KR20190052074A - 원자층 증착에 의한 입자 코팅 - Google Patents

원자층 증착에 의한 입자 코팅 Download PDF

Info

Publication number
KR20190052074A
KR20190052074A KR1020197010488A KR20197010488A KR20190052074A KR 20190052074 A KR20190052074 A KR 20190052074A KR 1020197010488 A KR1020197010488 A KR 1020197010488A KR 20197010488 A KR20197010488 A KR 20197010488A KR 20190052074 A KR20190052074 A KR 20190052074A
Authority
KR
South Korea
Prior art keywords
reaction chamber
vibration source
substrate
vibration
isolated
Prior art date
Application number
KR1020197010488A
Other languages
English (en)
Inventor
마르코 푸다스
Original Assignee
피코순 오와이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 피코순 오와이 filed Critical 피코순 오와이
Priority to KR1020237025782A priority Critical patent/KR20230117636A/ko
Publication of KR20190052074A publication Critical patent/KR20190052074A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4415Acoustic wave CVD
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/442Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using fluidised bed process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45555Atomic layer deposition [ALD] applied in non-semiconductor technology
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Vapour Deposition (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Prostheses (AREA)

Abstract

기판 용기(30)를 수용하는 반응 챔버(10), 및 상기 반응 챔버(10) 외부의 또는 상기 반응 챔버(610) 내에서 격리된, 격리된 진동 공급원(70-72)을 포함하는 원자층 증착(ALD) 반응기(100)에서의 원자층 증착 방법. 상기 기판 용기(30) 내의 입자상 물질은 상기 기판 용기(30)를 통과하는 위에서 아래로의 전구체 흐름을 사용하여 자기 포화 표면 반응에 의해 코팅되고, 상기 입자상 물질을 코팅하는 동안 상기 격리된 진동 공급원(70-72)에 의해 상기 기판 용기(30) 내의 상기 입자상 물질에서 움직임이 유발된다.

Description

원자층 증착에 의한 입자 코팅
본 발명은 일반적으로 증착 반응기에 관한 것이다. 더욱 구체적으로, 본 발명은 배타적인 것은 아니지만, 연속적인 자기-포화 표면 반응에 의해 표면 상에 물질이 증착되는 증착 반응기에 관한 것이다.
이 섹션은 유용한 배경 정보를 예시하지만, 본 섹션에 기술된 임의의 기법이 종래 기술을 대표하는 것으로 인정하는 것은 아니다.
원자층 에피택시(Atomic Layer Epitaxy (ALE)) 방법은 1970년대 초에 Tuomo Suntola 박사에 의해 발명되었다. 상기 방법에 대한 또 다른 일반 명칭은 원자층 증착(Atomic Layer Deposition (ALD))이고, 이것이 요즘에는 ALE 대신에 사용된다. ALD는 적어도 하나의 기판에의 적어도 두개의 반응성 전구체 종의 순차적 도입에 기초한 특별한 화학 증착 방법이다.
ALD에 의해 성장된 박막은 치밀하고, 핀홀이 없으며, 균일한 두께를 갖는다. 예를 들어, 실험에서, 산화 알루미늄은 열 ALD에 의해 250-300℃에서 트리메틸알루미늄 ((CH3)3Al, TMA로도 지칭됨), 및 물로부터 성장되었고, 이는 기판 웨이퍼 상에서 불과 약 1%의 불균일성만을 초래하였다.
ALD 기술의 한가지 흥미로운 응용분야는 작은 입자의 코팅, 예를 들어 분말 물질의 코팅이다. 이러한 입자들의 벌크 특성을 유지하면서, 상기 입자들의 표면 특성을 변경하기 위해 입자 위에 박막 코팅을 증착시키는 것이 바람직할 수 있다.
US 2009155590 A1은 원자층 증착법에 의해 입자들을 피복하는 방법을 개시하고, 상기 방법은 상기 입자들을 실질적으로 완전히 제1 반응물의 단일층으로 피복하기 위하여 상기 제1 반응물을 포함하는 제1 반응물 가스를 사용하여 유동층 반응기에서 상기 입자를 유동화시키는 단계를 포함한다.
WO 2013171360 A1은 카트리지가 신속 커플링 방법에 의해 ALD 반응기에 수용되고 유동층이 증착을 위해 상기 카트리지 내에 형성되는 방법을 개시한다.
본 발명의 첫번째 예시적인 측면에 따르면 증착 방법이 제공되며, 상기 증착 방법은:
반응 챔버 중에 기판 용기를 갖는 증착 반응기를 제공하는 단계;
상기 반응 챔버 외부의 또는 상기 반응 챔버 내에서 격리된, 격리된 진동 공급원을 제공하는 단계;
상기 기판 용기를 통과하는 위에서 아래로의 전구체 흐름을 사용하여 자기 포화(self-saturating) 표면 반응에 의해 상기 기판 용기 내의 입자상 물질을 코팅하는 단계; 및
상기 입자상 물질을 코팅하는 동안 상기 격리된 진동 공급원에 의해 상기 기판 용기 내의 상기 입자상 물질의 움직임을 유발하는 단계를 포함한다.
소정의 예시적 구현예에서, 움직임은 상기 반응 챔버의 외부로부터 유발되거나, 또는 상기 반응 챔버의 반응 공간의 외부로부터 유발된다. 소정의 예시적 구현예에서, 상기 진동은 상기 반응기 본체에 진동을 전도(conduct)하지 않고 상기 반응 용기로 전도된다. 일 구현예에서 상기 진동 공급원은 상기 반응기 본체로부터 격리된다. 일 구현예에서 상기 진동 공급원은 상기 반응기 본체로부터 탄성적으로 격리되거나 또는 비접촉 수단에 의해 격리된다(예를 들어, 물리적으로 분리되거나 또는 거리에 의해 분리됨). 일 구현예에서 상기 기판 용기는 상기 반응기 본체로부터 탄성적으로 격리된다. 일 구현예에서 상기 반응기 본체는 상기 반응 챔버 벽들 및 포어라인(foreline)을 포함한다.
사용된 기술을 원자층 증착(ALD)로 정의하는 "자기 포화 표면 반응(self-saturating surface reactions)"이라는 용어에 관해서는, 이 문맥에서 ALD는 또한, MLD(분자층 증착), PEALD (Plasma Enhanced Atomic Layer Deposition, 플라즈마 강화 원자층 증착) 및 광-강화 원자층 증착(플래시 강화 ALD로도 알려짐)과 같은 ALD 하위 유형을 포함한다는 것을 이해해야 한다.
진동이라는 용어는 다양한 떨림 움직임(shaking movement)을 광범위하게 포함하는 것으로 해석되어야 한다.
소정의 예시적 구현예에서, 상기 위에서 아래로의 전구체 흐름은 상기 기판 용기의 체적 전체에 걸쳐 상기 기판 용기를 통과한다. 그러면, 상기 용기를 통과하는 제한된 채널은 없지만, 상기 화학물질의 흐름은 균일성을 향상시키기 위하여 상기 기판 용기에 의해 한정된 전체 내부 또는 전체 체적을 통해 아래로 향한다.
소정의 예시적 구현예에서, 상기 방법은 상기 위에서 아래로의 전구체 흐름에 대하여 횡단 구조가 없는 체적을 갖는 기판 용기(30, 630)를 사용하는 것을 포함한다. 소정의 예시적 구현예에서, 상기 기판 용기는 비회전식이다.
소정의 예시적 구현예에서, 상기 입자상 물질을 통하는 것 이외의 임의의 경로를 통하는 반응 챔버의 포어라인으로의 전구체 흐름은 화학물질 흐름의 효율 및/또는 상기 반응기의 압력 균형을 향상시키기 위하여 방지된다. 소정의 예시적 구현예에서, 이것은 실링(sealing)에 의해 실행된다. 소정의 예시적 구현예에서, 씰(seal)은 기판 용기 및 반응 챔버 벽 사이에, 또는 기판 용기를 지지하는 기판 트레이 및 반응 챔버 벽 사이에 위치한다. 상기 씰은 O-링 씰과 같은 탄성 씰일 수 있다. 소정의 다른 예시적 구현예에서, 상기 기판 용기 또는 트레이는 반응 챔버 벽의 평탄한 면 또는 평탄한 모서리 상에 그 사이의 임의의 씰 또는 다른 탄성 격리 요소 없이 놓인다.
소정의 예시적 구현예에서, 상기 격리된 진동 공급원은 반응 챔버 벽들로부터 탄성 격리 또는 비접촉 격리되어 제공된다. 소정의 예시적 구현예에서, 상기 진동은 기판 용기, 반응 챔버 벽들로부터 분리된 용기로 전도된다.
소정의 예시적 구현예에서, 상기 방법은 진동을 도파관을 통해 진동 공급원으로부터 입자상 물질로 전달하는 단계를 포함한다.
소정의 예시적 구현예에서, 상기 방법은 무선 유도를 통해 진동 공급원으로부터의 진동을 유도함으로써 입자상 물질의 움직임을 유발하는 단계를 포함한다. 소정의 예시적 구현예에서, 상기 진동은 기판 용기를 통해 유도된다. 소정의 예시적 구현예에서, 상기 진동은 도파관 보조 유도(waveguide assisted induction)에 의해 유도된다.
소정의 예시적 구현예에서, 상기 기판 용기는 반응 챔버 벽으로부터 탄성적으로 격리된다.
소정의 예시적 구현예에서, 초음파 진동이 입자상 물질의 움직임을 유발하는데 사용된다. 따라서, 소정의 예시적 구현예에서, 상기 진동 공급원은 초음파 진동을 발생시킨다. 소정의 예시적 구현예에서, 초음파 진동은 초음파 진동 공급원으로부터 입자상 물질로 전달된다.
소정의 예시적 구현예에서, 상기 방법은 도파관을 통해 진동을 기판 용기로 전달하는 단계를 포함한다. 소정의 예시적 구현예에서, 진동 에너지는 그 자체의 힘(power)에 의해 상기 진동 공급원으로부터 입자상 물질로 전달된다.
소정의 예시적 구현예에서, 상기 방법은:
상기 반응 챔버의 포어라인 내에 위치한 도파관 요소를 통해 초음파 진동을 상기 진동 공급원으로부터 반응 용기로 전달하는 단계를 포함한다.
소정의 예시적 구현예에서, 상기 진동 공급원은 반응 챔버의 포어라인으로부터 탄성적으로 격리된다. 소정의 예시적 구현예에서, 상기 진동 공급원은 탄성 요소에 의해 포어라인으로부터 물리적으로 분리된다.
소정의 예시적 구현예에서, 상기 반응 챔버 내에서 격리된 진동 공급원은 진동 조건 내에 위치한다. 소정의 예시적 구현예에서, 상기 반응 챔버 내에서 격리된 상기 진동 공급원은 (전구체 증기의 수직 흐름이 통과하는) 반응 공간의 외부에 위치하지만, 상기 반응 챔버 벽들에 의해 제한되는 전체 공간의 내부에 위치한다. 소정의 예시적 구현예에서, 상기 진동 공급원은 반응 챔버의 주체적으로부터 분리된다. 이것은 한정된 공간 또는 상기 반응 챔버의 주체적으로부터 분리된 추가의 챔버 내에 위치될 수 있다. 상기 한정된 공간은 좁은 통로에 의해 상기 반응 챔버의 나머지 부분으로부터 분리될 수 있다. 상기 한정된 공간에서의 ALD 프로세싱 동안의 공정 조건, 예를 들어 온도 및/또는 압력은 상기 반응 챔버의 나머지 부분 내의 조건과 상이할 수 있다. 일 예시적 구현예에서, 상기 한정된 공간 내의 온도는 반응 챔버의 나머지 부분 내의 온도에 비해 더 낮아서, 온도에 더 민감한 진동 공급원이 사용될 수 있게 한다. 일 예시적 구현예에서, 상기 한정된 공간 내의 압력은 반응 챔버의 나머지 부분 내의 압력에 비해 더 높아서, 전구체 증기(또는 반응물)가 상기 진동 공급원을 수용하는 한정된 공간으로 들어가는 것을 방지한다. 일 구현예에서, 전구체 증기(또는 반응물들)가 상기 한정된 공간으로 들어가는 것을 방지하기 위해, 상기 한정된 공간으로 흐르고 그것으로부터 상기 반응 챔버의 나머지 부분(또는 반응 공간)으로 향하는 퍼지 가스 흐름이 제공된다.
소정의 예시적 구현예에서, 상기 방법은:
공정 조건에 의해 (상기 반응 챔버 내에서 격리된) 상기 진동 공급원을 반응 챔버의 나머지 부분으로부터 격리시키는 단계를 포함한다.
소정의 예시적 구현예에서, 상기 반응 챔버 내에서 격리된 진동 공급원은 반응 챔버의 주체적으로부터(또는 반응 공간으로부터) 분리된다.
개시된 방법의 많은 응용 분야들 중 하나의 예는 수분 민감성 입자를 위한 수분 차단 코팅을 증착하는 것이다.
본 발명의 두번째 예시적인 측면에 따르면 증착 반응기가 제공되며, 상기 증착 반응기는:
기판 용기를 수용하는 반응 챔버; 및
상기 반응 챔버의 외부의 또는 상기 반응 챔버 내에서 격리된, 격리된 진동 공급원을 포함하고, 상기 증착 반응기는 상기 기판 용기를 통과하는 위에서 아래로의 전구체 흐름을 사용하여 자기 포화 표면 반응에 의해 상기 기판 용기 내의 입자상 물질을 코팅하도록 구성되고, 상기 입자상 물질을 코팅하는 동안 상기 격리된 진동 공급원에 의해 상기 기판 용기 내의 상기 입자상 물질의 움직임을 유발하도록 구성된다.
상기 반응기(ALD 반응기)는 비유동층 반응기일 수 있다. 사용된 화학물질(예를 들어, 전구체 증기)은 상기 입자상 물질을 아래쪽으로 단순히 이동할 수 있다. 본 발명의 구현예들은 투과성 기판 용기를 통과하는 위에서 아래로의 방향으로 균일한 화학적 흐름을 갖는 교차-흐름(cross-flow) 반응기를 허용한다. 소정의 예시적 구현예에서, 상기 기판 용기의 바닥은 전구체 증기 또는 가스를 통과시키지만, 입자상 물질은 통과시키지 않는 투과성이다. 소정의 예시적 구현예에서, 상기 기판 용기는 전구체 증기 또는 가스를 통과시키지만, 입자상 물질은 통과시키지 않는 투과성 뚜껑을 갖는다. 소정의 예시적 구현예에서, 상기 반응 챔버는 원형 단면을 갖는다.
소정의 예시적 구현예에서, 상기 기판 용기는 상기 기판 용기의 체적 전체에 걸쳐 상기 위에서 아래로의 전구체 흐름을 통과시키도록 구성된다.
소정의 예시적 구현예에서, 상기 기판 용기에 의해 한정된 체적은 상기 위에서 아래로의 전구체 흐름에 대하여 횡단 구조가 없다.
소정의 예시적 구현예에서, 상기 기판 용기는 원형 단면을 갖는다.
소정의 예시적 구현예에서, 상기 반응기는 상기 진동 공급원을 상기 반응 챔버로부터 격리시키는 탄성 격리 또는 비접촉 격리를 포함한다.
소정의 예시적 구현예에서, 상기 증착 반응기는:
진동을 상기 진동 공급원으로부터 상기 입자상 물질로 전달하도록 구성된 도파관 요소를 포함한다. 소정의 예시적 구현예에서, 상기 도파관 요소는 상기 반응 챔버의 포어라인 내에 위치한다.
소정의 예시적 구현예에서, 상기 진동 공급원은 무선 유도를 통해 진동을 유도함으로써 상기 입자상 물질의 움직임을 유발하도록 구성된다.
소정의 예시적 구현예에서, 상기 진동 공급원은 초음파 진동을 발생시키도록 구성된다.
소정의 예시적 구현예에서, 상기 반응기는 상기 반응 챔버의 포어라인 내에 위치한 도파관 요소를 통해 초음파 진동을 상기 진동 공급원으로부터 상기 반응 용기로 전달하도록 구성된다.
소정의 예시적 구현예에서, 상기 진동 공급원은 상기 반응 챔버의 포어라인으로부터 탄성적으로 격리된다. 소정의 예시적 구현예에서, 상기 증착 반응기는 바람직하지 않은 진동을 방지하기 위해 상기 진동 공급원을 격리시키도록 구성된 제1 탄성 격리 요소를 포함한다.
소정의 예시적 구현예에서, 상기 기판 용기는 상기 반응 챔버 벽으로부터 탄성적으로 격리된다. 소정의 예시적 구현예에서, 상기 증착 반응기는 바람직하지 않은 진동을 방지하기 위해 상기 기판 용기를 격리시키도록 구성된 제2 탄성 격리 요소 또는 탄성 씰을 포함한다.
소정의 예시적 구현예에서, 상기 반응기는 상기 기판 용기를 그 위에 지지하도록 구성된 기판 트레이를 포함한다. 소정의 예시적 구현예에서, 발생된 진동은 상기 기판 트레이를 진동시키고 이를 통해 그 위에 놓인 상기 기판 용기 내의 입자상 물질을 진동시키기 위해 상기 기판 트레이로 전달된다. 소정의 예시적 구현예에서, 상기 기판 트레이는 전구체 증기 또는 가스를 통과시키지만, 상기 입자상 물질은 통과시키지 않는 투과성이다. 소정의 예시적 구현예에서, 상기 기판 용기와 기판 트레이 모두를 통해 가스의 위에서 아래로의 수직 흐름이 계속되도록 허용된다.
소정의 예시적 구현예에서, 상기 반응 챔버 내에서 격리된 상기 진동 공급원은 상기 반응 챔버의 주체적으로부터 분리된다.
본 발명의 세번째 예시적인 측면에 따르면 증착 방법이 제공되며, 상기 증착 방법은:
기판 용기 내의 입자상 물질의 샘플을 반응 챔버 내로 제공하는 단계;
진동기 요소로부터 진동을 도파관 요소를 통해 상기 샘플로 전달함으로써 상기 입자상 물질의 진동을 일으키는 단계; 및
자기 포화 표면 반응을 사용하여 상기 입자상 물질을 코팅하는 단계를 포함한다.
본 발명의 네번째 예시적인 측면에 따르면 증착 반응기가 제공되며, 상기 증착 반응기는:
반응 챔버;
입자상 물질의 샘플을 지지하도록 구성된 기판 용기;
초음파 진동을 제공하도록 구성된 초음파 진동기 요소; 및
상기 입자상 물질의 진동을 일으키기 위하여 초음파 진동을 상기 초음파 진동기 요소로부터 상기 샘플로 전달하도록 구성된 도파관 요소를 포함한다.
본 발명의 다양한 비구속적인 예시적 측면들 및 구현예들이 앞서 설명되었다. 상기 구현예들은 본 발명을 실행하는데 있어서 활용될 수 있는 선택된 측면들 또는 단계들을 단지 설명하기 위해 사용된다. 일부 구현예들은 본 발명의 특정 예시적 측면들을 단지 참조하여서만 제시될 수 있다. 대응하는 구현예들이 또한 다른 예시적 측면들에도 적용될 수 있음을 이해해야 한다. 상기 구현예들의 임의의 적절한 조합들이 형성될 수 있다.
본 발명은, 단지 예시로서, 첨부된 도면들을 참조하여 설명될 것이다.
도 1은 본 발명의 예시적 구현예에 따른 증착 반응기의 개략적인 원리도를 보여준다.
도 2는 본 발명의 다른 예시적 구현예에 따른 증착 반응기의 개략적인 원리도를 보여준다.
도 3은 도 1의 증착 반응기의 더 자세한 세부 사항을 보여준다.
도 4는 본 발명의 예시적 구현예에 따른 증착 반응기의 진동 배열(vibration arrangement)의 개략적인 원리도를 보여준다.
도 5는 본 발명의 예시적 구현예에 따른 입자 코팅 방법의 원리 흐름도를 보여준다.
도 6은 본 발명의 예시적 구현예에 따른 진공 조건 내의 진동 공급원을 갖는 증착 반응기의 개략적인 원리도를 보여준다.
도 7은 본 발명의 다른 예시적 구현예에 따른 진공 조건 내의 진동 공급원을 갖는 증착 반응기의 개략적인 원리도를 보여준다.
이하의 설명에서, 원자층 증착(ALD) 기술이 예로서 사용된다. ALD 성장 메커니즘의 원리는 통상의 기술자에게 알려져있다. 이 특허 출원의 서론 부분에서 언급한 바와 같이, ALD는 적어도 하나의 기판에 적어도 2개의 반응성 전구체 화학종의 순차적 도입을 기초로 하는 특수 화학 증착 방법이다. 그러나, 광-강화(photo-enhanced) ALD 또는 PEALD를 사용할 경우 이들 반응성 전구체 중 하나는 에너지로 치환될 수 있어, 단일 전구체 ALD 공정으로 이어지는 것을 이해해야 한다. 기판은 반응 공간 내에 위치한다. 상기 반응 공간은 전형적으로 가열된다. ALD의 기본적인 성장 메커니즘은 화학적 흡착(화학흡착)과 물리적 흡착(물리흡착) 사이의 결합 강도 차이에 의존한다. ALD는 화학흡착을 이용하고 증착 공정 중에 물리흡착을 제거한다. 화학흡착 중에 고체상 표면의 원자(들)와 기체 상으로부터 도달하는 분자 사이에 강한 화학 결합이 형성된다. 물리흡착(physisorption)에 의한 결합은 반데르 발스 힘만이 수반되기 때문에 훨씬 약하다. 물리흡착 결합은 국부적인 온도가 분자들의 응축(condensation) 온도보다 높을 때 열 에너지에 의해 쉽게 파괴된다.
ALD 반응기의 반응 공간은 박막 또는 코팅의 증착에 사용되는 ALD 전구체 각각에 교대로 순차적으로 노출될 수 있는, 전형적으로 가열된, 모든 표면을 포함한다. 기본적인 ALD 증착 사이클은 펄스 A, 퍼지 A, 펄스 B 및 퍼지 B의 4개의 순차적인 단계로 이루어진다. 펄스 A는 전형적으로 금속 전구체 증기로 이루어지고 펄스 B는 비금속 전구체 증기, 특히 질소 또는 산소 전구체 증기로 이루어진다. 질소 또는 아르곤과 같은 불활성 기체 및 진공 펌프는 퍼지 A 및 퍼지 B 동안 기체 반응 부생성물 및 잔류 반응물 분자를 반응 공간으로부터 퍼징하는데 사용된다. 증착 시퀀스는 적어도 하나의 증착 사이클을 포함한다. 증착 사이클은 증착 시퀀스가 목적하는 두께의 박막 또는 코팅을 생성할 때까지 반복된다.
전형적인 ALD 공정에서, 전구체 화학종은 화학흡착을 통해 가열된 표면의 반응성 부위에 화학 결합을 형성한다. 전형적으로 하나의 전구체 펄스 동안 고체 물질의 분자 단일층만이 표면 상에 형성되도록 조건이 정해진다. 따라서, 상기 성장 프로세스는 자체 종료적(self-terminating)이거나 또는 포화적(saturative)이다. 예를 들어, 제1 전구체는 흡착된 화학종에 부착된 채로 상기 표면을 포화시키는 리간드들을 포함할 수 있으며, 이는 더 이상의 화학흡착을 방지한다. 반응 공간 온도는 응축 온도보다 높고 사용되는 전구체들의 열분해 온도보다 낮게 유지되어, 상기 전구체 분자 화학종이 본질적으로 손상되지 않은 상기 기판(들)에 화학 흡착된다. 본질적으로 손상되지 않은 것(essentially intact)은 전구체 분자 화학종이 상기 표면에 화학흡착될 때 휘발성 리간드가 상기 전구체 분자로부터 떨어질 수 있음을 의미한다. 상기 표면은 제1 유형의 반응성 부위, 즉 제1 전구체 분자의 흡착된 화학종으로 본질적으로 포화된다. 이 화학흡착 단계 다음에는 전형적으로 과량의 제1 전구체 및 가능한 반응 부생성물이 반응 공간으로부터 제거되는 제1 퍼지 단계(퍼지 A)가 뒤따른다. 이어서, 제2 전구체 증기가 반응 공간 내로 도입된다. 제2 전구체 분자는 전형적으로 제1 전구체 분자의 흡착된 화학종과 반응하여, 목적하는 박막 물질 또는 코팅을 형성한다. 이 성장은 상기 흡착된 제1 전구체의 총량이 소비되고 상기 표면이 제2 유형의 반응성 부위로 본질적으로 포화되면 종결된다. 이어서, 과량의 제2 전구체 증기 및 가능한 반응 부생성물 증기는 제2 퍼지 단계(퍼지 B)에 의해 제거된다. 이어서, 박막 또는 코팅이 목적하는 두께로 성장할 때까지 사이클을 반복한다. 증착 사이클은 더 복잡할 수도 있다. 예를 들어, 상기 사이클은 퍼징 단계들에 의해 분리된 3개 이상의 반응물 증기 펄스들을 포함할 수 있다. 이러한 모든 증착 사이클은 논리 유닛 또는 마이크로프로세서에 의해 제어되는 시간에 맞춘(timed) 증착 시퀀스를 형성한다.
하기에서 설명되는 소정의 예시적 구현예에서, 얇은 공형(conformal) 코팅이 다양한 입자상 또는 분말 형태의 물질의 표면 상에 제공된다. 상기 입자들의 크기는 특정 물질 및 특정 응용 분야에 따라 다르다. 적합한 입자 크기는 전형적으로 나노미터 범위에서 수백 마이크로미터 범위에 이른다. 또한, 코팅될 입자들은 상기 공정이 상기 입자들의 크기 또는 형상을 제한하지 않게 때문에 크기가 더 클 수 있다. 따라서, 소정의 예시적 구현예에서, 수 밀리미터 범위의 입자들이 코팅될 수 있다. 다양한 입자상 물질을 사용할 수 있다. 베이스 입자 및 코팅의 조성은 전형적으로 입자의 표면 특성들이 특정 용도에 바람직한 방식으로 변형되도록 함께 선택된다. 베이스 입자들은 바람직하게는 코팅을 생성하는 ALD 반응 시퀀스에 참여하는 일부 작용기를 표면에 가지거나, 또는 ALD 공정 단계는 반응성 부위를 생성할 수 있다. 실질적으로 모든 입자들의 표면의 실질적으로 모든 면을 코팅하는 방식으로 입자상 물질을 코팅하는 것은, 입자들의 응집을 방지하고 자기 포화 표면 반응을 위해 표면의 모든 면을 전구체 노출에 노출시키는 방법을 제공함으로써 가능하다.
도 1은 본 발명의 일 예시적 구현예에 따른 증착 반응기(100)의 개략적인 원리도를 보여준다. 일 예시적 구현예에서, 증착 반응기는 원자층 증착(ALD) 반응기이다. 반응기(100)는 반응 챔버(10)를 포함한다. 일 구현예에서, 도 1의 개략도에는 하나의 챔버만이 도시되었으나, 반응기는 반응 챔버(10)를 수용하는 추가의 챔버를 포함한다. 반응기(100)는 반응 챔버(10) 내부에, 그 위에 놓이는, 코팅될 기판 또는 샘플을 함유하는 기판 용기(30)를 지지하도록 구성된 기판(또는 샘플) 트레이(20)를 더 포함한다. 일 예시적 구현예에서, 기판 용기(30)는 자기 포화 표면 반응에 의해 코팅될 입자상 물질, 예를 들어 분말을 함유한다.
반응기(100)는 반응 챔버(10) 내부에 기판 용기(30) 위에 하나 이상의 가스 입구를 더 포함한다. 일 구현예에서, 캐리어 및/또는 반응성 가스(전구체 가스)는 위에서 아래로의 흐름(top-to-bottom flow)으로 입자상 물질을 통과한다.
반응기(100)는 반응 챔버(10)로부터 가스, 예를 들어 전구체 가스를 제거하도록 구성된 포어라인(배기 채널)(40)을 더 포함한다. 일 구현예에서, 도 1에 도시된 바와 같이, 포어라인(40)은 반응 챔버(10)의 바닥에 위치한다. 그러나, 다른 구현예에서, 포어라인은 예를 들어, 반응 챔버(10)의 측벽을 통해 다르게 위치할 수 있다. 트레이(20)는 가스가 기판 용기(30)로부터 포어라인(40)으로 자신을 통과할 수 있도록 배열된다.
도 1은 또한, 진동을 제공하도록 구성된 진동기 요소(70)(예를 들어, 초음파 발생기)를 보여준다. 일 구현예에서, 진동기 요소(70)는 기판 트레이(20)를 진동시키고 이를 통해 그 위에 놓인 기판 용기(30) 내의 입자상 물질을 진동시키기 위해, 발생된 진동(예를 들어, 초음파 진동)을 기판 트레이(20)로 전달하도록 구성된 도파관 요소(50)에 연결된다. 그러나, 대안적인 구현예에서, 도파관 요소(50)는 기판 용기(30)에 직접 연결된다(기판 트레이(20)는 생략될 수 있다). 또 다른 대안적인 구현예에서, 도파관 요소(50)는 먼저 용기(30)에 진동을 유도하지 않고, 입자상 물질과만 접촉한다. 입자상 물질의 진동은 입자상 물질의 응집을 방지하고, 반응성 기체가 모든 입자상 물질 표면에 도달할 수 있게 하며, 따라서, 전구체 가스가 특정 물질을 전체에 걸쳐 통과하여 입자들의 모든 면에 균일한 코팅을 제공한다. 일 구현예에서, 진동기 요소(70)는 예를 들어 압전 초음파 에미터 요소를 포함한다.
일 구현예에서, 도파관 요소(50)는 반응 챔버(10)의 포어라인(40) 내에 위치하고, 진동기 요소(70)는 포어라인 옆에 위치하여 포어라인(40) 및 이를 통해 반응기(100)의 다른 부분(예를 들어, 반응 챔버(10)의 벽)에 진동이 유도되는 것을 방지하도록 구성된 제1 탄성 격리 요소(60)를 통해 포어라인에 부착된다. 다른 구현예에서, 도파관은 상이한 경로, 예를 들어 반응 챔버의 상부를 통과하여 기판 트레이(20) 및/또는 기판 용기(30)에 연결되고, 특히, 에너지의 손실을 일으키는 바람직하지 않은 진동을 방지하기 위해 앞서 설명된 것과 유사한 방식으로 격리된다.
또한, 기판 트레이(20) 및/또는 기판 용기(30)는 바람직하게는 반응 챔버(10)에 고정된 연결이 없다. 따라서, 일 구현예에서, 기판 용기(30)는 격리 요소에 의해 반응 챔버(10) 벽으로부터 격리된다. 예를 들어, 바람직하지 않은 진동이 기판 트레이(20)(존재한다면) 및/또는 기판 용기(30)로부터 반응 챔버(10)의 벽으로 전파되는 것을 방지하기 위해, 예를 들어 O-링과 같은 제2 탄성 격리 요소(80)가 있을 수 있다. 격리 요소(80)는 반응 용기(30) 및 반응 챔버(10) 벽 사이의 위치에 배치된다. 예로서, 도 1에 도시된 바와 같이, 격리 요소는 트레이(20) 및 반응 챔버(10) 벽의 칼라(collar) 사이에 배치된다.
도 2는 본 발명의 다른 예시적 구현예에 따른 증착 반응기의 개략적인 원리도를 보여준다. 이 구현예에서, 반응 챔버(10) 및 기판 용기(30)의 기본 구조는 도 1과 관련하여 설명된 것들에 대응한다. 진동은 격리된 공급원(71)으로부터 기판 용기(30)로 비접촉 수단에 의해 전달된다. 일 구현예에서, 이것은 공급원(71)에 의해 발생되는 외부 장(또는 신호), 예를 들어, 자기장 또는 전자기장, 또는 전자기 유도에 의해 기판 용기(30)를 직접 작동시킴으로써 실현된다. 격리된 공급원(71)은 반응 챔버(10)의 외부에 배치된다. 일 구현예에서, 기판 용기(30)는 공급원(71)에 의해 발생된 에너지 운반 작동 신호를 수신하도록 구성된 매칭 특징(matching feature)을 갖는다. 예를 들어, 일 구현예에서 기판 용기(30)는 상기 에너지 운반 작동 신호에 매칭되는 재료로 이루어지거나, 또는 기판 용기(30)는 에너지를 수신하는 하나 이상의 임베디드(embedded) 수신기를 가질 수 있다. (외부) 신호 (또는 에너지)의 수신은 도 1의 기판 트레이(20)(도 2에 미도시)와 유사한, 기판 용기(30)에 부착된 부품에 의해 대안적으로 발생할 수 있다. 기판 용기(30) 및/또는 기판 트레이(20)는 도 1과 관련하여 설명된 것과 유사한 격리 요소에 의해 반응 챔버(10) 벽으로부터 격리될 수 있다.
도 3은 샘플 운반 튜브(90)가 추가된 도 1과 유사한 어셈블리를 보여준다. 반응기는 반응 챔버(10)의 외부로부터 기판 용기(30) 내부로 연장되는 샘플 배달 튜브(sample delivery tube)(90), 또는 다수의 튜브들을 포함할 수 있다. 튜브 또는 튜브들(90)은 증착 전에 입자상 물질을 주입할 수 있게 하고, 일부 구현예에서는 증착 후에 입자상 물질을 꺼낼 수 있게 한다. 일 구현예에서, 튜브 또는 튜브들(90)은 밸브 및/또는 가스 흐름 제어기(91)를 가지므로 코팅 공정이 진공에서 수행될 수 있고 예를 들어 흡인으로 입자상 물질이 제거될 수 있다. 일 구현예에서, 제거는, 포어라인(40)의 방향으로부터의 기판 용기(30) 아래의 압력을 튜브(들)(90)의 압력보다 높게 배치함으로써(예를 들어, 불활성 기체 흐름을 인가함으로써), 증착 후에 반응 챔버가 주위 압력에 있을 때 처리된다. 결과적인 역류는 코팅된 입자상 물질을 튜브(들)(90)을 통해 반응 용기(30)로부터 밀어낸다.
도 3은 샘플 배달 튜브(90)가 기판 용기(30)의 바닥까지 연장되는 것을 나타내지만, 다른 구현예에서 튜브(들)(90)의 위치는 상이할 수 있다. 예를 들어, 튜브(90)는 용기(30)의 상부 모서리 또는 측면으로만 연장될 수 있다.
일 구현예에서, 샘플 배달 튜브(들)(90)은 유체 또는 중력의 도움으로 입자상 물질을 반응 챔버(10) 또는 기판 용기(30)로 배달한다. 코팅될 물질이 유체 흐름과 함께 기판 용기(30)로 운반되면, 튜브(들)(90)은 폐쇄 수단(91)을 갖는 유체 흐름 채널들로서 사용될 수 있다. 일 구현예에서, 이들 수단은 예를 들어, 배치 프로세싱을 가능하도록 하는 공정 제어에 연결된다. 중력이 사용될 때, 반응기가 움직이도록 구성될 수 있다. 튜브(들)(90)은 폐쇄 수단(91)에 의해 폐쇄되어 이에 따라 샘플 흐름을 차단하도록 구성될 수 있다. 다른 구현예에서, 로딩, 증착, 언로딩 공정은 겉으로 보기에 연속적일 수 있다.
도 4는 본 발명의 예시적 구현예에 따른 증착 반응기의 진동 배열의 개략적인 원리도를 보여준다. 진동 배열은, 도 1을 참조하여 설명된 바와 같이, 진동기 요소(70), 및 기판 트레이(20) 및/또는 기판 용기(30)에 연결된 도파관 요소(50)를 포함한다. 도 4는 또한 3차원으로 발생한 진동의 방향을 보여준다. 진동이 발생하는 차원의 수는 실행에 따라 다르다. 일부 구현예에서 진동은 2차원으로 발생되고, 일부 구현예에서는 1차원으로 발생된다.
기판 용기(30)는 반응성 가스가 그것을 통과하여 배기 채널(포어라인(40), 도 1-3) 쪽으로 위에서 아래로 흐를 수 있도록 구성된다. 기판 용기(30)는 플레이트 또는 개방된 컵(open cup) 형상일 수 있다. 일 구현예에서, 그 위에 입구 필터 또는 그리드(42)가 있다. 기판 용기(30)의 바닥은 가스를 통과시키는(그러나 코팅될 입자상 물질은 통과시키지 않는) 투과성이다. 따라서, 상기 용기의 바닥은 필터(도 4에 미도시)를 포함할 수 있다. 또한, 기판 트레이(20)는 (가스가 통과하는 입자 필터를 포함하는) 투과성일 수 있다.
다른 구현예에서, 기판 용기(30)는 입자상 물질이, 진동을 수용하여 상기 입자상 물질로 진동을 전달하는 부분(예를 들어, 용기(30)의 표면 또는 모서리)에 대해 특정 최대 거리를 갖도록 배열된다. 일 구현예에서, 이것은 다음 중 하나 이상과 함께, 또는 다음 중 하나 이상과 조합하여 배열된다:
- 입자상 물질 층이 필터(즉, 기판 용기(30) 바닥) 상에 제한된 두께를 가진다
- 용기(30)가 그것의 바닥 또는 모서리들에 부착된 요소들(41)(도 4), 예를 들어, 라멜라 또는 와이어를 가지고, 이것들은 진동을 입자상 물질에 전도한다
- 용기(30)가 서브 용기(sub-container) 벽이 진동을 전도하는 복수의 서브 용기들을 포함한다.
앞서 언급된 예들에서와 같이, 진동은 도파관(50)으로부터 기판 용기(30)로 직접 전달되거나, 또는 도파관(50)이 반응 용기(30)와 기계적인 접촉을 하지 않고 도파관(50)으로부터 요소들(41)에 직접 전도될 수 있음이 이해되어야 한다. 또한, 요소(41)는 비접촉 수단에 의해, 진동 공급원(71)에 의해 작동될 수 있음이 이해되어야 한다.
일 구현예에서, 앞에서 언급된 부분(42)은 다공성 또는 필터 뚜껑이다. 그것은 기판 용기(30)의 일부를 형성하거나 또는 기판 용기(30)의 상부에 있는 부품일 수 있다. 일 구현예에서, 상기 뚜껑은 입자 먼지가 나오는 것을 방지한다. 그것은 용기(30)로 들어오는 화학물질을 더 확산시킬 것이다.
다음에서, 소정의 추가 구현예가 개시된다:
일 구현예에서, 기판 트레이(20)(도 1, 2 및 4)는 반응 챔버(10) 모서리 상에 또는 반응 챔버 벽의 형상 상에 놓이도록 구성되고, 포어라인(40) 쪽으로 기판 용기(30) 위로 (그것의 아래의 압력과 비교하여) 더 높은 압력을 발생시킨다.
다른 구현예에서, 반응 챔버(10)는 그것에 부착된 열 센서 또는 다수의 센서를 가지며, 이는 입자상 물질에 물리적으로 접촉하거나(예를 들어, 전기 열전쌍으로), 또는 광학 수단(미도시)에 의해 입자상 물질의 온도를 측정하도록 구성된다.
일 구현예에서, 기판 용기(30) 및/또는 기판 트레이(20)는 반응 챔버(10) 상에 또는 반응 챔버(10)에 장착된 부품 상에 놓여서 기판 트레이(20), 기판 용기(30) 또는 요소(41)로부터의 기계적 힘이 반응 챔버(10)(또는 반응 챔버(10) 벽)으로 효과적으로 전달되지 않는다. 트레이(20) 또는 용기(30)는 예를 들어, 반응 챔버(10)의 일 부분으로서 배열된 매끄러운 면 또는 매끄러운 모서리 상에 놓일 수 있다. 이 탄성 격리 요소(80)는 생략될 수 있다.
일 구현예에서, 진동기 요소(70, 71)는 반응 챔버(10)의 외부이지만, 진공 조건의 내부, 예를 들어 둘러싼 진공 챔버 내부에 위치한다. 다른 구현예에서, 상기 진동기 요소는 사용된 진동기 요소가 진공 상태를 견디지 못하는 경우, 진공 조건의 외부, 예를 들어 반응기(100)의 진공 부분의 물리적 경계의 외부에 위치한다. 다른 구현예에서, 진동기 요소(70)는 부분적으로 또는 전체적으로 반응기(100)의 진공 부분 내부에 위치할 수 있다. 다른 구현예에서, 상기 진동기 요소는 도파관 없이 상기 부분(20 및/또는 30)에 직접 부착된다. 대안적인 구현예에서, 부분들(20 및 50)은 결합되어 하나의 부분을 형성하거나, 부분들(20 및 30)은 결합되어 하나의 부분을 형성하거나, 또는 부분들(20, 30 및 50)은 결합되어 하나의 부분을 형성한다.
도 1 내지 도 4에는 도시되지 않았으나, 증착 반응기(100)는 원자층 증착 반응기의 공통적인 요소들을 더 포함한다. 일 구현예에서, 이러한 요소들은, 예를 들어 전구체, 불활성 기체 및/또는 퍼지 가스용 가스 공급물 투입(in-feed) 라인; 가열 및/또는 냉각 요소; 로딩 및 언로딩 수단; 압력 제어 수단 및 온도 제어 수단을 포함한다.
일 구현예에서 기판 트레이(20)는 모서리가 있는 지지부(edged holding part)이다. 반응 챔버(10)는, 퍼징 가스 흐름 없이 남겨진 장소, 즉, 부분(20)의 수직 부분과 반응 챔버(10) 벽 사이의 측면 코너에서의 공간에 증착되는 것을 방지하기 위해, (기판 용기(30)를 통과하는 것과 더불어) 모서리가 있는 지지부(20)를 지나는 소량의 유입 가스를 유도하는 배열을 가질 수 있다. 소량의 가스가 추가적인 가스 입구 튜브(미도시)로 이들 장소로 보내질 수 있다. 상기 가스는 기판 용기(30)를 통해 들어오는 가스들에 대하여 비반응성, 반응성이거나 또는 부동태성(passivating)일 수 있다.
일 구현예에서, 반응 챔버(10)로 들어오거나 나가는 가스 흐름은 기판 용기(30) 중의 샘플에 가해지는 압력에 영향을 미치도록 변화될 수 있다. 이는 예를 들어, 화학물질의 펄싱을 제어하거나, 또는 유입 가스 흐름 또는 포어라인 중의 진공을 변화시킴으로써 달성될 수 있다. 일 구현예에서, 흐름 제어는 예를 들어, 압력 센서로, 기판 용기(30) 중의 샘플상에 선택된 압력을 유지하도록 수행된다. 일 구현예에서, 흐름 제어는 예를 들어, 질량 흐름 제어기로, 기판 용기(30) 중의 샘플을 통하는 선택된 흐름을 유지하도록 수행된다.
다른 구현예에서, 도 3과 관련하여 앞서 언급된 것과 유사하게 생성된 역류는 반응 챔버(10) 내의 필터, 예를 들어 필터(42)(사용중인 경우)를 세척하거나 및/또는 기공 차단(pore blocking)을 감소시키는데 사용될 수 있다.
도 5는 본 발명의 예시적 구현예에 따른 입자 코팅 방법의 원리 흐름도를 보여준다. 단계(510)에서, 코팅될 입자상 샘플이 기판 용기(30)로 제공되고, 반응 챔버(10) 중의 기판 트레이(20) 상에 놓인다. 단계(520)에서, (초음파) 진동기 요소를 사용하고, 생성된 초음파를 도파관 요소(50)에 의해 기판 트레이(20)로 인도하고, 기판 트레이(20)를 통해 기판 용기(30) 중 입자상 샘플로 인도함으로써 입자상 샘플을 진동시킨다. 단계(530)에서, 입자상 샘플은 자기 포화 표면 반응을 사용하는 증착 공정에 의해 코팅된다. 일 구현예에서, 상기 증착 공정은 원자층 증착(ALD) 공정이다. 코팅 중의 진동은 입자상 물질의 응집을 방지하고 입자들의 균일한 코팅을 제공한다. 단계(540)에서, 코팅된 샘플은 반응 챔버(10)로부터 제거된다.
도 6은 본 발명의 예시적 구현예에 따른 진공 조건 내의 진동 공급원을 갖는 증착 반응기의 개략적인 원리도를 보여준다. 도 6은 진동 공급원(예를 들어, 초음파 작동기)(72)이 진공 내에 배열된 증착 반응기 어셈블리를 보여준다. 탄성 격리 요소(60)는 생략될 수 있다. 진동 공급원(72)은 좁은 통로(625)에 의해 반응 챔버(또는 반응 공간)(610)의 나머지 부분으로부터 분리된 한정된 공간(620)에 위치한다. 기판 용기(630)는 코팅될 입자상 물질을 함유한다. 진동 공급원(72)은 기판 용기(630)로 진동을 유도하거나 및/또는 기판 용기(630)와 접촉하지 않고 입자상 물질로 직접 진동을 전달한다. 탄성 격리 요소(80)는 생략될 수 있다. 진동 전도부(41) 또는 이와 유사한 것은 진동을 진동 공급원(72)으로부터 직접 입자상 물질로 전달하는데 사용될 수 있다. 진동 전도부(41)는 레이크(rake) 또는 이와 유사한 형태일 수 있다.
한정된 공간(620)에서의 ALD 프로세싱 동안의 공정 조건, 예를 들어, 온도 및/또는 압력은 반응 챔버(610)의 나머지 부분 내의 조건과 다르게 정해진다. 일 예시적 구현예에서, 한정된 공간(620) 내의 온도는 반응 챔버(610)의 나머지 부분 내의 온도에 비하여 낮아서, 온도에 더 민감한 진동 공급원(72)이 사용될 수 있게 한다. 일 구현예에서, 한정된 공간(620) 내의 압력은 반응 챔버(610)의 나머지 부분 내의 압력에 비하여 높아서, 전구체 증기(또는 반응물)가 진동 공급원(720)을 수용하는 한정된 공간(620)으로 들어가는 것을 방지한다. 일 구현예에서, 전구체 증기(또는 반응물)가 한정된 공간(620)으로 들어가는 것을 방지하기 위해, 한정된 공간(620) 내로 들어가서 이로부터 반응 챔버(610)의 나머지 부분(또는 반응 공간)으로 향하는 퍼지 가스 흐름이 제공된다.
일 예시적 구현예에서, 도 6에 도시된 바와 같이, 진동 공급원(72)은 반응 챔버(610)의 가열된 부분의 외부에 배열된다. 또한, 진동 공급원(72)은 챔버 벽, 또는 냉각 구조(미도시)에 기계적으로 결합되거나, 또는 그것을 지나서 포어라인(40)으로 흐르는 캐리어 또는 퍼지 가스를 불게 함(진동 공급원(72)을 수용하는 상기 공간 내로 들어가는 입구 가스 파이프는 도 6에 미도시되었다)으로써 냉각된 상태로 유지될 수 있다. 또한, 상기 캐리어 또는 퍼지 가스는 진동 공급원(72)이 반응성 화학물질들과 접촉하지 않도록 유지하는데 사용될 수 있다. 다른 구현예에서, 진동 공급원(72)은 다른 장소, 예를 들어, 도 1 내지 4에 도시된 기판 용기(630) 아래에 대안적으로 위치할 수 있다. 또한, 도 6의 배열은 요소(41) 및/또는 기판 용기(30) 및/또는 트레이(20)에 직접 연결될 수 있게 한다.
도 7은 본 발명의 다른 예시적 구현예에 따른 진공 조건 내의 진동 공급원을 갖는 증착 반응기의 개략적인 원리도를 보여준다. 이 구현예에서, 도파관(50)은 진동 공급원(72) 및 입자상 물질 사이에 위치한다. 도파관(50)은 진동 공급원(72)으로부터 입자상 물질로 진동을 전도한다. 그외에는, 도 6에 도시된 구현예를 설명하는 설명이 참조된다. 실제로, 도파관(50)은 예를 들어, 진동 공급원(72) 및 기판 용기(30), 또는 진동 공급원(72) 및 기판 트레이(존재한다면), 또는 진동 공급원(72) 및 요소들(41)(존재한다면)을 연결할 수 있다. 그러면, 초음파 진동과 같은 진동은, 도 1 내지 5를 참조하여 앞서 설명된 바와 같이 진동 공급원(72)으로부터 기판 용기(630)로 또는 기판 트레이를 통해 기판 용기(63)로, 또는 요소들(41)로 직접 전도된다.
본 발명의 구현예들에서, 진동 활성은 필요에 따라 온 오프로 스위칭될 수 있다. 적극적(active) 작동 모드에서, 진동은 항상 "켜져(on)" 있거나 펄스 방식으로 "켜질(on)" 수 있다. 일 예시적 구현예에서, 진동은 30%의 온 타임 및 70%의 오프 타임을 갖는 1초 주기로 펄스된다. 소극적(passive) 작동 모드에서, 진동은 꺼진다. 일 구현예에서, 진동은 상기 입자상 물질이 진공 상태에 있을 때만 "켜진다". 진동 "켬" 단계는 추가적으로 화학적 펄싱과 동기화될 수 있다. 또한, 진동의 주파수 및 진폭은 그에 따라 조정될 수 있다.
어떠한 방식으로도 본 발명의 보호, 해석 또는 가능한 응용의 범위를 제한하지 않으면서, 본 발명의 다른 구현예들의 기술적 이점은 입자상 물질의 더욱 균일한 코팅으로 간주될 수 있다. 또한, 본 발명의 다른 구현예들의 기술적 이점은 물질의 응집을 단순하게 방지하는 것으로 간주될 수 있다. 또한, 본 발명의 다른 구현예들의 기술적 이점은 반응기 본체에 바람직하지 않은 진동 없이 샘플에 진동을 제공하는 것으로 간주될 수 있다.
전술한 설명은 본 발명의 특정 실행 및 구현예의 비제한적인 예로서 본 발명을 수행하기 위해 본 발명자가 현재 고려한 최선의 형태에 대한 완전하고 유익한 설명을 제공한다. 그러나, 본 발명이 상기 제시된 구현예의 세부 사항에 제한되지 않으며, 본 발명의 특징을 벗어나지 않으면서 균등한 수단을 사용하여 다른 구현예에서 실행될 수 있음이 통상의 기술자에게 명백하다.
또한, 본 발명의 위에 설명된 구현예들의 특징들 중 일부는 다른 특징들의 상응하는 사용 없이도 유리하게 사용될 수 있다. 따라서, 전술한 설명은 단지 본 발명의 원리를 설명하기 위한 것으로 간주되어야 하고, 본 발명의 원리를 한정하는 것으로 간주되어서는 안된다. 따라서, 본 발명의 범위는 첨부된 특허 청구 범위에 의해서만 한정된다.

Claims (23)

  1. 증착 방법으로서,
    반응 챔버(10, 610) 중에 기판 용기(30, 630)를 갖는 증착 반응기(100)를 제공하는 단계;
    상기 반응 챔버(10)의 외부의 또는 상기 반응 챔버(610) 내에서 격리된, 격리된 진동 공급원(70-72)을 제공하는 단계;
    상기 기판 용기(30, 630)를 통과하는 위에서 아래로의 전구체 흐름을 사용하여 자기 포화(self-saturating) 표면 반응에 의해 상기 기판 용기(30, 630) 내의 입자상 물질(particulate material)을 코팅하는 단계; 및
    상기 입자상 물질을 코팅하는 동안 상기 격리된 진동 공급원(70-72)에 의해 상기 기판 용기(30, 630) 내의 상기 입자상 물질의 움직임(movement)을 유발하는 단계를 포함하는 증착 방법.
  2. 제1항에 있어서,
    상기 위에서 아래로의 전구체 흐름은 상기 기판 용기(30, 630)의 체적 전체에 걸쳐 상기 기판 용기(30, 630)를 통과하는, 증착 방법.
  3. 제1항 또는 제2항에 있어서,
    상기 위에서 아래로의 전구체 흐름에 대하여 횡단 구조(transverse structure)가 없는 체적을 갖는 기판 용기(30, 630)를 사용하는 것을 포함하는, 증착 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 격리된 진동 공급원(70-72)은 반응 챔버(10) 벽으로부터 탄성 격리 또는 비접촉 격리되어 제공되는, 증착 방법.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    진동을 도파관을 통해 상기 진동 공급원(70-72)으로부터 상기 입자상 물질로 전달하는 단계를 포함하는, 증착 방법.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서,
    무선 유도(wireless induction)를 통해 상기 진동 공급원(70-72)로부터 진동을 유도함으로써 상기 입자상 물질의 움직임을 유발하는 단계를 포함하는, 증착 방법.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서,
    상기 기판 용기(30)는 상기 반응 챔버(10) 벽으로부터 탄성적으로 격리된, 증착 방법.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 진동 공급원(70-72)은 초음파 진동을 발생시키는, 증착 방법.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서,
    상기 반응 챔버(10)의 포어라인(foreline)(40) 내에 위치한 도파관 요소(50)를 통해 초음파 진동을 상기 진동 공급원(70-72)으로부터 상기 반응 용기(30)로 전달하는 단계를 포함하는, 증착 방법.
  10. 제1항 내지 제9항 중 어느 한 항에 있어서,
    상기 진동 공급원(70-72)은 상기 반응 챔버(10)의 포어라인(40)으로부터 탄성적으로 격리된, 증착 방법.
  11. 제1항 내지 제10항 중 어느 한 항에 있어서,
    공정 조건에 의해 상기 진동 공급원(70-72)을 상기 반응 챔버(610)의 나머지 부분으로부터 격리시키는 단계를 포함하는, 증착 방법.
  12. 제1항 내지 제11항 중 어느 한 항에 있어서,
    상기 반응 챔버(610) 내에서 격리된 상기 진동 공급원(70-72)은 상기 반응 챔버(610)의 주체적으로부터 분리되는, 증착 방법.
  13. 증착 반응기(100)로서,
    기판 용기(30, 630)를 수용하는 반응 챔버(10, 610); 및
    상기 반응 챔버(10)의 외부의 또는 상기 반응 챔버(610) 내에서 격리된, 격리된 진동 공급원(70-20)을 포함하고, 상기 증착 반응기(100)는 상기 기판 용기(30, 630)를 통과하는 위에서 아래로의 전구체 흐름을 사용하여 자기 포화 표면 반응에 의해 상기 기판 용기(30, 630) 내의 입자상 물질을 코팅하도록 구성되고, 상기 입자상 물질을 코팅하는 동안 상기 격리된 진동 공급원(70-72)에 의해 상기 기판 용기(30, 630) 내의 상기 입자상 물질의 움직임을 유발하도록 구성되는, 증착 반응기.
  14. 제13항에 있어서,
    상기 기판 용기(30, 630)는 상기 기판 용기(30, 630)의 체적 전체에 걸쳐 상기 위에서 아래로의 전구체 흐름을 통과시키도록 구성되는, 증착 반응기.
  15. 제13항 또는 제14항에 있어서,
    상기 기판 용기(30, 630)에 의해 한정된 체적은 상기 위에서 아래로의 전구체 흐름에 대하여 횡단 구조가 없는, 증착 반응기.
  16. 제13항 내지 제15항 중 어느 한 항에 있어서,
    상기 증착 반응기는 상기 진동 공급원(70-72)을 상기 반응 챔버(10)로부터 격리시키는 탄성 격리 또는 비접촉 격리를 포함하는, 증착 반응기.
  17. 제13항 내지 제16항 중 어느 한 항에 있어서,
    진동을 상기 진동 공급원(70-72)으로부터 상기 입자상 물질로 전달하도록 구성된 도파관 요소(50)를 포함하는, 증착 반응기.
  18. 제13항 내지 제17항 중 어느 한 항에 있어서,
    상기 진동 공급원(70-72)은 무선 유도를 통해 진동을 유도함으로써 상기 입자상 물질의 움직임을 유발하도록 구성되는, 증착 반응기.
  19. 제13항 내지 제18항 중 어느 한 항에 있어서,
    상기 기판 용기(30)는 상기 반응 챔버(10) 벽으로부터 탄성적으로 격리된, 증착 반응기.
  20. 제13항 내지 제19항 중 어느 한 항에 있어서,
    상기 진동 공급원(70-72)은 초음파 진동을 발생시키도록 구성되는, 증착 반응기.
  21. 제13항 내지 제20항 중 어느 한 항에 있어서,
    상기 증착 반응기는 상기 반응 챔버(10)의 포어라인(40) 내에 위치한 도파관 요소(50)를 통해 초음파 진동을 상기 진동 공급원(70-72)으로부터 상기 반응 용기(30)로 전달하도록 구성되는, 증착 반응기.
  22. 제13항 내지 제21항 중 어느 한 항에 있어서,
    상기 진동 공급원(70-72)은 상기 반응 챔버(10)의 포어라인(40)으로부터 탄성적으로 격리된, 증착 반응기.
  23. 제13항 내지 제22항 중 어느 한 항에 있어서,
    상기 반응 챔버(610) 내에서 격리된 상기 진동 공급원(70-72)은 상기 반응 챔버(610)의 주체적으로부터 분리되는, 증착 반응기.
KR1020197010488A 2016-09-16 2016-09-16 원자층 증착에 의한 입자 코팅 KR20190052074A (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020237025782A KR20230117636A (ko) 2016-09-16 2016-09-16 원자층 증착에 의한 입자 코팅

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FI2016/050645 WO2018050954A1 (en) 2016-09-16 2016-09-16 Particle coating by atomic layer depostion (ald)

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020237025782A Division KR20230117636A (ko) 2016-09-16 2016-09-16 원자층 증착에 의한 입자 코팅

Publications (1)

Publication Number Publication Date
KR20190052074A true KR20190052074A (ko) 2019-05-15

Family

ID=61619360

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237025782A KR20230117636A (ko) 2016-09-16 2016-09-16 원자층 증착에 의한 입자 코팅
KR1020197010488A KR20190052074A (ko) 2016-09-16 2016-09-16 원자층 증착에 의한 입자 코팅

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020237025782A KR20230117636A (ko) 2016-09-16 2016-09-16 원자층 증착에 의한 입자 코팅

Country Status (9)

Country Link
US (1) US11261526B2 (ko)
EP (1) EP3512979A4 (ko)
JP (2) JP2019530798A (ko)
KR (2) KR20230117636A (ko)
CN (1) CN109689929B (ko)
RU (1) RU2728343C1 (ko)
SG (1) SG11201901464WA (ko)
TW (1) TWI753003B (ko)
WO (1) WO2018050954A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020018744A1 (en) 2018-07-19 2020-01-23 Applied Materials, Inc. Particle coating methods and apparatus
TWI684665B (zh) * 2018-12-28 2020-02-11 安強股份有限公司 成膜設備及成膜方法
FI129040B (fi) * 2019-06-06 2021-05-31 Picosun Oy Fluidia läpäisevien materiaalien päällystäminen
JP7488071B2 (ja) * 2020-03-12 2024-05-21 株式会社神戸製鋼所 粉体成膜装置および粉体成膜方法
CN112626495B (zh) * 2020-11-16 2022-06-10 鑫天虹(厦门)科技有限公司 可吹动粉末的原子层沉积装置
KR20230158654A (ko) 2021-03-22 2023-11-21 메르츠+벤틀리 아게 원자층 증착에 의한 입자 코팅

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5740586A (en) * 1980-08-22 1982-03-06 Toshiba Corp Treatment of fluorescent substance and its device
JPH02115565U (ko) * 1989-02-28 1990-09-17
JP2592396B2 (ja) * 1993-07-09 1997-03-19 コーア株式会社 薄膜の形成装置
JP3409408B2 (ja) * 1993-12-27 2003-05-26 日新電機株式会社 イオン注入装置
US6159853A (en) 1999-08-04 2000-12-12 Industrial Technology Research Institute Method for using ultrasound for assisting forming conductive layers on semiconductor devices
DE10001620A1 (de) 2000-01-17 2001-07-19 Abb Alstom Power Ch Ag Beschichtungsverfahren
US7306823B2 (en) * 2004-09-18 2007-12-11 Nanosolar, Inc. Coated nanoparticles and quantum dots for solution-based fabrication of photovoltaic cells
EP2161352B1 (en) 2004-06-28 2014-02-26 Cambridge Nanotech Inc. Vapour trap for atomic layer deposition (ALD)
US20070298250A1 (en) * 2006-06-22 2007-12-27 Weimer Alan W Methods for producing coated phosphor and host material particles using atomic layer deposition methods
JP5161450B2 (ja) 2005-09-30 2013-03-13 財団法人高知県産業振興センター プラズマcvd装置及びプラズマ表面処理方法
US8993051B2 (en) 2007-12-12 2015-03-31 Technische Universiteit Delft Method for covering particles, especially a battery electrode material particles, and particles obtained with such method and a battery comprising such particle
CN101939466B (zh) * 2008-02-06 2012-07-18 友技科株式会社 等离子体cvd装置、等离子体cvd方法
EP2159304A1 (en) 2008-08-27 2010-03-03 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Apparatus and method for atomic layer deposition
NL2002590C2 (en) 2009-03-04 2010-09-07 Univ Delft Technology Apparatus and process for atomic or molecular layer deposition onto particles during pneumatic transport.
EP2625308A4 (en) * 2010-10-07 2016-10-19 Rokstar Technologies Llc MECHANICALLY FLUIDIZED FUEL REACTOR SYSTEMS AND PROCESSES SUITABLE FOR SILICON PRODUCTION
RU2600042C2 (ru) 2012-05-14 2016-10-20 Пикосан Ой Нанесение покрытия на мелкие частицы с использованием модуля для атомного осаждения
US8871153B2 (en) * 2012-05-25 2014-10-28 Rokstar Technologies Llc Mechanically fluidized silicon deposition systems and methods
WO2014114844A1 (en) 2013-01-23 2014-07-31 Picosun Oy Method and apparatus for ald processing particulate material
KR101535354B1 (ko) * 2013-02-28 2015-07-10 고려대학교 산학협력단 분산을 이용한 원자층 증착 장치
KR101541361B1 (ko) * 2013-07-15 2015-08-03 광주과학기술원 나노코팅 입자 제조를 위한 유동층 원자층 증착 장치
JP6287654B2 (ja) * 2014-07-14 2018-03-07 住友金属鉱山株式会社 紫外線遮蔽性粉末の製造方法

Also Published As

Publication number Publication date
CN109689929B (zh) 2022-09-30
JP2019530798A (ja) 2019-10-24
RU2728343C1 (ru) 2020-07-29
SG11201901464WA (en) 2019-03-28
JP2022095904A (ja) 2022-06-28
TW201819674A (zh) 2018-06-01
US20190249302A1 (en) 2019-08-15
CN109689929A (zh) 2019-04-26
TWI753003B (zh) 2022-01-21
EP3512979A4 (en) 2020-05-20
KR20230117636A (ko) 2023-08-08
US11261526B2 (en) 2022-03-01
EP3512979A1 (en) 2019-07-24
WO2018050954A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
KR20190052074A (ko) 원자층 증착에 의한 입자 코팅
US20150125599A1 (en) Powder particle coating using atomic layer deposition cartridge
US6926775B2 (en) Reactors with isolated gas connectors and methods for depositing materials onto micro-device workpieces
KR20140144243A (ko) 원자층 증착 방법 및 장치
US20230383404A1 (en) Ald apparatus, method and valve
EP2948573A1 (en) Method and apparatus for ald processing particulate material
RU2741556C1 (ru) Реактор осаждения для нанесения покрытия на частицы и соответствующий способ
KR101535354B1 (ko) 분산을 이용한 원자층 증착 장치
US20200385858A1 (en) Coating of fluid-permeable materials
EP3715502B1 (en) Coating of 3-dimensional substrates
JP6243526B2 (ja) 原子層堆積反応器における基板ウェブトラックの形成
FI129344B (en) Coating of particulate matter
KR102219786B1 (ko) 성막 방법 및 성막 시스템

Legal Events

Date Code Title Description
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X601 Decision of rejection after re-examination
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL NUMBER: 2023101001622; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20230727

Effective date: 20240223