KR20190068600A - 직류-직류 변환기, 및 직류-직류 변환기를 작동시키기 위한 방법 - Google Patents

직류-직류 변환기, 및 직류-직류 변환기를 작동시키기 위한 방법 Download PDF

Info

Publication number
KR20190068600A
KR20190068600A KR1020197013951A KR20197013951A KR20190068600A KR 20190068600 A KR20190068600 A KR 20190068600A KR 1020197013951 A KR1020197013951 A KR 1020197013951A KR 20197013951 A KR20197013951 A KR 20197013951A KR 20190068600 A KR20190068600 A KR 20190068600A
Authority
KR
South Korea
Prior art keywords
converter
transformer
primary winding
switching element
input terminal
Prior art date
Application number
KR1020197013951A
Other languages
English (en)
Other versions
KR102414467B1 (ko
Inventor
카리잘레스 에밀리아노 구디노
Original Assignee
로베르트 보쉬 게엠베하
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 로베르트 보쉬 게엠베하 filed Critical 로베르트 보쉬 게엠베하
Publication of KR20190068600A publication Critical patent/KR20190068600A/ko
Application granted granted Critical
Publication of KR102414467B1 publication Critical patent/KR102414467B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/34Snubber circuits
    • H02M1/342Active non-dissipative snubbers
    • H02M2001/0058
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • Y02T10/7005
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • Y02T10/7216
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

본 발명은, 역-회복-효과로 인한 손실이 감소된 직류-직류 변환기에 관한 것이다. 이 목적을 위해, 직류-직류 변환기의 입력부에 변압기가 제공되어 있다. 이 변압기에 의해서는, 변압기를 통한 무-전류 정류를 위해, 상황에 따라 아직 흐르는 전류가 보상될 수 있고, 이로써 억제될 수 있다. 이 경우, 특히 연속적인 부스트 컨버터 작동에서는, 역-회복-효과로 인한 전기적인 손실이 감소되거나 회피될 수 있다.

Description

직류-직류 변환기, 및 직류-직류 변환기를 작동시키기 위한 방법
본 발명은, 직류-직류 변환기, 및 직류-직류 변환기를 작동시키기 위한 방법에 관한 것이다.
전기차 또는 하이브리드 차량에서는, 고전압 네트워크와 저전압 네트워크 사이에서 전기 에너지가 전달될 수 있다. 이 경우에 필요한 갈바니닉 분리를 위해서는, 예를 들어 단상의 위상-천이-풀-브리지(PSFB: Phase-Shifted-Full-Bridge) 직류-직류 변환기가 사용될 수 있다. 이와 같은 직류-직류 변환기는 양방향으로 작동될 수 있는데, 다시 말하자면 전기 에너지가 저전압 네트워크로부터 고전압 네트워크로 전달될 수 있을 뿐만 아니라, 고전압 네트워크로부터 저전압 네트워크로도 전달될 수 있다.
간행물 DE 10 2013 207 475 A1호는, 위상-천이-풀-브리지를 갖는 직류-직류 변환기를 개시한다. 역변환 장치는, 각각 2개의 반도체 스위치들을 갖는 2개의 하프 브리지들을 구비한다. 2개의 하프 브리지들은, 출력 측에서 변압기의 1차 권선과 연결되어 있다. 변압기의 2차 권선은 정류기와 연결되어 있다. 직류-직류 변환기는, 반도체 스위치의 제어 입력부와 연결된 제어 유닛을 구비하며, 이 경우 제어 유닛은 교류 전압을 발생시키기 위해 하프 브리지를 제어한다. 제어 유닛은, 전압 제로 통과시에 또는 반도체 스위치를 가로지르는 전압이 최소 전압 값을 갖는 경우에 반도체 스위치를 도통 접속하도록 형성되어 있다.
본 발명은, 특허 청구항 1의 특징부들을 갖는 직류-직류 변환기, 및 특허 청구항 7의 특징부들을 갖는 직류-직류 변환기를 작동시키기 위한 방법을 개시한다.
그에 따라,
역변환 장치, 제1 변압기, 정류기 및 보상 장치를 갖는 직류-직류 변환기가 제공되었다. 제1 변압기는 1차 권선 및 2차 권선을 포함한다. 역변환 장치는, 입력부에서는 직류-직류 변환기의 제1 입력 단자 및 제2 입력 단자와 전기적으로 결합되어 있다. 역변환 장치의 출력부는 제1 변압기의 1차 권선과 전기적으로 결합되어 있다. 정류기는, 입력 측에서는 제1 변압기의 2차 권선과 결합되어 있다. 출력 측에서, 정류기는 직류-직류 변환기의 제1 출력 단자 및 제2 출력 단자와 전기적으로 결합되어 있다. 보상 장치는 제2 변압기 및 스위칭 요소를 포함한다. 제2 변압기는 1차 권선 및 2차 권선을 포함한다. 제2 변압기의 1차 권선은 직류-직류 변환기의 제1 입력 단자와 역변환 장치의 입력부의 단자 사이에 배열되어 있다. 또한, 보상 장치의 스위칭 요소 및 제2 변압기의 2차 권선으로 이루어진 직렬 회로가 직류-직류 변환기의 제1 입력 단자와 제2 입력 단자 사이에 배열되어 있다.
또한,
보상 장치 내에서 제2 변압기의 1차 권선을 충전하는 단계, 및 이어서 보상 장치 내에서 제2 변압기의 1차 권선을 방전하는 단계를 포함하는, 본 발명에 따른 직류-직류 변환기를 작동시키기 위한 방법이 제공되었다. 이 방법은, 예정된 기간 동안 보상 장치 내의 스위칭 요소를 폐쇄하는 단계를 더 포함한다. 보상 장치의 스위칭 요소의 폐쇄는, 제2 변압기의 1차 권선을 방전하는 단계의 마지막에 실시된다. 전술된 단계들은 임의로 자주 반복될 수 있다.
직류-직류 변환기, 특히 위상-천이-풀-브리지 직류-직류 변환기의 스위칭 요소들은 일반적으로 출력에 따라 강하게 스위칭 된다. 이 경우에는, 직류-직류 변환기의 스위칭 요소 내에서 스위치 온 손실 및 스위치 오프 손실이 생성될 수 있다. 또한, 직류-직류 변환기 내에서 발생하는 전압에 따라 소위 "역-회복" 효과가 발생할 수 있다. 다시 말해, 직류-직류 변환기 내에서의 전류의 정류 과정 중에는, 전류 경로 내의 다이오드가 즉시 차단 전압을 수용할 수 없으며, 오히려 다이오드는, 음의 전압이 인가되더라도(다시 말해, 다이오드의 관류 방향과 반대로), 짧은 기간 동안 전도성을 갖게 된다. 이 경우에는, 짧고 매우 높은 전류 펄스가 다이오드에 의해서 발생할 수 있다. 이와 같은 전류 펄스는 매우 높은 손실을 야기한다. 반도체 스위칭 요소와 함께 사용되는 것과 같은 종래의 바디 다이오드는, 일반적으로 상기와 같은 작동 모드를 위해 설계되지 않았다. 그렇기 때문에, 장기간의 작동에서는, 부품이 손상되거나 적어도 직류-직류 변환기의 수명이 현저히 감소할 위험이 존재한다.
그렇기 때문에, 본 발명은, 전술된 인식을 고려하여, 전술된 역-회복-효과로 인한 부정적인 영향을 제거하거나 적어도 줄일 수 있는 직류-직류 변환기를 제공하는 아이디어를 토대로 한다. 본 발명에 따른 직류-직류 변환기 및 상응하는 작동 방법에 의해서는, 역-회복-효과가 특히 직류-직류 변환기의 정류기 다이오드 내에서 최소로 감소할 수 있다. 이렇게 함으로써는, 직류-직류 변환기를 부스팅 작동 및 연속 작동에서도 사용하는 것이 가능해진다. 특히, 이와 같은 부스팅 작동 및 연속 작동은 또한 사용된 반도체 스위칭 요소를 위한 종래의 바디 다이오드에 의해서도 가능하다.
역-회복-효과를 최소화함으로써, 직류-직류 변환기는 부스트 컨버터로서 지속적으로 사용될 수 있다. 이 경우에 최대로 전달 가능한 출력은, 더 이상 반도체 다이오드의 스위치 오프 시의 전력 손실에 의해서 제한되지 않는다. 특히, 이로써는, 직류-직류 변환기가 부스트 컨버터로서 연속 작동에서 지속적으로 사용될 수 있다. 이 경우에는, 연속 작동에서 부스트 컨버터의 개선된 효율도 달성될 수 있다. 또한, 본 발명에 따른 직류-직류 변환기는 상기 작동에서 또한 전자기 적합성(electromagnetic compatibility)과 관련하여 현저하게 개선된 특성도 갖는다.
직류-직류 변환기의 일 실시예에 따라, 보상 장치는 다이오드를 더 포함한다. 이 다이오드는, 보상 장치의 스위칭 요소 및 제2 변압기의 2차 측과 함께 직렬 회로 내에서 직류-직류 변환기의 제1 입력 단자와 제2 입력 단자 사이에 배열되어 있다. 이와 같은 방식에 의해서는, 보상 장치가 전류를 반대 방향으로 유입시키지 않으면서 다만 일직선으로 흐르는 전류만을 보상하는 상황이 보장될 수 있다.
일 실시예에 따라, 보상 장치의 스위칭 요소는 금속 산화물-전계 효과-트랜지스터(MOSFET)를 포함한다. 이와 같은 트랜지스터는 스위칭 요소로서 특히 우수하게 적합하다.
일 실시예에 따라, 보상 장치는, 전류가 직류-직류 변환기의 정류기 내에서 정류되기 전에, 보상 장치의 스위칭 요소를 예정된 기간 동안 폐쇄하도록 설계되어 있다. 보상 장치 내 스위칭 요소의 폐쇄에 의해서는, 상황에 따라 역변환 장치 내에서 흐를 수 있는 전류가 제2 변압기의 1차 권선과 2차 권선 간의 결합으로 인해 신속하게 감소할 수 있다. 제2 변압기의 1차 권선 및 2차 권선은 서로 반대 방향으로 결합되어 있다.
일 실시예에 따라, 직류-직류 변환기의 역변환 장치는, 각각 2개의 반도체 스위치들을 갖는 2개의 하프 브리지들을 포함한다. 이와 같은 역변환 장치에 대한 토폴로지는 본 발명에 따른 직류-직류 변환기를 위해 특히 적합하다. 반도체 스위치로서는, 예를 들어 MOSFET 또는 절연된 게이트 단자를 갖는 바이폴러 트랜지스터(IGBT)가 가능하다. 스위칭 요소에 대해 병렬로, 소위 바디 다이오드가 제공될 수 있다.
일 실시예에 따라, 직류-직류 변환기의 정류기는 능동형 동기 정류기를 포함한다. 특히, 이 능동형 동기 정류기는 병렬로 배열된 바디 다이오드를 갖는 반도체 스위칭 요소에 의해서 실현될 수 있다. 능동형 동기 정류기는 매우 우수한 효율을 갖는다. 더 나아가, 이와 같은 구성에서 직류-직류 변환기는 반대 방향으로도 작동될 수 있다. 또한, 정류기를 위해서도 예컨대 MOSFET가 가능하다.
직류-직류 변환기를 작동시키기 위한 방법의 일 실시예에 따라, 보상 장치 내에서 제2 변압기의 1차 권선을 충전하는 단계는 역변환 장치의 입력부의 단자들 사이의 전기 접속을 제공하는 단계를 포함한다. 전기 접속은, 예를 들어 역변환 장치 내 모든 스위칭 요소들의 폐쇄에 의해서 이루어질 수 있다.
일 실시예에 따라, 보상 장치 내에서 제2 변압기의 1차 권선을 방전하는 단계는 제1 변압기의 1차 권선에 의해 전기 접속을 제공하는 단계를 포함한다. 특히, 이때에 2회의 방전 과정들이 연속하는 경우에는, 제1 변압기의 1차 권선에 인가되는 전압의 극성이 교체될 수 있다.
일 실시예에 따라, 보상 장치의 스위칭 요소가 각각 폐쇄되는 예정된 기간은 최대 400 ns를 포함한다. 적용예에 따라, 최대 기간은 또한 다만 200 ns만을 또는 경우에 따라서는 또한 다만 100 ns만을 포함할 수도 있다.
상기 실시예들 및 개선예들은 적절하다면 서로 임의로 조합될 수 있다. 본 발명의 또 다른 실시예들, 개선예들 및 구현예들은, 또한 위에서 또는 이하에서 실시예들과 관련하여 기술되는 본 발명의 특징들의 명시적으로 언급되지 않은 조합들도 포함한다. 특히, 이 경우에 당업자는, 개선책 또는 보완책으로서의 개별 양상들도 본 발명의 개별적인 기본 형태들에 부가하게 될 것이다.
본 발명은, 도면부의 개략적인 도면들에 도시된 실시예들을 참조하여 이하에서 더욱 상세하게 설명된다. 도면부에서,
도 1은 일 실시예에 따른 직류-직류 변환기를 토대로 하는 바와 같은, 기본 회로도의 개략도를 도시하고,
도 2 내지 도 4는 일 실시예에 따른 직류-직류 변환기 내 전류 프로파일의 개략도를 도시하며, 그리고
도 5는 일 실시예에 따른 직류-직류 변환기를 작동시키기 위한 방법을 토대로 하는 바와 같은, 흐름도의 개략도를 도시한다.
도 1은, 일 실시예에 따른 직류-직류 변환기(1)를 토대로 하는 바와 같은, 기본 회로도의 개략도를 보여준다. 직류-직류 변환기(1)는 역변환 장치(10), 정류기(20), 제1 변압기(30) 및 보상 장치(40)를 포함한다. 직류-직류 변환기(1)의 제1 입력 단자(E1)와 제2 입력 단자(E2) 사이에는 입력 직류 전압(Uin)이 인가될 수 있다. 입력 직류 전압(Uin)을 평활화 또는 버퍼링하기 위해, 제1 입력 단자(E1)와 제2 입력 단자(E2) 사이에 커패시터(C2)가 제공될 수 있다. 직류-직류 변환기(1)는 입력 직류 전압(Uin)을 또 다른 직류 전압으로 변환하고, 이 변환된 직류 전압을 제1 출력 단자(A1)와 제2 출력 단자(A2) 사이에 출력 직류 전압(Uout)으로서 제공한다. 이 경우에는, 제1 출력 단자(A1)와 제2 출력 단자(A2) 사이에도 커패시터(C1)가 제공될 수 있다. 특히, 출력 직류 전압(Uout)은 입력 직류 전압(Uin)보다 클 수 있다.
또한, 직류-직류 변환기(1)는 또 다른 구성 요소, 부품 또는 어셈블리를 더 구비할 수 있다. 하지만, 이들은 본 발명에 대한 이해를 돕기 위해 여기에는 기술되어 있지 않다.
역변환 장치(10)는, 예를 들어 각각 2개의 반도체 스위칭 요소들(M1 내지 M4)을 갖는 2개의 하프 브리지들을 포함할 수 있다. 제1 스위칭 요소(M1)는, 제1 변압기(30)의 1차 권선(31)의 제1 단자와 상부 마디점 사이에 배열될 수 있다. 제2 스위칭 요소(M2)는, 제1 변압기(30)의 1차 권선(31)의 제2 단자와 상부 마디점 사이에 제공될 수 있다. 제3 스위칭 요소는, 제1 변압기(30)의 1차 권선(31)의 제1 단자와 제2 입력 단자(E2) 사이에 제공될 수 있다. 마지막으로, 제4 스위칭 요소(M4)는, 제1 변압기(30)의 1차 권선(31)의 제2 단자와 제2 입력 단자(E2) 사이에 제공될 수 있다. 반도체 스위치로서는, 예를 들어 MOSFET 또는 절연된 게이트 단자를 갖는 바이폴러 트랜지스터(IGBT)가 가능하다. 각각의 스위칭 요소에 대해 병렬로, 바디 다이오드가 제공될 수 있다.
직류-직류 변환기(1)의 정류기(20)는 능동형 동기 정류기로서 구현될 수 있다. 특히, 정류기(20)는, 각각 2개의 반도체 스위칭 요소들(M5 내지 M8)을 갖는 2개의 하프 브리지들로서 역변환 장치(10)와 유사하게 구현될 수 있다. 직류-직류 변환기의 제1 스위칭 요소(M5)는 직류-직류 변환기의 제1 출력 단자와 변압기(30)의 2차 권선(32)의 제1 단자 사이에 제공될 수 있다. 직류-직류 변환기의 제2 스위칭 요소(M6)는 변압기(30)의 2차 권선(32)의 제2 단자와 제1 출력 단자(A1) 사이에 제공될 수 있다. 제3 스위칭 요소(M7)는 변압기(30)의 2차 권선(32)의 제1 단자와 제2 출력 단자(A2) 사이에 제공될 수 있다. 마지막으로, 제4 스위칭 요소(M8)는 변압기(30)의 2차 권선(32)의 제2 단자와 제2 출력 단자(A2) 사이에 제공될 수 있다. 정류기(20)의 제2 스위칭 요소(M6)와 제4 스위칭 요소(M8)를 서로 연결하는 마디점과 변압기(30)의 2차 권선(32)의 제2 단자 사이에는 인덕턴스(33)가 제공될 수 있다. 대안적으로, 인덕턴스(33)는 변압기(30)의 누설 인덕턴스에 의해서도 형성될 수 있다.
직류-직류 변환기(1)의 보상 장치(40)는 제2 변압기(42) 및 스위칭 요소(41)를 포함한다. 또한, 보상 장치(40)는 다이오드(45)를 포함할 수 있다. 보상 장치(40)의 제2 변압기(42)의 1차 권선(43)은, 제1 입력 단자(E1)와 역변환 장치(10)의 입력 단자 사이에 배열되어 있다. 보상 장치(40)의 스위칭 요소(41)는, 제2 입력 단자(E2)와 보상 장치(40)의 제2 변압기(42)의 2차 권선(44)의 단자 사이에 배열되어 있다. 보상 장치(40)의 제2 변압기(42)의 2차 권선(44)의 제2 단자는 경우에 따라 다이오드(45)를 통해 직류-직류 변환기(1)의 제1 입력 단자(E1)와 연결되어 있다.
이하에서는, 직류-직류 변환기(1)의 작동 원리가 도 2 내지 도 4를 참조하여 더욱 상세하게 설명된다. 이 경우, 제1 입력 단자(E1)와 제2 입력 단자(E2) 사이에 인가되는 입력 직류 전압(Uin)은, 제1 출력 단자(A1)와 제2 출력 단자(A2) 사이에서의 더 높은 출력 직류 전압(Uout)으로 변환되어야 한다.
도 2는, 먼저 제1 단계를 보여주며, 이 경우에는 역변환 장치(10)의 4개의 스위칭 요소들(M1 내지 M4)이 폐쇄되어 있다. 두껍게 표시된 도 2의 전류 프로파일에 의해서 알 수 있는 바와 같이, 이 경우에는 전류가 제1 입력 단자(E1)로부터 보상 장치(40)의 제2 변압기(42)의 1차 권선(43)을 통해 역변환 장치의 4개의 스위칭 요소들(M1 내지 M4)을 거쳐 제2 입력 단자(E2)로 흐른다. 이와 같은 전류 흐름이 설정되는 동안, 보상 장치(40)의 제2 변압기(42)의 1차 권선(43)에서는 에너지가 저장된다. 그렇기 때문에, 이 단계는 "충전"으로서 지칭된다.
이어서, 도 3에 도시된 바와 같이, 역변환 장치(10)의 4개의 스위칭 요소들(M1 내지 M4) 중 2개의 스위칭 요소들이 개방됨으로써, 결과적으로 이제는 제1 변압기(30)의 1차 권선(31)을 통과하는 전류 흐름이 설정된다. 예를 들어, 제1 스위칭 요소(M1) 및 제4 스위칭 요소(M4)는 개방될 수 있는 한편, 제2 스위칭 요소(M2) 및 제3 스위칭 요소(M4)는 폐쇄된 상태로 유지될 수 있다. 대안적으로는, 제2 스위칭 요소(M2) 및 제3 스위칭 요소(M3)도 개방될 수 있는 한편, 제1 스위칭 요소(M1) 및 제4 스위칭 요소(M4)는 폐쇄된 상태로 유지된다. 가동 작동 동안에는, 일반적으로 방금 기술된 두 가지 스위칭 상태들이 교대로 설정됨으로써, 결과적으로는 각각 변압기(30)의 1차 권선(31)을 통과하는 반대 방향의 전류 흐름이 연속적으로 설정된다. 제1 변압기(30)의 1차 권선(31)을 통과하는 전류는 또한 변압기(30)의 2차 권선(32) 내에서도 전류 흐름을 야기한다. 직류-직류 변환기(1)의 정류기(20) 내의 스위칭 요소들(M5 내지 M8)을 상응하게 제어함으로써, 이를 통해 커패시터(C1)는 제1 출력 단자(A1)와 제2 출력 단자(A2) 사이에서 충전될 수 있다. 이 과정 동안에는, 보상 장치(40)의 제2 변압기(42)의 1차 권선(43) 내에 저장된 전기 에너지가 감소한다. 그렇기 때문에, 이 단계는 "방전"으로서 지칭된다.
방전 후에는 새로운 충전 단계가 이어지고, 그 다음에는 또 다른 방전 단계가 따르며, 이 경우에는 2개의 연속하는 방전 단계들에서 각각 제1 변압기(30)의 1차 권선(31)을 통과하는 반대 방향의 전류 흐름이 설정된다.
직류-직류 변환기의 출력이 낮으면, 방전 과정의 마지막에 보상 장치(40)의 제2 변압기(42)의 1차 권선(43)을 통과하는 전류가 0 A로 떨어지게 된다. 따라서, 스위칭 요소들(M5 내지 M8)의 바디 다이오드들은 정류기(20) 내에서 무-전류 상태에서 스위치 오프될 수 있다. 이 작동 모드는 불연속적인 작동으로서 지칭된다.
출력이 더 높은 경우에, 보상 장치(40)의 제2 변압기(42)의 1차 권선(43)을 통과하는 전류는 더 이상 완전히 0 A로 강하하지 않는다. 이 작동 모드는 연속적인 작동으로서 지칭된다. 이 경우, 정류기(20) 내의 스위칭 요소들(M5 내지 M8)의 바디 다이오드들은 더 이상 무-전류 상태에서 스위치 오프될 수 없다. 이로 인해, 역-회복-효과로 인한 손실이 증가하게 된다.
역-회복-효과 및 이와 연관된 손실을 회피하거나 최소화하기 위해, 방전 과정의 마지막에, 즉 충전 작동으로 전환되기 직전에, 보상 장치(40)의 스위칭 요소(41)는 도 4에 도시된 바와 같이 예정된 기간 동안 단락된다. 이 작동 모드는 프리 휠링으로서 지칭된다. 이 경우에는, 보상 장치(40)의 제2 변압기(42)의 1차 권선(43) 및 2차 권선(44)이 플라이백 변압기(flyback transformer)로서 작동한다. 제2 변압기(42)의 1차 권선(43)은 제2 변압기(42)의 2차 권선(44) 내부로 전압을 유도한다. 제2 변압기(42)의 1차 권선(43)과 2차 권선(44)이 반대 방향으로 결합되어 있기 때문에, 2차 전압은 2차 권선(43)에서 1차 전압을 저지한다. 이 경우, 2차 전압의 레벨은 제2 변압기(42)의 1차 권선(43)과 2차 권선(44) 간의 변속비에 상응하게 설정될 수 있다. 2차 권선(44) 내부로 유도된 전압은, 스위칭 요소(41), 2차 권선(44) 및 다이오드(45)를 통해, 제1 입력 단자(E1)와 제2 입력 단자(E2) 사이에 접속된 커패시터(C2) 및/또는 제1 입력 단자(E1) 및 제2 입력 단자(E2)에 접속된 전압원 내부로 역류하는 전류 흐름을 야기한다. 이와 같은 방식에 의해서는, 접속된 전압원으로 전기 에너지가 피드백되기 때문에, 직류-직류 변환기(1)의 효율도 증가될 수 있다.
프리 휠링 내에서의 전술된 과정 동안에는, 제1 변압기(30)의 1차 권선(31)을 통과하는 전류가 대략 0 A로 줄어든다. 제1 변압기(30)의 2차 권선(32)에서 누설 인덕턴스 또는 인덕턴스(33) 내에 저장된 에너지는, 직류-직류 변환기(10) 내에서 전도성인 반도체 소자들(M1 및 M4 또는 M2 및 M3)에 의해 감소된다. 이로써, 상응하는 소자들은 무-전류 상태에서 스위치 오프될 수 있다. 이와 같은 방식에 의해, 역-회복-손실은 최소로 감소된다. 전술된 충전 작동으로의 전환 직후에, 보상 장치(40)의 스위칭 요소(41)는 재차 개방되고, 프리 휠링에 의해서 새로이 종료되는 새로운 충전 및 방전 사이클이 시작된다.
도 5는, 일 실시예에 따른 직류-직류 변환기를 작동시키기 위한 방법을 토대로 하는 바와 같은, 흐름도의 개략도를 보여준다. 특히, 여기에 기술된 방법은 전술된 직류-직류 변환기(1)에 적용될 수 있다. 단계 "110"에서는, 먼저 보상 장치(40)의 제2 변압기(42)의 1차 권선(43)이 충전된다. 이어서, 단계 "120"에서는, 보상 장치(40) 내 제2 변압기(42)의 1차 권선(43)이 방전된다. 충전 단계 "110" 및 방전 단계 "120"은 이미 앞에서 기술되었다. 방전 과정(120)의 마지막에, 보상 장치(40)의 스위칭 요소(41)는 예정된 기간 동안 폐쇄된다. 예정된 기간은, 예를 들어 최대 400 ns일 수 있다. 하지만, 적용예에 따라서는, 예를 들어 200 ns 또는 100 ns와 같은 더 크거나 더 작은 시간 간격도 가능하다.
제2 변압기(42)의 1차 권선(43)의 충전 단계 및 이어지는 1차 권선(43)의 방전 단계는, 직류-직류 변환기(1)의 작동 동안 규칙적으로 반복될 수 있다. 이 경우에는, 각각 방전 과정(120)의 마지막에 전술된 프리 휠링을 위한 스위칭 요소(41)의 폐쇄 과정(130)이 이루어진다.
요약하자면, 본 발명은, 역-회복-효과로 인한 손실이 감소된 직류-직류 변환기와 관련이 있다. 이 목적을 위해, 직류-직류 변환기의 입력부에 변압기가 제공되어 있다. 이 변압기에 의해서는, 변압기를 통한 무-전류 정류를 위해, 상황에 따라 아직 흐르는 전류가 보상될 수 있고, 이로써 억제될 수 있다. 이 경우, 특히 연속적인 부스트 컨버터 작동에서는, 역-회복-효과로 인한 전기적인 손실이 감소되거나 회피될 수 있다.

Claims (10)

  1. 직류-직류 변환기(1)로서,
    1차 권선(31) 및 2차 권선(32)을 갖는, 제1 변압기(30);
    입력부에서는 직류-직류 변환기(1)의 제1 입력 단자(E1) 및 제2 입력 단자(E2)와 전기적으로 결합되어 있고, 출력부에서는 제1 변압기(30)의 1차 권선(31)과 전기적으로 결합되어 있는, 역변환 장치(10);
    입력 측에서는 제1 변압기(30)의 2차 권선(32)과 결합되어 있고, 출력 측에서는 직류-직류 변환기(1)의 제1 출력 단자(A1) 및 제2 출력 단자(A2)와 전기적으로 결합되어 있는, 정류기(20); 및
    제2 변압기(42) 및 스위칭 요소(41)를 갖는, 보상 장치(40)이며, 제2 변압기(42)는 1차 권선(43) 및 2차 권선(44)을 포함하며, 제2 변압기(42)의 1차 권선(43)은 직류-직류 변환기(1)의 제1 입력 단자(E1)와 역변환 장치(10)의 입력부의 단자 사이에 배열되어 있으며, 스위칭 요소(41) 및 제2 변압기(42)의 2차 권선(44)으로 이루어진 직렬 회로는 직류-직류 변환기(1)의 제1 입력 단자(E1)와 제2 입력 단자(E2) 사이에 배열되어 있는, 상기 보상 장치;를 포함하는, 직류-직류 변환기(1).
  2. 제1항에 있어서, 보상 장치(40)는 다이오드(45)를 더 포함하며, 스위칭 요소(41) 및 제2 변압기(42)의 2차 측(44)과 함께 다이오드(45)의 직렬 회로가 직류-직류 변환기(1)의 제1 입력 단자(E1)와 제2 입력 단자(E2) 사이에 배열되어 있는, 직류-직류 변환기(1).
  3. 제1항 또는 제2항에 있어서, 보상 장치(40)의 스위칭 요소(41)는 금속 산화물-전계 효과-트랜지스터, 즉 MOSFET를 포함하는, 직류-직류 변환기(1).
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 보상 장치(40)는, 전류가 정류기(20) 내에서 정류되기 전에, 스위칭 요소(41)를 예정된 기간 동안 폐쇄하도록 설계되어 있는, 직류-직류 변환기(1).
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 역변환 장치(10)는 각각 2개의 반도체 스위치들(M1 내지 M4)을 갖는 2개의 하프 브리지들을 포함하는, 직류-직류 변환기(1).
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, 정류기(20)는 능동형 동기 정류기를 포함하는, 직류-직류 변환기(1).
  7. 제1항 내지 제6항 중 어느 한 항에 따른 직류-직류 변환기(1)를 작동시키기 위한 방법(100)으로서, 다음과 같은 단계들, 즉
    보상 장치(40) 내에서 제2 변압기(42)의 1차 권선(43)을 충전하는 단계(110);
    보상 장치(40) 내에서 제2 변압기(42)의 1차 권선(43)을 방전하는 단계(120);
    제2 변압기(42)의 1차 권선(43)의 방전 과정 마지막에, 예정된 기간 동안 보상 장치(40) 내의 스위칭 요소(41)를 폐쇄하는 단계(130); 및
    전술된 단계들(110, 120, 130)을 반복하는 단계;를 포함하는, 직류-직류 변환기의 작동 방법(100).
  8. 제7항에 있어서, 보상 장치(40) 내에서 제2 변압기(42)의 1차 권선(43)을 충전하는 단계(110)는, 역변환 장치(10)의 입력부의 단자들 사이의 전기 접속을 제공하는 단계를 포함하는, 직류-직류 변환기의 작동 방법(100).
  9. 제7항 또는 제8항에 있어서, 보상 장치(40) 내에서 제2 변압기(42)의 1차 권선(43)을 방전하는 단계(120)는, 제1 변압기(30)의 1차 권선(31)에 의해 전기 접속을 제공하는 단계를 포함하는, 직류-직류 변환기의 작동 방법(100).
  10. 제7항 내지 제9항 중 어느 한 항에 있어서, 상기 예정된 기간은 최대 400 나노 초의 기간을 포함하는, 직류-직류 변환기의 작동 방법(100).
KR1020197013951A 2016-10-18 2017-10-02 직류-직류 변환기, 및 직류-직류 변환기를 작동시키기 위한 방법 KR102414467B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016220354.1 2016-10-18
DE102016220354.1A DE102016220354A1 (de) 2016-10-18 2016-10-18 Gleichspannungswandler und Verfahren zum Betrieb eines Gleichspannungswandlers
PCT/EP2017/074986 WO2018072987A1 (de) 2016-10-18 2017-10-02 Gleichspannungswandler und verfahren zum betrieb eines gleichspannungswandlers

Publications (2)

Publication Number Publication Date
KR20190068600A true KR20190068600A (ko) 2019-06-18
KR102414467B1 KR102414467B1 (ko) 2022-07-01

Family

ID=59997377

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020197013951A KR102414467B1 (ko) 2016-10-18 2017-10-02 직류-직류 변환기, 및 직류-직류 변환기를 작동시키기 위한 방법

Country Status (7)

Country Link
US (1) US11128225B2 (ko)
EP (1) EP3529102B1 (ko)
JP (1) JP6803993B2 (ko)
KR (1) KR102414467B1 (ko)
CN (1) CN109845080B (ko)
DE (1) DE102016220354A1 (ko)
WO (1) WO2018072987A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018218367A1 (de) * 2018-10-26 2020-04-30 Conti Temic Microelectronic Gmbh Gleichspannungswandler
DE102019211692A1 (de) * 2019-08-05 2021-02-11 Robert Bosch Gmbh Gleichspannungskonverter und Verfahren zum Betrieb eines Gleichspannungskonverters

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070236966A1 (en) * 2006-04-06 2007-10-11 Junpei Uruno Uniderectional dc-dc converter
KR20100004620A (ko) * 2008-07-04 2010-01-13 삼성전기주식회사 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터
US20100202158A1 (en) * 2009-02-06 2010-08-12 Chi Hung Cheung Electric power conversion circuit having transfer gain variable by pulse-width modulation
KR20150049060A (ko) * 2013-10-29 2015-05-08 한국전기연구원 양방향 dc-dc 컨버터 및 이를 이용한 배터리 충전 방법

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB238281A (en) * 1924-05-10 1925-08-10 Walter John Brown Improvements in or relating to electrical apparatus for delivering a constant output when energized by a variable alternating input
US5162982A (en) * 1991-05-30 1992-11-10 General Electric Company Power converter continuously operable through boost and buck modes
CA2220747A1 (en) 1997-11-10 1999-05-10 Praveen Kumar Jain Dc-dc converters
JP4085234B2 (ja) 2001-09-28 2008-05-14 サンケン電気株式会社 スイッチング電源装置
JP3748058B2 (ja) 2001-11-26 2006-02-22 富士電機デバイステクノロジー株式会社 スイッチング電源装置
JP2006223008A (ja) * 2005-02-08 2006-08-24 Hitachi Ltd Dc−dcコンバータ
US7869237B1 (en) * 2007-12-27 2011-01-11 Lockheed Martin Corporation Phase-shifted bridge with auxiliary circuit to maintain zero-voltage-switching
JP2010287395A (ja) * 2009-06-10 2010-12-24 Toyota Motor Corp 燃料電池のセルモニタ
CN101860216B (zh) * 2010-05-28 2013-03-06 南京航空航天大学 加耦合电感的倍流整流方式全桥直流变换器
DE102011081448A1 (de) * 2011-08-23 2013-02-28 Bombardier Transportation Gmbh Schaltungsanordnung mit elektronischem Schalter und Induktivität
WO2013036734A2 (en) * 2011-09-09 2013-03-14 Murata Manufacturing Co., Ltd. Isolated switch-mode dc/dc converter with sine wave transformer voltages
JP5816559B2 (ja) * 2012-01-06 2015-11-18 勲 大郷 電力増幅器
DE102012202853A1 (de) * 2012-02-24 2013-08-29 Robert Bosch Gmbh Ladeschaltung für eine Energiespeichereinrichtung und Verfahren zum Laden einer Energiespeichereinrichtung
CN103532411A (zh) * 2012-07-05 2014-01-22 盈威力新能源科技(上海)有限公司 一个微型逆变器拓扑结构
DE102013207475B4 (de) 2013-04-24 2022-08-11 Robert Bosch Gmbh Spannungswandler mit einer Phase-Shifted-Full-Bridge
JP6157388B2 (ja) * 2014-03-13 2017-07-05 三菱電機株式会社 双方向dcdcコンバータ
DE102016200662A1 (de) * 2016-01-20 2017-07-20 Robert Bosch Gmbh Bidirektionaler DC/DC-Wandler und Verfahren zum Laden des Zwischenkreiskondensators eines DC/DC-Wandlers aus der Niedervoltbatterie

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070236966A1 (en) * 2006-04-06 2007-10-11 Junpei Uruno Uniderectional dc-dc converter
KR20100004620A (ko) * 2008-07-04 2010-01-13 삼성전기주식회사 전류 스트레스를 개선한 위상 천이 풀 브릿지 컨버터
US20100202158A1 (en) * 2009-02-06 2010-08-12 Chi Hung Cheung Electric power conversion circuit having transfer gain variable by pulse-width modulation
KR20150049060A (ko) * 2013-10-29 2015-05-08 한국전기연구원 양방향 dc-dc 컨버터 및 이를 이용한 배터리 충전 방법

Also Published As

Publication number Publication date
JP6803993B2 (ja) 2020-12-23
EP3529102A1 (de) 2019-08-28
US11128225B2 (en) 2021-09-21
DE102016220354A1 (de) 2018-04-19
JP2019531047A (ja) 2019-10-24
US20200052602A1 (en) 2020-02-13
CN109845080A (zh) 2019-06-04
EP3529102B1 (de) 2022-12-07
WO2018072987A1 (de) 2018-04-26
KR102414467B1 (ko) 2022-07-01
CN109845080B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
US10554141B2 (en) Parallel hybrid converter apparatus and method
US9812977B2 (en) Resonant converters with an improved voltage regulation range
US10833594B2 (en) System and method of controlling a power converter having an LC tank coupled between a switching network and a transformer winding
US7746670B2 (en) Dual-transformer type of DC-to-DC converter
US8233298B2 (en) Power factor correction rectifier that operates efficiently over a range of input voltage conditions
US7535733B2 (en) Method of controlling DC-to-DC converter whereby switching control sequence applied to switching elements suppresses voltage surges at timings of switch-off of switching elements
JP6706811B2 (ja) スナバ回路及びそれを用いた電力変換システム
US20160094136A1 (en) Resonant Converter Apparatus and Method
CN109874376B (zh) 直流电压转换器和用于操控直流电压转换器的方法
US10193464B2 (en) DC-DC converter
US10193463B2 (en) Insulated DC/DC converter
US10361624B2 (en) Multi-cell power converter with improved start-up routine
JP6012822B1 (ja) 電力変換装置
KR102482820B1 (ko) 절연형 스위칭 전원
US9450497B2 (en) Current resonance DC-DC converter
JP4439979B2 (ja) 電源装置
KR102414467B1 (ko) 직류-직류 변환기, 및 직류-직류 변환기를 작동시키기 위한 방법
CN107112905B (zh) 隔离直流/直流转换器及用于转换电压的装置及方法
KR101140336B1 (ko) 절연형 벅 부스트 dc?dc 컨버터
CN107005174B (zh) 隔离直流/直流转换器及电压转换方法
KR102601772B1 (ko) 차량-측면 충전 디바이스
CN108141142B (zh) 供电装置
KR101726285B1 (ko) 비절연 양방향 직류-직류 컨버터
KR102077825B1 (ko) 부스트 컨버터
US20200195157A1 (en) Half-bridge circuit and power supply device

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right