KR20190063343A - 광 신호 생성 장치 및 그것의 동작 방법 - Google Patents

광 신호 생성 장치 및 그것의 동작 방법 Download PDF

Info

Publication number
KR20190063343A
KR20190063343A KR1020170178771A KR20170178771A KR20190063343A KR 20190063343 A KR20190063343 A KR 20190063343A KR 1020170178771 A KR1020170178771 A KR 1020170178771A KR 20170178771 A KR20170178771 A KR 20170178771A KR 20190063343 A KR20190063343 A KR 20190063343A
Authority
KR
South Korea
Prior art keywords
optical
optical signal
voltage
signal
bias voltage
Prior art date
Application number
KR1020170178771A
Other languages
English (en)
Other versions
KR102157629B1 (ko
Inventor
권오균
김남제
박미란
안신모
한원석
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Priority to US15/855,825 priority Critical patent/US10291327B1/en
Publication of KR20190063343A publication Critical patent/KR20190063343A/ko
Application granted granted Critical
Publication of KR102157629B1 publication Critical patent/KR102157629B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/54Intensity modulation
    • H04B10/541Digital intensity or amplitude modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/508Pulse generation, e.g. generation of solitons

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

본 발명의 하나의 실시 예에 따른 광 신호 생성 장치는 제1 광 신호를 변조하여 이진 신호 형태의 2N-레벨(단, N은 양의 정수) 제2 광 신호를 생성하도록 구성되는 제1 광 세기 변조기, 상기 제2 광 신호를 증폭하여 제3 광 신호를 생성하도록 구성되는 제1 광 증폭기 및 상기 제3 광 신호를 변조하여 이진 신호 형태의 2N+1-레벨 제4 광 신호를 생성하도록 구성되는 제2 광 세기 변조기를 포함한다. 본 발명의 실시 예에 따른 광 신호 생성 장치는 광 소자를 사용하여 멀티레벨 광 신호를 생성함으로써 저비용, 고품질의 광 신호를 생성할 수 있다. 또한, 본 발명의 실시 예에 따른 광 신호 생성 장치는 광 변조 및 광 증폭 동작을 순차적으로 수행함으로써 멀티레벨 광 신호를 생성할 수 있다.

Description

광 신호 생성 장치 및 그것의 동작 방법{OPTICAL SIGNAL GENERATING APPARATUS AND OPERATING METHOD THEREOF}
본 발명은 광 신호 생성 장치에 관한 것으로써, 좀 더 상세하게는 광 네트워크에서 사용되는 광 송수신 모듈에서 전기 신호를 광 신호로 변환하는 광 신호 생성 장치 및 그것의 동작 방법에 관한 것이다.
광 통신 기술은 유선 및 무선 융합 서비스의 확대에 따라 대용량, 고효율의 통신 수단을 요구한다. 이러한 광 네트워크의 고속화, 대용량화를 위해 개별 채널의 속도를 높이는 시분할 다중화(TDM; time division multiplexing) 방식과 광 주파수 자원을 폭 넓게 활용하는 파장 분할 다중화(WDM; wavelength division multiplexing) 방식의 광 기술이 활용된다.
또한, 데이터 센터를 연결하기 위해 이더넷(Ethernet)을 기반으로 하는 멀티레벨 광 신호 변조기술이 연구되고 있다. 멀티레벨 광 신호 변조기술 중 하나로 펄스 진폭 변조(PAM; pulse amplitude modulation) 기술이 사용된다. PAM 광 신호 변조 장치는 디지털 신호인 이진 전기 신호를 아날로그 신호로 변환하기 위한 디지털/아날로그변환기(DAC; digital to analog converter)를 수반한다.
대용량화를 기반으로 하는 차세대 통신 기술에서 요구되는 디지털/아날로그 전기신호 부품들은 비용을 크게 발생시킬 수 있다.
본 발명은 상술된 기술적 과제를 해결하기 위한 것으로써, 본 발명의 목적은 디지털/아날로그 전기신호 부품들 대신 광 소자를 사용하여 멀티레벨 광 신호를 생성하는 광 신호 생성 장치 및 그것의 동작 방법을 제공하는 데 있다.
본 발명의 하나의 실시 예에 따른 광 신호 생성 장치는 제1 광 신호를 변조하여 이진 신호 형태의 2N-레벨(단, N은 양의 정수) 제2 광 신호를 생성하도록 구성되는 제1 광 세기 변조기, 상기 제2 광 신호를 증폭하여 제3 광 신호를 생성하도록 구성되는 제1 광 증폭기 및 상기 제3 광 신호를 변조하여 이진 신호 형태의 2N+1-레벨 제4 광 신호를 생성하도록 구성되는 제2 광 세기 변조기를 포함한다.
상기 제1 광 세기 변조기는 제1 바이어스 전압 및 제1 RF 전압을 기반으로 동작하도록 구성되고, 상기 제2 광 세기 변조기는 상기 제1 바이어스 전압과 동일한 제2 바이어스 전압 및 상기 제1 RF 전압과 동일한 진폭을 갖는 제2 RF 전압을 기반으로 동작하도록 구성될 수 있다.
상기 제4 광 신호의 광 세기 변조 폭은 상기 제2 광 신호의 광 세기 변조 폭과 동일할 수 있다.
상기 제1 광 증폭기는 상기 제3 광 신호의 광 세기 변조 폭이 상기 제2 광 신호의 광 세기 변조 폭의 반이 되도록 상기 제2 광 신호를 정형하도록 구성될 수 있다.
상기 제1 광 증폭기는 입력 전류를 기반으로 동작하고, 상기 입력 전류의 크기는 상기 제1 광 증폭기가 비선형 특성 영역에서 동작하도록 하는 전류의 크기일 수 있다.
상기 제1 광 세기 변조기는 제1 바이어스 전압 및 제1 RF 전압을 기반으로 동작하도록 구성되고, 상기 제2 광 세기 변조기는 상기 제1 바이어스 전압과 다른 제2 바이어스 전압 및 상기 제1 RF 전압과 다른 진폭을 갖는 제2 RF 전압을 기반으로 동작하도록 구성될 수 있다.
상기 제2 RF 전압의 상기 진폭은 상기 제1 RF 전압의 상기 진폭의 반일 수 있다.
상기 제1 광 증폭기는 입력 전류를 기반으로 동작하고, 상기 입력 전류의 크기는 상기 제1 광 증폭기가 선형 특성 영역에서 동작하도록 하는 전류의 크기일 수 있다.
상기 제3 광 신호의 가장 높은 레벨의 광 세기는 상기 제1 광 신호의 광 세기와 동일할 수 있다.
본 발명의 하나의 실시 예에 따른 광 신호 생성 장치는 상기 제4 광 신호를 증폭하여 제5 광 신호를 생성하도록 구성되는 제2 광 증폭기 및 상기 제5 광 신호를 변조하여 이진 신호 형태의 2N+2-레벨 제6 광 신호를 생성하도록 구성되는 제3 광 세기 변조기를 더 포함할 수 있다.
상기 제1 광 세기 변조기는 제1 바이어스 전압 및 제1 RF 전압을 기반으로 동작하도록 구성되고, 상기 제2 광 세기 변조기는 제2 바이어스 전압 및 제2 RF 전압을 기반으로 동작하도록 구성되고, 상기 제3 광 세기 변조기는 제3 바이어스 전압 및 제3 RF 전압을 기반으로 동작하도록 구성되고, 상기 제1 바이어스 전압, 상기 제2 바이어스 전압 및 상기 제3 바이어스 전압은 동일하고, 상기 제1 RF 전압, 상기 제2 RF 전압 및 상기 제3 RF 전압은 동일한 진폭을 가질 수 있다.
상기 제1 광 증폭기는 상기 제3 광 신호의 광 세기 변조 폭이 상기 제2 광 신호의 광 세기 변조 폭의 반이 되도록 상기 제2 광 신호를 정형하도록 구성되고, 상기 제2 광 증폭기는 상기 제5 광 신호의 광 세기 변조 폭이 상기 제4 광 신호의 광 세기 변조 폭의 1/4이 되도록 상기 제4 광 신호를 정형하도록 구성될 수 있다.
상기 제1 광 세기 변조기는 제1 바이어스 전압 및 제1 RF 전압을 기반으로 동작하도록 구성되고, 상기 제2 광 세기 변조기는 제2 바이어스 전압 및 제2 RF 전압을 기반으로 동작하도록 구성되고, 상기 제3 광 세기 변조기는 제3 바이어스 전압 및 제3 RF 전압을 기반으로 동작하도록 구성되고, 상기 제1 바이어스 전압, 상기 제2 바이어스 전압 및 상기 제3 바이어스 전압은 서로 다르고, 상기 제1 RF 전압, 상기 제2 RF 전압 및 상기 제3 RF 전압은 서로 다른 진폭을 가질 수 있다.
상기 제2 RF 전압의 진폭은 상기 제1 RF 전압의 진폭의 반이고, 상기 제3 RF 전압의 진폭은 상기 제2 RF 전압의 진폭의 반일 수 있다.
상기 제1 광 세기 변조기 및 상기 제2 광 세기 변조기는 마하젠더 광 세기 변조기 또는 전계 흡수 변조기일 수 있다.
본 발명의 하나의 실시 예에 따른 광 신호 생성 장치의 동작 방법은 제1 광 신호를 변조하여 이진 신호 형태의 2N-레벨(단, N은 양의 정수) 제2 광 신호를 생성하는 단계, 상기 제2 광 신호를 증폭하여 제3 광 신호를 생성하는 단계 및 상기 제3 광 신호를 변조하여 이진 신호 형태의 2N+1-레벨 제4 광 신호를 생성하는 단계를 포함할 수 있다.
제1 바이어스 전압 및 제1 RF 전압을 기반으로 상기 제1 광 신호를 변조하고, 상기 제1 바이어스 전압과 동일한 제2 바이어스 전압 및 상기 제1 RF 전압과 동일한 진폭을 갖는 제2 RF 전압을 기반으로 상기 제3 광 신호를 변조할 수 있다.
제1 바이어스 전압 및 제1 RF 전압을 기반으로 상기 제1 광 신호를 변조하고, 상기 제1 바이어스 전압과 다른 제2 바이어스 전압 및 상기 제1 RF 전압과 다른 진폭을 갖는 제2 RF 전압을 기반으로 상기 제3 광 신호를 변조할 수 있다.
입력 전류를 기반으로 상기 제2 광 신호를 증폭하고, 상기 입력 전류의 크기는 상기 제3 광 신호의 광 세기 변조 폭이 상기 제2 광 신호의 광 세기 변조 폭과 달라지도록 하는 전류의 크기일 수 있다.
입력 전류를 기반으로 상기 제2 광 신호를 증폭하고, 상기 입력 전류의 크기는 상기 제3 광 신호의 광 세기 변조 폭이 상기 제2 광 신호의 광 세기 변조 폭과 동일하도록 하는 전류의 크기일 수 있다.
본 발명의 실시 예에 따른 광 신호 생성 장치는 광 소자를 사용하여 멀티레벨 광 신호를 생성함으로써 저비용, 고품질의 광 신호를 생성할 수 있다.
또한, 본 발명의 실시 예에 따른 광 신호 생성 장치는 광 변조 및 광 증폭 동작을 순차적으로 수행함으로써 멀티레벨 광 신호를 생성할 수 있다.
도 1은 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 개략적으로 보여주는 도면이다.
도 2는 도 1의 광 신호 생성 장치를 보여주는 블록도이다.
도 3a 및 도 3b는 본 발명의 실시 예에 따른 광 세기 변조기의 변조 동작을 예시적으로 보여주는 도면이다.
도 4a 및 도 4b는 본 발명의 실시 예에 따른 광 증폭기의 동작을 예시적으로 보여주는 도면이다.
도 5는 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 보여주는 블록도이다.
도 6은 도 5의 광 신호 생성 장치의 광 신호 출력을 예시적으로 보여주는 도면이다.
도 7은 도 5의 광 신호 생성 장치의 동작 방법을 나타내는 순서도이다.
도 8은 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 보여주는 블록도이다.
도 9는 도 8의 광 신호 생성 장치의 광 신호 출력을 예시적으로 보여주는 도면이다.
도 10은 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 보여주는 블록도이다.
도 11은 도 10의 광 신호 생성 장치의 광 신호 출력을 예시적으로 보여주는 도면이다.
도 12는 도 10의 광 신호 생성 장치의 동작 방법을 나타내는 순서도이다.
도 13은 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 보여주는 블록도이다.
도 14는 도 13의 광 신호 생성 장치의 광 신호 출력을 예시적으로 보여주는 도면이다.
이하, 첨부된 도면들을 참조하여 본 발명의 실시 예들이 상세하게 설명된다. 이하의 설명에서, 상세한 구성들 및 구조들과 같은 세부적인 사항들은 단순히 본 발명의 실시 예들의 전반적인 이해를 돕기 위하여 제공된다. 그러므로 본 발명의 기술적 사상 및 범위로부터의 벗어남 없이 본문에 기재된 실시 예들의 변형들은 통상의 기술자 의해 수행될 수 있다. 더욱이, 명확성 및 간결성을 위하여 잘 알려진 기능들 및 구조들에 대한 설명들은 생략된다. 본 명세서에서 사용된 용어들은 본 발명의 기능들을 고려하여 정의된 용어들이며, 특정 기능에 한정되지 않는다. 용어들의 정의는 상세한 설명에 기재된 사항을 기반으로 결정될 수 있다.
이하의 도면들 또는 상세한 설명에서의 모듈들은 도면에 도시되거나 또는 상세한 설명에 기재된 구성 요소 이외에 다른 것들과 연결될 수 있다. 모듈들 또는 구성 요소들 사이의 연결은 각각 직접적 또는 비직접적일 수 있다. 모듈들 또는 구성 요소들 사이의 연결은 각각 통신에 의한 연결이거나 또는 물리적인 접속일 수 있다.
상세한 설명에서 사용되는 부 또는 유닛(unit), 모듈(module), 계층(layer) 등의 용어를 참조하여 설명되는 구성 요소들은 소프트웨어, 또는 하드웨어, 또는 그것들의 조합의 형태로 구현될 수 있다. 예시적으로, 소프트웨어는 기계 코드, 펌웨어, 임베디드 코드, 및 애플리케이션 소프트웨어일 수 있다. 예를 들어, 하드웨어는 전기 회로, 전자 회로, 프로세서, 컴퓨터, 집적 회로, 집적 회로 코어들, 압력 센서, 관성 센서, 멤즈(Micro Electro Mechanical System; MEMS), 수동 소자, 또는 그것들의 조합을 포함할 수 있다.
다르게 정의되지 않는 한, 본문에서 사용되는 기술적 또는 과학적인 의미를 포함하는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 지닌 자에 의해 이해될 수 있는 의미를 갖는다. 일반적으로 사전에서 정의된 용어들은 관련된 기술 분야에서의 맥락적 의미와 동등한 의미를 갖도록 해석되며, 본문에서 명확하게 정의되지 않는 한, 이상적 또는 과도하게 형식적인 의미를 갖도록 해석되지 않는다.
도 1은 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 개략적으로 보여주는 도면이다. 도 1을 참조하면, 광원(10)은 전류(I_s)로부터 광 신호를 생성할 수 있다. 광원(10)은 일정한 세기의 광 신호를 출력하여 광 신호 생성 장치(100)로 전송할 수 있다.
광 신호 생성 장치(100)는 광원(10)으로부터 광 신호를 수신하고, 수신된 광 신호를 변조하여 2N-레벨(N>1)(또는 멀티레벨) 광 신호를 생성할 수 있다. 즉, 광 신호 생성 장치(100)로부터 생성되는 광 신호는 2N-레벨 중 하나의 레벨을 나타낼 수 있다. 따라서, 광 신호 생성 장치(100)는 2N개의 값을 나타낼 수 있는 광 신호를 생성할 수 있다.
광 신호 생성 장치(100)는 제0 광 세기 변조기(101) 및 하나 이상의 이진 신호 생성부(110)를 포함할 수 있다. 제0 광 세기 변조기(101)는 광원(10)으로부터 일정한 세기의 광 신호를 수신하여 광 세기를 변조할 수 있다. 제0 광 세기 변조기(101)는 광 세기를 변조함으로써 이진(binary) 신호 형태의 광 신호(이하, 이진 광 신호)를 생성할 수 있다. 즉, 제0 광 세기 변조기(101)는 하나의 레벨의 광 신호로부터 하이 레벨(예를 들어, "1") 및 로우 레벨(예를 들어, "0") 값을 갖는 2-레벨의 광 신호를 생성할 수 있다.
이진 신호 생성부(110)는 광 신호를 수신하여 증폭하고, 증폭된 광 신호를 변조하여 이진 광 신호를 생성할 수 있다. 예시적으로, 이진 신호 생성부(110)는 광 신호를 정형(reshaping)할 수 있다. 광 신호가 정형이 되는 경우, 이진 광 신호의 광 세기 변조 폭이 달라질 수 있다.
제1 이진 신호 생성부(110-1)는 제0 광 세기 변조기(101)로부터 2-레벨 광 신호를 수신할 수 있다. 제1 이진 신호 생성부(110-1)는 2-레벨을 나타내는 광 신호로부터 4-레벨을 나타내는 이진 광 신호를 생성할 수 있다.
제2 이진 신호 생성부(110-2)는 제1 이진 신호 생성부(110)로부터 4-레벨 광 신호를 수신할 수 있다. 제2 이진 신호 생성부(110-2)는 4-레벨을 나타내는 광 신호로부터 8-레벨을 나타내는 이진 광 신호를 생성할 수 있다.
제N-1 이진 신호 생성부(110-N-1)는 제N-2 이진 신호 생성부(미도시)로부터 2N-1-레벨 광 신호를 수신할 수 있다. 제N-1 이진 신호 생성부(110-N-1)는 2N-1-레벨을 나타내는 광 신호로부터 2N-레벨을 나타내는 이진 광 신호를 생성할 수 있다.
도 1에 도시된 바와 같이, 제0 광세기 변조기(101) 및 하나 이상의 이진 신호 생성부(110)는 직렬로 연결되어 순차적으로 광 신호를 변조하여 멀티레벨 광 신호를 생성할 수 있다. 따라서, 광 신호 생성 장치(100)는 N-1개의 이진 신호 생성부를 통해 2N-레벨 광 신호를 생성할 수 있고, 하나의 광 세기 변조기 및 하나 이상의 이진 신호 생성부를 통해 멀티레벨 광 신호를 생성할 수 있다.
본 발명의 하나의 실시 예에 따른 광 신호 생성 장치는, 도 1에 도시된 바와 같이, 별도의 광원(10)으로부터 생성된 광 신호를 수신할 수도 있지만, 본 발명은 이에 한정되지 않는다. 예를 들어, 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치는 광원을 포함하고, 광 신호 생성 장치 내부에서 광 신호를 생성할 수 있다.
이하에서는, 설명의 편의를 위해, 광 신호 생성 장치가 별도의 광원으로부터 광 신호를 수신하는 것으로 가정한다.
도 2는 도 1의 광 신호 생성 장치를 보여주는 블록도이다. 도 1 및 도 2를 참조하면, 광 신호 생성 장치(100)는 제0 광 세기 변조기(101) 및 하나 이상의 이진 신호 생성부(110)를 포함할 수 있다. 이진 신호 생성부(110)는 광 증폭기(111) 및 광 세기 변조기(112)를 포함할 수 있다.
광 세기 변조기(101, 112)는 전계 흡수 변조기(EAM; Electro-Absorption Modulator) 또는 마하젠더(Mach-Zehnder) 광 세기 변조기 등을 이용하여 구현될 수 있다.
광 세기 변조기(101, 112)는 바이어스 전압(Vbias) 및 RF 전압(VRF)에 기초하여 수신된 광 신호를 변조할 수 있다. 바이어스 전압(Vbias)은 직류 전압으로 광 세기 변조기의 기준 동작점과 연관될 수 있다. RF 전압(VRF)은 광 신호가 변조되어 생성되는 이진 광 신호의 광 세기 변조 폭과 연관될 수 있다. 예시적으로, RF 전압(VRF)은 교류 전압 또는 전기적 이진 신호일 수 있다. 예를 들어, 생성되는 이진 광 신호의 광 세기 기준 값이 바이어스 전압(Vbias)에 따라 결정되고, 이진 광 신호의 광 세기 변조 폭이 RF 전압(VRF)에 따라 달라질 수 있다.
광 증폭기(111)는 전류(I)에 기초하여 수신된 광 신호의 세기를 증폭할 수 있다. 광 증폭기(111)는 전류(I)에 기초하여 이진 광 신호의 광 세기 폭을 조절함으로써 광 신호를 정형할 수 있다.
제0 광 세기 변조기(101)는 제0 바이어스 전압(Vbias0), 제0 RF 전압(VRF0) 및 광 신호를 수신할 수 있다. 제0 광 세기 변조기(101)는 제0 바이어스 전압(Vbias0) 및 제0 RF 전압(VRF0)에 기초하여 수신된 광 신호를 변조하여 이진 광 신호를 생성할 수 있다. 제0 광 세기 변조기(101)에 의해 생성된 이진 광 신호는 2-레벨 광 신호일 수 있다.
제1 광 증폭기(111-1)는 제1 전류(I_1) 및 제0 광 세기 변조기(101)로부터 생성된 광 신호를 수신할 수 있다. 제1 광 증폭기(111-1)는 제1 전류(I_1)에 기초하여 수신된 광 신호를 증폭할 수 있다. 제1 광 증폭기(111-1)는 제1 전류(I_1)에 기초하여 수신된 광 신호를 정형할 수 있다.
제1 광 세기 변조기(112-1)는 제1 바이어스 전압(Vbias1), 제1 RF 전압(VRF1) 및 제1 광 증폭기(111-1)로부터 증폭된 광 신호를 수신할 수 있다. 제1 광 세기 변조기(112-1)는 제1 바이어스 전압(Vbias1) 및 제1 RF 전압(VRF1)에 기초하여 수신된 광 신호를 변조하여 이진 광 신호를 생성할 수 있다. 제1 광 세기 변조기(112-1)에 의해 생성된 이진 광 신호는 4-레벨 광 신호일 수 있다.
제1 광 증폭기(111-1)에서와 마찬가지로, 제2 광 증폭기(111-2)는 제2 전류(I_2)에 기초하여 광 신호의 세기를 증폭할 수 있고, 수신된 광 신호를 정형할 수 있다. 또한, 제N-1 광 증폭기(111-N-1)는 제N-1 전류(I_N-1)에 기초하여 수신된 광 신호의 세기를 증폭할 수 있고, 수신된 광 신호를 정형할 수 있다.
제1 광 세기 변조기(112-1)에서와 마찬가지로, 제2 광 세기 변조기(112-2)는 제2 바이어스 전압(Vbias2) 및 제2 RF 전압(VRF2)에 기초하여 수신된 광 신호를 변조하여 8-레벨 광 신호를 생성할 수 있다. 또한, 제N-1 광 세기 변조기(112-N-1)는 제N-1 바이어스 전압(VbiasN-1) 및 제N-1 RF 전압(VRFN-1)에 기초하여 수신된 광 신호를 변조하여 2N-레벨 광 신호를 생성할 수 있다.
예시적으로, 제0 바이어스 전압 내지 제N-1 바이어스 전압((Vbias0~VbiasN-1)의 크기는 동일할 수 있고, 제0 RF 전압 내지 제N-1 RF 전압(VRF0~VRFN-1)의 진폭의 크기는 동일할 수 있다. 이 경우, 제0 광 세기 변조기 내지 제N-1 광 세기 변조기(101~112-N-1)에서 생성되는 이진 광 신호의 광 세기 변조 폭은 동일할 수 있다.
예시적으로, 제0 바이어스 전압 내지 제N-1 바이어스 전압(Vbias0~VbiasN-1)의 크기는 다를 수 있고, 제0 RF 전압 내지 제N-1 RF 전압(VRF0~VRFN-1)의 크기는 다를 수 있다. 이 경우, 제0 광 세기 변조기 내지 제N-1 광 세기 변조기(101~112-N-1)에서 생성되는 이진 광 신호의 광 세기 변조 폭은 다를 수 있다.
도 1 및 도 2에 도시된 바와 같이, 광 신호 생성 장치(100)는 N-1개의 이진 신호 생성부를 포함할 수 있다. 그러나, 광 신호 생성 장치(100)는 이진 신호 생성부의 개수에 한정되지 않으며, 예를 들어, 하나의 이진 신호 생성부를 통해 멀티레벨 광 신호(예를 들어, 4-레벨 광 신호)를 생성할 수 있다.
도 3a 및 도 3b는 본 발명의 실시 예에 따른 광 세기 변조기의 변조 동작을 예시적으로 보여주는 도면이다. 구체적으로, 도 3a는 제0 광 세기 변조기(101)가 수신된 광 신호를 이진 광 신호로 변조하는 예시를 나타내고, 도 3b는 제0 광 세기 변조기(101)가 바이어스 전압(Vbias) 및 RF 전압(VRF)에 따라 수신된 광 신호를 이진 광 신호로 변조하는 예시를 나타낸다. 설명의 편의를 위해, 제0 광 세기 변조기(101)를 기준으로 본 발명의 실시 예에 따른 광 세기 변조기를 설명하지만, 다른 광 세기 변조기들(112-1~112-N-1)도 유사하게 동작할 수 있다.
도 3a를 참조하면, 도 3a의 가로축은 시간을 나타내고 세로축은 광 세기를 나타낸다. 세로축의 광 세기는 입력 광 신호의 광 세기에 대한 출력 광 신호의 광 세기의 상대적인 크기를 나타내며, 절대적인 광 세기를 의미하는 것은 아닐 수 있다. 이와 마찬가지로, 이하의 도면들에 도시된 광 세기는 상대적인 광 세기의 크기를 나타내는 것일 수 있다.
제0 광 세기 변조기(101)는 수신된 제1 광 신호(OS1)를 변조하여 제2 광 신호(OS2)를 생성할 수 있다. 예시적으로, 생성되는 제2 광 신호(OS2)는 이진 신호 형태일 수 있다. 예를 들어, 제2 광 신호(OS2) 중 광 세기(p2)가 큰 제2 광 신호(OS2)는 "1" 값을 가리키며, 광 세기(p3)가 작은 제2 광 신호(OS2)는 "0" 값을 가리킬 수 있다.
도 3a에 도시된 바와 같이, 제0 광 세기 변조기(101)를 통해 변조된 광 신호는 삽입 손실(insertion loss)로 인하여 광 세기가 작아질 수 있다. 예를 들어, 변조된 제2 광 신호(OS2)의 제2 광 세기(p2)는 제1 광 신호(OS1)의 제1 광 세기(p1)보다 삽입 손실만큼 작아질 수 있다.
도 3b를 참조하면, 도 3b의 가로축은 인가 전압을 나타내고 세로축은 광 세기를 나타낸다. 도 3b는 제0 광 세기 변조기(101)에 인가되는 전압에 따른 광 세기 응답 특성을 보여준다. 제0 광 세기 변조기(101)는 광 세기 변조기 특성 곡선에 기초하여 동작할 수 있다. 예시적으로, 제0 광 세기 변조기(101)의 응답 특성(즉, 광 세기 변조기 특성 곡선)은 제0 광 세기 변조기(101)의 구조 및 설계에 따라 달라질 수 있으며, 제0 광 세기 변조기(101)의 응답 특성은 미리 정해질 수 있다.
도 3b의 인가 전압은 바이어스 전압(Vbias) 및 RF 전압(VRF)일 수 있다. 제0 광 세기 변조기(101)에 제1 전압(V1)를 갖는 바이어스 전압(Vbias)과 제1 진폭(a1)을 갖는 RF 전압(VRF)이 인가될 수 있다. 이 경우, 제0 광 세기 변조기(101)는 제1 광 세기(p1)를 갖는 제1 광 신호(OS1)로부터 제2 광 세기(p2) 및 제3 광 세기(p3)를 갖는 제2 광 신호(OS2)를 생성할 수 있다.
생성되는 제2 광 신호(OS2)는 광 세기 변조기 특성 곡선에 기초하여 결정될 수 있다. 도 3b에 도시된 바와 같이, 바이어스 전압(Vbias)에 따라 변조되는 광 세기의 기준점이 달라질 수 있다. 예를 들어, 바이어스 전압(Vbias)이 작아지는 경우, 변조되는 광 세기가 커질 수 있고, 바이어스 전압(Vbias)이 커지는 경우, 변조되는 광 세기가 작아질 수 있다.
또한, RF 전압(VRF)의 진폭에 따라, 생성되는 광 신호의 광 세기 변조 폭이 달라질 수 있다. 예를 들어, RF 전압(VRF)의 진폭이 커지는 경우, 광 세기 변조 폭이 커질 수 있고, RF 전압(VRF)의 진폭이 작아지는 경우, 광 세기 변조 폭이 작아질 수 있다.
예시적으로, 제0 광 세기 변조기(101)가 광 세기 변조기 특성 곡선의 선형 특성 영역에서 동작할 수 있도록 바이어스 전압(Vbias) 및 RF 전압(VRF)이 인가될 수 있다. 제0 광 세기 변조기(101)가 선형 특성 영역에서 동작하는 경우, 인가되는 바이어스 전압(Vbias) 및 RF 전압(VRF)을 조절하여 광 세기 변조 폭을 용이하게 제어할 수 있다.
도 4a 및 도 4b는 본 발명의 실시 예에 따른 광 증폭기의 동작을 예시적으로 보여주는 도면이다. 구체적으로, 도 4a는 제1 광 증폭기(111-1)가 수신된 광 신호를 증폭하는 예시를 나타내고, 도 4b는 제1 광 증폭기(111-1)로부터 출력되는 광 증폭 세기를 결정하는 방법을 설명하기 위한 예시를 나타낸다. 설명의 편의를 위해, 제1 광 증폭기(111-1)를 기준으로 본 발명의 실시 예에 따른 광 증폭기를 설명하지만, 다른 광 증폭기들(111-2~111-N-1)도 유사하게 동작할 수 있다.
도 4a를 참조하면, 가로축은 시간을 나타내고 세로축은 광 세기를 나타낸다. 제0 광 세기 변조기(101)로부터 제1 광 신호(OS1)가 제2 광 신호(OS2)로 변조되고, 제1 광 증폭기(111-1)로부터 제2 광 신호(OS2)의 광 세기가 증폭되어 제3 광 신호(OS3)가 생성될 수 있다.
제1 광 증폭기(111-1)에 의해 제2 광 신호(OS2)의 제2 광 세기(p2)는 제3 광 신호(OS3)의 제4 광 세기(p4)로 증폭될 수 있고, 제2 광 신호(OS2)의 제3 광 세기(p3)는 제3 광 신호(OS3)의 제5 광 세기(p5)로 증폭될 수 있다.
제1 광 증폭기(111-1)는 광 세기의 증폭을 수행할 수 있을 뿐만 아니라 생성되는 광 신호의 광 세기 변조 폭을 변화시킬 수 있다(즉, 광 신호를 정형). 이에 따라, 증폭 전 광 세기 변조 폭과 증폭 후 광 세기 변조 폭은 달라질 수 있다. 예를 들어, 제1 광 증폭기(111-1)는 증폭 전 광 세기 변조 폭과 증폭 후 광 세기 변조 폭이 동일하도록 광 신호를 증폭할 수 있다. 또는, 제1 광 증폭기(111-1)는 증폭 전 광 세기 변조 폭보다 증폭 후 광 세기 변조 폭이 작아지도록 광 신호를 증폭할 수 있다.
도 4b를 참조하면, 가로축은 입력 광 세기를 나타내고, 세로축은 출력 광 세기를 나타낸다. 제1 광 증폭기(111-1)는 광 증폭기 특성 곡선에 기초하여 입력된 광 신호의 광 세기를 증폭시킬 수 있다. 광 증폭기 특성 곡선에 따라 제2 광 세기(p2)는 제4 광 세기(p4)로 증폭될 수 있고, 제3 광 세기(p3)는 제5 광 세기(p5)로 증폭될 수 있다.
광 증폭기 특성 곡선은 선형 특성 영역과 비선형 특성 영역(또는 포화 영역)이 존재할 수 있다. 선형 특성 영역에 따라 광 세기가 증폭되는 경우, 입력되는 광 세기에 비례하여 출력되는 광 세기가 결정될 수 있다. 증폭 전 광 세기 변조 폭은 증폭 후 광 세기 변조 폭과 동일할 수 있다. 따라서, 광 신호를 증폭만 하는 경우, 광 증폭기는 선형 특성 영역에 따라 동작할 수 있다.
비선형 특성 영역에 따라 광 세기가 증폭되는 경우, 입력되는 광 세기와 출력되는 광 세기는 비례하지 않을 수 있다. 증폭 후 광 세기 변조 폭은 증폭 전 광 세기 변조 폭보다 작아질 수 있다. 따라서, 광 신호를 정형하는 경우, 광 증폭기는 비선형 특성 영역에 따라 동작할 수 있다.
제1 광 증폭기(111-1)는 입력 전류에 기초하여 증폭 동작을 수행할 수 있다. 입력 전류가 달라지는 경우, 제1 광 증폭기(111-1)의 동작 특성이 변화될 수 있다. 즉, 도 4b에 도시된 광 증폭기 특성 곡선이 달라질 수 있다. 예를 들어, 입력 전류에 따라 선형 특성 영역 및 비선형 특성 영역이 달라질 수 있다. 따라서, 입력 전류에 따라 제1 광 증폭기(111-1)는 선형 특성 영역에 따라 광 신호를 증폭하거나 비선형 특성 영역에 따라 광 신호를 증폭할 수 있다.
도 5는 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 보여주는 블록도이다. 도 5를 참조하면, 광 신호 생성 장치(200)는 광 신호를 수신하여 4-레벨 광 신호를 출력할 수 있다. 광 신호 생성 장치(200)는 제0 광 세기 변조기(201) 및 이진 신호 생성부(210)를 포함할 수 있다. 이진 신호 생성부(210)는 제1 광 증폭기(211) 및 제1 광 세기 변조기(212)를 포함할 수 있다. 제0 광 세기 변조기(201), 제1 광 증폭기(211) 및 제1 광 세기 변조기(212)는 도 1 내지 도 4b에서 설명한 광 세기 변조기 및 광 증폭기와 유사한 동작을 수행하므로 상세한 설명은 생략된다.
제0 광 세기 변조기(201)는 제0 바이어스 전압(Vbias0) 및 제0 RF 전압(VRF0)에 기초하여 동작하고, 제1 광 세기 변조기(212)는 제1 바이어스 전압(Vbias1) 및 제1 RF 전압(VRF1)에 기초하여 동작할 수 있다. 제0 바이어스 전압(Vbias0)과 제1 바이어스 전압(Vbias1)은 동일하고, 제0 RF 전압(VRF0)의 진폭과 제1 RF 전압(VRF1)의 진폭은 동일할 수 있다. 즉, 제0 광 세기 변조기(201) 및 제1 광 세기 변조기(212)는 동일한 바이어스 전압(Vbias) 및 동일한 진폭을 갖는 RF 전압(VRF)에 의해 동작할 수 있다.
도 3b에 도시된 바와 같이, 제0 및 제1 광 세기 변조기들(201, 212)로 인가되는 바이어스 전압(Vbias) 및 RF 전압(VRF)의 진폭이 동일한 경우, 동일한 광 세기 변조 폭을 갖는 광 신호가 생성될 수 있다. 이에 따라, 제0 광 세기 변조기(201)에 의해 생성되는 광 신호의 광 세기 변조 폭은 및 제1 광 세기 변조기(212)에 의해 생성되는 광 신호의 광 세기 변조 폭과 동일할 수 있다.
제1 광 증폭기(211)는 제1 전류(I_1)를 입력 받아 제0 광 세기 변조기(201)로부터 수신된 광 신호를 증폭하고 정형할 수 있다. 제1 광 증폭기(211)는 광 신호 생성 장치(200)로부터 출력되는 4-레벨 광 신호의 각 신호 레벨 간 간격이 동일하게 되도록 수신된 광 신호를 증폭 및 정형할 수 있다. 도 4b에 도시된 바와 같이, 제1 광 증폭기(211)는 비선형 특성 영역에서 동작함으로써 수신된 광 신호를 증폭 및 정형할 수 있다. 따라서, 제1 전류(I_1)는 제1 광 증폭기(211)가 비선형 특성 영역에서 동작하게 하는 전류일 수 있다.
예시적으로, 제1 광 증폭기(211)에 의해 입력되는 광 신호가 정형이 되는 경우, 출력 광 세기 변조 폭은 입력 광 세기 변조 폭의 반이 될 수 있다.
제1 광 세기 변조기(212)는 증폭 및 정형된 2-레벨 광 신호를 변조하여 4-레벨 광 신호를 생성할 수 있다. 따라서, 광 신호 생성 장치(200)는 4-레벨 광 신호(즉, 멀티레벨 광 신호)를 출력할 수 있다.
도 6은 도 5의 광 신호 생성 장치의 광 신호 출력을 예시적으로 보여주는 도면이다. 도 6의 가로축은 시간을 나타내고, 세로축은 광 세기를 나타낸다. 도 5 및 도 6을 참조하면, 제0 광 세기 변조기(201)는 제1 광 신호(OS1)를 변조하여 제2 광 신호(OS2)를 생성할 수 있다. 제1 광 세기(p1)를 갖는 제1 광 신호(OS1)로부터 제2 광 세기(p2) 및 제3 광 세기(p3)를 갖는 2-레벨 제2 광 신호(OS2)가 생성될 수 있다. 제0 광 세기 변조기(201)는 제0 바이어스 전압(Vbias0) 및 제0 RF 전압(VRF0)을 기반으로 제1 광 세기 변조 폭(w1)을 갖는 제2 광 신호(OS2)를 생성할 수 있다.
제1 광 증폭기(211)는 제2 광 신호(OS2)를 증폭하여 제3 광 신호(OS3)를 생성할 수 있다. 제1 광 증폭기(211)는 제1 전류(I_1)를 기반으로 제3 광 신호(OS3)를 생성할 수 있다. 제3 광 신호(OS3)는 제4 광 세기(p4) 및 제5 광 세기(p5)를 갖는 2-레벨 광 신호일 수 있다.
제3 광 신호(OS3)는 제2 광 신호(OS2)와 비교하여 광 세기는 커지고, 광 세기 변조 폭은 작아질 수 있다. 예시적으로, 도 6에는 다르게 도시되어 있지만, 제1 광 증폭기(211)는 제3 광 신호(OS3)의 제4 광 세기(p4)가 제1 광 신호(OS1)의 제1 광 세기(p1)와 동일하게 되도록 제2 광 신호(OS2)를 증폭할 수 있다. 제1 광 증폭기(211)는 제3 광 신호(OS3)의 제2 광 세기 변조 폭(w2)이 제1 광 세기 변조 폭(w1)의 반이 되도록 제2 광 신호(OS2)를 정형할 수 있다.
제1 광 세기 변조기(212)는 제1 바이어스 전압(Vbias1) 및 제1 RF 전압(VRF1)을 기반으로 제3 광 신호(OS3)를 변조하여 제4 광 신호(OS4)를 생성할 수 있다. 제1 바이어스 전압(Vbias1)은 는 제0 바이어스 전압(Vbias0)과 동일하고, 제1 RF 전압(VRF1)의 진폭은 제0 RF 전압(VRF0)의 진폭과 동일할 수 있다.
제4 광 신호(OS4)는 제6 광 세기(p6), 제7 광 세기(p7), 제8 광 세기(p8) 및 제9 광 세기(p9)를 갖는 4-레벨 광 신호일 수 있다. 제1 광 세기 변조기(212)는 제4 광 세기(p4)를 갖는 제3 광 신호(OS3)로부터 제6 광 세기(p6) 및 제8 광 세기(p8)를 갖는 제4 광 신호(OS4)를 생성할 수 있다. 제1 광 세기 변조기(212)는 제5 광 세기(p5)를 갖는 제3 광 신호(OS3)로부터 제7 광 세기(p7) 및 제9 광 세기(p9)를 갖는 제4 광 신호(OS4)를 생성할 수 있다. 즉, 제1 광 세기 변조기(212)는 2-레벨의 제3 광 신호(OS3)로부터 4-레벨의 제4 광 신호(OS4)를 생성할 수 있다.
제1 광 세기 변조기(212)는 제4 광 세기(p4)를 갖는 제3 광 신호(OS3)로부터 제3 광 세기 변조 폭(w3)을 갖는 제4 광 신호(OS4)를 생성될 수 있다. 제1 광 세기 변조기(212)는 제5 광 세기(p5)를 갖는 제3 광 신호(OS3)로부터 제4 광 세기 변조 폭(w4)을 갖는 제4 광 신호(OS4)를 생성할 수 있다. 제3 광 세기 변조 폭(w3)과 제4 광 세기 변조 폭(w4)은 동일할 수 있고, 제3 광 세기 변조 폭(w3) 및 제4 광 세기 변조 폭(w4)은 제1 광 세기 변조 폭(w1)과 동일할 수 있다. 또한, 제4 광 신호(OS4)의 광 세기들(p6, p7, p8, p9)의 간격은 동일할 수 있다.
본 명세서에서 광 세기 변조 폭이라 함은 광 세기 변조기를 통해 일정 레벨의 광 신호로부터 생성되는 이진 광 신호의 광 세기 폭을 의미할 수 있다. 즉, 제4 광 신호(OS4)의 제3 광 세기 변조 폭(w3) 또는 제4 광 세기 변조 폭(w4)은 제4 광 신호(OS4)의 광 세기들(p6, p7, p8, p9)의 간격과 다른 의미를 나타낼 수 있다.
도 7은 도 5의 광 신호 생성 장치의 동작 방법을 나타내는 순서도이다. 도 5 및 도 7를 참조하면, S101 단계에서, 광 신호 생성 장치(200)는 광 신호를 제0 바이어스 전압(Vbias0) 및 제0 RF 전압(VRF0)에 따라 변조하여 이진 광 신호를 생성할 수 있다. S102 단계에서, 광 신호 생성 장치(200)는 생성된 이진 광 신호를 증폭 및 정형할 수 있다. S103 단계에서, 광 신호 생성 장치(200)는 정형된 이진 광 신호를 제1 바이어스 전압(Vbias1) 및 제1 RF 전압(VRF1)에 따라 변조하여 멀티레벨 광 신호를 생성할 수 있다. 제1 바이어스 전압(Vbias1)은 는 제0 바이어스 전압(Vbias0)과 동일하고, 제1 RF 전압(VRF1)의 진폭은 제0 RF 전압(VRF0)의 진폭과 동일할 수 있다.
본 발명의 실시 예에 따른 광 신호 생성 장치는 도 7에 도시된 바에 한정되지 않으며, S102 및 S103 단계를 반복하여 수행함으로써 더 많은 레벨을 갖는 광 신호를 생성할 수 있다. 예를 들어, S102 및 S103 단계를 N-1번 수행하는 경우, 광 신호 생성 장치는 2N-레벨 광 신호를 생성할 수 있다.
도 8은 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 보여주는 블록도이다. 광 신호 생성 장치(300)는 제0 광 세기 변조기(301) 및 제1 이진 신호 생성부(310) 및 제2 이진 신호 생성부(320)를 포함할 수 있다. 제1 이진 신호 생성부(310)는 제1 광 증폭기(311) 및 제1 광 세기 변조기(312)를 포함하고, 제2 이진 신호 생성부(320)는 제2 광 증폭기(321) 및 제2 광 세기 변조기(322)를 포함할 수 있다. 제0 광 세기 변조기(301) 및 제1 이진 신호 생성부(310)에 관한 동작은 도 5의 제0 광 세기 변조기(201) 및 이진 신호 생성부(210)에 관한 동작과 유사하므로, 상세한 설명은 생략된다.
광 신호 생성 장치(300)는 제0 광 세기 변조기(301) 및 제1 및 제2 이진 신호 생성부들(310, 320)을 통해 8-레벨 광 신호를 생성할 수 있다. 제0 광 세기 변조기(301), 제1 광 세기 변조기(312) 및 제2 광 세기 변조기(322)에는 동일한 바이어스 전압(Vbias0= Vbias1=Vbias2) 및 동일한 진폭을 갖는 RF 전압(VRF0=VRF1=VRF2)이 인가될 수 있다. 제1 광 증폭기(311) 및 제2 광 증폭기(321)는 각각 제1 전류(I_1) 및 제2 전류(I_2)가 입력될 수 있다.
도 9는 도 8의 광 신호 생성 장치의 광 신호 출력을 예시적으로 보여주는 도면이다. 도 9의 가로축은 시간을 나타내고 세로축은 광 세기를 나타낸다. 도 8 및 도 9를 참조하면, 제0 광 세기 변조기(301)는 제0 바이어스 전압(Vbias0) 및 제0 RF 전압(VRF0)을 기반으로 제1 광 신호(OS1)를 변조하여 제1 광 세기 변조 폭(w1)을 갖는 제2 광 신호(OS2)를 생성할 수 있다.
제1 광 증폭기(311)는 제1 전류(I_1)를 기반으로 제2 광 신호(OS2)를 증폭 및 정형하여 제3 광 신호(OS3)를 생성할 수 있다. 정형된 제3 광 신호(OS3)의 제2 광 세기 변조 폭(w2)은 제1 광 세기 변조 폭(w1)과 다를 수 있다. 예시적으로, 제2 광 세기 변조 폭(w2)은 제1 광 세기 변조 폭(w1)의 반일 수 있다. 제3 광 신호(OS3)의 가장 높은 레벨의 광 세기는 제1 광 신호(OS1)의 광 세기와 동일할 수 있다.
제1 광 세기 변조기(312)는 제1 바이어스 전압(Vbias1) 및 제1 RF 전압(VRF1)을 기반으로 제3 광 신호(OS3)를 변조하여 제3 광 세기 변조 폭(w3)을 갖는 제4 광 신호(OS4)를 생성할 수 있다. 제1 바이어스 전압(Vbias1)은 는 제0 바이어스 전압(Vbias0)과 동일하고, 제1 RF 전압(VRF1)의 진폭은 제0 RF 전압(VRF0)의 진폭과 동일할 수 있다. 예시적으로, 제3 광 세기 변조 폭(w3)은 제1 광 세기 변조 폭(w1)과 동일하고, 제4 광 신호(OS4)의 각 신호 레벨 간의 간격은 동일할 수 있다.
제2 광 증폭기(321)는 제2 전류(I_2)를 기반으로 제4 광 신호(OS4)를 증폭 및 정형하여 제5 광 신호(OS5)를 생성할 수 있다. 제5 광 신호(OS5)는 제3 광 세기 변조 폭(w3)과 다른 제4 광 세기 변조 폭(w4)을 가질 수 있다. 예시적으로, 제4 광 세기 변조 폭(w4)은 제3 광 세기 변조 폭(w3)의 1/4 일 수 있다. 즉, 본 발명의 실시 예에 따른 광 신호 생성 장치(100)는 광 신호 증폭 단계가 증가될수록, 광 세기 변조 폭을 더 감소될 수 있도록 광 신호를 정형할 수 있다. 예를 들어, 광 신호 생성 장치(100)는 제1 광 증폭기에서 광 신호 변조 폭을 1/2로 정형하고, 제2 광 증폭기에서 광 신호 변조 폭을 1/4로 정형하고, 제3 광 증폭기에서 광 신호 변조 폭을 1/8로 정형할 수 있다. 제5 광 신호(OS5)의 가장 높은 레벨의 광 세기는 제3 광 신호(OS3)의 가장 높은 레벨의 광 세기와 동일할 수 있다.
제2 광 세기 변조기(322)는 제2 바이어스 전압(Vbias2) 및 제2 RF 전압(VRF2)을 기반으로 제5 광 신호(OS5)를 변조하여 제5 광 세기 변조 폭(w5)을 갖는 제6 광 신호(OS6)를 생성할 수 있다. 제2 바이어스 전압(Vbias2)은 는 제0 바이어스 전압(Vbias0)과 동일하고, 제2 RF 전압(VRF2)의 진폭은 제0 RF 전압(VRF0)의 진폭과 동일할 수 있다. 예시적으로, 제5 광 세기 변조 폭(w5)은 제1 및 제3 광 세기 변조 폭(w1 및 w3)과 동일할 수 있고, 제6 광 신호(OS6)의 각 신호 레벨 간의 간격은 동일할 수 있다.
광 신호 생성 장치(300)는 제2 광 세기 변조기(322)로부터 생성된 제6 광 신호(OS6)를 출력할 수 있다. 이로부터, 광 신호 생성 장치(300)는 8-레벨 광 신호를 출력할 수 있다. 광 신호 생성 장치(300)로부터 출력되는 8-레벨 광 신호는 도 9 및 아래의 표 1과 같이 할당된 비트들(bits)에 대응하는 값을 가리킬 수 있다.
8-레벨 광 신호 제0 광 세기 변조기의 제0 RF 전압의 크기 제1 광 세기 변조기의 제1 RF 전압의 크기 제2 광 세기 변조기의 제2 RF 전압의 크기
000 0 0 0
001 1 0 0
010 0 1 0
011 1 1 0
100 0 0 1
101 1 0 1
110 0 1 1
111 1 1 1
표 1과 같이, 광 신호 생성 장치(300)로부터 8-레벨 광 신호를 수신하는 경우, 수신단은 광 신호 레벨에 따라 광 신호가 가리키는 값을 "000"~"111" 중 하나로 인식할 수 있다. 예를 들어, 제0 광 세기 변조기(301)에 "1"에 대응되는 제0 RF 전압(VRF0)이 입력되고, 제1 광 세기 변조기(312)에 "0"에 대응되는 제1 RF 전압(VRF1)이 입력되고, 제2 광 세기 변조기(322)에 "0"에 대응되는 제2 RF 전압(VRF2)이 입력되는 경우, 수신단은 "001"을 가리키는 광 신호를 수신할 수 있다.
제0 광 세기 변조기(301)에 "0"에 대응되는 제0 RF 전압(VRF0)이 입력되고, 제1 광 세기 변조기(312)에 "1"에 대응되는 제1 RF 전압(VRF1)이 입력되고, 제2 광 세기 변조기(322)에 "1"에 대응되는 제2 RF 전압(VRF2)이 입력되는 경우, 수신단은 "110"을 가리키는 광 신호를 수신할 수 있다.
8-레벨 광 신호에 대해서 표 1과 같이 비트 값이 할당될 수 있지만, 본 발명은 이에 한정되지 않으며, 각 레벨에 대응하는 비트 값은 달라질 수 있다.
상술한 바와 같이, 본 발명의 실시 예들에 따른 광 신호 생성 장치는 동일한 바이어스 전압(Vbias) 및 동일한 진폭의 RF 전압(VRF)을 기반으로 동작하는 복수의 광 세기 변조기들을 통해 광 신호를 순차적으로 변조함으로써 멀티레벨 광 신호를 생성할 수 있다.
도 10은 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 보여주는 블록도이다. 도 10을 참조하면, 광 신호 생성 장치(400)는 광 신호를 수신하여 4-레벨 광 신호를 출력할 수 있다. 광 신호 생성 장치(400)는 제0 광 세기 변조기(401) 및 이진 신호 생성부(410)를 포함할 수 있다. 이진 신호 생성부(410)는 제1 광 증폭기(411) 및 제1 광 세기 변조기(412)를 포함할 수 있다. 제0 광 세기 변조기(401), 제1 광 증폭기(411) 및 제1 광 세기 변조기(412)는 도 1 내지 도 4b에서 설명한 광 세기 변조기 및 광 증폭기와 유사한 동작을 수행하므로 상세한 설명은 생략된다.
제0 광 세기 변조기(401)는 제0 바이어스 전압(Vbias0) 및 제0 RF 전압(VRF0)을 입력으로 하여 광 신호를 변조할 수 있고, 제1 광 세기 변조기(412)는 제1 바이어스 전압(Vbias1) 및 제1 RF 전압(VRF1)을 입력으로 하여 광 신호를 변조할 수 있다. 도 3b에 도시된 바와 같이, 제0 및 제1 광 세기 변조기들(401, 412)로 인가되는 바이어스 전압(Vbias) 및 RF 전압(VRF)의 진폭이 다른 경우, 광 세기 변조 폭이 다른 광 신호가 생성될 수 있다.
제1 광 증폭기(411)는 제1 전류(I_1)를 입력 받아 제0 광 세기 변조기(401)로부터 수신된 광 신호를 증폭할 수 있다. 제1 광 증폭기(411)는 광 세기 변조 폭을 동일하게 유지하면서 광 신호를 증폭할 수 있다. 도 4b에 도시된 바와 같이, 제1 광 증폭기(411)는 선형 특성 영역에서 동작함으로써 광 신호를 증폭할 수 있다. 따라서, 제1 전류(I_1)는 제1 광 증폭기(411)가 선형 특성 영역에서 동작하게 하는 전류일 수 있다.
제1 광 세기 변조기(412)는 증폭된 2-레벨 광 신호를 변조하여 4-레벨 광 신호를 생성할 수 있다. 따라서, 광 신호 생성 장치(400)는 4-레벨 광 신호(즉, 멀티레벨 광 신호)를 출력할 수 있다.
도 11은 도 10의 광 신호 생성 장치의 광 신호 출력을 예시적으로 보여주는 도면이다. 도 11의 가로축은 시간을 나타내고 세로축은 광 세기를 나타낸다. 도 10 및 도 11을 참조하면, 제0 광 세기 변조기(401)는 제1 광 신호(OS1)를 변조하여 제2 광 신호(OS2)를 생성할 수 있다. 제0 광 세기 변조기(401)에 의해 제1 광 세기(p1)를 갖는 제1 광 신호(OS1)로부터 제2 광 세기(p2) 및 제3 광 세기(p3)를 갖는 2-레벨 제2 광 신호(OS2)가 생성될 수 있다. 제0 광 세기 변조기(401)는 제0 바이어스 전압(Vbias0) 및 제0 RF 전압(VRF0)을 기반으로 제1 광 세기 변조 폭(w1)을 갖는 제2 광 신호(OS2)를 생성할 수 있다.
제1 광 증폭기(411)는 제1 전류(I_1)를 기반으로 제2 광 신호(OS2)를 증폭하여 제3 광 신호(OS3)를 생성할 수 있다. 제3 광 신호(OS3)는 제4 광 세기(p4) 및 제5 광 세기(p5)를 갖는 2-레벨 광 신호일 수 있다. 제1 광 증폭기(411)는 제3 광 신호(OS3)의 제4 광 세기(p4)를 제1 광 신호(OS1)의 제1 광 세기(p1)와 동일하게 되도록 제2 광 신호(OS2)를 증폭할 수 있다. 제3 광 신호(OS3)의 제2 광 세기 변조 폭(w2)은 제1 광 세기 변조 폭(w1)과 동일할 수 있다.
제1 광 세기 변조기(412)는 제1 바이어스 전압(Vbias1) 및 제1 RF 전압(VRF1)을 기반으로 제3 광 신호(OS3)를 변조하여 제4 광 신호(OS4)를 생성할 수 있다. 제4 광 신호(OS4)는 제6 광 세기(p6), 제7 광 세기(p7), 제8 광 세기(p8) 및 제9 광 세기(p9)를 갖는 4-레벨 광 신호일 수 있다. 제1 광 세기 변조기(412)는 제4 광 세기(p4)를 갖는 제3 광 신호(OS3)로부터 제6 광 세기(p6) 및 제7 광 세기(p7)를 갖는 제4 광 신호(OS4)를 생성할 수 있다. 제1 광 세기 변조기(412)는 제5 광 세기(p5)를 갖는 제3 광 신호(OS3)로부터 제8 광 세기(p8) 및 제9 광 세기(p9)를 갖는 제4 광 신호(OS4)를 생성할 수 있다. 따라서, 제1 광 세기 변조기(412)는 2-레벨의 제3 광 신호(OS3)로부터 4-레벨의 제4 광 신호(OS4)를 생성할 수 있다.
제1 광 세기 변조기(412)는 제3 광 신호(OS3)로부터 제3 광 세기 변조 폭(w3) 및 제4 광 세기 변조 폭(w4)을 갖는 제4 광 신호(OS4)를 생성할 수 있다. 제1 광 세기 변조기(412)는 제4 광 신호(OS4)의 각 신호 레벨 간의 간격이 동일하게 되도록(즉, 제3 광 세기 변조 폭(w3), 제4 광 세기 변조 폭(w4), 제5 광 세기 변조 폭(w5)이 동일) 제3 광 신호(OS3)를 변조할 수 있다. 예를 들어, 제0 RF 전압(VRF0)의 진폭의 반인 제1 RF 전압(VRF1)이 인가됨으로써 제4 광 신호(OS4)의 각 신호 레벨 간의 간격이 동일하게 될 수 있다.
도 11에 도시된 바와 같이, 광 신호 생성 장치(400)는 도 5의 광 신호 생성 장치(200)와 마찬가지로 멀티레벨 광 신호를 생성할 수 있지만, 다른 형태의 멀티레벨 광 신호를 생성할 수 있다.
도 12는 도 10의 광 신호 생성 장치의 동작 방법을 나타내는 순서도이다. 도 10 및 도 12를 참조하면, S201 단계에서, 광 신호 생성 장치(400)는 광 신호를 제0 바이어스 전압(Vbias0) 및 제0 RF 전압(VRF0)에 따라 변조하여 이진 광 신호를 생성할 수 있다. S202 단계에서, 광 신호 생성 장치(400)는 생성된 이진 광 신호를 증폭할 수 있다. S203 단계에서, 광 신호 생성 장치(400)는 증폭된 이진 광 신호를 제1 바이어스 전압(Vbias1) 및 제1 RF 전압(VRF1)에 따라 변조하여 멀티레벨 광 신호를 생성할 수 있다. 제1 바이어스 전압(Vbias1)은 는 제0 바이어스 전압(Vbias0)과 다르고, 제1 RF 전압(VRF1)의 진폭은 제0 RF 전압(VRF0)의 진폭과 다를 수 있다.
본 발명의 실시 예에 따른 광 신호 생성 장치의 동작 방법은 도 12에 도시된 바에 한정되지 않으며, S202 및 S203 단계를 반복하여 수행함으로써 더 많은 레벨을 갖는 광 신호를 생성할 수 있다. 예를 들어, S202 및 S203 단계를 N-1번 수행하는 경우, 광 신호 생성 장치는 2N-레벨 광 신호를 생성할 수 있다.
도 13은 본 발명의 하나의 실시 예에 따른 광 신호 생성 장치를 보여주는 블록도이다. 광 신호 생성 장치(500)는 제0 광 세기 변조기(501), 제1 이진 신호 생성부(510) 및 제2 이진 신호 생성부(520)를 포함할 수 있다. 제1 이진 신호 생성부(510)는 제1 광 증폭기(511) 및 제1 광 세기 변조기(512)를 포함하고, 제2 이진 신호 생성부(520)는 제2 광 증폭기(521) 및 제2 광 세기 변조기(522)를 포함할 수 있다. 제0 광 세기 변조기(501) 및 제1 이진 신호 생성부(510)에 관한 동작은 도 10의 제0 광 세기 변조기(401) 및 이진 신호 생성부(410)에 관한 동작과 유사하므로, 상세한 설명은 생략된다.
광 신호 생성 장치(500)는 제0 광 세기 변조기(501) 및 제1 및 제2 이진 신호 생성부들(510, 520)을 통해 8-레벨 광 신호를 생성할 수 있다. 제0 광 세기 변조기(501), 제1 광 세기 변조기(512) 및 제2 광 세기 변조기(522)에는 각각 다른 바이어스 전압들(Vbias0, Vbias1, Vbias2) 및 RF 전압들(VRF0, VRF1, VRF2)이 인가될 수 있다. 예를 들어, 제1 광 세기 변조기(512)에 입력되는 제1 RF 전압(VRF1)의 진폭은 제0 RF 전압(VRF0)의 진폭의 반일 수 있고, 제2 광 세기 변조기(522)에 입력되는 제2 RF 전압(VRF2)의 진폭은 제1 RF 전압(VRF1)의 진폭의 반일 수 있다. 즉, 광 세기 변조기에 입력되는 RF 전압(VRF)의 진폭의 크기는 이전 단계의 광 세기 변조기에 입력되는 RF 전압(VRF)과 비교하여 일정한 비율로 감소될 수 있다.
제1 광 증폭기(511)에는 제1 전류(I_1)가 입력될 수 있고, 제2 광 증폭기(521)에는 제2 전류(I_2)가 입력될 수 있다. 제1 광 증폭기(511) 및 제2 광 증폭기(521)는 각각 제1 전류(I_1) 및 제2 전류(I_2)를 입력 받아 광 신호를 증폭할 수 있다.
도 14는 도 13의 광 신호 생성 장치의 광 신호 출력을 예시적으로 보여주는 도면이다. 도 14의 가로축은 시간을 나타내고 세로축은 광 세기를 나타낸다. 도 13 및 도 14를 참조하면, 제0 광 세기 변조기(501)는 제0 바이어스 전압(Vbias0) 및 제0 RF 전압(VRF0)을 기반으로 제1 광 신호(OS1)를 변조하여 제1 광 세기 변조 폭(w1)을 갖는 제2 광 신호(OS2)를 생성할 수 있다.
제1 광 증폭기(511)는 제1 전류(I_1)를 기반으로 제2 광 신호(OS2)를 증폭하여 제3 광 신호(OS3)를 생성할 수 있다. 제3 광 신호(OS3)는 제1 광 세기 변조 폭(w1)과 동일한 제2 광 세기 변조 폭(w2)을 가질 수 있다. 예시적으로, 제3 광 신호(OS3)의 가장 높은 레벨의 광 세기는 제1 광 신호(OS1)의 광 세기와 동일할 수 있다.
제1 광 세기 변조기(512)는 제1 바이어스 전압(Vbias1) 및 제1 RF 전압(VRF1)을 기반으로 제3 광 신호(OS3)를 변조하여 제3 광 세기 변조 폭(w3)을 갖는 제4 광 신호(OS4)를 생성할 수 있다. 제4 광 신호(OS4)의 각 신호 레벨 간의 간격은 제3 광 세기 변조 폭(w3)으로 동일할 수 있다. 예를 들어, 제4 광 신호(OS4)의 각 신호 레벨 간의 간격이 동일하게 되도록, 제0 RF 전압(VRF0)의 진폭의 반인 제1 RF 전압(VRF1)이 제1 광 세기 변조기(512)로 인가될 수 있다.
제2 광 증폭기(521)는 제2 전류(I_2)를 기반으로 제4 광 신호(OS4)를 증폭하여 제5 광 신호(OS5)를 생성할 수 있다. 증폭된 제4 광 신호(OS4)는 제3 광 세기 변조 폭(w3)과 동일한 제4 광 세기 변조 폭(w4)을 가질 수 있다. 예시적으로, 제5 광 신호(OS5)의 가장 높은 레벨의 광 세기는 제3 광 신호(OS3)의 가장 높은 레벨 레벨의 광 세기와 동일할 수 있다.
제2 광 세기 변조기(522)는 제2 바이어스 전압(Vbias2) 및 제2 RF 전압(VRF2)을 기반으로 제5 광 신호(OS5)를 변조하여 제5 광 세기 변조 폭(w5)을 갖는 제6 광 신호(OS6)를 생성할 수 있다. 제6 광 신호(OS6)의 각 신호 레벨 간의 간격은 제5 광 세기 변조 폭(w5)으로 동일할 수 있다. 예를 들어, 제6 광 신호(OS6)의 각 신호 레벨 간의 간격이 동일하게 되도록, 제1 RF 전압(VRF1)의 진폭의 반인 제2 RF 전압(VRF2)이 제2 광 세기 변조기(522)로 인가될 수 있다.
광 신호 생성 장치(500)는 제2 광 세기 변조기(522)로부터 생성된 제6 광 신호(OS6)를 출력할 수 있다. 이로부터, 광 신호 생성 장치(500)는 8-레벨 광 신호를 출력할 수 있다. 광 신호 생성 장치(500)로부터 출력되는 8-레벨의 광 신호는, 도 14 및 아래의 표 2와 같이, 할당된 비트들(bits)에 대응하는 값을 가리킬 수 있다.
8-레벨 광 신호 제0 광 세기 변조기의 제0 RF 전압의 크기 제1 광 세기 변조기의 제1 RF 전압의 크기 제2 광 세기 변조기의 제2 RF 전압의 크기
000 0 0 0
001 0 0 1
010 0 1 0
011 0 1 1
100 1 0 0
101 1 0 1
110 1 1 0
111 1 1 1
표 2와 같이, 광 신호 생성 장치(500)로부터 8-레벨 광 신호를 수신하는 경우, 수신단은 광 신호 레벨에 따라 광 신호가 가리키는 값을 "000"~"111" 중 하나로 인식할 수 있다. 예를 들어, 제0 광 세기 변조기(501)에 "0"에 대응되는 제0 RF 전압(VRF0)이 입력되고, 제1 광 세기 변조기(512)에 "0" 에 대응되는 제1 RF 전압(VRF1)이 입력되고, 제2 광 세기 변조기(522)에 "1" 에 대응되는 제2 RF 전압(VRF2)이 입력되는 경우, 수신단은 "001"을 가리키는 광 신호를 수신할 수 있다.
제0 광 세기 변조기(501)에 "1" 에 대응되는 제0 RF 전압(VRF0)이 입력되고, 제1 광 세기 변조기(512)에 "1" 에 대응되는 제1 RF 전압(VRF1)이 입력되고, 제2 광 세기 변조기(522)에 "0" 에 대응되는 제2 RF 전압(VRF2)이 입력되는 경우, 수신단은 "110"을 가리키는 광 신호를 수신할 수 있다.
8-레벨 광 신호에 대해서 표 2와 같이 비트 값이 할당될 수 있지만, 본 발명은 이에 한정되지 않으며, 각 레벨에 대응하는 비트 값은 달라질 수 있다.
상술한 바와 같이, 본 발명의 실시 예들에 따른 광 신호 생성 장치는 서로 다른 바이어스 전압(Vbias) 및 서로 다른 진폭의 RF 전압(VRF)을 기반으로 동작하는 복수의 광 세기 변조기들을 통해 광 신호를 순차적으로 변조함으로써 멀티레벨 광 신호를 생성할 수 있다.
본 발명의 실시 예들에 따른 광 신호 생성 장치는 광 변조 동작 및 광 증폭 동작을 순차적으로 수행함으로써 멀티레벨 광 신호를 생성할 수 있다. 즉, 본 발명의 실시 예들에 따른 광 신호 생성 장치는 복수의 광 세기 변조기들을 직렬로 배치하여 멀티레벨 광 신호를 생성할 수 있다. 복수의 광 세기 변조기들을 병렬로 배치하여 멀티레벨 광 신호를 생성하는 경우, 각각의 광 세기 변조기들로부터 출력된 광 신호들을 결합하기 위한 별도의 장치가 필요할 수 있다. 따라서, 본 발명의 실시 예들에 따른 광 신호 생성 장치는 광 신호 결합을 위한 별도의 장치 없이 광 세기 변조기 및 광 증폭기만으로 멀티레벨 광 신호를 생성할 수 있다.
또한, 본 발명의 실시 예들에 따른 광 신호 생성 장치는 멀티레벨 광 신호를 생성하는 데 있어서, 멀티레벨 전기신호를 이용하지 않고 광 소자를 사용하여 멀티레벨 광 신호를 생성할 수 있다. 따라서, 본 발명의 실시 예들에 따른 광 신호 생성 장치는 저비용, 고품질의 광 신호를 생성할 수 있다.
상술된 내용은 본 발명을 실시하기 위한 구체적인 실시 예들이다. 본 발명은 상술된 실시 예들뿐만 아니라, 단순하게 설계 변경되거나 용이하게 변경할 수 있는 실시 예들 또한 포함할 것이다. 또한, 본 발명은 실시 예들을 이용하여 용이하게 변형하여 실시할 수 있는 기술들도 포함될 것이다. 따라서, 본 발명의 범위는 상술된 실시 예들에 국한되어 정해져서는 안되며 후술하는 특허청구범위뿐만 아니라 이 발명의 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.
10: 광원
100, 200, 300, 400, 500: 광 신호 생성 장치
101, 201, 301, 401, 501: 제0 광 세기 변조기
110, 210, 310, 410, 510: 이진 신호 생성부

Claims (20)

  1. 제1 광 신호를 변조하여 이진 신호 형태의 2N-레벨(단, N은 양의 정수) 제2 광 신호를 생성하도록 구성되는 제1 광 세기 변조기;
    상기 제2 광 신호를 증폭하여 제3 광 신호를 생성하도록 구성되는 제1 광 증폭기; 및
    상기 제3 광 신호를 변조하여 이진 신호 형태의 2N+1-레벨 제4 광 신호를 생성하도록 구성되는 제2 광 세기 변조기를 포함하는 광 신호 생성 장치.
  2. 제 1 항에 있어서,
    상기 제1 광 세기 변조기는 제1 바이어스 전압 및 제1 RF 전압을 기반으로 동작하도록 구성되고,
    상기 제2 광 세기 변조기는 상기 제1 바이어스 전압과 동일한 제2 바이어스 전압 및 상기 제1 RF 전압과 동일한 진폭을 갖는 제2 RF 전압을 기반으로 동작하도록 구성되는 광 신호 생성 장치.
  3. 제 1 항에 있어서,
    상기 제4 광 신호의 광 세기 변조 폭은 상기 제2 광 신호의 광 세기 변조 폭과 동일한 광 신호 생성 장치.
  4. 제 1 항에 있어서,
    상기 제1 광 증폭기는 상기 제3 광 신호의 광 세기 변조 폭이 상기 제2 광 신호의 광 세기 변조 폭의 반이 되도록 상기 제2 광 신호를 정형하도록 구성되는 광 신호 생성 장치.
  5. 제 1 항에 있어서,
    상기 제1 광 증폭기는 입력 전류를 기반으로 동작하고,
    상기 입력 전류의 크기는 상기 제1 광 증폭기가 비선형 특성 영역에서 동작하도록 하는 전류의 크기인 광 신호 생성 장치.
  6. 제 1 항에 있어서,
    상기 제1 광 세기 변조기는 제1 바이어스 전압 및 제1 RF 전압을 기반으로 동작하도록 구성되고,
    상기 제2 광 세기 변조기는 상기 제1 바이어스 전압과 다른 제2 바이어스 전압 및 상기 제1 RF 전압과 다른 진폭을 갖는 제2 RF 전압을 기반으로 동작하도록 구성되는 광 신호 생성 장치.
  7. 제 6 항에 있어서,
    상기 제2 RF 전압의 상기 진폭은 상기 제1 RF 전압의 상기 진폭의 반인 광 신호 생성 장치.
  8. 제 1 항에 있어서,
    상기 제1 광 증폭기는 입력 전류를 기반으로 동작하고,
    상기 입력 전류의 크기는 상기 제1 광 증폭기가 선형 특성 영역에서 동작하도록 하는 전류의 크기인 광 신호 생성 장치.
  9. 제 1 항에 있어서,
    상기 제3 광 신호의 가장 높은 레벨의 광 세기는 상기 제1 광 신호의 광 세기와 동일한 광 신호 생성 장치.
  10. 제 1 항에 있어서,
    상기 제4 광 신호를 증폭하여 제5 광 신호를 생성하도록 구성되는 제2 광 증폭기; 및
    상기 제5 광 신호를 변조하여 이진 신호 형태의 2N+2-레벨 제6 광 신호를 생성하도록 구성되는 제3 광 세기 변조기를 더 포함하는 광 신호 생성 장치.
  11. 제 10 항에 있어서,
    상기 제1 광 세기 변조기는 제1 바이어스 전압 및 제1 RF 전압을 기반으로 동작하도록 구성되고,
    상기 제2 광 세기 변조기는 제2 바이어스 전압 및 제2 RF 전압을 기반으로 동작하도록 구성되고,
    상기 제3 광 세기 변조기는 제3 바이어스 전압 및 제3 RF 전압을 기반으로 동작하도록 구성되고,
    상기 제1 바이어스 전압, 상기 제2 바이어스 전압 및 상기 제3 바이어스 전압은 동일하고, 상기 제1 RF 전압, 상기 제2 RF 전압 및 상기 제3 RF 전압은 동일한 진폭을 갖는 광 신호 생성 장치.
  12. 제 10 항에 있어서,
    상기 제1 광 증폭기는 상기 제3 광 신호의 광 세기 변조 폭이 상기 제2 광 신호의 광 세기 변조 폭의 반이 되도록 상기 제2 광 신호를 정형하도록 구성되고,
    상기 제2 광 증폭기는 상기 제5 광 신호의 광 세기 변조 폭이 상기 제4 광 신호의 광 세기 변조 폭의 1/4이 되도록 상기 제4 광 신호를 정형하도록 구성되는 광 신호 생성 장치.
  13. 제 10 항에 있어서,
    상기 제1 광 세기 변조기는 제1 바이어스 전압 및 제1 RF 전압을 기반으로 동작하도록 구성되고,
    상기 제2 광 세기 변조기는 제2 바이어스 전압 및 제2 RF 전압을 기반으로 동작하도록 구성되고,
    상기 제3 광 세기 변조기는 제3 바이어스 전압 및 제3 RF 전압을 기반으로 동작하도록 구성되고,
    상기 제1 바이어스 전압, 상기 제2 바이어스 전압 및 상기 제3 바이어스 전압은 서로 다르고, 상기 제1 RF 전압, 상기 제2 RF 전압 및 상기 제3 RF 전압은 서로 다른 진폭을 갖는 광 신호 생성 장치.
  14. 제 13 항에 있어서,
    상기 제2 RF 전압의 진폭은 상기 제1 RF 전압의 진폭의 반이고,
    상기 제3 RF 전압의 진폭은 상기 제2 RF 전압의 진폭의 반인 광 신호 생성 장치.
  15. 제 1 항에 있어서,
    상기 제1 광 세기 변조기 및 상기 제2 광 세기 변조기는 마하젠더 광 세기 변조기 또는 전계 흡수 변조기인 광 신호 생성 장치.
  16. 광 신호 생성 장치의 동작 방법에 있어서,
    제1 광 신호를 변조하여 이진 신호 형태의 2N-레벨(단, N은 양의 정수) 제2 광 신호를 생성하는 단계;
    상기 제2 광 신호를 증폭하여 제3 광 신호를 생성하는 단계; 및
    상기 제3 광 신호를 변조하여 이진 신호 형태의 2N+1-레벨 제4 광 신호를 생성하는 단계를 포함하는 동작 방법.
  17. 제 16 항에 있어서,
    제1 바이어스 전압 및 제1 RF 전압을 기반으로 상기 제1 광 신호를 변조하고, 상기 제1 바이어스 전압과 동일한 제2 바이어스 전압 및 상기 제1 RF 전압과 동일한 진폭을 갖는 제2 RF 전압을 기반으로 상기 제3 광 신호를 변조하는 동작 방법.
  18. 제 16 항에 있어서,
    제1 바이어스 전압 및 제1 RF 전압을 기반으로 상기 제1 광 신호를 변조하고,
    상기 제1 바이어스 전압과 다른 제2 바이어스 전압 및 상기 제1 RF 전압과 다른 진폭을 갖는 제2 RF 전압을 기반으로 상기 제3 광 신호를 변조하는 동작 방법.
  19. 제 16 항에 있어서,
    입력 전류를 기반으로 상기 제2 광 신호를 증폭하고,
    상기 입력 전류의 크기는 상기 제3 광 신호의 광 세기 변조 폭이 상기 제2 광 신호의 광 세기 변조 폭과 달라지도록 하는 전류의 크기인 동작 방법.
  20. 제 16 항에 있어서,
    입력 전류를 기반으로 상기 제2 광 신호를 증폭하고,
    상기 입력 전류의 크기는 상기 제3 광 신호의 광 세기 변조 폭이 상기 제2 광 신호의 광 세기 변조 폭과 동일하도록 하는 전류의 크기인 동작 방법.
KR1020170178771A 2017-11-29 2017-12-22 광 신호 생성 장치 및 그것의 동작 방법 KR102157629B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/855,825 US10291327B1 (en) 2017-11-29 2017-12-27 Optical signal generating apparatus and operating method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170162246 2017-11-29
KR1020170162246 2017-11-29

Publications (2)

Publication Number Publication Date
KR20190063343A true KR20190063343A (ko) 2019-06-07
KR102157629B1 KR102157629B1 (ko) 2020-09-21

Family

ID=66849761

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020170178771A KR102157629B1 (ko) 2017-11-29 2017-12-22 광 신호 생성 장치 및 그것의 동작 방법

Country Status (1)

Country Link
KR (1) KR102157629B1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532305B1 (ko) * 2003-09-09 2005-11-29 삼성전자주식회사 듀오바이너리 광 송신기
KR20140061129A (ko) * 2012-11-13 2014-05-21 한국전자통신연구원 멀티레벨 광신호 생성을 위한 광 송신기 및 그 방법
KR20140122355A (ko) * 2013-04-09 2014-10-20 한국전자통신연구원 직접변조 방식의 멀티레벨 광신호 생성장치 및 그 방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100532305B1 (ko) * 2003-09-09 2005-11-29 삼성전자주식회사 듀오바이너리 광 송신기
KR20140061129A (ko) * 2012-11-13 2014-05-21 한국전자통신연구원 멀티레벨 광신호 생성을 위한 광 송신기 및 그 방법
KR20140122355A (ko) * 2013-04-09 2014-10-20 한국전자통신연구원 직접변조 방식의 멀티레벨 광신호 생성장치 및 그 방법

Also Published As

Publication number Publication date
KR102157629B1 (ko) 2020-09-21

Similar Documents

Publication Publication Date Title
US10530305B2 (en) Nonlinear bandwidth compression circuitry
JP6751147B2 (ja) 電力増幅器制御方法及び装置、並びに電力増幅器制御システム
CN108370238B (zh) 光接收器、光终端装置和光通信系统
US9800452B2 (en) Digital quadrature modulator and switched-capacitor array circuit
JPH07143014A (ja) 振幅変調方法及び同装置
JP6031963B2 (ja) 光送信装置、光送信方法、および光送信プログラム
US10291327B1 (en) Optical signal generating apparatus and operating method thereof
EP2174185A1 (en) Linearised optical digital modulator
EP2575309B1 (en) A method for pulse width modulation, and a transmitter therefor
JP2008292985A (ja) 光送信器
US10554305B2 (en) Methods and apparatus for low-loss reconfigurable optical quadrature amplitude modulation (QAM) signal generation
CN109477984B (zh) 发射器和偏置调整方法
JP6231434B2 (ja) 光送信器および線形性調整方法
US7881618B2 (en) System and method for m-ary phase-shifting keying modulation
JP5868271B2 (ja) 光送信装置および光送信方法
KR102157629B1 (ko) 광 신호 생성 장치 및 그것의 동작 방법
US20030142384A1 (en) Optical transmission apparatus
JP2002328347A (ja) 光4値変調器および光4値変調方法
US10425953B2 (en) Host device preventing distortion of optical signal due to nonlinear noise, and distributed antenna system including the host device
JP2003258733A (ja) 多値光強度変調回路
CN1316763C (zh) 一种占空比可调高速光归零码产生方法和装置
WO2014135823A1 (en) Amplifier circuitry for envelope modulators, envelope modulators incorporating said amplifier circuitry and method of modulating a signal envelope
US11916595B1 (en) Wavelength-multiplexed subranging electro-optic modulator (SEOM) for high dynamic range applications
EP2573938A1 (en) A method for signal amplification based on pulse width modulation
JP3332186B2 (ja) 光通信システム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant