약칭함) 및 유류 분해 그람 음성 세균인 W24 균주(이하, "W24"로 약칭함)로 구성된 것을 특징으로 한다.
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균공동체는, Cy106를 필수적으로 포함하며, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 및 NZ2001 로 이루어진 군으로부터 선택된 하나 이상의 균주를 더 포함하는 것을 특징으로 한다.
본 발명의 일측면에 있어서, 상기 PCBs 처리 세균 공동체는 균체수가 109 CFU/ml 이상으로 배양한 후 투여하는 것인, 절연유의 PCBs 처리 방법을 제공한다. 상기 균체수를 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.
본 발명의 일측면에 있어서, 상기 배양은 루리아-베르타니(Luria-Bertani)영양배지에서 박토-효모 추출물-(bacto-yeast extract)과 함께 4 내지 5일간 배양 하는, 절연유의 PCBs 처리 방법을 제공한다. 상기 배양조건을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.
본 발명의 일측면에 있어서, 상기 절연유의 PCBs 처리 방법은 세균 공동체를 투여 후, 생분해 시키는 단계를 더 포함하는, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 24℃ 내지 26℃의 온도 조건; pH 5.3 내지 8.5의 pH 조건; 및 용존 산소의 농도가 73% 내지 95%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법을 제공한다. 상기 생분해 조건을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 24℃ 내지 25℃의 온도 조건; pH 6 내지 8의 pH 조건; 및 용존 산소의 농도가 80% 내지 90%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법을 제공한다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 생분해 중 회전수 150 rpm 내지 250 rpm의 교반기를 이용하여 교반하는 조건을 추가적으로 포함하는, 절연유의 PCBs 처리 방법을 제공하고자 한다. 바람직하게, 생분해 중 회전수 190 rpm 내지 210 rpm의 교반기를 사용할 수 있다. 상기 교반 조건을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 50일 이상의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법을 제공하고자 한다. 상기 생분해 시간을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.
본 발명의 일측면에 있어서, 상기 생분해 시키는 단계는 70일 내지 200일의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법을 제공하고자 한다. 바람직하게 상기 생분해 시간은 150일 내지 170일 일 수 있다. 상기 생분해 시간을 만족하는 경우 효과적으로 PCBs를 분해할 수 있다.
본 발명의 일측면에 있어서, 상기 절연유는 변압기에 포함되는 절연유인, 절연유의 PCBs 처리 방법을 제공하고자 한다.
본 발명의 일측면에 있어서, 상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시키는, 절연유의 PCBs 처리 방법을 제공하고자 한다.
본 발명의 일측면에 있어서, 상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시킴과 동시에 다이옥신을 3 ng-TEQ/g 의 농도 미만으로 발생시키는, 절연유의 PCBs 처리 방법을 제공하고자 한다. 바람직하게 상기 다이옥신의 농도는 0.5 내지 0.7 ng-TEQ/g 농도 일 수 있다.
이하, 본 발명에 사용된 PCBs 처리 세균공동체에 포함되는 NBC2000 세균공동체 및 EBC1000 세균공동체의 분리, 동정 및 활성을 상세히 설명한다.
NBC2000 세균공동체의 분리, 동정 및 활성
1. 환경호르몬을 분해할 수 있는 신규의 세균 공동체의 분리
(1) 한국, 남유럽, 오세아니아 등지에서 채집한 토양에서 PCBs, PCP, 다이옥신, PCE, 톨루엔, 타르산 등을 분해하는 세균을 분리
채집한 토양 1 그람을 루리아-베르타니 액체배지 (박토-트립톤 10g, 박토효모추출물 5g, NaCl 10g + 탈염수 1 리터)에서 2 ~ 3일간 진탕 배양한 후 1ml을 취하여 루리아-베르타니 한천배지 (박토-트립톤 10g, 박토효모추출물 5g, NaCl 10g, 한천 1.5% + 탈염수 950ml )에서 각 콜로니를 분리하였다. 이때 나타난 각 콜로니를 선택하여 PCBs, PCP, PCE, 톨루엔, 타르산이 각각 포함된 최소액체배지 (K2HPO4 0.065g, KH2PO4 0.017g, MgSO4 0.1g, NaNO3 0.5g + 탈염수 1리터)에 순차적으로 접종하고 25 ~ 30o C에서 3일 이상 진탕 배양하였다. 각 유해물질의 감소확인과 더불어 진탕 배양액 1 ml를 취하여 루리아-베르타니 한천배지에 순차적으로 접종하고 25 ~ 30o C에서 3 ~ 5일간 배양하였다.
순수 분리한 각 콜로니를 상기와 같은 최소액체배지에 재 접종하여 진탕 배양한 후 루리아-베르타니 고체배지에서 개별적으로 형성된 각기 다른 모양의 콜로니 형태를 가지며 그 콜로니의 계대 배양시 동일한 콜로니가 나타나는 유용세균 50 여종을 분리하였다.
(2) 위에서 분리한 세균들을 PCBs, PCP, PCE, 톨루엔, 타르산이 단계적으로 높은 농도로 포함된 최소 배지에 각각 순차적으로 접종하여 상기 (1)과 같은 방법으로 반복하여 보다 높은 농도에서 생존하는 균주 및 형태차이에 따라서 26종을 분리하였다.
여기서 얻은 26 종의 세균들을 공동체로 구성하여 NBC2000으로 명명하였으며, 상기 세균공동체를 이루는 각각의 세균을 각각 Cy100, Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Ntar1, Ntar2, Ntar3, Gc300, Gc500, Gc501, Bs100, Aeng17, Aeng18, Sp300, Tnh, Djhc, Pcpts, EBC106, EBC107, Bs101, W24 및 Nz2001로 명명하였다.
본 발명에 따른 세균공동체 NBC2000은 2004년 4월 16 일 한국생명공학연구원내 유전자원센터에 기탁번호 KCTC 10623 BP로 국제기탁을 하였다.
2. 세균공동체 NBC2000의 성장을 위한 최적조건의 확립
루리아-베르타니(Luria-Bertani) 영양배지 [박토-트립톤 (bacto-tryptone) 10g, 박토-효모추출물(bacto-yeast extract) 5g, 소디움 클로라이드(NaCl) 10g/탈염수 1리터]에서 pH 6 ~ 8, 온도 25 ~ 30 oC, 진탕(shaking) 분당 회전수 80 ~ 120rpm으로 48 ~ 96시간 배양하면 최적성장을 나타내며, 계대 배양시에도 동일조건에서 잘 성장한다.
3. 세균공동체 NBC2000의 생화학적인 동정
토양으로부터 순수 분리한 각 세균에 대한 동정은 bioMerieux (bioMerieux sa 69280 Marcy I'Etoile/France)에서 구입한 API Kits인 API20E, API20NE, API50CH, API50CHB 등으로 실시하여 23종의 속명을 결정하였다(표1 내지 표 5 참조).
Figure pat00001
Figure pat00002
Figure pat00003
Figure pat00004
Figure pat00005
4. 세균공동체 NBC2000을 구성하는 각 세균들의 분리
1)균주 분리 및 방법
각 균주는 한국, 뉴질랜드, 스웨덴 및 사이프로스 등의 토양에서 순수 분리하여 NBC2000을 구성하였으며, 모두 운동성을 가지고 있는 특징이 있어서 광대하고 다양한 토양에 적용할 수 있다. 세균 공동체 NBC2000에서 개별 균주를 분리하는 형태적인 특징의 방법은 다음과 같다.
(가) 루리아-베르타니 한천배지 (박토-트립톤 10g, 박토효모추출물 5g, NaCl 10g, 한천 1.5% + 탈염수 950ml )에서의 배양
Cy100: 48시간 배양 후 표면이 불 균일한 부정형의 노란빛 콜로니로 나타나며 4mm의 크기로 성장한다.
Cy101: 48시간 배양 후 반투명 아이보리색의 볼록한 콜로니로 나타나며 2.5mm의 크기로 성장한다.
Cy102: 48시간 배양 후 노란색의 둥근 콜로니로 나타나며 2mm의 크기로 성장한다.
Cy103: 48시간 배양 후 아이보리색에 둥글고 납작한 콜로니로 나타나며 4mm의 크기로 성장한다.
Cy104: 48시간 배양 후 반투명한 아이보리색의 둥근 콜로니로 나타나며 4mm의 크기로 성장한다.
Cy105: 48시간 배양 후 상아빛의 둥근 콜로니로 나타나며 2.5mm의 크기로 성장한다.
Cy106: 48시간 배양 후 무광택 흰빛으로 가운데가 패인 둥근 콜로니로 나타나며, 1.5mm의 크기로 성장한다.
Cy107: 48시간 배양 후 무광택 흰빛의 둥근 콜로니로 나타나며 1mm의 크기로 성장한다.
Ntar1: 24시간 배양 후 반투명한 노란 빛에 둥글고 광택이 나는 콜로니로 나타나며, 1mm의 크기로 성장한다.
Ntar2: 24시간 배양 후 베이지색과 아이보리색의 둥글고 광택이 나는 콜로니로 나타나며 2mm의 크기로 성장한다.
Ntar3: 48시간 배양 후 아이보리색에 둥글고 광택이 나는 콜로니로 나타나며 1.5mm의 크기로 성장한다.
Gc300: 24시간 배양 후 아이보리색에 둥글고 광택이 나는 볼록한 콜로니로 나타나며 3mm의 크기로 성장한다.
Gc500: 24시간 배양 후 아이보리색에 둥글고 광택이 나는 볼록한 콜로니로 나타나며 1.5mm의 크기로 성장한다.
Gc501: 24시간 배양 후 아이보리색에 둥글고 광택이 나는 볼록한 콜로니로 나타나며 2.5mm의 크기로 성장한다.
Bs100: 24시간 배양 후 밝은 상아빛의 둥근 콜로니로 나타나며 2mm의 크기로 성장한다.
Aeng17: 24시간 배양 후 붉은빛 또는 아이보리색의 둥글거나 부정형의 콜로니로 나타나며 3mm의 크기로 성장한다.
Aeng18: 24시간 배양 후 붉은빛 또는 아이보리색의 둥글거나 부정형의 콜로니로 나타나며 3mm의 크기로 성장한다.
Sp300: 24시간 배양 후 베이지색과 갈색빛의 둥글거나 부정형의 콜로니로 나타나며 3mm의 크기로 성장한다.
Tnh: 40시간 배양 후 반투명 아이보리색의 표면이 불균일한 금속빛의 콜로니로 나타나며 4mm의 크기로 성장한다. 시간이 경과되면서 배지의 색상이 남청색으로 변화된다.
Djhc: 24시간 배양 후 아이보리색의 둥글고 표면이 매끄러운 형태로 점도가 강하며 광택이 나는 콜로니로 나타나며 3mm의 크기로 성장한다.
Pcpts: 24시간 배양 후 베이지색과 갈색빛의 둥근 또는 부정형의 콜로니로 나타나며 3mm의 크기로 성장한다.
EBC106: 24시간 배양 후 아이보리색의 표면이 불균일한 상태로 퍼져자라는 납작한 무광택의 콜로니로 나타나며 7mm의 크기로 성장한다.
EBC107: 40시간 배양 후 반 투명 아이보리색의 표면이 불균일한 부정형의 콜로니로 나타나며 4mm의 크기로 성장한다.
Bs101: 24시간 배양 후 노란빛 아이보리색에 둥글며 표면에 테가 둘러진 콜로니로서 5mm의 크기로 성장한다. 그람양성세균으로 운동성이 있다.
W24: 48시간 배양 후 옅은 노란색에 둥글고 광택이 나며 볼록한 형태의 콜로니로서 1.5mm의 크기로 성장한다. 그람음성세균으로 운동성이 있다.
Nz2001: 48시간 배양 후 흰빛 무광택의 콜로니로 나타나며 2.5mm로 성장한다. 장시간 배양시는 콜로니 가장자리에 균사가 나타나며, 운동성이 있다.
(나) 마콩키 고체배지 〔MacConkey agar: 펩톤 17g, 프로테즈 펩톤(Proteose peptone) 3g, 락토스 10g, 빌 소트(Bile Salts No.3) 1.5g, 염화나트륨 5g, 한천 13.5g, 뉴트럴 레드 0.03g, 크리스탈 비올렛트 0.001g, 탈염수 1 리터, pH7.3~7.5〕 에서 48시간 배양후의 콜로니 색상
Cy100은 연한 갈색의 작은 콜로니가 나타나며,
Ntar1은 투명한 연갈색이며 표면이 불균일하며,
Ntar2는 베이지색의 작은 콜로니이며,
Ntar3은 옅은 붉은빛이 나는 투명한 갈색의 콜로니이며,
Gc300은 짙은 분홍색의 콜로니에 가장자리는 베이지색이며,
Gc500은 대부분의 베이지색과 분홍색 콜로니이며,
Gc501은 짙은 분홍색의 콜로니로 가장자리는 베이지색이며,
Aeng17과 Aeng18은 짙은 붉은색의 콜로니이며,
Sp300은 베이지색의 콜로니이며,
Tnh는 어두운 카키색의 콜로니이며,
Djhc는 콜로니 가운데는 연분홍색이며 가장자리는 베이지색이며,
Pcpts는 연한 카키색으로 나타나고,
EBC107은 아주 옅은 분홍색의 콜로니로 나타나며,
Nz2001은 분홍빛의 베이지색 콜로니로 나타나며,
Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Bs100, EBC106, Bs101,W24 균주는 48시간 배양 후에도 콜로니가 나타나지 않는다.
(다) 데스옥사콜레이트 고체배지〔Desoxycholate agar: 프로테즈 펩톤 10g, 락토스 10g, 데스옥시콜레이트 나트륨 0.5g, 염화나트륨 5g, 구연산나트륨 2g, 한천 15g, 뉴트럴 레드 0.03g, 탈염수 1 리터, pH7.3~7.5〕에서 48시간 배양 후의 콜로니 색상
Cy101, Cy102, Cy103, Cy104, Cy105, Cy106, Cy107, Bs100, EBC106, Bs101, 24 균주는 48시간 배양 후에도 콜로니가 나타나지 않는다.
Cy100은 연분홍빛이 나는 노란색 콜로니로 꽃 처럼 주름진 모양,
Ntar1과 Ntar2, Ntar3은 투명한 주황빛의 콜로니,
Gc300과 Gc501은 짙은 분홍색의 콜로니로 가장자리는 베이지색,
Gc500은 약한 붉은 빛이 나는 베이지색 콜로니,
Aeng17과 Aeng18은 짙은 붉은색의 콜로니,
Sp300은 투명한 연갈색의 콜로니,
Tnh는 연한 갈색의 콜로니로 금속빛,
Djhc는 연분홍과 베이지색이 혼합된 모양,
Pcpts는 투명한 갈색빛 콜로니,
EBC107은 노란빛의 콜로니로 나타났다.
Nz2001은 붉은빛의 베이지색 콜로니로 나타났다.
타르를 분해하는 Bs101, 유황균주 Nz2001, 유류 분해균주 W24는 현재의 방법으로는 동정이 곤란하였으므로 미 동정 균주로 결정하였다.
5. NBC2000 개별 균주들의 각 환경호르몬 분해범위
1)각 분리 균주의 환경호르몬 분해 범위
PCBs, 다이옥신, PCE, 톨루엔, 타르산은 실험실의 최적조건에서 세균 공동체의 구성세균으로 측정한 값이며, 황(Sulphur)과 PCP는 개별 균주 수준에서 측정한 평균값이다.
수도모나스 속(Pseudomonas sp.) Cy100 : PCBs 700 ppm;
서레시아 속(Serratia sp.) Aeng18 : PCP 500 ppm, 타르산, 다이옥신 100 ng/kg;
서레시아 속(Serratia sp.) Ntar2 : 타르산;
수도모나스 속(Pseudomonas sp.) Djhc : PCP 1000 ppm, 다이옥신 300 ng/kg;
수도모나스 속(Pseudomonas sp.) Ntar3 : 타르산;
수도모나스 속(Pseudomonas sp.) EBC107 : PCBs 700 ppm, PCP 100 ppm, 다이옥신 100 ng/kg, PCE 50,000 mg/kg;
수도모나스 속(Pseudomonas sp.) Tnh : PCBs 700 ppm, PCP 500 ppm, 다이옥신 300 ng/kg, PCE 50,000 mg/kg, 타르산;
에어로모나스 속(Aeromonas sp.) Aeng17 : 타르산, PCP 100 ppm, 다이옥신 50 ng/kg;
수도모나스 속(Pseudomonas sp.) Pcpts : PCP 1,000 ppm, 다이옥신 500 ng/kg;
스텐노트로포모나스 속(Stenotrophomonas sp.) Ntar1 : 타르산;
수도모나스 속(Pseudomonas sp.) Sp300 : 타르산, PCP 700 ppm, 다이옥신 100 ng/kg;
크리저모나스 속(Chryseomonas sp.) Gc501 : PCP 500 ppm, 다이옥신 100 ng/kg;
크리저모나스 속(Chryseomonas sp.) Gc500 : PCP 500 ppm, 다이옥신 100 ng/kg;
크리저모나스 속(Chryseomonas sp.) Gc300 : PCP 300 ppm, 다이옥신 100 ng/kg;
브레분디모나스 속(Brevundimonas sp.) Cy101 : PCBs 150 ppm;
브레분디모나스 속(Brevundimonas sp. Cy102 : PCBs 150 ppm;
브레분디모나스 속(Brevundimonas sp.) Cy103 : PCBs 700 ppm;
바실러스 속(Bacillus sp.) Bs100 : 타르산;
바실러스 속(Bacillus sp.) Cy104 : PCBs 800 ppm;
바실러스 속(Bacillus sp.) Cy105 : PCBs 700 ppm;
바실러스 속(Bacillus sp.) Cy106 : PCBs 1,000 ppm;
바실러스 속(Bacillus sp.) Cy107 : PCBs 150 ppm;
바실러스 속(Bacillus sp.) EBC106 : PCBs 700 ppm, PCP 1,000 ppm, 다이옥신 300 ng/kg, 타르산, PCE 50,000 mg/kg, 톨루엔 50,000 mg/kg;
그람 양성 세균 Bs101: 타르산;
그람 음성 세균 W24: TPH 100 ppm, 톨루엔 100 ppm;
유황 균주 Nz2001: 황(Sulphur), 타르산, 다이옥신 50 ng/kg
EBC1000 세균공동체의 분리, 동정 및 활성
하기에서는 본 발명에 따른 EBC1000세균 공동체의 분리, 동정 및 활성을 자세히 설명하고자 한다.
1. 난분해 독성 폐액 폐기물을 분해할 수 있는 신규한 세균 공동체의 분리
(1) 울산공단 등의 토양, 폐수에서 채집한 시료를 해역배출용 난분해성 폐액이 혼합된 액체배지에서 진탕배양하여 40여종의 미생물을 분리하는 단계
울산공단 등지에서 채집한 토양 각 1g, 폐수 각 10㎖을, 폐산, 폐알카리 폐수 액체배지(K2HPO4 0.65g, KH2PO4 0.17g, MgSO4 0.1g, NaNO3 0.5g과 의약품 산업폐액 및 석유화학폐액의 난분해성 화학물질이 함유된 폐산폐알카리성폐액 10%를 탈염수(deionized water)1l에 희석하여 형성한 배지, pH 0~14)와 염소화합물액체배지(K2HPO4 0.65g, KH2PO4 0.17g, MgSO4 0.1g, NaNO3 0.5g과 오염소화 페놀화합물(pentachlorophenol:PCP) 50 ppm을 deionized water 1l에 녹여 형성한 배지, pH 7.2)에 순차적으로 접종하고 20~30℃에서 5일 이상 진탕배양하였다.
상기 진탕배양액 1㎖를 취하여 폐산, 폐알카리 고체배지(폐산, 폐알카리 액체배지에 한천(agar)만 1.5% 첨가하여 형성한 배지, pH 중화)와 염소화합물고체배지(염소화합물 액체배지에 BTB 20㎎, 한천 1.5%를 첨가하여 형성한 배지)에 순차적으로 접종하고 20~30℃에서 3~10일간 배양하였다.
순수분리한 각 콜로니를 상기와 같은 배지에 재접종하여 진탕배양한 후, 개별적으로 형성된 각기 다른 모양의 콜로니 형태를 가지며 그 콜로니의 계대배양시 동일한 콜로니가 나타나는 유용세균 40 여종을 분리하였다.
(2) (1)단계에서 분리된 세균들을 난분해성 폐액의 농도를 점차 증가시킨 배지에서 배양하여 9종의 강력한 세균들을 분리하는 단계
상기 (1)단계에서 분리한 세균들을 의약품 산업폐액 및 석유화학폐액의 난분해성 화학물질이 함유된 원액폐액 및 폐액을 50%, 80% 첨가한 최소배지와 오염소화 페놀화합물(PCP) 500 ppm을 첨가한 최소배지에 각각 순차적으로 접종하여 상기 (1)단계와 같은 방법으로 반복하여, 보다 높은 농도에서 생존가능한 균주위주로 콜로니 형태에 따라 9종을 분리하였다.
여기서 얻은 9종의 세균들을 하나의 공동체로 구성하여 EBC1000으로 명명하였으며, 상기 세균 공동체를 이루는 각각의 세균을 각각 EBC100, 101, 103, 104, 105, 106, 107, 108 및 109로 명명하였다.
본 발명에 따른 세균 공동체 EBC1000은 1999년 8월12일 한국생명공학연구소내 유전자원센터에 기탁번호 KCTC 0652 BP로 국제기탁을 하였다
2. 세균 공동체 EBC1000의 성장을 위한 최적조건 확립
루리아-베르타니(Luria-Bertani)영양배지[박토-트립톤(bacto-tryptone) 10g, 박토-효모 추출물(bacto-yeast extract) 5g, NaCl 10g/탈염수 1l]에서 pH5~8, 온도 25~35℃, 진탕(shaking) 분당회전수 50~100rpm으로 24~48시간 배양하면 최적성장을 나타내며, 계대배양시에도 동일조건에서 잘 성장한다.
3. 세균 공동체 EBC1000의 동정
세균 공동체 EBC1000을 구성하고 있는 EBC 100, 101, 103, 104, 105, 106, 107, 108, 109 균주는 그람음성세균과 그람양성세균의 혼합상태였으며, 형태 및 크기가 각각 특이하였다. LB고체배지에서 24시간 동안 배양시 EBC100은 직경 1㎜의 원형콜로니, EBC101은 2㎜ 정도의 큰 원형, EBC103은 2㎜의 두꺼운 원형, EBC104와 EBC105는 0.5㎜정도의 작은 원형, EBC106은 3㎜정도의 두꺼운 모양, EBC107은 1.2㎜정도의 갈색 콜로니, EBC108은 1㎜정도의 노란색 콜로니, EBC109는 2㎜정도의 이중원형의 모양을 나타내었다. 9종의 균주는 호기성 및 통기성 균주들로서 EBC100, 101, 103, 106, 107, 108은 강산(pH3~4), 강알카리(pH9~11) 조건에서도 생존력이 강하였으며, EBC104, 105, 109는 생장이 느렸다. 운동성은 EBC100, 104, 105, 109에서 나타내었다.
세균 공동체 EBC1000을 구성하는 균주들의 속(屬)을 살펴보면, EBC100, 101, 103은 클레브시엘라 속이고, EBC105는 프로비덴시아 속, EBC104 및 EBC109는 에스체리치아 속, EBC106은 바실러스 속에 속하고, EBC107은 그람음성세균, EBC108은 그람양성세균이다.
상기와 같은 각 균주의 특성을 정리하면 아래 표 6 및 표 7와 같다.
시 료 EBC 100 EBC 101 EBC 103
그람 균주
카탈라제
옥시다제
우레아제
시트라제 이용(Citrase utilizat.)
글루코스 이용(Glucose utilizat.)
V-P 시험
라이신 데카르복실라제
오르니틴 데카르복실라제
-
+
-
+
+
+
+
+
-
-







-







시 료 EBC 100 EBC 101 EBC 103
이노시톨
아라비노스
만니톨
람노스
글루코스
소르비톨
α-시클로덱스트린
덱스트린
글리코겐
아도니톨(adonitol)
D-아라비톨
셀로비오스
D-프럭토오스
L-푸코스
D-갈락토스
α-락토스
말토스
D-라피노오스
D-트레할로스
메틸-파이루베이트
시트르산
포름산
말론산
숙신산
D-알라닌
L-알라닌
L-글루타민산
L-세린
D,L-락트산
운동성
D-만노스
+
+
+
+
+
+
-
+

+


+
+
+



+
-
+

-


+

+
+
+
+

+
+
+
+
+
-
+

+
+
+
+
+
+

+
+
+
+
+

-



+
+
+
+
+
+
+
+
+
+
+
-
-
-

+
+
+
+
+
-
+
+
+
+
+
+

+
+
+
+
+
+
+
+
시 료 EBC 104 EBC 105 EBC 109
그람 균주
ONPG
아르기닌
라이신
오르니틴
구연산 나트륨
티오황산 나트륨
우레아
트립토판
인돌
파이루베이트 크레아틴 나트륨
콘 목탄 젤라틴(Kohn Charcoal Gelatin)
글루코스, 질산칼륨
만티올(Mantiol)
이노시톨
람노스
수크로스
멜리바이오스
아미그달린
아라비노스
산화효소
질산염의 아질산염으로의 환원
질산염의 N2가스로의 환원
운동성(Mobility)
글루코스의 산화
글루코스의 발효
항생제 내성

-
+
-
+
-
-
+
-
-
+
-
-
+
+
-
+
+
-
-
-
+
-
+
-
+
+
+
KmR
ApS
TcS
-
-
-
-
-
-
-
+
+
+
-
-
+
+
-
-
+
-
-
-
-
-
+
-
+
+
-
KmS
ApR
TcR
-
+
-
-
-
-
+
-
-
+
-
-
+
+
-
+
+
-
-
-
+
-
+
-
+
+
+
KmS
ApR
TcR
한편, 가스 크로마토그래피를 통해 각 균주의 지방산 메틸에스테르(Fatty Acid Methyl Esters: FAMEs)분석을 하였다.
FAMEs 분석에는 휴렛팩커드 시리즈 Ⅱ 가스 크로마토그래피 모델 5890A(Hewlett Packard series ⅡGas Chromatograph model 5890A; Microbial ID. Inc., Delaware, USA)가 이용되었으며, 분리 칼럼(sepation column)은 25m×0.22㎜×0.33㎛ 메틸페닐실리콘이 융합된 모세관 칼럼(HP 19091B-102)을 사용하였다.
상기 가스 크로마토그래피의 조건은, 운반가스(carrier gas)는 수소이고, 칼럼상부압력(column Head Pressure)은 10psi이고, 분할비(split ratio)는 100:1이며, 분할 배기구멍(split vent)는 50㎖/분이고, 격막 퍼지(Septum Purge)는 5㎖/분이며, FID 수소는 30㎖/분이고, FID 질소는 30㎖/분이며, FID 공기는 400㎖/분이고, 초기 온도는 170℃이며, 프로그램 속도는 5℃/분이고, 최종온도는 270℃이며, FID 온도는 300℃이고, 주입포트는 250℃이며, 주입 부피는 2㎕이다.
FAMEs 그래프는 미생물 동정 시스템 소프트웨어(Microbial Identification System Software; Microbial ID, Inc., Delaware, USA)를 이용하였으며 표준 혼합물(standard calibration mixture; Microbial ID, Inc., Delaware, USA)와 비교하여 피크 동정, 정체 시간, 피크 영역, 피크 퍼센트를 구하였다.
EBC100, 101, 103 각 균주에 대한 FAMEs분석 결과, EBC100의 세포내 지방산 조성(cellular fatty acids composition)은 C12:0, C14:0, C16:0, C16:1, C17:0 cyclo, C14:0 3OH 이며, EBC101은 C12:0, C14:0, C15:0, C16:0, C17:0 cyclo, C14:0 3OH이다. EBC103은 C14:0, C15:0, C16:0, C17:0 cyclo, C14:0 3OH로 나타났다.
4. 세균 공동체 EBC1000을 구성하는 각 세균들의 분리
세균 공동체 EBC1000에서 개별균주를 분리하는 방법은 다음과 같다.
EBC106(바실러스 속), EBC107(그람음성세균) 및 EBC108(그람양성세균)은, 루리아-베르타닌 한천(박토-트립톤 10g, 박토-효모 추출물 5g, NaCl 10g, 한천 1.5% + 950㎖ 탈염수)의 영양소 고체배지에서 배양하면, EBC106은 전형적인 바실러스 형태의 두꺼운 주름모양이고, EBC107은 갈색 콜로니, EBC108은 노란색 콜로니의 형태적 특징으로 구별될 수 있다.
그외 균주들은 데스옥시콜레이트 아가[Desoxycholate agar; 박토 펩톤 10g, 박토 락토스 10g, 데스옥시콜레이트 나트륨 1g, 염화나트륨 5g, 이칼륨(dipotassium) 2g, 구연산 철(Fe citrate) 1g, 구연산 나트륨(sodium citrate) 1g, 박토 한천(bacto agar) 15g, 뉴트랄 레드(neutral red) 0.03g/탈염수(deionized water) 1l- Difco manual, 1984]에서 세균공동체 EBC1000을 희석도말하면 각 균주의 콜로니 형태를 확인할 수 있다. 24시간 데스옥시콜레이트 아가에 배양하고 나면 EBC100, 101, 103은 붉은색상에 흰색의 점성이 나타나며, 크기상 미세한 차이를 보인다. EBC104는 붉은색에 흰부분이 나타나며 무점성이며, EBC105는 갈색, EBC106, 107은 엷은 갈색, EBC108은 무색, EBC109는 붉은색에 점성을 나타낸다(Dictionary of Microbiology and Molecular Biology, 2nd, Paul Singleton Diana Sainsbury 1987).
5. 세균 공동체 EBC1000의 특성
(1) 세균 공동체 EBC1000에 의한 알킬아릴나프탈렌 설폰산 나트륨(sodium alkylarylnaphthalene sulfonate: Tamol-SN)의 분해속도
K2HPO4 0.065g, KH2PO4 0.017g, MgSO4 0.1g, NaNO3 0.5g을 탈염수 1l에 용해시켜 만든 최소배지(pH 7.2)에 Tamol-SN을 500, 1000, 2000, 4000 ppm으로 점차 증가하여 투여하고 세균 공동체 EBC1000을 접종한 뒤 시간별로 흡광도와 Tamol의 농도를 측정하였다.
Tamol-SN(ppm) 분해속도(㎎/l/h)
500
1000
2000
4000
1.3
3.8
5.2
4.0
표 9에 나타난 바와 같이, 시간당 Tamol의 분해속도는 500 ppm일 때 분해속도는 1.3(㎎/l/h)이고, 4000 ppm일 때는 4.0(㎎/l/h)이었다.
(2) 세균 공동체 EBC1000에 의한 오염소화 페놀화합물(PCP)의 분해속도
상기 (1)과 같은 최소액체배지 조건에 BTB 20mg를 탈염수 1l에 용해시켜 만든 후 오염소화 페놀화합물(PCP)을 표 4와 같이 투여하고 세균 공동체 EBC1000을 접종한 뒤 시간별로 흡광도와 오염소화 페놀화합물(PCP)의 농도를 측정하였다. 그 결과는 표 10에 나타나 있다.
오염소화 페놀화합물(PCP)(ppm) 분해속도(㎎/l/h)
200
500
1000
2000
0.9
6.5
5.0
4.5
세균 공동체 NBC2000 EBC1000 각 균주의 조합에 따른 환경호르몬의 분해특성
개별균주의 분해능은 제한적이지만 NBC2000 또는 EBC1000 전체 또는 그 구성 균주들의 각 조합별 세균 공동체를 시료 또는 오염 환경에 처리하면 더 광범하고 효율적인 분해효과가 나타난다. 이는 NBC2000 및 EBC1000을 구성하는 개별균주의 기능보다는 세균 공동체로서의 상호협력으로 인한 창발성의 상승효과는 매우 크다고 볼 수 있다. 어떤 균주도 단일 균주로서는 복잡다단한 PCBs를 분해할 수 없으나, NBC2000 각 균주들과 EBC1000(KCTC0652 BP) 각 균주들의 조합에 따라서는 균주간의 상호보완 및 군집내의 유전자 전이 교환방식으로 인하여 효율적인 분해효과를 나타내게 된다. 이를 입증하기 위하여, 본 발명자는 다음과 같은 실험을 수행하였다.
이하, 본 발명은 다음 실험예에 의거하여 구체적으로 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.
NBC2000세균공동체 EBC1000세균공동체에서 선택된 12종의 혼합세균공동체의 절연유내 PCBs 분해효과 확인 실험
1절. PCBs 분해 반응조의 설계
1. 반응조의 요건 및 선택
반응조 설계는 외부에서 내부반응 과정을 볼 수 있는 강력 유리재료 등에 의한 분해반응조로 온도, pH, 산소, 교반의 부속시설 및 장비를 갖추고 투입구, 인출구 등을 제어하는 방식으로 설계하였다.
이에 국내 기업인 바이오트론(Biotron)사의 발효조 Liflus GX 및 Liflus GR모델을 선택하여 주 반응조 2개(GX)와 예비 반응조 2개(GR)를 설치하였으며, 예비실험 및 재현성 등 연구에 필요한 실험 반응조(플라스크 및 인큐베이터 등)를 설치, 운영하였다. 주 반응조(Liflus GX)의 경우 교반속도, 온도, pH 및 DO 측정, 공기주입량 설정 등이 가능하며, 주기적으로 조건 및 변화에 대한 데이터를 컴퓨터를 통해 저장 및 취득이 가능하도록 하였다. 예비 반응조(Liflus GR)는 온도 및 교반속도의 설정만이 가능하도록 하였다(11).
2. 반응조의 구성 및 실험과의 상관관계
가. 반응조의 개요
반응조란, PCBs가 함유된 절연유에 미생물을 배양하여, PCBs 및 기타 영양원을 먹이로 삼아 미생물의 성장에 따른 PCBs의 농도 저감을 위한 반응이 일어나는 장비로써, 기본적인 개념으로는 PCBs가 함유된 절연유를 배지로 하여 미생물을 증식시키는 발효조와 같은 형태로 설계하였다.
이들 반응조에는 PCBs 분해균주, PCBs 함유 절연유, 그리고 주입된 공기의 효과적인 혼합을 위한 교반기, 공기주입을 위한 폭기장치, 그리고 온도조절을 위한 냉각 및 전열 장치 등이 기본적으로 구성되어 있고, 균주의 생육조건을 조절하기 위한 용존 산소(DO) 조절(측정)장치와 pH 조절(측정)장치 등으로 구성되어 있다.
반응조에 이와 같은 다양한 종류의 조절장치가 장착되는 이유는 균주에게 우리가 목적으로 하는 PCBs의 효과적인 분해 환경을 제공하여 줌으로서 주어진 시간 내에 최대 분해효율을 얻고자 하는데 있다.
나. 반응조의 본체
반응조는 미생물 균주 및 PCBs함유 절연유와의 생분해 실험에 있어 내열성 및 기타 화학 부식성 등의 문제를 고려하여 설계하였다.
반응조의 기본 본체는 주로 스테인리스 STS 316, STS 304 로 이루어져 있다. 이는 부식에 강하고, 녹이 슬지 않으며 기타 물질과의 반응성을 최소로 하여 내구성 및 안정성에 용이하다. 이 중에서도 특히 STS 316의 경우에는 내부의 배지 또는 물이 닿는 부분에 사용되며, 기타 외부적인 곳에는 STS 304 가 주로 사용 된다.
STS 304와 316은 크롬과 니켈의 함량에 따라 다르며, 316의 경우 강도는 비교적 조금 약하나 내약품성 및 내식성이 뛰어난 것으로 알려져 있다.
유리재질은 Borosilicate(붕규산유리)로 되어 있으며 규산 대신에 붕산을 주체로 하는 유리로 붕산을 적어도 5% 이상 함유하며, 붕소를 첨가함으로써 팽창계수가 저하하여 화학적 내성, 특히 내산성내후성이 증대하고, 내열충격성이 풍부한 점이 특징이다. 이화학용내열용기용 유리로 쓰인다.
다. pH 측정장치
미생물의 활성 즉 증식속도에 미치는 환경적 요인을 찾아보면 제일 먼저 미생물이 성장하고 있는 배지 환경을 찾을 수 있다. 그러나 배지 환경 못지않게 중요한 인자들이 온도, pH 그리고 용존 산소를 들 수 있다.
미생물의 증식에 있어서 pH의 영향도 온도의 영향에 못지않게 매우 중요하다. 따라서 주기적인 pH의 측정과 함께 관리 또한 필요하다.
pH 센서는 유리전극식의 센서가 사용되고, 그 측정원리는 유리박막의 양측에 pH가 다른 2종의 용액이 있으면 그 차에 비례한 전위차가 생기는 현상을 이용하고 있다. pH 센서는 반응실험에 들어가기 이전에 앞서 pH 표준용액을 이용하여 보정해주어야 한다. 보정하기에 앞서 전극의 표면에 묻은 유기물 또는 무기물을 제거하여 주어야 하며, pH4, 7, 10의 세 가지 모두를 보정하는 3-point 보정방식으로 보정하여 사용한다.
라. DO 측정장치
미생물의 배양에 있어 산소는 호기성 미생물의 증식에 있어 매우 중요한 요소 중의 하나이다. 일반적으로 미생물 배양에서 산소는 통기와 교반장치에 의하여 공기방울에서 배양액내로 확산되어 들어가는 용존산소의 형태로 존재하게 된다. 그러므로 PCBs의 분해를 위한 미생물의 증식은 통기와 교반조건에 의한 용존산소의 농도에 크게 영향을 받는다. 반응조 내의 용존산소 농도는 DO 전극을 이용하여 측정하게 된다. DO 측정 전극도 사용 전 보정을 해야 하며, Zero Setting 후, 포화상태에서의 Saturation setting을 하여야 한다.
DO 전극은 또한 전극바닥의 산소투과성막인 membrane이 바닥에 닿지 않도록 주의 하여야 하며, 파손되지 않도록 주의 하여야 한다. 또한 막이 이물질에 의해 막혔을 경우 조심스럽게 세척해 주어야 한다. 내부의 전해질용액은 반응이 느릴 경우 교환하여 주어야 한다.
마. 교반장치
교반장치는 미생물의 성장에 필요한 산소공급과 PCBs 함유 절연유와 균체를 혼합하여 균체로부터 대사물질의 물질이동을 촉진시키고, 반응 과정 중에 발생되는 열이 효과적으로 냉각될 수 있도록 도와주는 역할 등 매우 중요하다. 교반기는 기본적으로 회전력을 발생시키는 모터와 이 회전력을 교반기(impellar)에 전달하는 교반축, 그리고 실제적으로 교반을 일으키는 교반기로 구성되어 있다.
교반기의 교반력은 반응조 외부에 설치된 모터를 통해 구동하여야 하는데, 반응조의 멸균상태를 유지하기 위해서는 외부로부터 이물질이 유입 되지 않도록 반응조 내외부가 차단되어 있다. 교반기의 재질은 Teflon재질로 구성 되어 있다.
바. 온도조절장치
미생물증식은 일련의 화학반응의 결과이며, 이는 미생물의 증식이 온도에 크게 영향을 받고 있음을 의미한다. 일반적으로 화학반응은 온도가 10 상승함에 따라 그 반응속도가 약 2배 정도 증가하게 되는데, 미생물의 증식도 온도가 상승함에 따라 함께 증가하는 것으로 관찰되고 있다. 그러나 그 증식속도가 상승되는 온도의 폭은 매우 좁게 관찰된다.
이는 미생물의 증식이 일반 화학반응과는 달리 생화학적인 반응이기 때문에 그 반응에 있어 최적 온도가 존재하기 때문이다. 이때 미생물 증식의 최적온도는 대상 미생물에 따라 다르다.
미생물은 온도에 있어 증가율보다 사멸율이 더 민감하므로 철저한 관리가 필요하다. 따라서 반응조에서는 온도조절을 위한 냉각수가 반응조의 외부 자켓에 공급되게 되어 있다.
반응조 아래 부분에는 전열판이 놓여 있다. 이를 통해 반응조 내부로 열을 전달하게 된다. 온도센서에서는 온도를 측정하여 미리 설정하여 놓은 온도값 이상으로 올라가게 되면 자켓을 통해 냉각수를 순환시켜 온도를 낮추게 되고, 온도가 떨어지게 되면 전열판이 가동되어 온도를 높이게 되는 자동 시스템으로 구성되어 있다.
사. 냉각장치
반응조가 운영되는 동안 교반기에 전달된 에너지가 반응물질 중에 전달되어 다량의 열이 발생되게 되고, 또한 미생물은 증식하는 동안에도 다량의 열을 발산하게 되어 발생된 열을 효과적으로 제거하기 위한 냉각 장치가 필요하게 된다.
본 반응조에서는 반응조 내부의 자켓을 통하여 냉각수가 흘러 냉각이 된다.
아. 기타장치
이 밖에도 생물공정을 위한 부수적인 장치로써 거품을 제거하는 Anti Foam Sensor, 공기주입을 위한 Air pump, 공기량 조절을 위한 Air flow controller, 발생되는 가스중의 수분을 냉각시켜 돌려보내주는 콘덴서 등이 있다.
3. 반응조의 설치 및 최적 조건의 확립
반응조는 춘천바이오산업진흥원 내 실험실에 설치하였다. 실험실 내부는 온도와 습도의 유지 및 관리가 가능하고, 냉각수의 공급이 원활하며 실험에 필요한 각종 실험기구 및 안전 방호용 부속장비가 갖추어져 있다. 본 실험은 장기간에 걸친 반응 테스트가 필요하므로 실험에 들어가기에 앞서 절차서에 따라 반응조의 예비가동 및 안전검사를 실시하였다. 예비가동은 GX 및 GR 반응조의 내부에 물을 넣어 세척과 동시에 전기안전 테스트 및 장비오류 테스트를 실시하였다.
GX는 컴퓨터와 통신선을 연결하여 데이터를 취득하며 테스트 하였다. 4일 연속의 예비가동 결과 전기적 불안정과 장비적 오류를 발견하여 전기적으로는 단독전원 등의 설치를 하였고, 장비적으로는 반응조 내부의 부품을 교체하여 반응조의 설치를 안정적으로 실시할 수 있었으며, 반응조 자체의 최적 조건을 가질 수 있었다.
반응조를 설치 한 후, 반응조에 각각 GX-1, GX-2, GR-1, GR-2로 명칭을 정하여 관리 하였으며 반응조 주변에 경계선을 설치하여 지정된 연구원 이외의 출입을 통제하였다. 또한 액체폐기물수거함, 고체폐기물 수거함을 설치하여, 각 폐기물의 유출을 막고 수거하여 보관하였다.
2절 분석방법 및 분석기관의 선정
1. 분석방법의 선정
PCBs 함유 절연유를 미생물과 혼합한 후, 교반 및 배양을 통해 절연유 내의 PCBs 농도의 저감 추이를 확인하기 위하여 공인된 분석기관에 분석을 의뢰하였다.
PCBs의 분석법은 크게 하기 표 11와 같다.
분석방법 시료량
(㎖)
분석단가
(만원)
분석기간
(일)
내 용
간이분석법
(L2000DX법)
40 약 4~5 즉시 - 즉시 측정 가능
- 5ppm 이상이면 정밀분석
- 기준이상, 이하만 표시
정밀분석
GC-ECD법
20 약 20 약 30 - 현행인증 표준방법
- 분석값 : 소수점표시
개량
GC-ECD법
20 약 14 약 30 - 정밀분석법의 전처리 방법개선
- 분석값 : 정수표시
HR-MS법 5~20 약 200~300 약 60 - 현재 209종 이성체 분석불가
- 17~27종 이성체 분석
본 과제에서는 지정폐기물 기준여부가 아닌 PCBs농도의 변화에 따른 분해능을 측정하고자 하는 것이므로, 간이 분석법은 의미가 없으며, 개량 GC-ECD법 또한 분석값이 정수로 표현되므로(반올림) 큰 의미가 없다고 판단되었다. 따라서 현행 인증 표준방법인 정밀분석GC-ECD법을 통한 농도 저감 추이와 PCBs의 이성체의 농도 변화추이를 위한 HR-MS법을 사용하여 분석 하였다. 하지만 모든 시료의 분석을 HR-MS법으로 분석할 수 있는 상황이 아니므로, HR-MS법과 GC-ECD법을 병행하여 두 방법의 상관관계를 분석한 후 연계할 수 있도록 하였다.
가. 정밀분석 GC-ECD법 (Gas Chromatography-Electron Capture Detector)
- 시간의 변화에 따른 미생물의 PCBs 농도의 저감 추이를 확인 할 때 사용한다.
- 시료분석 계획을 수립하여 의뢰하되, 미생물 및 반응조 내부의 상황에 맞게 계획을 변경하여 의뢰할 수 있게 하였다.
- 각 회당 시료의 개수는 반응조의 개수 대로 하되 상황에 따라 비례적으로 시행하며, 시료의 변화에 따라 수정 및 보완하도록 하였다.
나. HR-MS법 (High Resolution-Mass Spectrometer)
- PCBs의 각 이성체에 따른 농도 변화 추이를 확인할 때 사용한다.(17~27종)
- 시료분석 계획을 수립하여 의뢰하되, 미생물 및 반응조 내부의 상황에 맞게 계획을 변경하여 의뢰할 수 있게 하였다.
- 최종 산물(부산물)에 대한 다이옥신 함유여부 확인 시에도 의뢰하였다.
2. 분석기관의 선정
PCBs 농도 분석은 국가가 인증하는 기관에 의뢰하고, 분석기관과 기술협력(자문 및 평가포함)을 통해 분석 및 분해과정의 신뢰성을 높여야 한다. 따라서 공인 인증된 기관을 조사하여, 각 인증기관에 대한 정보를 수집 한 후 분석기관을 선정하였다. 조사된 기관 중 분석 기간 및 분석 단가 등의 정보를 조사하여 정밀 GC-ECD법은 ‘랩프론티어’ 및 ‘포항산업과학연구원(RIST)’으로, HR-MS법은 ‘포항산업과학연구원(RIST)’으로 선정하였다.
3절 PCBs 함유 절연유 시료의 채취
1. PCBs 함유 절연유의 현장 채취
한국전력공사 강원지사의 협조를 받아 주상용 변압기에 내장된 현장시료로써 ‘08년 4월 3일 고농도PCBs 함유 절연유 10l, 저농도 PCBs 함유 절연유를 7l를 각각 채취 하였다.
각 시료는 한국전력 강원지사에서 최초 전북대 화학물질안전관리연구센터에 의뢰하여 측정한 결과 값으로 고농도 PCBs 함유 절연유가 339.58ppm, 저농도 PCBs 함유 절연유가 60.54ppm인 절연유를 선택하여 채취 하였다. 채취 시에는 각종 방호용품을 착용 한 후, 담당자의 안내에 따라 채취 하였으며, 준비된 갈색 유리재질의 시료병을 채취하고자 하는 절연유로 3회 정도 닦아낸 뒤, 대표성이 있도록 시료를 채취하였다. 도중 발생되는 각종 폐기물은 비닐에 담아 밀봉 후 보관하였으며, 시료의 채취가 끝나고 채취된 시료병에 시료의 명칭, 번호, 장소, 일시, 채취자, 방법, 채취량 등의 각종 기재사항을 기록하였다.
가. 채취도구
PCBs 함유 절연유 시료 채취 시에는 각종 안전 방호용품을 착용하여 안전하게 채취 할 수 있도록 하였으며, PCBs 함유 절연유가 외부로 누출되는 것을 막기 위하여 각종 채취도구를 사용하였다. 채취도구는 사용 후 폐기처리 하여 비닐에 담아 밀봉 후 보관하도록 하였다.
나. PCBs 함유 절연유 보관 및 취급사항
채취한 절연유 시료는 밀봉하여 암소에 보관하였다. 시료의 보관은 원칙적으로 0~4의 직사광선이 없는 안전한 곳에 보관하여야 하나, 실험의 특성상 현장시료의 조건과 동일하게 조절하기 위하여 상온에서 직사광선을 피해 안전성을 고려하여 보관하였다. 시료의 관리에 있어서는 매일 지정된 시간에 누출 및 안정성 여부를 확인하도록 하며, 외부인의 접촉이 없도록 철저히 관리였다. 또한 시료 기록 관리대장에 이상 유무를 기록하도록 하고, 이상이 있을 시에는 절차에 따라 즉시 보고 및 조치하도록 하였다.
4절 PCBs 분해 균주의 배양
1. 균주의 선택
절연유 내의 PCBs 분해를 위한 균주의 선택에 있어 상기 NBC2000 세균공동체및 EBC1000 세균공동체에서 선택된 미생물 공동체를 사용하였다. 구체적으로 Cy106, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 및 NZ2001의 12종의 균주를 포함하였다.
2. 균주의 배양
균주 배양에 있어 사용된 배지는 루리아-베르타니(Luria-Bertani)영양배지[박토-트립톤(bacto-tryptone) 10g, 박토-효모 추출물-(bacto-yeast extract) 5g, 소디움 클로라이드(NaCl) 10g / 탈염수 1l]에 배양하며, 인큐베이터 온도 30, 진탕(Shaking) 분당회전수 115rpm의 최적 조건으로 4~5일간 배양하였다.
5절 PCBs 함유 절연유의 생 분해능 재현성 실험
1. PCBs 함유 절연유의 생 분해능 재현성 실험
시료 분석방법 및 분석기관의 선정, 반응조의 예비가동을 통한 최적 조건의 형성 및 PCBs 함유 절연유 현장 시료채취와 균주의 배양이 끝난 후, 반응조 내부에 PCBs 함유 절연유를 넣고 미생물을 투입하여 PCBs 함유 절연유의 생 분해능 재현성 실험을 실시하였다. 반응조 가동 및 사용에 관한 절차는 절차서에 따라 진행하였다.
PCBs 함유 절연유 시료를 반응조 내부로 투입하기에 앞서 각종 방호용품을 착용하고 예비가동 및 세척, 건조가 끝난 주 반응조(GX-1, GX-2)에 각각 고농도 PCBs함유 절연유(GX-1) 및 저농도 PCBs 함유 절연유(GX-2)를 4l씩 조심스럽게 넣은 후, 각 절연유에서 GC-ECD 분석용 절연유 시료를 20ml씩 채취 하였으며, pH 측정장치 및 DO 측정장치 등의 부속 장치를 보정, 장착 하였다.주 반응조(GX)의 Total Volume은 8l이며, Working Volume(Total Volume 의 약 70%)은 약 5~6l정도 이므로 4l의 절연유를 투입하였고, 예비반응조(GR)는 Total Volume이 5l이며, Working Volume은 약 3~4l정도 이므로 3l의 절연유를 투입하였다.
2. 반응조의 최적 조건 설정
미생물을 이용한 PCBs 함유 절연유의 생 분해실험에 있어 기존 특허에서 제시된 최적 조건으로 하여 반응조의 조건을 온도 25, 교반속도 200rpm으로 설정하였다. 또한 데이터 취득의 간격을 10분 단위로 하여 온도, pH, DO, 교반속도 등의 데이터를 취득 할 수 있도록 설정하였다. 공기의 주입은 에어 펌프롤 통해 0.5~1l/Min으로 설정하였다.
6절 반응조 시료채취 및 분석의뢰
1. 시료채취 방법
폐기물공정시험법의 절차에 따라서 반응조 내부의 시료를 채취하여 분석의뢰 하기 위하여 각종 방호용품을 착용하고 1회용 피펫을 사용하여 시료를 채취 하였다. 시료채취 시에는 시료의 대표성을 가질 수 있도록 피펫을 한번 반응조 내부의 절연유로 씻어 낸 후 비례적으로 채취하여 시료채취병에 담았다.
시료채취에 관한 절차는 절차서에 따라 진행하였으며, 시료채취 후 발생되는 폐기물은 폐기물 수거함에 처리하여 보관하였다.
2. 분석의뢰
반응조 내부 시료를 채취하여 분석기관에 의뢰하기 전 시료채취병에 시료명, 채취일, 번호, 채취자, 채취장소, 시료양 등을 기재하고, 시료분석의뢰 관리 대장에 기록하였다. 또한 분석의뢰 중에 파손 및 누출을 막기 위하여 시료병을 스티로폼을 이용하여 단단히 고정 시키고, 얼음팩이 들어 있는 아이스박스에 담았다. 또한 내부에서 누출이 되지 않도록 잘 고정 시킨 후 직접 의뢰 하였다.
7절 유해성 평가 및 기타실험
1. 반응조 발생가스 측정
가. 반응조 발생가스 측정의 개요
절연유 내부에 함유된 PCBs를 미생물에 의한 정화 처리기술을 이용하여 PCBs 오염 절연유의 생분해에 의한 처리효율을 입증하는 실험 중 발생되는 부산물은 액상 부산물과 기체부산물로 크게 볼 수 있다. 반응조 발생가스 측정 실험은 기체 성분에 대한 분석으로, 기체 부산물 평가 및 환경에 미치는 영향을 평가하였다.
미생물에 의한 생물학적 PCBs 처리 실험을 위해 반응조 내부로 공기가 공급되고, 외부로 콘덴서를 지나 스파져를 통해 방출 된다. 따라서 반응조 내부에서 미생물에 의한 기작으로 배출되는 가스 성분을 측정하고자 하였다.
측정항목은 절연유 자체에서 휘발 될 수 있는 휘발성유기탄소(VOCs), PCBs의 분해를 통한 염소의 거동을 살펴보고 유해가스의 발생을 추정 할 수 있는 염소가스(Cl2), 미생물의 대사와 탄소의 거동을 살펴 볼 수 있는 이산화탄소(CO2)의 3가지 항목에 대한 기체 성분을 측정 하였다.
현재 정밀 분석장비(GC-MS 등)로 측정 할 수 있는 항목에는 제한이 있었으며, 또한 연속적 가스 발생에 대해 측정이 어려운 점이 있어, 휴대용 가스측정기를 임차하여 측정하였다.
가. VOCs 측정장비는 하기 표 12과 같다.
EntryRAE(VOCs측정)
측정범위 0~999ppm
분해능 1ppm
응답시간 10sec
센서 Photo-ionization sensor
검교정일자 2008. 08. 26
검교정기관 RAE KOREA
Serial NO. 180-000833
나. Cl2 측정장비는 하기 표 13과 같다
VRAE(Cl2 측정)
측정범위 0~10ppm
분해능 0.1ppm
응답시간 60sec
검출방식 electrochemical for toxic gases
catalytic for combustible gases
검교정일자 2008. 08. 26
검교정기관 RAE KOREA
Serial NO. 170-102277
다. CO2 측정장비는 하기 표 14과 같다
MultiRAE-IR(CO2측정) 
측정범위 0~20000ppm
분해능 10ppm
응답시간 30sec
센서 NDIR
검교정일자 2008. 08. 26
검교정기관 RAE KOREA
Serial NO. 080-901072
나. 실험방법
교정된 기체측정 장비를 준비하고 반응조 피드라인의 4개 라인 중 한 개의 라인을 열어 두었다. 만약 라인을 열어두지 않으면 반응조 내부로 유입되는 공기의 양과 기체 측정장비의 기체 샘플링 속도의 차이로 인해 반응조 내부에 압력이 차서 반응조가 손상되거나, 기체 측정장비에 무리가 갈 수 있다. 열어둔 부분에서는 반응조 내부의 공기가 압력으로 인해 외부로 빠져나가거나 유입된다. 실제 실험에서는 한 개의 라인을 열어 두었을 때, 기체 측정장치의 샘플링 속도가 반응조의 기체공급량보다 적어 반응조 내부의 공기가 빠져나가는 것으로 확인하였다.
또한 콘덴서 끝의 스파져 부분에 필터가 설치된 기체측정 장비를 연결하고 연결부분을 파라핀 테이프로 막아 기체가 새는 것을 방지하였다.
각 항목의 반응속도를 참조하여, VOCs 및 Cl2는 각 반응조당 1시간씩 측정하였으며, CO2의 경우에는 연속적으로 20분간 측정하고 각 결과를 수기로 기록하였다.
각 반응조에 대해 항목을 바꿔가며 측정하였으며, CO2 항목의 경우 실내 및 실외에 대한 CO2를 측정하여 비교하였다.
2. 다이옥신 측정
PCBs의 생 분해 실험에 있어 친환경적으로 요구되는 사항인 배출 기체 측정과 더불어 반응조 내부 시료에 대해 다이옥신 분석을 의뢰 하였다. 다이옥신 분석은 HR-MS법으로 분석하였으며, 기존 반응조 내부 시료채취와 동일한 방법으로 채취 후 의뢰 하였다.
3. 미생물 총 균체수 확인
미생물은 13종류의 PCBs 분해균주를 미리 충분히 배양한 후, 균주는 평판배지에서 CFU/ml의 콜로니계수법으로 균체수를 확인하였다.
4. 기타실험
PCBs의 분해경과추이에 따라서는 일부 미생물의 균주를 소량으로 추가접종 하였고, PCBs가 함유되지 않은 절연유(Non-PCBs 절연유)와, 미생물 균주를 혼합한 절연유를 분석함으로써 미생물에 의한 GC-ECD 분석값의 간섭효과를 관찰하였다.
8절 실험결과 및 고찰
1. 미생물 반응조 운전 데이터
반응조(GX)에서 나타나는 온도, pH 변화, DO 변화, 교반속도 등의 데이터를 2주 단위로 평균하여 나타내었다. 실험 조건은 pH 6~8, 온도 24~25, 교반기 회전수 200RPM으로 유지하였으며, 반응조의 산소농도는 초기 대비 80~90% 수준으로 유지하였다(표 15 및 도 1).
고농도 (GX-1) 저농도 (GX-2)
주 차 pH 온도
()
DO
(%)
RPM pH 온도
()
DO
(%)
RPM
1,2주차 8.21 24.02 88.95 199.77 7.82 25.02 95.14 200.00
3,4주차 5.36 25.72 90.21 199.90 6.95 25.74 94.04 199.90
5,6주차 6.16 25.69 85.25 200.00 6.69 25.77 89.45 199.90
7,8주차 6.27 25.66 81.36 200.00 6.43 25.81 89.35 200.00
9,10주차 6.49 25.50 76.45 199.78 6.49 25.45 89.30 199.78
11,12주차 6.95 25.64 73.76 200.00 6.37 25.72 93.12 200.00
13,14주차 6.85 25.37 79.36 199.70 6.47 25.40 91.78 199.80
15,16주차 7.10 25.54 81.81 200.00 6.85 25.18 89.07 200.00
17,18주차 6.64 25.56 84.25 200.00 6.46 25.73 92.30 200.00
19,20주차 6.57 25.48 73.90 200.00 6.56 25.69 93.30 200.00
21,22주차 6.48 25.56 84.41 200.00 6.41 25.71 92.54 200.00
23,24주차 6.03 25.72 77.24 200.00 6.44 25.77 93.06 200.00
도 1a 내지 도 1d는 반응조의 pH, 온도, DO, 교반속도의 변화 그래프이다.
2. 미생물 반응조의 시간 경과에 따른 미생물 증식 변화
가. 반응조 미생물 탁도 변화
반응조 내부에 PCBs 함유 절연유를 넣고 미생물을 투입한 다음 반응시간 경과에 따른 미생물 탁도 변화를 관찰하였다. 초기 PCBs 함유 절연유의 경우 노랗고 투명한 색을 나타내었고, 미생물 투입 직후 연한 노랑색에 약간의 탁도가 보였으며, 약 70일 경과 후에는 반응조 표면에 미생물 군집이 관찰되었고, 약 160일 경과 후에는 미생물 증식에 따른 탁도가 보다 증가하고 반응조 표면에 미생물 군집이 많이 형성된 것이 관찰되었다.
실험 결과는 도 2a 내지 도 2d와 같았다. 도 2a 내지 도 2d은 반응시간 경과에 따른 반응조별 미생물 탁도 변화를 보여준다.
나. 미생물 균주의 증식범위
초기의 접종 미생물은 Cy106을 필수적으로 포함하며, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107, 및 NZ2001 을 포함한 미생물 공동체를 각 균주별로 109CFU/ml 까지 배양한 후 접종하였으며, 평판배지에서 콜로니 계수법 CFU/ml로 측정시 초기반응 시 평균적으로 5.8x107~1.2x108/ml로 나타났으며, 반응기간의 지속에 따라 그림(GX1, GX2, GR1)에서와 같이 미생물의 수가 평균적으로 6.2x109~1.5x1010/ml의 최대치까지 증식된 형태를 계속 나타내었다(표 14).
반응조 내에서 미생물의 개체수가 평균적으로 100배 증식을 유지하고 있는 것은 특허 10-588305, PCT/KR2005/001238, EP1745214의 자료에서 발표한 PCBs 오염토양, PCBs 절연유의 미생물 생분해 결과에 대한 재현성 측면에서 균주의 PCBs에 대한 내성 및 생분해를 위한 미생물의 증식으로 나타났다(도 2a 내지 도 2d).
하기 표 16은 미생물과 PCBs 함유 절연유의 반응시간 경과에 따른 미생물 균체수의 증가를 나타낸다.
접종 시 (CFU/ml) 초기반응 시 (CFU/ml) 지속반응 시 (CFU/ml)
109 5.8×107~1.2×108 6.2×109~1.5×1010
3. PCBs 분해율 분석 결과
가. GC-ECD 분석 결과
미생물 혼합반응 시간 경과에 따라 PCBs 함유 절연유 시료분석을 의뢰하여 하기 표 17-18와 같은 결과를 얻었다. 분석결과, 시간의 경과에 따라 PCBs 농도의 증감이 반복되고, 또한 분석기관마다 분석결과가 상이하여 GC-ECD 분석법으로는PCBs 분해율을 확인할 수 없었다.
표 17은 반응시간 경과에 따른 PCBs 농도 변화 (주 반응조-GX)이다.
시료채취일자 (D+경과일) GX-1(고농도)(ppm) GX-2(저농도)(ppm)
랩프론티어 RIST 랩프론티어 RIST
04.22 (0) 415 - 79 -
04.24 (D+2) 530 - 80 -
05.08 (D+16) 415 - 51 -
05.26 (D+34) 570 - 77 -
06.10 (D+49) 520 - 71.5 -
06.24 (D+63) 322.5 - 39 -
07.10 (D+79) 410 511.98 37.5 44.52
07.17 (D+86) - 544.78 - 52.68
07.21 (D+90) 160 - 51 -
07.23 (D+92) - 356.01 - 45.47
08.12 (D+112) - 388.19 - 56.24
09.09 (D+140) 330 69 25.28
(중층) 321 - (상층) 43 -
- - (중층) 40 -
09.16 (D+147) 310 465.51 40 22.19
표 18는 반응시간 경과에 따른 PCBs 농도 변화 (예비 반응조-GR)이다.
시료채취일자
(D+경과일)
GR-1(고농도)(ppm) GR-2 (ppm)
(고농도 대조구)
랩프론티어 RIST 랩프론티어 RIST
07.09 ((D+1) 335 449.78 325 369.24
07.09 (D+1) 혼합 후 385 495.05 - -
07.17 (D+9) - 464.75 - 436.99
07.21 (D+14) 370 - 270 -
07.23 (D+16) - 330.91 - 314.75
08.12 (D+35) - 364.58 - 394.42
09.09 (D+63) 370 462.42 384 -
316 - - -
316 - - -
09.16 (D+70) 310 480.14 295 -
표 17-18에서 나타난 것처럼 초기농도 대비 최종농도의 PCBs 분해율은 분석기관에 따라 상당한 차이가 있으며, 그 원인으로 미생물 대사산물의 간섭효과를 가능성으로 추측하고 있다. 예로 PCBs 함유 절연유에 미생물 균주를 투입하였을 때 초기 415ppm에서 투입 후 530ppm으로 나타난 PCBs 농도의 증가와, PCBs 0.7ppm의 절연유(MOC-1)에 미생물을 투입한 후 14일간 경과 후 6.5ppm으로 증가한 경우이다(하기 표 19). 하기 표 19은 Non-PCBs 실험의 결과를 GC-ECD로 분석한 결과이며, 각 결과에 따른 피크패턴을 도 4a 내지 도 4b에 나타내었다.
시료명 비고 농도(ppm) 분석기관
MOC-1 Non-PCBs 절연유 자체 0.7 랩프론티어
MOM-1 Non-PCBs 절연유+미생물 배양 6.5
나. HR-MS 분석결과
HR-MS 분석에서는 초기 고농도 PCBs 함유 절연유 시료 자체의 농도, 예비반응조의 고농도 PCBs를 함유한 절연유에서 미생물 반응이 73일 경과된 시료, 주 반응조의 고농도 PCBs를 함유한 절연유에서 미생물 반응이 150일 경과된 시료를 채취하여 3회 포항산업과학연구원(RIST)에서 분석하였다.
표 21에 기재된 HR-MS 분석결과를 보면 27종 PCBs 중 5염화 PCBs인 PCBs 118(2,3‘,4,4’,5-PeCB), PCBs 123(2',3,4,4',5-PeCB) 이성체의 농도는 2~5배 증가한 것으로 나타났으나 1~3염화 PCBs의 저염소 PCBs는 모두 100% 분해된 것으로 나타났고, 염소치환 개수가 6~10인 고염화 PCBs의 경우에도 평균 60~100%정도로 대부분의 PCBs가 분해된 결과를 보이고 있으며, 독성등가농도가 큰 Coplanar PCBs의 농도도 대부분 줄어드는 경향을 나타내었다.
HR-MS 분석결과 27종 초기농도 약 24ppm의 PCBs가 미생물 분해 후 약 60% 감소된 9.4ppm으로 나타났다. 12종의 독성 PCBs인 Coplanar PCBs는 초기 25,646pg-TEQ/g에서 미생물 분해 후 1,526pg-TEQ/g으로 감소되었다. 150일 경과 후 12종의 Coplanar PCBs 독성등가농도는 약 94.04%까지 감소된 것으로 나타났다(표 20).
표 20는 반응시간 경과에 따른 PCBs 농도 변화이다.
시료명 시료채취일
(D+경과일)
내 용 27종 농도
(분해율)
12종 농도
(분해율)
독성등가농도
(pg-TEQ/g)
MHX-1 4.22 고농도PCBs 절연유 23.83 ppm
-
20.88 ppm
-
25646.14
-
MHR-1 9.19 (D+73) 고농도 GR-1 21.36 ppm
10.36%
20.70 ppm
0.86%
6036.69
76.46%
MHX-2 9.19(D+150) 고농도 GX-1 9.45 ppm
60.34%
8.88 ppm
57.47%
1526.46
94.04%
표 21는 HR-MS법 초기대비 각 이성체별 농도 분석 결과이다.



총농도
(27종)


독성등가
(WHO 2005
TEF)

염소
치환 수

MHX-1
(초기)

MHX-2 (D+150)

초기대비


농도(pg/g)


농도(pg/g)


저감농도
(pg/g)


분해율(%)
PCB1
1
0.00 0.00 0.00 -
PCB3 8808.93 0.00 -8808.93 100.00
PCB4 0.00 0.00 0.00 -
PCB15 2 579684.54 0.00 -579684.54 100.00
PCB19
3
70475.86 0.00 -70475.86 100.00
PCB37 705234.91 0.00 -705234.91 100.00
PCB54
4
1955.85 1257.96 -697.89 35.68
PCB77 0.0001 192681.23 74356.47 -118324.76 61.41
PCB81 0.0003 80241.39 24905.52 -55335.87 68.96
PCB104

5
0.00 197.27 197.27 -
PCB105 0.00003 7018089.60 2704419.67 -4313669.93 61.47
PCB114 0.00003 692079.40 303527.80 -388551.60 56.14
PCB118 0.00003 164941.47 928454.26 +763512.79 -462.90
PCB123 0.00003 269106.64 981782.23 +712675.59 -264.83
PCB126 0.1 46757.38 12483.75 -34273.63 73.30
PCB155

6
0.00 0.00 0.00 -
PCB156 0.00003 6755316.41 2256769.35 -4498547.06 66.59
PCB157 0.00003 859659.60 307098.35 -552561.25 64.28
PCB167 0.00003 3081491.46 935468.30 -2146023.16 69.64
PCB169 0.03 677689.56 0.00 -677689.56 100.00
PCB188
7
9214.04 2830.38 -6383.66 69.28
PCB189 0.00003 1038437.83 354938.41 -683499.42 65.82
PCB202
8
661675.67 238378.85 -423296.82 63.97
PCB205 312425.50 113564.51 -198860.99 63.65
PCB206
9
489043.61 175489.76 -313553.85 64.12
PCB208 85839.30 31085.26 -54754.04 63.79
PCB209 10 34651.13 2606.98 -32044.15 92.48
합계 23835501.31 9449615.08 60.35
다. 부산물 유해성 평가 결과
부산물 유해성 평가 실험으로 반응조 내부의 액상시료의 다이옥신 농도를 포항산업과학연구원의 HR-MS 기기 분석법으로 실시(표 22)하였으며, 추가적으로 반응조 발생 가스 측정을 통하여 다음과 같은 결과(표 23)를 얻었다.
PCBs의 미생물 처리에 있어서 209종의 PCBs 동종체들은 분자구조상 미생물과 반응 시에 미생물 대사산물과의 상호작용으로 인하여 209종의 dioxin 형태로 쉽게 변환될 수 있어 PCBs의 생분해 시에 가장 많이 나타날 수 있는 대표적인 독성부산물이다. 본 실험에서 반응조 내부 시료의 다이옥신 분석결과 표 20에서와 같이 0.5~0.7ng-TEQ/g의 농도로 검출되어 소각재의 법적 방출제한치인 3ng-TEQ/g 보다 낮은 결과를 보였다. 또한 부가적으로 실험한 배출가스 측정결과에서도 유해가스는 검출되지 않았다.
표 22은 반응조 액상시료 중 다이옥신 분석 결과이다.
시료명 (D+경과일) 다이옥신농도 (ng-TEQ/g) 분석기관
GR-1 (D+73) 0.697
RIST
GX-1 (D+150) 0.517
표 23은 반응조 발생가스 측정결과이다.
구 분 실외(ppm) 실험실(ppm) 반응조(ppm)
이산화탄소(CO2) 496 700 713~844
휘발성유기탄소(VOCs) - - N.D
염소가스(Cl2) - - N.D
9 절 요약 및 결론
- 절연유내에 함유된 고농도(530ppm) 및 저농도(80ppm) PCBs 물질을 처리하기 위해 생물학적 처리기술을 적용함.
- 실험은 한전 강원지사에 보관 중인 주상용 변압기에 내장된 절연유 17L(고농도:10L, 저농도:7L)를 시료로 하여 수행함.
- 실험에 사용된 균주는 Cy106을 필수적으로 포함하며, Cy100, Cy101, Cy102, Cy103, Cy104, Cy107, Tnh, EBC106, W-24, EBC107 및 NZ2001의 혼합 균주를 사용함.
- 실험 조건은 pH 6~8, 반응기 온도 24~25, 교반속도 200RPM 및 DO 농도는 포화상태(80~90%)를 유지함.
- HR-MS로 분석한 결과 실험 150일 경과 후 일부 PCBs 농도가 증가하였으나, coplanar-PCBs 12종의 TEQ 독성은 94%(1526.46 pg-TEQ/g)정도 감소하였으며 PCBs 농도는 57% 감소하는 것으로 나타났음. 비독성 PCBs 동종체까지 포함한 27종의 PCBs 분해율은 60% 감소하는 것으로 나타남(표 24).
표 24은 처리 기간에 따른 PCBs 농도 변화(분석법 : HR-MS)이다.
구 분 초기(D+0) D+150 분해율(%)
총농도(27종)
(ppm)
23.83 9.44 60.35
총농도(12종)
(ppm)
20.88 8.88 57.47
독성농도(12종)
(pg-TEQ/g)
25,646.14 1,526.46 94.05
주) 분석기관 : 포항산업과학연구원
HR-MS Model : Thermo Trace GC Ultra - DFS
: Coplanar-PCBs
- GC-ECD 분석법에 의한 PCBs 농도변화를 분석한 결과 초기농도 대비 최종농도는 감소하였으나, 분해기간 중 PCBs 농도의 증감현상 반복과 분석기관별 분석결과가 상이하여 분해율을 확인할 수 없었음.
- PCBs 분해 미생물의 개체 수는 초기 108 CFU/ml에서 반응시간이 경과함에 따라 1010 CFU/ml로 증가하였음. 이는 미생물에 의한 PCBs 분해가 미생물 대사작용에서 발생되는 효소(Enzyme)의 촉매반응에 의한 것으로 볼 때, 미생물의 활발한 성장은 PCBs 물질의 분해가 활발하게 진행되고 있는 객관적 지표로 평가할 수 있음.
- 미생물을 이용한 PCBs의 생물학적 처리 시 나타날 수 있는 부산물의 유해성 여부에서는 액상시료중의 다이옥신 성분을 평가한 결과 GR-1와 GX-1 반응조에서 각각 0.697ng-TEQ/g, 0.517ng-TEQ/g의 값을 보였으며, 이는 소각재의 법적 방출 제한치 3ng-TEQ/g의 25% 미만 수준임.
본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.
한국생명공학연구원 KCTC10623BP 20040416 한국생명공학연구원 KCTC0652BP 19990811

Claims (13)

  1. PCBs(Polychlorinated Biphenyls)를 포함하는 절연유의 PCBs 처리 방법에 있어서,
    PCBs 처리 세균공동체를 투여하는 단계를 포함하며,
    상기 PCBs 처리 세균공동체는 기탁번호가 KCTC 10623 BP인 NBC2000 세균공동체에서 선택된 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주 및 유황 균주인 Nz2001 균주 중 어느 하나 이상을 포함하고; 기탁번호가 KCTC 0652 BP인 EBC1000 세균공동체에서 선택된 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주 중 어느 하나 이상;을 포함하는 것을 특징으로 하는, 절연유의 PCBs 처리 방법.
  2. 제 1항에 있어서,
    상기 PCBs 처리 세균공동체는 바실러스 속(Bacillus sp.) Cy106 균주, 수도모나스 속(Pseudomonas sp.) Cy100 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy101 균주, 브레분디모나스 베시큘라리스(Brevundimonas vesicularis) Cy102 균주, 브레분디모나스 베시큘라리스(Brevundimonasvesicularis) Cy103 균주, 바실러스 스테아로써모필러스(Bacillus stearothermophilus) Cy104 균주, 바실러스 속(Bacillus sp.) Cy107 균주, 수도모나스 애루기노사(Pseudomonas aeruginosa) Tnh 균주, 유류 분해 그람 음성 세균인 W24 균주, 유황 균주인 Nz2001 균주, 바실러스 세레우스(Bacillus cereus) EBC106 균주 및 수도모나스 속(Pseudomonas sp.) EBC107 균주를 포함하는, 절연유의 PCBs 처리 방법.
  3. 제 1항에 있어서,
    상기 PCBs 처리 세균 공동체는 균체수가 109 CFU/ml 이상으로 배양한 후 투여하는 것인, 절연유의 PCBs 처리 방법.
  4. 제 3항에 있어서,
    상기 배양은 루리아-베르타니(Luria-Bertani)영양배지에서 박토-효모 추출물-(bacto-yeast extract)과 함께 4 내지 5일간 배양 하는, 절연유의 PCBs 처리 방법.
  5. 제 1항에 있어서,
    상기 절연유의 PCBs 처리 방법은 PCBs 처리 세균 공동체를 투여 후, 생분해 시키는 단계를 더 포함하는, 절연유의 PCBs 처리 방법.
  6. 제 5 항에 있어서,
    상기 생분해 시키는 단계는
    24℃ 내지 26℃의 온도 조건;
    pH 5.3 내지 8.5의 pH 조건; 및
    용존 산소의 농도가 73% 내지 95%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법.
  7. 제 6 항에 있어서,
    상기 생분해 시키는 단계는
    24℃ 내지 25℃의 온도 조건;
    pH 6 내지 8의 pH 조건; 및
    용존 산소의 농도가 80% 내지 90%의 DO 조건; 중 어느 하나 이상의 조건을 만족시키면서 분해시키는 단계인, 절연유의 PCBs 처리 방법.
  8. 제 6 항에 있어서,
    상기 생분해 시키는 단계는 생분해 중 회전수 150 rpm 내지 250 rpm의 교반기를 이용하여 교반하는 조건을 추가적으로 포함하는, 절연유의 PCBs 처리 방법.
  9. 제 5 항에 있어서,
    상기 생분해 시키는 단계는 50일 이상의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법.
  10. 제 9 항에 있어서,
    상기 생분해 시키는 단계는 70일 내지 200일의 생분해 시간을 가지는, 절연유의 PCBs 처리 방법.
  11. 제 1항에 있어서,
    상기 절연유는 변압기에 포함되는 절연유인, 절연유의 PCBs 처리 방법.
  12. 제 1항에 있어서,
    상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시키는, 절연유의 PCBs 처리 방법.
  13. 제 11항에 있어서,
    상기 방법은 절연유 내 PCBs의 농도를 50ppm 이하로 저감시킴과 동시에 다이옥신을 3 ng-TEQ/g 의 농도 미만으로 발생시키는, 절연유의 PCBs 처리 방법.
KR1020180012987A 2018-02-01 2018-02-01 미생물을 이용한 PCBs의 처리 방법 KR102045301B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020180012987A KR102045301B1 (ko) 2018-02-01 2018-02-01 미생물을 이용한 PCBs의 처리 방법
PCT/KR2019/001360 WO2019151799A1 (ko) 2018-02-01 2019-01-31 미생물을 이용한 폴리염화비페닐의 처리 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020180012987A KR102045301B1 (ko) 2018-02-01 2018-02-01 미생물을 이용한 PCBs의 처리 방법

Publications (2)

Publication Number Publication Date
KR20190093822A true KR20190093822A (ko) 2019-08-12
KR102045301B1 KR102045301B1 (ko) 2019-11-18

Family

ID=67479432

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020180012987A KR102045301B1 (ko) 2018-02-01 2018-02-01 미생물을 이용한 PCBs의 처리 방법

Country Status (2)

Country Link
KR (1) KR102045301B1 (ko)
WO (1) WO2019151799A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114164139B (zh) * 2021-10-27 2023-03-10 福州大学 一株耐碱耐铬的蜡样芽孢杆菌及其应用

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003111586A (ja) * 2001-10-04 2003-04-15 Railway Technical Res Inst ポリ塩化ビフェニル分解性高温微生物の培養方法と培養装置およびポリ塩化ビフェニル分解方法
KR100403267B1 (ko) * 2000-07-18 2003-11-13 주식회사 프로바이오닉 다이옥신 및 다이옥신 유사물질을 흡착·제거하는 신규미생물 바실러스 퍼밀러스 bs-019 및 이를 이용한다이옥신 및 다이옥신 유사물질의 흡착·제거방법
KR20050104260A (ko) * 2004-04-28 2005-11-02 이성기 세균 공동체 엔비씨2000 및 그를 이용한 환경호르몬의 처리방법
KR20060036261A (ko) 2004-10-25 2006-04-28 한국전력공사 촉매를 이용한 폴리클로리네이티드 바이페닐의 제거방법
KR100612225B1 (ko) 2004-10-20 2006-08-11 학산금속공업 주식회사 폐변압기 내 pcb함유 절연유 분리 장치
KR100782543B1 (ko) 2007-09-07 2007-12-06 박관순 폴리클로리네이티드비페닐 무해화처리방법
KR100798410B1 (ko) 2007-03-14 2008-01-28 한국원자력연구원 폐절연유 내의 염소 성분 제거 방법
KR100848137B1 (ko) 2007-05-17 2008-07-23 한국전력공사 초임계수산화기술을 이용한 폴리염화비페닐로 오염된변압기 폐절연유의 처리방법
KR100864632B1 (ko) 2007-06-04 2008-10-22 학산금속공업 주식회사 초음파세척기가 구비된 폐변압기 내 피시비함유 절연유분리 장치
KR101021690B1 (ko) 2010-05-12 2011-03-22 (주)원창에너지 폴리염화비페닐을 함유하는 폐절연유의 처리 방법
KR101085553B1 (ko) 2009-08-31 2011-11-24 아름다운 환경건설(주) 폴리염화비페닐 탈염소화 공정
KR101230858B1 (ko) * 2011-11-28 2013-02-07 한국지질자원연구원 폴리염화비페닐의 분해능을 가지는 슈도모나스 속 미생물 및 이의 용도

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323646A (ja) * 1997-05-23 1998-12-08 Fukuoka Pref Gov 微生物による塩素系化合物の分解方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100403267B1 (ko) * 2000-07-18 2003-11-13 주식회사 프로바이오닉 다이옥신 및 다이옥신 유사물질을 흡착·제거하는 신규미생물 바실러스 퍼밀러스 bs-019 및 이를 이용한다이옥신 및 다이옥신 유사물질의 흡착·제거방법
JP2003111586A (ja) * 2001-10-04 2003-04-15 Railway Technical Res Inst ポリ塩化ビフェニル分解性高温微生物の培養方法と培養装置およびポリ塩化ビフェニル分解方法
KR20050104260A (ko) * 2004-04-28 2005-11-02 이성기 세균 공동체 엔비씨2000 및 그를 이용한 환경호르몬의 처리방법
KR100612225B1 (ko) 2004-10-20 2006-08-11 학산금속공업 주식회사 폐변압기 내 pcb함유 절연유 분리 장치
KR20060036261A (ko) 2004-10-25 2006-04-28 한국전력공사 촉매를 이용한 폴리클로리네이티드 바이페닐의 제거방법
KR100798410B1 (ko) 2007-03-14 2008-01-28 한국원자력연구원 폐절연유 내의 염소 성분 제거 방법
KR100848137B1 (ko) 2007-05-17 2008-07-23 한국전력공사 초임계수산화기술을 이용한 폴리염화비페닐로 오염된변압기 폐절연유의 처리방법
KR100864632B1 (ko) 2007-06-04 2008-10-22 학산금속공업 주식회사 초음파세척기가 구비된 폐변압기 내 피시비함유 절연유분리 장치
KR100782543B1 (ko) 2007-09-07 2007-12-06 박관순 폴리클로리네이티드비페닐 무해화처리방법
KR101085553B1 (ko) 2009-08-31 2011-11-24 아름다운 환경건설(주) 폴리염화비페닐 탈염소화 공정
KR101021690B1 (ko) 2010-05-12 2011-03-22 (주)원창에너지 폴리염화비페닐을 함유하는 폐절연유의 처리 방법
KR101230858B1 (ko) * 2011-11-28 2013-02-07 한국지질자원연구원 폴리염화비페닐의 분해능을 가지는 슈도모나스 속 미생물 및 이의 용도

Also Published As

Publication number Publication date
KR102045301B1 (ko) 2019-11-18
WO2019151799A1 (ko) 2019-08-08

Similar Documents

Publication Publication Date Title
Riffaldi et al. Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil
Zhao et al. Biodegradation of methyl red by Bacillus sp. strain UN2: decolorization capacity, metabolites characterization, and enzyme analysis
Shradha et al. Isolation and characterization of phenol degrading bacteria from oil contaminated soil
JPH04502277A (ja) ハロゲン置換脂肪族炭化水素の生物分解を促進する方法
US6004772A (en) Oxygenase expressing microorganism strain JM1 (FERM BP-5352) for degrading organic compounds without an inducer
Leena et al. Bio-decolourization of textile effluent containing Reactive Black-B by effluent-adapted and non-adapted bacteria
Ismaeil et al. Bacteroides sedimenti sp. nov., isolated from a chloroethenes-dechlorinating consortium enriched from river sediment
AFUWALE et al. 3. STUDY OF BACTERIAL DIVERSITY OF CRUDE OIL DEGRADING BACTERIA ISOLATED FROM CRUDE OIL CONTAMINATED SITES BY CHARUSHEELA AFUWALE1 AND HA MODI2
Hirano et al. Isolation and characterization of Xanthobacter polyaromaticivorans sp. nov. 127W that degrades polycyclic and heterocyclic aromatic compounds under extremely low oxygen conditions
Olukanni et al. Biodegradation of malachite green by extracellular laccase producing Bacillus thuringiensis RUN1
KR102045301B1 (ko) 미생물을 이용한 PCBs의 처리 방법
KR20080046301A (ko) 유류 오염 토양의 정화용 미생물 액상 조성물, 이의제조방법 및 이를 이용한 유류 오염 토양의 정화방법
US6537797B1 (en) Compositions and methods useful in bioremediation of polychlorinated biphenyls
Nozari et al. Investigation of the effect of co-metabolism on removal of dodecane by microbial consortium from soil in a slurry sequencing bioreactor
Fendri et al. Isolation, identification and characterization of a new lipolytic Pseudomonas sp., strain AHD‐1, from Tunisian soil
Mutharasaiah et al. Biodegradation of 2-chlorophenol by Rhodopseudomonas palustris
Maity et al. Isolation and characterization of 4-chlorophenol degrading bacterial strain from pharmaceutical xenobiotic compounds contaminated soil using enrichment technique
Karamba et al. Isolation and characterization of a molybdenum-reducing and methylene blue-decolorizing Serratia marcescens strain KIK-1 in soils from Nigeria
Kamashwaran et al. Anaerobic biodegradation of pentachlorophenol in mixtures containing cadmium by two physiologically distinct microbial enrichment cultures
El-Bestawy et al. Effect of nutrient amendments and sterilization on mineralization and/or biodegradation of 14C-labeled MCPP by soil bacteria under aerobic conditions
CA2232345C (en) Novel microorganism and method for environmental purification using the same
EP0730027B1 (en) Mutant microorganism expressing oxygenase, processes of degrading organic compounds and remediation of the environment, therewith
KR20090030897A (ko) 유류 오염 토양의 정화용 미생물 액상 조성물, 이의제조방법 및 이를 이용한 유류 오염 토양의 정화방법
Olowomofe Temitayo et al. Catechol-2, 3-dioxygenase and lipase activities during degradation of crude oil by hydrocarbon-degrading bacteria isolated from bitumen-polluted surface water in Agbabu, Ondo State
Bedics et al. Acidovorax benzenivorans sp. nov., a novel aromatic hydrocarbon-degrading bacterium isolated from a xylene-degrading enrichment culture

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant