KR20190077628A - 박막 캡슐화 처리 시스템 및 프로세스 키트 - Google Patents

박막 캡슐화 처리 시스템 및 프로세스 키트 Download PDF

Info

Publication number
KR20190077628A
KR20190077628A KR1020197018554A KR20197018554A KR20190077628A KR 20190077628 A KR20190077628 A KR 20190077628A KR 1020197018554 A KR1020197018554 A KR 1020197018554A KR 20197018554 A KR20197018554 A KR 20197018554A KR 20190077628 A KR20190077628 A KR 20190077628A
Authority
KR
South Korea
Prior art keywords
chamber
ald
process kit
mask
substrate
Prior art date
Application number
KR1020197018554A
Other languages
English (en)
Other versions
KR102204297B1 (ko
Inventor
신이치 쿠리타
스리칸스 브이. 라체를라
수하스 보스키
샹신 루이
Original Assignee
어플라이드 머티어리얼스, 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어플라이드 머티어리얼스, 인코포레이티드 filed Critical 어플라이드 머티어리얼스, 인코포레이티드
Priority to KR1020217000842A priority Critical patent/KR102349330B1/ko
Publication of KR20190077628A publication Critical patent/KR20190077628A/ko
Application granted granted Critical
Publication of KR102204297B1 publication Critical patent/KR102204297B1/ko

Links

Images

Classifications

    • H01L51/56
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45529Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations specially adapted for making a layer stack of alternating different compositions or gradient compositions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45527Atomic layer deposition [ALD] characterized by the ALD cycle, e.g. different flows or temperatures during half-reactions, unusual pulsing sequence, use of precursor mixtures or auxiliary reactants or activations
    • C23C16/45536Use of plasma, radiation or electromagnetic fields
    • C23C16/45542Plasma being used non-continuously during the ALD reactions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45582Expansion of gas before it reaches the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45585Compression of gas before it reaches the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L51/0002
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 개시내용은 박막 캡슐화(TFE)를 위한 방법들 및 장치에 관한 것이다. 일 실시예에서, 원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트가 개시되며, 이는 유전체 윈도우, 밀폐 프레임, 및 밀폐 프레임과 연결된 마스크 프레임을 포함하고, 마스크 프레임은 내부에서 이 마스크 프레임의 대향 측면들 상에 형성된 가스 유입구 채널 및 가스 유출구 채널을 갖는다.

Description

박막 캡슐화 처리 시스템 및 프로세스 키트
[0001] 본 개시내용의 실시예들은 일반적으로 대면적 기판들을 처리하기 위한 장치에 관한 것이다. 보다 구체적으로, 본 개시내용의 실시예들은 디바이스 제작을 위한 원자 층 증착(ALD: atomic layer deposition) 시스템 및 이러한 시스템의 샤워헤드에 대한 인 시츄(in situ) 세정 방법들에 관한 것이다.
[0002] 유기 발광 다이오드(OLED: organic light emitting diode)들은 정보를 디스플레이하기 위한 텔레비전 화면들, 컴퓨터 모니터들, 휴대 전화들, 다른 핸드헬드 디바이스들 등의 제조에 사용된다. 통상적인 OLED는 개별적으로 에너지가 가해질 수 있는 픽셀들을 갖는 매트릭스 디스플레이 패널을 형성하는 방식으로 기판 상에 모두 증착되는 2개의 전극들 사이에 위치된 유기 재료 층들을 포함할 수 있다. OLED는 일반적으로 2개의 유리 패널들 사이에 배치되고, 유리 패널들의 에지들은 밀폐되어 그 안에 OLED를 캡슐화한다.
[0003] OLED 산업뿐만 아니라, 기판 처리 기술들을 이용하는 다른 산업들은 습기에 민감한 디바이스들을 캡슐화하여 이들을 주변 습기 노출로부터 보호해야 한다. 캡슐화 층(들)을 통해 수분 투과도(WVTR: water vapor transmission rate)를 감소시키는 수단으로서 얇은 등각 재료 층이 제안되었다. 현재, 상업적으로 이것이 이루어지고 있는 여러 가지 방법들이 있다. 습기에 민감한 디바이스를 커버하기 위해 ALD 프로세스를 사용하는 것이 이러한 코팅들의 등각 특성이 다른 코팅들보다 더 효과적인 습기 장벽을 제공할 수 있는지를 결정하기 위해 고려되고 있다.
[0004] ALD는 원자 층 에피택시(ALE: atomic layer epitaxy)에 기초하며 화학 흡착 기술들을 이용하여 순차 사이클들에서 기판 표면 상에 전구체 분자들을 전달한다. 이 사이클은 기판 표면을 제1 전구체에 노출시킨 후에 제2 전구체에 노출시킨다. 선택적으로, 전구체들의 유입들 사이에 퍼지 가스가 유입될 수 있다. 제1 전구체와 제2 전구체는 반응하여 기판 표면 상에 막으로서 생성 화합물(product compound)을 형성한다. 원하는 두께로 층을 형성하기 위해 사이클이 반복된다.
[0005] ALD를 수행하는 하나의 방법은 전구체 가스들의 시간 분리(TS: time-separated) 펄스들에 의한 것이다. 이 방법은 다른 방법들에 비해 여러 가지 이점들을 갖지만, TS-ALD의 하나의 약점은 전구체들에 노출된 모든 표면(예컨대, 챔버의 내부)이 증착물로 코팅될 것이라는 점이다. 이러한 증착물들이 주기적으로 제거되지 않는다면, 이들은 벗겨지고 결국 떨어져 나가는 경향이 있어, 결국 기판 상에 미립자들이 남게 될 것이며, 이는 증착된 층의 습기 장벽 성능을 저하시킨다. 인 시츄로 챔버 표면들로부터 원하지 않는 증착물들을 세정하기 위한 효과적인 방법이 없다면, "오프라인" 세정을 위해 그러한 챔버 표면들이 제거되어야 한다. 세정을 위해 챔버 표면들의 제거 및 교체를 달성하도록 챔버가 개방되어야 한다면, 챔버에서 진공이 파괴되어야 하고(예컨대, 챔버가 대기압이 됨) 이러한 진공 파괴는 과도한 챔버 정지 시간(down-time)으로 이어질 것이다.
[0006] 따라서 최소한의 정지 시간으로 이질적인(extraneous) 증착물들을 축적할, 챔버의 주된 핵심 엘리먼트들의 제거 및 세정을 가능하게 하는 처리 챔버가 필요하다.
[0007] 본 개시내용은 OLED와 같은 디바이스 상의 박막 캡슐화(TFE: thin film encapsulation)를 위한 방법들 및 장치에 관한 것이다.
[0008] 일 실시예에서, ALD 챔버에서 사용하기 위한 프로세스 키트(process kit)가 개시되며, 이는 유전체 윈도우, 밀폐 프레임, 및 밀폐 프레임과 연결된 마스크 프레임을 포함하고, 마스크 프레임은 내부에서 이 마스크 프레임의 대향 측면들 상에 형성된 가스 유입구 채널 및 가스 유출구 채널을 갖는다.
[0009] 다른 실시예에서, ALD 챔버에서 사용하기 위한 프로세스 키트가 개시되며, 이는 유전체 윈도우, 밀폐 프레임, 밀폐 프레임과 연결된 마스크 프레임을 포함하고, 마스크 프레임은 내부에서 이 마스크 프레임의 대향 측면들 상에 형성된 가스 유입구 채널 및 가스 유출구 채널, 및 마스크 프레임에 결합된 마스크 시트를 갖는다.
[0010] 다른 실시예들에서, ALD를 수행하기 위한 처리 시스템이 제공된다. 처리 시스템은 일반적으로 챔버 본체, 서셉터(susceptor) 본체, 서셉터 본체 둘레에 배치된 복수의 지지 부재들, 적어도 하나의 프로세스 가스 유입구, 적어도 하나의 펌핑 포트 및 프로세스 키트를 포함한다. 프로세스 키트는 일반적으로 유전체 윈도우, 밀폐 프레임, 및 밀폐 프레임과 연결된 마스크 프레임을 포함하고, 마스크 프레임은 내부에서 이 마스크 프레임의 대향 측면들 상에 형성된 가스 유입구 채널 및 가스 유출구 채널을 갖는다.
[0011] 다른 실시예들에서, ALD를 수행하기 위한 방법이 제공된다. 이 방법은 일반적으로 ALD 처리 챔버 내에 기판 및 프로세스 키트를 포지셔닝하는 단계를 포함하며, 프로세스 키트는 윈도우, 윈도우에 평행하게 배치된 마스크, 및 윈도우 및 마스크와 연결된 프레임을 포함한다. 프레임은 적어도 하나의 유입구 채널 및 적어도 하나의 유출구 채널을 갖는다. 이 방법은 프로세스 가스들을 유입구 채널을 통해 용적 내로 유동시키는 단계 및 과도한 가스들을 유출구 채널을 통해 프로세스 키트로부터 펌핑하는 단계를 더 포함한다.
[0012] 본 개시내용의 상기 열거된 특징들이 상세히 이해될 수 있는 방식으로, 앞서 간략히 요약된 본 개시내용의 보다 구체적인 설명이 실시예들을 참조로 하여 이루어질 수 있는데, 이러한 실시예들의 일부는 첨부된 도면들에 예시되어 있다. 그러나 첨부된 도면들은 본 개시내용의 단지 전형적인 실시예들을 예시하는 것이므로 본 개시내용의 범위를 제한하는 것으로 간주되지 않아야 한다는 것이 주목되어야 하는데, 이는 본 개시내용이 다른 균등하게 유효한 실시예들을 허용할 수 있기 때문이다.
[0013] 도 1은 본 개시내용의 특정 양상들에 따른 예시적인 처리 시스템을 예시한다.
[0014] 도 2는 예시적인 ALD 처리 챔버를 도시하는 부분 측단면도이다.
[0015] 도 3a - 도 3c는 ALD 처리 챔버의 다른 실시예의 다양한 도면들이다.
[0016] 도 4a는 프로세스 키트의 다른 실시예의 등각 분해도이다.
[0017] 도 4b는 도 4a의 4B-4B 라인들에 따른 프로세스 키트의 단면도이다.
[0018] 도 4c 및 도 4d는 도 4b에 도시된 프로세스 키트의 대향 단부들의 부분 확대도들이다.
[0019] 도 5a 및 도 5b는 각각 유입구 매니폴드(manifold) 및 유출구 매니폴드의 부분들의 등각 단면도들이다.
[0020] 도 6a는 처리 위치에 프로세스 키트 및 기판을 갖는 처리 챔버를 도시한다.
[0021] 도 6b는 처리 챔버 내의 이송 위치에 있는 기판을 도시한다.
[0022] 도 6c는 처리 챔버 및 프로세스 키트로부터 이송 위치로 이송된 기판을 도시한다.
[0023] 도 7은 본 개시내용에 따른 프로세스 시퀀스의 실시예들을 도시하는 도면이다.
[0024] 도 8은 마스크 정렬 시스템의 일 실시예의 등각도이다.
[0025] 도 9a는 일 실시예에 따른 프로세스 키트의 등각 분해도이다.
[0026] 도 9b는 일 실시예에 따른 프로세스 키트의 평면도이다.
[0027] 도 10a는 일 실시예에 따른 프로세스 키트의 컴포넌트의 등각도이다.
[0028] 도 10b는 도 10a의 프로세스 키트의 컴포넌트의 단면이다.
[0029] 도 11a는 일 실시예에 따른 프로세스 키트의 컴포넌트의 등각도이다.
[0030] 도 11b는 도 11a의 프로세스 키트의 컴포넌트의 단면이다.
[0031] 이해를 용이하게 하기 위해, 도면들에 대해 공통인 동일한 엘리먼트들을 가리키는 데, 가능한 경우, 동일한 참조 부호들이 사용되었다. 일 실시예에서 개시된 엘리먼트들은 구체적인 언급 없이도 다른 실시예들에서 유리하게 활용될 수 있다고 예상된다.
[0032] 본 개시내용의 실시예들은 기판 상에 복수의 층들을 증착하도록 동작 가능한 처리 시스템을 포함하며, 복수의 층들은 기판 상에 형성된 OLED 층 상에서 캡슐화 층으로서 작용할 수 있다. 이 시스템은 복수의 처리 챔버들을 포함하며, 각각의 처리 챔버는 복수의 층들 중 하나 이상을 증착하도록 동작 가능하다. 처리 시스템은 적어도 하나의 이송 챔버 및 적어도 하나의 로드락(load lock) 챔버를 더 포함한다. 적어도 하나의 이송 챔버는 처리 시스템에서 진공을 파괴하지 않으면서 복수의 처리 챔버들 사이에서 기판들의 이송을 가능하게 한다. 적어도 하나의 로드락 챔버는 처리 시스템의 진공을 파괴하지 않으면서 처리 시스템으로부터 기판들의 로딩 및 제거를 가능하게 한다. 처리 시스템은 처리 시스템의 진공을 파괴하지 않으면서 처리 챔버들에 사용된 마스크들의 로딩 및 제거를 가능하게 하는 마스크 챔버를 더 포함한다.
[0033] 본 개시내용의 실시예들은 기판에 대해 마스크를 정렬하고, 기판 상에 마스크를 포지셔닝하고, 그리고 화학 기상 증착(CVD: chemical vapor deposition)을 수행하여, 기판 상에 형성된 OLED 상에 캡슐화 층을 증착하도록 동작 가능한 CVD 처리 챔버들을 포함한다. CVD 처리 챔버들에서 수행되는 CVD 프로세스는 플라즈마 강화 CVD(PECVD: plasma-enhanced CVD)일 수 있지만, 본 명세서에서 설명되는 실시예들은 다른 타입들의 처리 챔버들에 사용될 수 있으며 PECVD 처리 챔버들에 사용하는 것으로 제한되지 않는다. CVD 처리 챔버들에 의해 증착된 캡슐화 층들은 실리콘 질화물(SiN)을 포함할 수 있지만, 본 명세서에서 설명되는 실시예들은 다른 타입들의 처리 챔버들에 사용될 수 있으며 SiN CVD 처리 챔버들에 사용하는 것으로 제한되지 않는다.
[0034] 본 개시내용의 실시예들은 기판에 대해 마스크를 정렬하고, 기판 상에 마스크를 포지셔닝하고, 그리고 ALD를 수행하여, 기판 상에 형성된 OLED 상에 캡슐화 층을 증착하도록 동작 가능한 ALD 처리 챔버를 포함한다. ALD 처리 챔버에서 수행되는 ALD 프로세스는 시간 분리 ALD(TS-ALD: time-separated ALD)일 수 있지만, 본 명세서에서 설명되는 실시예들은 다른 타입들의 처리 챔버들에 사용될 수 있으며 TS-ALD 처리 챔버들에 사용하는 것으로 제한되지 않는다. ALD 처리 챔버들에 의해 증착된 캡슐화 층들은 알루미늄 산화물(Al2O3)을 포함할 수 있지만, 본 명세서에서 설명되는 실시예들은 다른 타입들의 처리 챔버들에 사용될 수 있으며 SiN CVD 처리 챔버들에 사용하는 것으로 제한되지 않는다.
[0035] 본 명세서에서 설명되는 실시예들은 다른 타입들의 증착 프로세스들에 사용될 수 있고, 기판 상에 형성된 OLED들을 캡슐화하는 데 사용하는 것으로 제한되지 않는다. 본 명세서에서 설명되는 실시예들은 다양한 타입들, 형상들 및 크기들의 마스크들 및 기판들에 사용될 수 있다.
[0036] 기판은 임의의 특정 크기 또는 형상으로 제한되지 않는다. 일 양상에서, "기판"이라는 용어는 예를 들어, 평판 디스플레이들의 제작에 사용되는 유리 또는 중합체 기판과 같은 임의의 다각형, 정사각형, 직사각형, 만곡되거나 아니면 비-원형인 작업물을 의미한다.
[0037] 다음의 설명에서, "가스" 및 "가스들"이라는 용어들은 달리 언급되지 않는 한 상호 교환 가능하게 사용되며, 하나 이상의 전구체들, 반응물들, 촉매들, 캐리어 가스들, 퍼지 가스들, 세정 가스들, 폐수, 이들의 결합들뿐만 아니라 임의의 다른 유체를 의미한다.
[0038] 도 1은 본 개시내용의 일 실시예에 따른 예시적인 처리 시스템(100)을 도시하는 단면 평면도이다. 예시적인 기판(102)이 처리 시스템(100)에 인접하게 도시되어 있다. 처리 시스템(100)은 로드락 챔버(104), 이송 챔버(106), 이송 챔버(106) 내의 이송(예컨대, 도구 및 재료 취급) 로봇(108), 제1 CVD 처리 챔버(110), 제2 CVD 처리 챔버(112), 제3 CVD 처리 챔버(114), ALD 처리 챔버(116) 및 마스크 챔버(118)를 포함한다. 제1 CVD 처리 챔버(110), 제2 CVD 처리 챔버(112), ALD 처리 챔버(116) 및 각각의 챔버의 연관된 하드웨어는 바람직하게는 예를 들어, 알루미늄, 양극 산화 알루미늄, 니켈 도금 알루미늄, 탄소강, 스테인리스강, 석영, 및 이들의 조합들 및 합금들과 같은 하나 이상의 프로세스 호환 가능한 재료들로 형성된다. 제1 CVD 처리 챔버(110), 제2 CVD 처리 챔버(112), 제3 CVD 처리 챔버(114) 및 ALD 처리 챔버(116)는 코팅될 기판의 형상 및 다른 처리 요건들에 의해 요구되는 바와 같이 원형, 직사각형 또는 다른 형상일 수 있다.
[0039] 이송 챔버(106)는 로드락 챔버(104), 제1 CVD 처리 챔버(110), 제2 CVD 처리 챔버(112), 제3 CVD 처리 챔버(114), ALD 처리 챔버(116) 및 마스크 챔버(118)에 인접한 측벽들에 슬릿 밸브 개구들(121, 123, 125, 127, 129)을 포함한다. 이송 로봇(108)은 슬릿 밸브 개구들(121, 123, 125, 127, 129) 각각을 통해 인접 챔버로 하나 이상의 도구들(예컨대, 기판 취급 블레이드들)을 삽입할 수 있도록 포지셔닝되고 구성된다. 즉, 이송 로봇은 로드락 챔버(104), 제1 CVD 처리 챔버(110), 제2 CVD 처리 챔버(112), 제3 CVD 처리 챔버(114), ALD 처리 챔버(116) 및 마스크 챔버(118)에, 다른 챔버들 각각에 인접한 이송 챔버(106)의 벽들에 있는 슬릿 밸브 개구들(121, 123, 125, 127, 129)을 통해 도구들을 삽입할 수 있다. 슬릿 밸브 개구들(121, 123, 125, 127, 129)은 슬릿 밸브들(120, 122, 124, 126, 128)에 의해 선택적으로 개방 및 폐쇄되어, 기판, 마스크, 도구 또는 다른 아이템이 인접한 챔버들 중 하나로부터 제거되거나 삽입되어야 할 때 인접한 챔버들의 내부들로의 접근을 가능하게 할 수 있다.
[0040] 이송 챔버(106), 로드락 챔버(104), 제1 CVD 처리 챔버(110), 제2 CVD 처리 챔버(112), ALD 처리 챔버(116) 및 마스크 챔버(118)는 진공 시스템(예컨대, 진공 펌프)과 유체 연통하는 하나 이상의 (도시되지 않은) 구멍들을 포함한다. 구멍들은 다양한 챔버들 내의 가스들에 대한 출구를 제공한다. 일부 실시예들에서, 챔버들은 분리되고 독립적인 진공 시스템에 각각 연결된다. 또 다른 실시예들에서, 챔버들 중 일부는 진공 시스템을 공유하는 한편, 다른 챔버들은 분리되고 독립적인 진공 시스템들을 갖는다. 진공 시스템들은 다양한 챔버들을 통한 가스들의 흐름들을 조절하기 위해 (도시되지 않은) 진공 펌프들 및 (도시되지 않은) 스로틀 밸브들을 포함할 수 있다.
[0041] 기판들 이외에, 제1 CVD 챔버(110), 제2 CVD 챔버(112) 및 ALD 처리 챔버(116) 내에 배치된 마스크들, 마스크 시트들 및 다른 아이템들은 "프로세스 키트"로 지칭될 수 있다. 프로세스 키트 아이템들은 세정 또는 교체를 위해 처리 챔버들로부터 제거될 수 있다. 이송 챔버(106), 마스크 챔버(118), 제1 CVD 처리 챔버(110), 제2 CVD 처리 챔버(112) 및 ALD 처리 챔버(116)는 이들 사이에서 마스크들, 마스크 시트들 및 다른 프로세스 키트 아이템들의 이송을 가능하게 하도록 크기 및 형상이 정해진다. 즉, 이송 챔버(106), 마스크 챔버(118), 제1 CVD 처리 챔버(110), 제2 CVD 처리 챔버(112) 및 ALD 처리 챔버(116)는 임의의 프로세스 키트 아이템이 이들 중 임의의 챔버 내에 완전히 포함될 수 있도록 크기 및 형상이 정해지며, 슬릿 밸브 개구들(121, 123, 125, 127, 129) 모두는 각각의 슬릿 밸브 개구(121, 123, 125, 127, 129)의 대응하는 슬릿 밸브(120, 122, 124, 126, 128)에 의해 폐쇄된다. 따라서 마스크 챔버(118)가 에어록(airlock)으로서 작용할 때, 처리 시스템의 진공을 파괴하지 않으면서 프로세스 키트 아이템들이 제거되고 교체될 수 있어, 챔버들 중 마스크 챔버 이외의 임의의 챔버에서 진공을 파괴하지 않으면서 프로세스 키트 아이템들이 처리 시스템으로부터 제거될 수 있게 된다. 게다가, 이송 챔버(106)와 마스크 챔버(118) 사이의 슬릿 밸브 개구(129), 이송 챔버(106)와 CVD 처리 챔버들(110, 112) 사이의 슬릿 밸브 개구들(123, 125), 및 이송 챔버(106)와 ALD 처리 챔버(116) 사이의 슬릿 밸브 개구(127)는 모두, 이송 챔버(106)와, 마스크 챔버(118), CVD 처리 챔버들(110, 112) 및 ALD 처리 챔버(116) 사이에서 프로세스 키트 아이템들의 이송을 가능하게 하도록 크기 및 형상이 정해진다.
[0042] 마스크 챔버(118)는 이송 챔버(106)의 슬릿 밸브 개구(129)에 대향하는 마스크 챔버(118) 측에 도어(130) 및 출입구(131)를 갖는다. 출입구는 마스크 챔버(118) 안팎으로 마스크들 및 다른 프로세스 도구들의 이송을 가능하게 하도록 크기 및 형상이 정해진다. 도어(130)는 폐쇄될 때 출입구(131)에 대해 기밀식 밀폐부를 형성할 수 있다. 마스크 챔버(118)는, 도어(130)가 폐쇄될 뿐만 아니라 이송 챔버(106)로 이어지는 슬릿 밸브(128)가 폐쇄된 채로, 임의의 프로세스 키트 아이템이 마스크 챔버(118) 내에 완전히 포함될 수 있게 하도록 크기 및 형상이 정해진다. 즉, 마스크 챔버(118)는 임의의 프로세스 키트 아이템이 이송 챔버(106)로부터 마스크 챔버(118)로 이동될 수 있도록 그리고 마스크 챔버(118)의 도어(130)가 개방되지 않고 슬릿 밸브(128)가 폐쇄될 수 있도록 크기 및 형상이 정해진다.
[0043] 단순성 및 설명의 편의를 위해, 이제 처리 시스템(100) 내에서 수행되는 예시적인 코팅 프로세스가 설명될 것이다. 예시적인 코팅 프로세스는 제3 CVD 처리 챔버(114)에 위치될 수 있는 컴퓨터 또는 컴퓨터들의 시스템일 수 있는 프로세스 제어기에 의해 제어된다.
[0044] 도 1을 참조하면, 기판의 예시적인 처리는 선택적으로 이송 로봇(108)이 마스크 챔버(118)로부터 마스크를 회수(retrieve)하여 ALD 처리 챔버(116)에 마스크를 배치하는 것으로 시작된다. ALD 처리 챔버(116)에 마스크를 배치하는 것은 선택적인데, 이는 더 이전 처리로부터 ALD 처리 챔버(116) 내에 마스크가 남겨질 수 있고, 동일한 마스크가 다수의 기판들을 처리하는 데 사용될 수 있기 때문이다. 마찬가지로, 이송 로봇(108)은 선택적으로 마스크 챔버(118)로부터 다른 마스크들을 회수하여 제1 CVD 처리 챔버(110) 및 제2 CVD 처리 챔버(112)에 마스크들을 배치할 수 있다. 제1 CVD 처리 챔버(110) 및 제2 CVD 처리 챔버(112) 그리고 ALD 처리 챔버(116) 내에 마스크들을 배치할 때, 챔버들 사이의 적절한 슬릿 밸브들(122, 124, 126, 128)이 개방 및 폐쇄될 수 있다.
[0045] 다음에, 이송 로봇(108)은 로드락 챔버(104)로부터 기판을 회수하고 제1 CVD 처리 챔버(110)에 기판을 배치한다. 프로세스 제어기는 CVD 처리를 수행하도록 밸브들, 액추에이터들, 및 처리 챔버의 다른 컴포넌트들을 제어한다. 프로세스 제어기는 슬릿 밸브(122)가 폐쇄되게 하여, 제1 CVD 처리 챔버(110)를 이송 챔버(106)로부터 격리시킨다. 프로세스 제어기는 또한, 기판 지지 부재 또는 서셉터가 CVD 처리를 위해 기판을 포지셔닝시키게 한다. 마스크가 이송 로봇에 의해 올바른 처리 위치에 배치되지 않았다면, 프로세스 제어기는 하나 이상의 액추에이터들을 활성화시켜 마스크를 포지셔닝시킬 수 있다. 대안으로 또는 추가로, 서셉터는 또한 처리를 위해 마스크를 포지셔닝시킬 수 있다. 마스크는 기판의 특정 영역들을 마스크 오프(mask off)하고 그러한 기판의 영역들에서 증착이 발생하는 것을 방지하는 데 사용된다.
[0046] 프로세스 제어기는 이제 제1 CVD 처리 챔버(110)로의 전구체 및 다른 가스들의 흐름이 시작되도록 밸브들을 활성화시킨다. 전구체 가스들은 예를 들어, 실란(SiH4)을 포함할 수 있다. 프로세스 제어기는 히터들, 플라즈마 방전 컴포넌트들 및 가스들의 흐름을 제어하여 CVD 프로세스가 발생하게 하고, 기판 상에 재료들의 층들을 증착시킨다. 일 실시예에서, 증착된 층은 실리콘 질화물(SiN)일 수 있지만, 본 개시내용의 실시예들은 이러한 재료로 제한되지는 않는다. 앞서 언급한 바와 같이, 본 개시내용의 실시예들은 또한 PECVD를 수행하는 데 사용될 수 있다. 증착된 층이 요구되는 두께에 도달할 때까지, 기판의 예시적인 처리에서 CVD 프로세스가 계속된다. 예시적인 일 실시예에서, 요구되는 두께는 5,000 내지 10,000 옹스트롬(500 내지 1,000㎚)이다.
[0047] 제1 CVD 처리 챔버(110)에서의 CVD 프로세스가 완료되면, 프로세스 제어기는 제1 CVD 처리 챔버(110)의 진공 레벨을 이송 챔버(106)의 진공 레벨과 일치시키고, 이어서 서셉터를 제어하여 기판을 이송 위치로 낮춘다. 프로세스 제어기는 또한, 제1 CVD 처리 챔버(110)와 이송 챔버(106) 사이의 슬릿 밸브(122)가 개방되게 한 다음, 제1 CVD 처리 챔버(110)로부터 기판을 회수하도록 이송 로봇(108)에 지시한다. 이어서, 프로세스 제어기는 제1 CVD 처리 챔버(110)와 이송 챔버(106) 사이의 슬릿 밸브(122)가 폐쇄되게 한다.
[0048] 다음에, 프로세스 제어기는 이송 챔버(106)와 ALD 처리 챔버(116) 사이의 슬릿 밸브(126)가 개방되게 한다. 이송 로봇(108)은 기판을 ALD 처리 챔버(116)에 배치하고, 프로세스 제어기는 이송 챔버(106)와 ALD 처리 챔버(116) 사이의 슬릿 밸브(126)가 폐쇄되게 한다. 프로세스 제어기는 또한, 기판 지지 부재 또는 서셉터가 ALD 처리를 위해 기판을 포지셔닝시키게 한다. 마스크가 이송 로봇에 의해 올바른 처리 위치에 배치되지 않았다면, 프로세스 제어기는 하나 이상의 액추에이터들을 활성화시켜 마스크를 포지셔닝시킬 수 있다. 대안으로 또는 추가로, 서셉터는 처리를 위해 마스크를 포지셔닝시킬 수 있다. 마스크는 기판의 특정 영역들을 마스크 오프하고 그러한 기판의 영역들에서 증착이 발생하는 것을 방지하는 데 사용된다.
[0049] 프로세스 제어기는 이제 ALD 처리 챔버(116)로의 전구체 및 다른 가스들의 흐름이 시작되도록 밸브들을 활성화시킨다. 사용되는 특정 가스 또는 가스들은 수행될 프로세스 또는 프로세스들에 좌우된다. 가스들은 트리메틸알루미늄((CH3)3Al)(TMA: trimethylaluminium), 질소(N2) 및 산소(O2)를 포함할 수 있지만, 가스들은 그에 제한되지 않으며 하나 이상의 전구체들, 환원제들, 촉매들, 캐리어들, 퍼지 가스들, 세정 가스들, 또는 이들의 임의의 혼합물 또는 조합을 포함할 수 있다. 가스들은 일측으로부터 ALD 처리 챔버 안으로 유입되어 기판을 가로질러 흐를 수 있다. 처리 시스템의 요건들에 따라, 프로세스 제어기는 임의의 특정 순간의 시점에 단 하나의 가스만이 ALD 처리 챔버로 유입되도록 밸브들을 제어할 수 있다. 다른 실시예들에서, ZrO2 막 형성 프로세스는 ALD 처리 챔버(116) 내에서 TEMAZ(tetrakis ethyl methyl amino zirconium, Zr[N(CH3)(C2H5)]4)와 같은 전구체를 이용하여 수행될 수 있다.
[0050] 프로세스 제어기는 또한, 반응 종이 기판과 반응하여 기판을 코팅할 수 있도록 가스들을 반응 종으로 활성화시키고 반응 종의 플라즈마를 유지할 수 있는 전원을 제어한다. 예를 들어, 무선 주파수(RF: radio frequency) 또는 마이크로파(MW: microwave) 기반 전력 방전 기술들이 사용될 수 있다. 활성화는 또한 열 기반 기술, 가스 분해 기술, 고강도 광원(예컨대, UV 에너지), 또는 x-선 소스에 대한 노출에 의해 발생될 수 있다. 예시적인 프로세스에서, 산소는 플라즈마로 활성화되고, 플라즈마는 기판 상의 산소와 반응하여 기판 상에 산소 층을 증착시킨다. 그 다음, 프로세스 제어기는 TMA가 기판을 가로질러 흐르게 하고, TMA는 기판 상의 산소와 반응하여 기판 상에 알루미늄 산화물 층을 형성한다. 프로세스 제어기는 산소를 흐르게 하는 단계, 산소를 플라즈마로 활성화시키는 단계, 및 기판 상에 추가 층들을 형성하기 위해 TMA를 흐르게 하는 단계를 반복시킨다. 프로세스 제어기는 증착된 알루미늄 산화물 층이 요구되는 두께가 될 때까지, 설명된 단계들을 계속 반복한다. 예시적인 일 실시예에서, 요구되는 두께는 500 내지 700 옹스트롬(50 내지 70㎚)이다.
[0051] ALD 처리 챔버(116)에서의 ALD 프로세스가 완료되면, 프로세스 제어기는 ALD 처리 챔버(116)가 배기되게 한 다음, 서셉터를 제어하여 기판을 이송 위치로 낮춘다. 프로세스 제어기는 또한, ALD 처리 챔버(116)와 이송 챔버(106) 사이의 슬릿 밸브(126)가 개방되게 한 다음, ALD 처리 챔버(116)로부터 기판을 회수하도록 이송 로봇(108)에 지시한다. 이어서, 프로세스 제어기는 ALD 처리 챔버(116)와 이송 챔버(106) 사이의 슬릿 밸브(126)가 폐쇄되게 한다.
[0052] 도 1을 계속 참조하면, 다음에, 프로세스 제어기는 이송 챔버(106)와 제2 CVD 처리 챔버(112) 사이의 슬릿 밸브(124)가 개방되게 한다. 이송 로봇(108)은 기판을 제2 CVD 처리 챔버(112)에 배치하고, 프로세스 제어기는 이송 챔버(106)와 제2 CVD 처리 챔버(112) 사이의 슬릿 밸브(124)가 폐쇄되게 한다. 제2 CVD 처리 챔버(112)에서의 처리는 앞서 설명한 제1 CVD 처리 챔버(110)에서의 처리와 유사하다. 기판의 예시적인 처리에서, 증착된 층이 원하는 두께에 도달할 때까지, 제2 CVD 처리 챔버(112)에서 수행되는 CVD 프로세스가 계속된다. 예시적인 일 실시예에서, 원하는 두께는 5,000 내지 10,000 옹스트롬(500 내지 1,000㎚)이다.
[0053] 따라서 제2 CVD 처리 챔버(112)에서의 프로세스가 완료되며, 기판은 5,000 내지 10,000 옹스트롬 두께인 제1 SiN 층, 500 내지 700 옹스트롬 두께인 Al2O3 층, 및 5,000 내지 10,000 옹스트롬 두께인 제2 SiN 층으로 코팅될 것이다. Al2O3 층은 SiN 단독에 비해 캡슐화 층을 통해 수분 전달률을 더 낮춰, SiN 단독으로 캡슐화하는 것에 비해 캡슐화의 신뢰도를 향상시키는 것으로 여겨진다.
[0054] 도 1을 참조하여 앞서 설명한 예시적인 프로세스에서, CVD 처리 챔버들(110, 112) 및 ALD 처리 챔버(116) 각각에 마스크가 로딩된다. 대안으로, 처리 시스템(100)은 마스크가 처리 챔버로부터 처리 챔버로 기판과 함께 이동하는 프로세스를 수행할 수 있다. 즉, 제2 예시적인 프로세스에서, 기판 및 마스크는 제1 CVD 처리 챔버(110)에 (동시에 또는 개별적으로) 배치되고, 이송 챔버(106)와 제1 처리 챔버(110) 사이의 슬릿 밸브(122)는 폐쇄된다. 그 다음, 기판 상에서 CVD 프로세스가 수행된다. 기판 및 마스크는 다음에, ALD 처리 챔버(116)로 (동시에 또는 개별적으로) 이동되고, 이송 챔버와 ALD 처리 챔버(116) 사이의 슬릿 밸브(126)는 폐쇄된다. 그 다음, 기판 상에 ALD 프로세스가 수행된다. 기판 및 마스크는 다음에, 제2 CVD 처리 챔버(112)로 (동시에 또는 개별적으로) 이동된다. 이어서, 기판 상에 CVD 프로세스가 수행되고, 이어서 기판 및 마스크가 제2 CVD 처리 챔버(112)로부터 제거된다. 완료되면, 기판이 처리 시스템(100)으로부터 제거될 수 있으며, 마스크가 예를 들어, 새로운 기판을 처리하기 위해 사용되거나 세정을 위해 처리 시스템(100)으로부터 제거될 수 있다.
[0055] 도 2는 본 명세서에서 설명되는 실시예들에 따른 프로세스 키트(202)를 가진 예시적인 ALD 처리 챔버(200)를 도시하는 부분 측단면도이다. 도 2에 도시된 ALD 처리 챔버(200)는 도 1에 도시된 ALD 처리 챔버(116)와 유사하다. 일 실시예에서, 처리 챔버(200)는 챔버 본체(204), 리드(lid) 어셈블리(206), 서셉터 또는 기판 지지 어셈블리(208), 프로세스 가스 유입구(210) 및 펌핑 포트(212)를 포함한다. 리드 어셈블리(206)는 챔버 본체(204)의 상부 단부에 배치되고, 기판 지지 어셈블리(208)는 챔버 본체(204) 내에 적어도 부분적으로 배치된다.
[0056] 챔버 본체(204)는 처리 챔버(200)의 내부로의 접근을 제공하도록 챔버 본체의 측벽에 형성된 슬릿 밸브 개구(214)를 포함한다. 도 1을 참조하여 앞서 설명한 바와 같이, 슬릿 밸브 개구(214)는 이송 로봇(도 1 참조)에 의해 챔버 본체(204)의 내부로의 접근을 허용하도록 선택적으로 개방 및 폐쇄된다.
[0057] 하나 이상의 실시예들에서, 챔버 본체(204)는 진공 시스템(220)과 유체 연통하는 하나 이상의 구멍들(216, 218)을 포함한다. 진공 시스템(220)은 진공 펌프(222) 및 하나 이상의 밸브들(224, 226)을 포함한다. 구멍(216)은 처리 챔버(200) 내의 가스들에 대한 출구를 제공하는 한편, 구멍(218)은 펌핑 포트(212)로부터의 가스들에 대한 경로를 제공한다. 진공 시스템(220)은 ALD 프로세스에 적합한 ALD 처리 챔버 내의 압력을 유지하도록 프로세스 제어기에 의해 제어된다. 진공 시스템(220)은 처리 챔버(200)의 내부 용적(228)에서 제1 압력을 유지하는 데 사용될 수 있다. 진공 시스템(220)은 또한 (아래에서 보다 상세하게 설명되는) 프로세스 키트(202) 내에 한정된 용적(230) 내의 제2 압력을 유지하는 데 사용될 수 있다. 본 개시내용의 일 실시예에서, 제1 압력은 제2 압력보다 더 낮을 수 있다.
[0058] 프로세스 키트(202)는 처리 챔버(200)의 내부 용적(228) 내에서 이동 가능하다. 프로세스 키트(202)는 유전체 윈도우(234)를 포함하는 마스크 프레임(232)을 적어도 포함한다. 프로세스 키트(202)는 유전체 윈도우(234)를 마스크 프레임(232)에 고정하는 밀폐 프레임(235)을 또한 포함할 수 있다. 리드 어셈블리(206)는 처리 챔버(200) 내에서 그리고/또는 프로세스 키트(202) 내에서 반응 종의 플라즈마를 생성할 수 있는 무선 주파수(RF) 캐소드(236)를 포함한다. 프로세스 키트(202)는 지지 부재들(238)에 의해 선택적으로 상승 및 하강될 수 있다. 지지 부재들(238)은 또한 프로세스 키트(202)를 위한 정렬 및/또는 포지셔닝 디바이스들로서 작용할 수 있다. 기판(102)은 기판 지지 어셈블리(208) 내에 이동 가능하게 배치된 리프트 핀들(239)에 의해 지지되는 것으로 도시된다. 기판(102)은 (도시되지 않은) 로봇 취급 블레이드가 기판 지지 어셈블리(208)에 대향하는 기판(102)의 표면에 접근할 수 있도록 도 2의 이송 위치에 도시되어 있다. 처리 위치에서, 기판(102)은 기판 지지 어셈블리(208)에 의해 프로세스 키트(202)에 인접한 위치로 상승될 수 있다. 구체적으로, 기판(102)은 마스크 프레임(232)에 결합된 마스크 시트(241)와 접촉하거나 마스크 시트(241)에 근접하게 적응된다.
[0059] 도 2에 도시된 도면에서, 프로세스 키트(202)는 리드 어셈블리(206)의 표면과 접촉하고 그리고/또는 RF 캐소드(236)에 근접하게 유전체 윈도우(234)를 포지셔닝하도록 지지 부재들(238)에 의해 가압된다. 구체적으로, 프로세스 키트(202)가 리드 어셈블리(206)의 하부 표면에 대해 가압될 때, 각각 프로세스 가스 유입구(210) 및 펌핑 포트(212)에 결합된 가스 유입구(242) 및 가스 유출구(244)는 유입구 가스 채널(248) 및 유출구 가스 채널(250)과 각각 유체 연통하도록 포지셔닝된다. 마스크 프레임(232)은 유입구 가스 채널(248)과 유출구 가스 채널(250) 그리고 가스 유입구(242)와 가스 유출구(244) 사이의 계면을 각각 둘러싸는 압축성 밀폐부(252)를 포함한다. 이런 식으로, 전구체 가스들은 마스크 프레임(232)에 형성된 유입구 가스 채널(248)을 통해 프로세스 가스 유입구(210) 및 용적(230)에 제공될 수 있다. 가스들은 용적(230) 내에서 마스크 시트(241) 및 기판(102)을 가로질러 흘러, 마스크 프레임(232)에 형성된 유출구 가스 채널(250)에 의해 배출될 수 있다. 배출된 가스는 펌핑 포트(212)를 통해 진공 시스템(220)으로 흐를 수 있다.
[0060] 막 응력과 같은 막 특성들을 제어하는 것이 가능할 수 있다. 일 실시예에서, 막 응력은 RF 캐소드(236)와 기판 지지 어셈블리(208) 상의 기판(102) 사이의 간격에 의해 제어될 수 있다. 다른 실시예들에서, RF 캐소드(236)의 하부 표면을 변형시킴으로써 막 특성들이 변형 및/또는 제어될 수 있다. 예를 들어, RF 캐소드(236)의 하부 표면을 "스쿠핑(scooping)"(즉, RF 캐소드(236)의 중심에서 단면이 더 얇고 그 에지들에서는 더 두꺼움)하는 것은 응력 균일성을 향상시키는 데 효과적일 수 있다.
[0061] RF 캐소드(236)의 온도는 ALD 처리 챔버(200)에서의 처리 동안 (예컨대, 프로세스 제어기에 의해) 제어될 수 있다. 온도의 제어는 프로세스 키트(202) 및 기판(102)의 온도에 영향을 미치고 ALD 처리의 성능을 향상시키는 데 이용될 수 있다. RF 캐소드(236)의 온도는 예를 들어, (도시되지 않은) 고온계 또는 ALD 처리 챔버(200) 내의 다른 센서에 의해 측정될 수 있다. RF 캐소드(236)는 예를 들어, (도시되지 않은) 전기 가열 엘리먼트들에 의해 가열되고, 냉각 유체들, 예를 들어 GALDEN®이라는 상품명으로 시판되는 열 전달 유체의 순환에 의해 냉각될 수 있다. 반응 종으로 가스들을 활성화하고 반응 종의 플라즈마를 유지할 수 있는 임의의 전원이 사용될 수 있다. 예를 들어, 무선 주파수(RF) 또는 마이크로파(MW) 기반 전력 방전 기술들이 사용될 수 있다. 활성화는 또한 열 기반 기술, 가스 분해 기술, 고강도 광원(예컨대, UV 에너지), 또는 x-선 소스에 대한 노출에 의해 발생될 수 있다.
[0062] 앞서 논의한 바와 같이, 처리 챔버(200)의 내부 용적(228) 및 프로세스 키트(202)의 용적(230) 내의 압력들은 적어도 ALD 처리 동안 서로 다를 수 있다. 일례로, 진공 시스템(220)은 처리 챔버(200)의 내부 용적(228) 내의 제1 압력 및 용적(230) 내의 제2 압력을 유지할 수 있으며, 제2 압력은 제1 압력보다 더 크다. 일부 실시예들에서, 제1 압력은 약 0.3 내지 약 0.2 Torr일 수 있는 한편, 제2 압력은 제1 압력보다 약 100 mTorr 더 클 수 있다.
[0063] 도 3a - 도 3c는 ALD 처리 챔버(300)의 다른 실시예의 다양한 도면들이다. 도 3a는 본 명세서에서 설명되는 실시예들에 따른 프로세스 키트(202)를 가진 ALD 처리 챔버(300)의 단면도이다. 도 3a에 도시된 ALD 처리 챔버(300)는 도 1에 도시된 ALD 처리 챔버(116)와 유사하다. 도 3a - 도 3c에서, 프로세스 키트(202)뿐만 아니라 기판(102)은 처리 위치에 도시되어 있다. 이 위치에서, TMA, TEMAZ, 산소, 이산화탄소 또는 이들의 조합들과 같은 프로세스 가스들이 프로세스 가스 유입구(210)로부터 펌핑 포트(212)로 용적(230)을 통해 흐르게 될 수 있다. 프로세스 가스들은 기판(102) 및 마스크 시트(241)를 가로질러 흐르도록 용적(230)을 통해 끊임없이 흐르게 되거나 펄스화될 수 있다. 일 실시예에서, 유전체 윈도우(234)와 기판(102) 사이에 형성된 용적(230)은 처리 챔버(300)의 내부 용적(228) 내에 반응 챔버를 형성한다.
[0064] 도 4a는 앞서 설명한 프로세스 키트(202)로서 사용될 수 있는 프로세스 키트(300)의 다른 실시예의 등각 분해도이다. 프로세스 키트(300)는 마스크 프레임(232) 및 유전체 윈도우(234)를 포함한다. 프로세스 키트(300)는 또한 유전체 윈도우(234)를 마스크 프레임(232)에 결합하는 밀폐 프레임(235)을 포함할 수 있다. 밀폐 프레임(235)은 볼트들 또는 나사들과 같은 (도시되지 않은) 패스너들에 의해 마스크 프레임(232)에 결합될 수 있다. 밀폐 프레임(235)과 마스크 프레임(232) 사이에는 링 밀폐부(305)가 제공될 수 있다. 마스크 프레임(232)은 또한 그 대향 측면들 상에 압축성 밀폐부(252)를 포함한다. 일부 실시예들에서, 프로세스 키트(300)는 마스크 시트(241)를 포함한다. 마스크 시트(241)는 볼트들 또는 나사들과 같은 (도시되지 않은) 패스너들에 의해 마스크 프레임(232)에 결합될 수 있다. 마스크 시트(241)는 그 주 측면들을 관통하여 형성된 복수의 구멍들(310)을 포함한다.
[0065] 프로세스 키트(300)는 또한 유입구 매니폴드(315) 및 유출구 매니폴드(320)를 포함할 수 있다. 유입구 매니폴드(315) 및 유출구 매니폴드(320)는 마스크 프레임(232)의 대향 측면들 상에 포지셔닝된다. 유입구 매니폴드(315) 및 유출구 매니폴드(320)는 마스크 프레임(232)에 형성된 각각의 채널(325)에 수용될 수 있다.
[0066] 밀폐 프레임(235), 유입구 매니폴드(315) 및 유출구 매니폴드(320)는 알루미늄과 같은 금속성 재료들로 만들어질 수 있다. 마스크 프레임(232) 및 마스크 시트(241)는 철과 니켈의 합금(FeNi)과 같은 낮은 열 팽창 계수(CTE: coefficient of thermal expansion)를 갖는 금속성 재료로 만들어질 수 있는데, 이는 "INVAR" 또는 "INVAR 36"이라는 상품명으로 시판될 수 있다. 유전체 윈도우(234)는 석영, 붕규산 유리 재료 또는 강화 유리 재료로 만들어질 수 있다. 링 밀폐부(305) 및 압축성 밀폐부(252)는 폴리테트라플루오르에틸렌(PTFE) 또는 다른 타입의 탄성 및/또는 압축성 중합체 재료와 같은 중합 재료로 만들어질 수 있다.
[0067] 도 4b는 도 4a의 4B-4B 라인들에 따른 프로세스 키트(300)의 단면도이다. 도 4c 및 도 4d는 도 4b에 도시된 프로세스 키트(300)의 단부들의 부분 확대도들이다.
[0068] 도 4c 및 도 4d에 도시된 바와 같이, 압축성 밀폐부(252)는 마스크 프레임(232)의 대향 측면들 상의 채널(325)을 둘러싼다. 유입구 매니폴드(315)는 도 4c의 채널(325)에 도시되어 있고 유출구 매니폴드(320)는 도 4d의 채널(325)에 도시되어 있다. 유입구 매니폴드(315)를 용적(230)에 유체 결합하는 유입구 오리피스(orifice)(330)가 도 4c에 도시되어 있다. 용적(230)을 유출구 매니폴드(320)에 유체 결합하는 유출구 오리피스(335)가 도 4d에 도시되어 있다. 일부 실시예들에서는, 용적(230)과 오리피스들(330, 335) 사이에 중간 용적들(340)이 제공된다. 마스크 시트(241)가 프로세스 키트(300)와 함께 이용되는 실시예들에서, 마스크 시트(241)의 상부 표면(345)이 중간 용적들(340)의 일 측면을 한정한다. 마스크 시트(241)의 하부 표면(350)은 (도시되지 않은) 기판에 접촉하도록 적응된다.
[0069] 압축성 밀폐부(252)는 장착부(360)에 결합된 압축성 부분(355)을 포함할 수 있다. 장착부(360)는 마스크 프레임(232)에 형성된 키 홈(keyway)(365)에 수용될 수 있다. 이 실시예에 따른 압축성 밀폐부(252)는 압축성 부분(355)의 큰 부분이 마스크 프레임(232)의 상부 표면(370)으로부터 연장함에 따라 (종래의 원형 밀폐부들 또는 O-링들과 비교할 때 ― O-링의 큰 부분이 O-링 홈에 포지셔닝됨 ―) 개선된 밀폐를 제공할 수 있다.
[0070] 도 5a 및 도 5b는 각각 유입구 매니폴드(415) 및 유출구 매니폴드(420)의 부분들의 등각 단면도들이다. 일 실시예에 따르면, 유입구 매니폴드(415) 및 유출구 매니폴드(420)는 각각 다수의 유입구 오리피스들(430) 및 유출구 오리피스들(435)을 포함한다.
[0071] 도 6a - 도 6c는 예시적인 처리 챔버(600)의 다양한 단면도들이다. 도 6a - 도 6c에 도시된 처리 챔버(600)는 도 2에 도시된 ALD 처리 챔버(200)와 유사할 수 있다. 예시적인 프로세스 키트(605)가 도 6a - 도 6c에 도시되어 있다. 프로세스 키트(605)는 앞서 설명한 프로세스 키트(202) 또는 프로세스 키트(300)와 유사하게 구성될 수 있다.
[0072] 도 6a는 처리 위치에 있는 프로세스 키트(605) 및 기판(102)을 도시한다. 기판 지지 어셈블리(208)의 서셉터 본체(610)는 RF 캐소드(236)에 인접한 위치로 상승된다. 처리 위치는 도 3에서 설명된 실시예들와 유사할 수 있다.
[0073] 도 6b는 처리 챔버(600)에서 낮춰진 기판 지지 어셈블리(208)의 서셉터 본체(610)를 도시한다. 이송 위치에서 기판(102)을 지지하는 리프트 핀들(239)의 상위 부분이 도시되어 있다. 기판 지지 어셈블리(208)의 서셉터 본체(610)를 낮추는 것은 리프트 핀들(239)과 처리 챔버(600)의 바닥면의 접촉을 촉진시킨다. 서셉터 본체(610)를 낮추는 것이 서셉터 본체(610)로부터 기판(102)을 이격시키도록 리프트 핀들(239)이 서셉터 본체(610) 내에 이동 가능하게 배치된다. 리프트 핀들(239)에 의해 지지되는 기판(102)은 (도시되지 않은) 이송 로봇이 개구(214)를 통해 기판(102)에 접근할 수 있는 처리 챔버(600) 내의 높이에 있을 수 있다.
[0074] 도 6c는 처리 챔버(600)로부터 이송된 기판(102)을 도시한다. 프로세스 키트(605)를 지지하는 지지 부재들(238)은 프로세스 키트(605)가 이송 위치에 있도록 낮춰진다. 지지 부재들(238)에 의해 지지되는 프로세스 키트(605)는 (도시되지 않은) 이송 로봇이 개구(214)를 통해 프로세스 키트(605)에 접근할 수 있는 처리 챔버(600) 내의 높이에 있을 수 있다.
[0075] 도 7은 본 개시내용에 따른 프로세스 시퀀스의 실시예들을 도시하는 도면이다. 프로세스 시퀀스는 본 명세서에서 설명되는 바와 같이 프로세스 키트의 용적(230)을 통해 평면 RF 플라즈마에서 연속적인 산소/이산화탄소를 흐르게 함으로써 수행될 수 있다.
[0076] 도 8은 마스크 정렬 시스템의 일 실시예의 등각도이다. 마스크 정렬 시스템은 또한 반응 챔버 정렬 시스템(즉, 본 명세서에 설명되는 프로세스 키트(202))으로서 이용될 수 있다.
[0077] 마스크 프레임은 정렬을 위해 X 및 Y 방향으로 그리고 마스크 교체를 위해 Z 방향으로 이동할 수 있는 4개의 지지 부재들(238)에 의해 지지될 수 있도록 구조화되고 설계된다. 마스크 프레임은 마스크 시트를 갖고, 마스크 시트는 비전(카메라) 시스템에 의해 기판 기준 지표(디스플레이 패턴)에 대해 정렬된다.
[0078] 정렬 시스템은 리프트 메커니즘을 구비한 하나 이상의 X-Y 테이블들을 포함한다. X-Y 테이블은 지지 부재들(238) 각각을 수직 방향(위 또는 아래)뿐만 아니라 측 방향으로 이동시킨다. X-Y 테이블은 지지 부재들(238) 각각을 개별적으로 또는 집합적으로 이동시킬 수 있다.
[0079] 도 9a는 일 실시예에 따른 프로세스 키트(900)의 분해 등각도이다. 프로세스 키트(900)가 처리 챔버 내에 설치될 때 프로세스 키트(900)는 위치가 반전된 것으로 도시된다. 프로세스 키트(900)는 프로세스 키트(202)와 유사하지만, 확산기(902) 및 배기 매니폴드(904)를 사용한다. 리드(906)는 확산기(902) 및 배기 매니폴드(904)가 각각 배치되는 표면에 리세스들(910, 912)을 갖는다.
[0080] 마스크 프레임(908)은 확산기(902)와 배기 매니폴드(904)를 사이에 두고 리드(906)에 결합된다. 마스크 프레임(908)은 마스크 프레임(908)을 관통하는 슬롯들에 의해 한정된 가스 유입구(942) 및 가스 유출구(944)를 갖는다. 프로세스 키트(900)가 조립될 때 확산기(902)의 슬롯(946)은 마스크 프레임(908)의 가스 유입구(942)와 정렬된다. 마찬가지로, 프로세스 키트(900)가 조립될 때 슬롯(948)이 마스크 프레임(908)의 가스 유출구(944)와 정렬된다.
[0081] 유입구 포트(920)는 확산기(902)에서 슬롯(946)에 대향하는 단부에 배치된다. 펌핑 포트(922)는 마찬가지로 배기 매니폴드(904)에서 슬롯(948)에 대향하는 단부에 배치된다. 유입구 포트(920) 및 펌핑 포트(922)는 도 10 및 도 11을 참조하여 상세히 논의될 것이다.
[0082] 도 9b는 조립된 프로세스 키트(900)의 평면도이다. 프로세스 키트(900)는 확산기(902) 및 배기 매니폴드(904)가 리드(906) 내의 리세스들(910, 912) 내에 배치된 것으로 도시되어 있다. 마스크 프레임(908)이 리드(906) 위에 배치된다. 가스 유출구(944)는 배기 매니폴드(904) 내의 (도시되지 않은) 슬롯(948)과 정렬된다. 가스 유입구(942)는 확산기(902) 내의 (도시되지 않은) 슬롯(946)과 정렬된다.
[0083] 도 10a는 확산기(902)의 등각도이다. 확산기(902)는 상부 부재(1002) 및 하부 부재(1004)로 형성된다. 하부 부재(1004)에 리세스(1006)가 형성된다. 상부 부재(1002)와 하부 부재(1004)가 결합되면, 리세스(1006)는 유입구 포트(920)로부터 슬롯(946)으로의 처리 가스와 같은 유체에 대한 유동 경로를 한정한다.
[0084] 상부 부재(1002)는 도 9a - 도 9b의 리드(906) 내에 배치될 때 하부 부재(1004)에 결합된다. 일 실시예에서, 상부 부재(1002)는 나사형 패스너들에 의해 하부 부재(1004)에 결합된다. 다른 실시예들에서, 상부 부재(1002) 및 하부 부재(1004)는 (도시되지 않은) 본딩 또는 래치들에 의해 결합된다. 밀폐부(1008)는 리세스(1006)를 둘러싸는 하부 부재(1004)와 상부 부재(1002) 사이에 선택적으로 배치된다. 일 실시예에서, 밀폐부(1008)는 도브테일 홈(dove tail groove)에 배치된 O-링이다.
[0085] 도 10b는 도 10a에 나타낸 단면 라인에 따른 확산기(902)의 단면이며, 상부 부재(1002)가 하부 부재(1004)에 결합된다. 확산기(902)의 중심에서, 유입구 포트(920)로부터 슬롯(946)을 향한 반경 방향 거리(1070)에서 리세스(1006)와 상부 부재(1002)의 하부 표면(1080) 사이의 높이(1040)가 측정된다. 하부 표면(1080)은 외부 표면(1060)을 향하여 테이퍼링된다. 리세스(1006)의 주변부에서는, 유입구 포트(920)로부터 슬롯(946)을 향한 반경 방향 거리(1072)에서 상부 부재(1002)의 하부 표면(1080)과 리세스(1006) 사이의 높이(1042)가 측정된다. 높이들(1040, 1042)은 리세스(1006)와 상부 부재(1002)에 의해 한정된 흐름 경로의 단면의 높이들이다. 도 10b에 도시된 바와 같이, 높이(1042)는 높이(1040)보다 더 크다. 즉, 중앙 부분에서 리세스(1006)와 상부 부재(1002) 사이의 거리는 주변 영역에서 리세스(1006)와 상부 부재(1002) 사이의 거리보다 더 작다. 하부 표면(1180)의 프로파일은 유입구 포트(920)로부터의 거리의 함수로써 비선형적으로(예컨대, 타원형으로) 테이퍼링된다. 반경 방향 거리들(1070, 1072)과 같은 유입구 포트(920)로부터의 거리가 증가함에 따라, 리세스(1006)와 하부 표면(1080) 사이의 높이가 또한 증가한다. 일 실시예에서, 리세스(1006)와 하부 표면(1080) 사이의 높이(예컨대, 높이(1040, 1042))는 유입구 포트(920)로부터의 반경 방향 거리의 제곱근에 비례한다. 다른 실시예에서, 리세스(1006)와 하부 표면(1080) 사이의 높이(예컨대, 높이(1040, 1042))는 유입구 포트(920)로부터의 반경 방향 거리 대 유입구 포트(920)로부터의 제2 반경 거리의 비의 제곱근에 비례한다. 예를 들어, 제1 반경 방향 거리는 유입구 포트(920)의 중심으로부터의 반경 방향 거리일 수 있고, 제2 반경 방향 거리는 유입구 포트(920)의 에지로부터의 반경 방향 거리일 수 있다. 리세스(1006)의 타원형 프로파일은 유입구 포트(920)로부터 슬롯(946)으로 흐르는 가스의 흐름 컨덕턴스를 동일하게 한다. 따라서 가스 흐름은 슬롯(946)의 폭에 걸쳐 (도시되지 않은) 기판에 대해 실질적으로 균일하다.
[0086] 도 11a는 배기 매니폴드(904)의 등각도이다. 배기 매니폴드(904)는 상부 부재(1102) 및 하부 부재(1104)로 형성된다. 포트(1190)는 상부 부재(1102)를 통해 선택적으로 형성된다. 포트(1190)는 상부 부재와 하부 부재(1104)에 형성된 리세스(1106) 사이의 유체 연통을 가능하게 한다. 상부 부재(1102)와 하부 부재(1104)가 결합되면, 리세스(1106)는 슬롯(948)으로부터 펌핑 포트(922)로의 프로세스 가스와 같은 유체에 대한 유동 경로를 한정한다. 포트(1190)는 예를 들어, 리세스(1106) 내의 가스 흐름을 샘플링하는 데 사용될 수 있다. 펌핑 포트(922)는 가스의 펌핑에 의해 야기된 가스의 흐름 컨덕턴스의 불균일성들을 감소시키기 위해 도 10a - 도 10b의 유입구 포트(920)의 직경보다 실질적으로 더 큰 직경을 갖는다.
[0087] 상부 부재(1102)는 도 9a - 도 9b의 리드(906) 내에 배치될 때 하부 부재(1104)에 결합된다. 일 실시예에서, 상부 부재(1102)는 나사형 패스너들에 의해 하부 부재(1104)에 결합된다. 다른 실시예들에서, 상부 부재(1102) 및 하부 부재(1104)는 (도시되지 않은) 본딩 또는 래치들에 의해 결합된다. 밀폐부(1108)는 리세스(1106)를 둘러싸는 하부 부재(1104)와 상부 부재(1102) 사이에 선택적으로 배치된다. 일 실시예에서, 밀폐부(1108)는 도브테일 홈에 배치된 O-링이다.
[0088] 도 11b는 도 11a에 나타낸 단면 라인에 따른 배기 매니폴드(904)의 단면이며, 상부 부재(1102)가 하부 부재(1104)에 결합된다. 배기 매니폴드(904)의 중심에서, 펌핑 포트(922)로부터 슬롯(948)을 향한 반경 방향 거리(1170)에서 리세스(1106)와 상부 부재(1102)의 하부 표면(1180) 사이의 높이(1140)가 측정된다. 하부 표면(1180)은 외부 표면(1160)을 향하여 테이퍼링된다. 리세스(1106)의 주변부에서는, 펌핑 포트(922)로부터 슬롯(948)을 향한 반경 방향 거리(1172)에서 상부 부재(1102)의 하부 표면(1180)과 리세스(1106) 사이의 높이(1142)가 측정된다. 높이들(1140, 1142)은 리세스(1106)와 상부 부재(1102)에 의해 한정된 흐름 경로의 단면의 높이들이다. 도 11b에 도시된 바와 같이, 높이(1142)는 높이(1140)보다 더 크다. 즉, 중앙 부분에서 리세스(1106)와 상부 부재(1102) 사이의 거리는 주변 영역에서 리세스(1106)와 상부 부재(1102) 사이의 거리보다 더 작다. 하부 표면(1180)의 프로파일은 펌핑 포트(922)로부터의 거리의 함수로써 비선형적으로(예컨대, 타원형으로) 테이퍼링된다. 반경 방향 거리들(1170, 1172)과 같은 펌핑 포트(922)로부터의 거리가 증가함에 따라, 리세스(1106)와 하부 표면(1180) 사이의 높이가 또한 증가한다. 일 실시예에서, 리세스(1106)와 하부 표면(1180) 사이의 거리(예컨대, 높이들(1140, 1142))는 펌핑 포트(922)로부터의 거리의 제곱근에 비례한다. 다른 실시예에서, 리세스(1106)와 하부 표면(1180) 사이의 높이(예컨대, 높이들(1140, 1142))는 펌핑 포트(922)로부터의 반경 방향 거리 대 펌핑 포트(922)로부터의 제2 반경 거리의 비의 제곱근에 비례한다. 예를 들어, 제1 반경 방향 거리는 펌핑 포트(922)의 중심으로부터의 반경 방향 거리일 수 있고, 제2 반경 방향 거리는 펌핑 포트(922)의 에지로부터의 반경 방향 거리일 수 있다. 리세스(1106)의 타원형 프로파일은 슬롯(948)으로부터 펌핑 포트(922)로 흐르는 가스의 흐름 컨덕턴스를 동일하게 한다. 따라서 가스 흐름은 슬롯(948)의 폭에 걸쳐 실질적으로 균일하다.
[0089] 전술한 내용은 본 개시내용의 실시예들에 관한 것이지만, 본 개시내용의 기본 범위를 벗어나지 않으면서 본 개시내용의 다른 실시예들 및 추가 실시예들이 안출될 수 있으며, 본 개시내용의 범위는 하기의 청구항들에 의해 결정된다.

Claims (15)

  1. 원자 층 증착(ALD: atomic layer deposition) 챔버에서 사용하기 위한 프로세스 키트(process kit)로서,
    유전체 윈도우;
    밀폐 프레임; 및
    상기 밀폐 프레임과 연결된 마스크 프레임을 포함하며,
    상기 마스크 프레임은 내부에서 상기 마스크 프레임의 대향 측면들 상에 형성된 가스 유입구 채널 및 가스 유출구 채널을 갖는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  2. 제1 항에 있어서,
    상기 마스크 프레임에 결합된 마스크 시트를 더 포함하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  3. 제1 항에 있어서,
    상기 유전체 윈도우와 상기 마스크 프레임 사이에 용적이 형성되는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  4. 제3 항에 있어서,
    상기 가스 유입구 채널 및 상기 가스 유출구 채널은 상기 용적과 유체 연통하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  5. 제1 항에 있어서,
    상기 가스 유입구 채널에 결합된 확산기; 및
    상기 가스 유출구 채널에 결합된 배기 매니폴드(manifold)를 더 포함하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  6. 제5 항에 있어서,
    상기 확산기 및 상기 배기 매니폴드는 각각,
    포트; 및
    타원형으로 테이퍼링된 표면에 의해 부분적으로 한정되는, 상기 포트에 결합된 유동 경로를 포함하며,
    상기 유동 경로의 단면은 주변 부분에서의 높이보다 더 낮은, 중앙 부분에서의 높이를 갖고,
    상기 중앙 부분에서의 높이 및 상기 주변 부분에서의 높이는 각각, 상기 포트로부터의 제1 반경 방향 거리 대 상기 포트로부터의 제2 반경 방향 거리의 비의 제곱근에 비례하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  7. 제1 항에 있어서,
    상기 마스크 프레임의 대향 측면들에 배치된 압축성 밀폐부를 더 포함하며,
    상기 압축성 밀폐부는 상기 마스크 프레임에 형성된 키 홈(keyway)에 결합되는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  8. 원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트로서,
    유전체 윈도우;
    밀폐 프레임;
    상기 밀폐 프레임과 연결된 마스크 프레임 ― 상기 마스크 프레임은 내부에서 상기 마스크 프레임의 대향 측면들 상에 형성된 가스 유입구 채널 및 가스 유출구 채널을 가짐 ―; 및
    상기 마스크 프레임에 결합된 마스크 시트를 포함하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  9. 제8 항에 있어서,
    상기 유전체 윈도우와 기판 사이에 용적이 형성되며,
    상기 가스 유입구 채널 및 상기 가스 유출구 채널은 상기 용적과 유체 연통하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  10. 제8 항에 있어서,
    상기 프로세스 키트는 상기 유전체 윈도우와 상기 밀폐 프레임 사이에 배치된 밀폐부를 포함하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  11. 제8 항에 있어서,
    상기 프로세스 키트는 상기 유전체 윈도우와 상기 마스크 프레임 사이에 배치된 밀폐부를 포함하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  12. 제8 항에 있어서,
    상기 가스 유입구 채널에 결합된 확산기; 및
    상기 가스 유출구 채널에 결합된 배기 매니폴드를 더 포함하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  13. 제12 항에 있어서,
    상기 확산기 및 상기 배기 매니폴드는 각각,
    포트; 및
    타원형으로 테이퍼링된 표면에 의해 부분적으로 한정되는, 상기 포트에 결합된 유동 경로를 포함하며,
    상기 유동 경로의 단면은 주변 부분에서의 높이보다 더 낮은, 중앙 부분에서의 높이를 갖고,
    상기 중앙 부분에서의 높이 및 상기 주변 부분에서의 높이는 각각, 상기 포트로부터의 제1 반경 방향 거리 대 상기 포트로부터의 제2 반경 방향 거리의 비의 제곱근에 비례하는,
    원자 층 증착(ALD) 챔버에서 사용하기 위한 프로세스 키트.
  14. 기판을 처리하기 위한 장치로서,
    챔버 본체;
    서셉터(susceptor) 본체;
    상기 서셉터 본체 둘레에 배치된 복수의 지지 부재들;
    적어도 하나의 프로세스 가스 유입구;
    적어도 하나의 펌핑 포트; 및
    프로세스 키트를 포함하며,
    상기 프로세스 키트는,
    유전체 윈도우;
    밀폐 프레임;
    상기 밀폐 프레임과 연결된 마스크 프레임 ― 상기 마스크 프레임은 내부에서 상기 마스크 프레임의 대향 측면들 상에 형성된 가스 유입구 채널 및 가스 유출구 채널을 가짐 ―;
    상기 가스 유입구 채널에 결합된 확산기;
    상기 가스 유출구 채널에 결합된 배기 매니폴드; 및
    상기 서셉터 본체 상에 포지셔닝된 기판과 접촉하는 마스크 시트를 포함하는,
    기판을 처리하기 위한 장치.
  15. 제14 항에 있어서,
    상기 유전체 윈도우와 상기 마스크 프레임 사이에 용적이 형성되며,
    상기 가스 유입구 채널 및 상기 가스 유출구 채널은 상기 용적과 유체 연통하는,
    기판을 처리하기 위한 장치.
KR1020197018554A 2016-12-02 2017-12-01 박막 캡슐화 처리 시스템 및 프로세스 키트 KR102204297B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217000842A KR102349330B1 (ko) 2016-12-02 2017-12-01 박막 캡슐화 처리 시스템 및 프로세스 키트

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IN201641041254 2016-12-02
IN201641041254 2016-12-02
PCT/US2017/064174 WO2018102662A1 (en) 2016-12-02 2017-12-01 Thin film encapsulation processing system and process kit

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020217000842A Division KR102349330B1 (ko) 2016-12-02 2017-12-01 박막 캡슐화 처리 시스템 및 프로세스 키트

Publications (2)

Publication Number Publication Date
KR20190077628A true KR20190077628A (ko) 2019-07-03
KR102204297B1 KR102204297B1 (ko) 2021-01-15

Family

ID=62240851

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020197018554A KR102204297B1 (ko) 2016-12-02 2017-12-01 박막 캡슐화 처리 시스템 및 프로세스 키트
KR1020217000842A KR102349330B1 (ko) 2016-12-02 2017-12-01 박막 캡슐화 처리 시스템 및 프로세스 키트

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020217000842A KR102349330B1 (ko) 2016-12-02 2017-12-01 박막 캡슐화 처리 시스템 및 프로세스 키트

Country Status (6)

Country Link
US (1) US10655222B2 (ko)
JP (2) JP6948394B2 (ko)
KR (2) KR102204297B1 (ko)
CN (2) CN109964331B (ko)
TW (1) TWI658164B (ko)
WO (1) WO2018102662A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10697062B2 (en) 2018-07-11 2020-06-30 Applied Materials, Inc. Gas flow guide design for uniform flow distribution and efficient purge
WO2023027706A1 (en) * 2021-08-25 2023-03-02 Applied Materials, Inc. Process gas containment using elastic objects mated with reactor frames

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140021608A (ko) * 2011-04-08 2014-02-20 어플라이드 머티어리얼스, 인코포레이티드 자외선 처리, 화학적 처리, 및 증착을 위한 장치 및 방법

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196942A (ja) * 1984-03-21 1985-10-05 Hitachi Ltd フオトマスク欠陥修正方法
KR100494970B1 (ko) * 2002-12-03 2005-06-13 병호 최 광원자층 선택증착장치
JP5280861B2 (ja) * 2006-01-19 2013-09-04 エーエスエム アメリカ インコーポレイテッド 高温aldインレットマニホールド
US20090084317A1 (en) * 2007-09-28 2009-04-02 Applied Materials, Inc. Atomic layer deposition chamber and components
US8795480B2 (en) 2010-07-02 2014-08-05 Novellus Systems, Inc. Control of electrolyte hydrodynamics for efficient mass transfer during electroplating
WO2012173692A1 (en) * 2011-06-17 2012-12-20 Applied Materials, Inc. Cvd mask alignment for oled processing
JP6119408B2 (ja) 2013-05-09 2017-04-26 ソニー株式会社 原子層堆積装置
KR102141205B1 (ko) * 2013-08-16 2020-08-05 삼성디스플레이 주식회사 박막 봉지 제조 장치 및 이를 이용한 표시 장치의 제조 방법
JP6573892B2 (ja) * 2013-09-30 2019-09-11 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 移送チャンバガスパージ装置、電子デバイス処理システム、及びパージ方法。
TWI480415B (zh) * 2013-11-27 2015-04-11 Ind Tech Res Inst 多模式薄膜沉積設備以及薄膜沉積方法
KR102330725B1 (ko) * 2014-01-21 2021-11-23 어플라이드 머티어리얼스, 인코포레이티드 저압 툴 교체를 허용하는 얇은 필름 캡슐화 프로세싱 시스템 및 프로세스 키트
KR20160136019A (ko) * 2015-05-19 2016-11-29 주식회사 케이씨텍 서셉터 및 이를 구비하는 웨이퍼 증착장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140021608A (ko) * 2011-04-08 2014-02-20 어플라이드 머티어리얼스, 인코포레이티드 자외선 처리, 화학적 처리, 및 증착을 위한 장치 및 방법

Also Published As

Publication number Publication date
US10655222B2 (en) 2020-05-19
US20180155835A1 (en) 2018-06-07
JP7369166B2 (ja) 2023-10-25
CN113793911A (zh) 2021-12-14
TW201833361A (zh) 2018-09-16
TWI658164B (zh) 2019-05-01
CN109964331B (zh) 2021-09-03
JP2020501020A (ja) 2020-01-16
CN109964331A (zh) 2019-07-02
JP6948394B2 (ja) 2021-10-13
KR102204297B1 (ko) 2021-01-15
KR102349330B1 (ko) 2022-01-07
WO2018102662A1 (en) 2018-06-07
KR20210006531A (ko) 2021-01-18
JP2022003169A (ja) 2022-01-11
CN113793911B (zh) 2024-05-03

Similar Documents

Publication Publication Date Title
US10184179B2 (en) Atomic layer deposition processing chamber permitting low-pressure tool replacement
US11306393B2 (en) Methods and apparatus for ALD processes
EP2465972B1 (en) Method and system for thin film deposition
JP7369166B2 (ja) 薄膜封止処理システムおよびプロセスキット
KR101525210B1 (ko) 기판 처리장치
WO2020242817A1 (en) Atomic layer deposition reactor design for uniform flow distribution
WO2020154023A1 (en) Method of forming moisture and oxygen barrier coatings
KR101513504B1 (ko) 기판 처리장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
A107 Divisional application of patent
GRNT Written decision to grant