KR20180136304A - 문턱 스위칭 소자 - Google Patents
문턱 스위칭 소자 Download PDFInfo
- Publication number
- KR20180136304A KR20180136304A KR1020170075082A KR20170075082A KR20180136304A KR 20180136304 A KR20180136304 A KR 20180136304A KR 1020170075082 A KR1020170075082 A KR 1020170075082A KR 20170075082 A KR20170075082 A KR 20170075082A KR 20180136304 A KR20180136304 A KR 20180136304A
- Authority
- KR
- South Korea
- Prior art keywords
- electrode
- electric field
- semiconductor layer
- oxide
- oxide semiconductor
- Prior art date
Links
- 230000005684 electric field Effects 0.000 claims abstract description 76
- 239000004065 semiconductor Substances 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 24
- 230000002269 spontaneous effect Effects 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 11
- 230000010287 polarization Effects 0.000 claims description 10
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 229910000449 hafnium oxide Inorganic materials 0.000 claims description 7
- WIHZLLGSGQNAGK-UHFFFAOYSA-N hafnium(4+);oxygen(2-) Chemical compound [O-2].[O-2].[Hf+4] WIHZLLGSGQNAGK-UHFFFAOYSA-N 0.000 claims description 7
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 7
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 7
- 239000010949 copper Substances 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 229910052709 silver Inorganic materials 0.000 claims description 5
- 239000004332 silver Substances 0.000 claims description 5
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 5
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 4
- 229910052451 lead zirconate titanate Inorganic materials 0.000 claims description 4
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 4
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 4
- MZLGASXMSKOWSE-UHFFFAOYSA-N tantalum nitride Chemical compound [Ta]#N MZLGASXMSKOWSE-UHFFFAOYSA-N 0.000 claims description 4
- 229910052714 tellurium Inorganic materials 0.000 claims description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 4
- 229910052721 tungsten Inorganic materials 0.000 claims description 4
- 239000010937 tungsten Substances 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 3
- 239000005751 Copper oxide Substances 0.000 claims description 3
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 claims description 3
- QMVMBRVXQLUKPF-UHFFFAOYSA-N [Rh]=O.[Zn] Chemical compound [Rh]=O.[Zn] QMVMBRVXQLUKPF-UHFFFAOYSA-N 0.000 claims description 3
- VNSWULZVUKFJHK-UHFFFAOYSA-N [Sr].[Bi] Chemical compound [Sr].[Bi] VNSWULZVUKFJHK-UHFFFAOYSA-N 0.000 claims description 3
- UNRNJMFGIMDYKL-UHFFFAOYSA-N aluminum copper oxygen(2-) Chemical compound [O-2].[Al+3].[Cu+2] UNRNJMFGIMDYKL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 229910000431 copper oxide Inorganic materials 0.000 claims description 3
- 229910003437 indium oxide Inorganic materials 0.000 claims description 3
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 claims description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 claims description 3
- HFGPZNIAWCZYJU-UHFFFAOYSA-N lead zirconate titanate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ti+4].[Zr+4].[Pb+2] HFGPZNIAWCZYJU-UHFFFAOYSA-N 0.000 claims description 3
- 229910000484 niobium oxide Inorganic materials 0.000 claims description 3
- URLJKFSTXLNXLG-UHFFFAOYSA-N niobium(5+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Nb+5].[Nb+5] URLJKFSTXLNXLG-UHFFFAOYSA-N 0.000 claims description 3
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 claims description 3
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 3
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 claims description 3
- 229910052707 ruthenium Inorganic materials 0.000 claims description 3
- 229910001936 tantalum oxide Inorganic materials 0.000 claims description 3
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 3
- 229910001930 tungsten oxide Inorganic materials 0.000 claims description 3
- 230000000052 comparative effect Effects 0.000 description 11
- 238000005229 chemical vapour deposition Methods 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 238000005240 physical vapour deposition Methods 0.000 description 6
- 229910021645 metal ion Inorganic materials 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 4
- 239000003302 ferromagnetic material Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 3
- 229910052732 germanium Inorganic materials 0.000 description 3
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910000577 Silicon-germanium Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- PBAJOOJQFFMVGM-UHFFFAOYSA-N [Cu]=O.[Sr] Chemical compound [Cu]=O.[Sr] PBAJOOJQFFMVGM-UHFFFAOYSA-N 0.000 description 2
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- OMKVRKAVCVLJTP-UHFFFAOYSA-N barium niobium Chemical compound [Nb][Ba] OMKVRKAVCVLJTP-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- QZCHKAUWIRYEGK-UHFFFAOYSA-N tellanylidenecopper Chemical compound [Te]=[Cu] QZCHKAUWIRYEGK-UHFFFAOYSA-N 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/8615—Hi-lo semiconductor devices, e.g. memory devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/10—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/1066—Gate region of field-effect devices with PN junction gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/24—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/51—Insulating materials associated therewith
- H01L29/517—Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
- H01L29/6609—Diodes
- H01L29/66136—PN junction diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66969—Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/80—Arrangements comprising multiple bistable or multi-stable switching components of the same type on a plane parallel to the substrate, e.g. cross-point arrays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/20—Multistable switching devices, e.g. memristors
- H10N70/24—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies
- H10N70/245—Multistable switching devices, e.g. memristors based on migration or redistribution of ionic species, e.g. anions, vacancies the species being metal cations, e.g. programmable metallization cells
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/821—Device geometry
- H10N70/826—Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
- H10N70/8416—Electrodes adapted for supplying ionic species
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/841—Electrodes
- H10N70/8418—Electrodes adapted for focusing electric field or current, e.g. tip-shaped
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8833—Binary metal oxides, e.g. TaOx
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N70/00—Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
- H10N70/801—Constructional details of multistable switching devices
- H10N70/881—Switching materials
- H10N70/883—Oxides or nitrides
- H10N70/8836—Complex metal oxides, e.g. perovskites, spinels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/45—Ohmic electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B63/00—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
- H10B63/30—Resistance change memory devices, e.g. resistive RAM [ReRAM] devices comprising selection components having three or more electrodes, e.g. transistors
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Semiconductor Memories (AREA)
Abstract
문턱 스위칭 소자가 제공된다. 문턱 스위칭 소자는 서로 이격하는 제1 전극 및 제2 전극 및 상기 제1 전극과 상기 제2 전극 사이에 배치되는 스위칭 층을 포함하되, 상기 스위칭 층은 내부 전기장을 포함한다.
Description
본 발명은 문턱 스위칭 소자에 관한 것으로, 보다 상세하게는 내부 전기장을 포함하는 스위칭 층을 포함하는 문턱 스위칭 소자에 관한 것이다.
일반적으로 메모리 장치는 복수 개의 메모리 소자들 및 이들을 선택하기 위한 선택 소자들을 포함한다. 메모리 장치의 대용량 및 고집적화를 위하여 많은 연구들이 진행되고 있는데, 그 중의 하나가 선택 소자로 트랜지스터가 아닌 문턱 스위칭 소자를 사용하는 것이다.
문턱 스위칭 소자는 특정 전압에서 급격한 저항의 변화를 나타내는 스위칭 소자이다. 메모리 장치의 선택 소자로 문턱 스위칭 소자를 이용할 경우, 복잡한 레이아웃이나 공정이 없이 집적도가 높은 메모리 장치를 구현할 수 있다는 장점을 갖는다.
본 발명이 해결하고자 하는 일 과제는 높은 동작 전류 및 빠른 완화 속도를 가지는 문턱 스위칭 소자를 제공하는데 있다.
본 발명이 해결하고자 하는 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시예들에 따른 문턱 스위칭 소자는 서로 이격하는 제1 전극 및 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 배치되는 스위칭 층을 포함할 수 있다. 상기 스위칭 층은 p형 산화물 반도체 층 및 n형 산화물 반도체 층을 포함할 수 있다.
일 실시예에 따르면, 상기 p형 산화물 반도체 층 및 상기 n형 산화물 반도체 층은 서로 접할 수 있다.
일 실시예에 따르면, 상기 스위칭 층은 결핍 영역(depletion region)을 포함할 수 있다.
일 실시예에 따르면, 상기 p형 산화물 반도체 층은 니켈 산화물, 구리 산화물, 구리-알루미늄 산화물, 아연-로듐 산화물, 또는 스트론튬-구리 산화물 중에서 적어도 하나를 포함할 수 있다. 상기 n형 산화물 반도체 층은 티타늄 산화물, 아연 산화물, 탄탈럼 산화물, 하프늄 산화물, 텅스텐 산화물, 알루미늄 산화물, 니오븀 산화물, 지르코늄 산화물, 인듐 산화물, 인듐-아연 산화물, 갈륨-인듐-아연 산화물, 주석 산화물, 또는 인듐-주석 산화물 중에서 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 제2 전극은 은 또는 구리 중에서 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 제2 전극은 텔루륨을 더 포함할 수 있다.
일 실시예에 따르면, 상기 제1 전극은 백금, 텅스텐, 루테늄, 티타늄 질화물, 또는 탄탈럼 질화물 중에서 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 문턱 스위칭 소자는 상기 제1 전극과 상기 제2 전극 사이에 문턱 전압 이상의 동작 전압이 인가되면 저저항 상태가 될 수 있고, 상기 동작 전압의 인가가 중단되면 고저항 상태가 될 수 있다.
일 실시예에 따르면, 상기 제1 전극과 상기 제2 전극 사이에 문턱 전압 이상의 동작 전압이 인가되면, 상기 스위칭 층 내에 상기 제1 전극과 상기 제2 전극을 연결하는 전도성 필라멘트가 형성될 수 있고, 상기 동작 전압의 인가가 중단되면 상기 전도성 필라멘트는 끊어질 수 있다.
본 발명의 실시예들에 따른 문턱 스위칭 소자는 서로 이격하는 제1 전극 및 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 배치되는 스위칭 층을 포함하되, 상기 스위칭 층은 강유전 물질을 포함할 수 있다.
일 실시예에 따르면, 상기 스위칭 층은 상기 강유전 물질의 자발 분극으로 인한 내부 전기장을 포함할 수 있다.
일 실시예에 따르면, 상기 내부 전기장은 상기 제1 전극에서 상기 제2 전극을 향하는 방향 또는 상기 제2 전극에서 상기 제1 전극을 향하는 방향을 가질 수 있다.
일 실시예에 따르면, 상기 스위칭 층은 납 지르코네이트 티타네이트, 스트론튬 비스무트 탄탈레이트, 하프늄 산화물, 또는 지르코늄 산화물 중에서 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 문턱 스위칭 소자는 상기 제1 전극과 상기 제2 전극 사이에 문턱 전압 이상의 동작 전압이 인가되면 저저항 상태가 될 수 있고, 상기 동작 전압의 인가가 중단되면 고저항 상태가 될 수 있다.
본 발명의 실시예들에 따른 문턱 스위칭 소자는 서로 이격하는 제1 전극 및 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 배치되는 스위칭 층을 포함할 수 있다. 상기 스위칭 층은 내부 전기장을 포함할 수 있다.
일 실시예에 따르면, 상기 내부 전기장은 상기 제1 전극에서 상기 제2 전극을 향하는 방향을 가질 수 있다.
일 실시예에 따르면, 상기 내부 전기장은 상기 제2 전극에서 상기 제1 전극을 향하는 방향을 가질 수 있다.
일 실시예에 따르면, 상기 스위칭 층은 서로 접하는 p형 산화물 반도체 층 및 n형 산화물 반도체 층을 포함할 수 있다.
일 실시예에 따르면, 상기 p형 산화물 반도체 층과 상기 n형 산화물 반도체 층의 계면 부근에 공핍 영역이 형성될 수 있다. 상기 내부 전기장은 상기 공핍 영역에 포함될 수 있다.
본 발명의 실시예들에 따르면, 내부 전기장으로 인하여, 보다 두꺼운 전도성 필라멘트가 형성되더라도 전도성 필라멘트가 자발적으로 분해될 수 있다. 따라서, 문턱 스위칭 소자는 보다 높은 동작 전류를 가질 수 있다.
본 발명의 실시예들에 따르면, 내부 전기장으로 인하여, 동작 전압의 인가가 중단되었을 때, 전도성 필라멘트가 보다 빠르게 끊어질 수 있다. 따라서, 문턱 스위칭 소자는 보다 빠른 완화 속도를 가질 수 있다.
도 1a 및 도 1b는 본 발명의 실시예들에 따른 문턱 스위칭 소자를 나타내는 단면도들이다.
도 2a 내지 도 2c는 본 발명의 실시예들에 따른 문턱 스위칭 소자의 동작을 설명하기 위한 단면도들이다.
도 3a 내지 도 3c는 본 발명의 실시예들에 따른 문턱 스위칭 소자의 동작을 설명하기 위한 단면도들이다.
도 4는 본 발명의 실험예에 따른 문턱 스위칭 소자의 전압-전류 특성을 나타내는 그래프이다.
도 5a는 비교예에 따른 문턱 스위칭 소자의 저항 특성을 나타내는 그래프이다.
도 5b는 본 발명의 실험예에 따른 문턱 스위칭 소자의 저항 특성을 나타내는 그래프이다.
도 6a 및 도 6b는 본 발명의 실시예들에 따른 문턱 스위칭 소자를 나타내는 단면도들이다.
도 7은 본 발명의 실시예들에 따른 전자 장치를 나타내는 단면도이다.
도 2a 내지 도 2c는 본 발명의 실시예들에 따른 문턱 스위칭 소자의 동작을 설명하기 위한 단면도들이다.
도 3a 내지 도 3c는 본 발명의 실시예들에 따른 문턱 스위칭 소자의 동작을 설명하기 위한 단면도들이다.
도 4는 본 발명의 실험예에 따른 문턱 스위칭 소자의 전압-전류 특성을 나타내는 그래프이다.
도 5a는 비교예에 따른 문턱 스위칭 소자의 저항 특성을 나타내는 그래프이다.
도 5b는 본 발명의 실험예에 따른 문턱 스위칭 소자의 저항 특성을 나타내는 그래프이다.
도 6a 및 도 6b는 본 발명의 실시예들에 따른 문턱 스위칭 소자를 나타내는 단면도들이다.
도 7은 본 발명의 실시예들에 따른 전자 장치를 나타내는 단면도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부된 도면과 함께 상세하게 후술되어 있는 실시예를 참조하면 명확해질 것이다. 그러나 본 발명은 이하에 개시된 실시예에 한정되지 않으며, 서로 다른 다양한 형태로 구현될 수 있다. 아래의 실시예는 단지 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 특별히 언급이 없는 한 복수형도 포함한다. 명세서에서 사용된 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소, 단계, 동작, 및/또는 소자 외에 하나 이상의 다른 구성요소, 단계, 동작, 및/또는 소자의 존재 또는 추가를 배제하지 않는다.
본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도들을 참고하여 설명될 것이다. 도면들에 도시된 구성요소들의 두께는 기술 내용의 효과적인 설명을 위해 과장된 것일 수 있다. 따라서, 구성요소들의 형상은 제조 공정 및/또는 허용 오차 등에 따라 변형될 수 있다. 즉, 본 발명의 실시예들은 도면들에 도시된 특정 형상으로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형상의 변화도 포함하는 것이다. 예를 들어, 직각으로 도시된 식각 영역은 라운드지거나 소정 곡률을 가지는 형상일 수 있다. 도면에서 예시된 구성요소는 개략적인 속성을 가지며, 도면에서 예시된 구성요소의 형상은 구성요소의 설명을 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예들에 대하여 설명한다. 이하에서, 본 발명의 실시예들은 문턱 스위칭 소자와 관련된 물리적 현상에 대한 현재의 이해를 바탕으로 설명된다. 하지만, 본 발명의 실시예들이 특정한 물리적 설명에 의존하는 것은 아니다.
도 1a 및 도 1b는 본 발명의 실시예들에 따른 문턱 스위칭 소자를 나타내는 단면도들이다.
도 1a 및 도 1b를 참조하면, 문턱 스위칭 소자(100a 또는 100b)는 제1 전극(10), 제2 전극(20), 및 스위칭 층(30)을 포함할 수 있다.
제1 전극(10)은 백금(Pt), 텅스텐(W), 루테늄(Ru), 티타늄 질화물, 또는 탄탈럼 질화물 중에서 적어도 하나를 포함할 수 있다. 제1 전극(10)은, 예를 들어, 약 10nm 내지 약 100nm의 두께를 가질 수 있다. 제1 전극(10)은, 예를 들어, 화학 기상 증착(chemical vapor deposition; CVD) 공정 또는 물리 기상 증착(physical vapor deposition; PVD) 공정을 통해 형성될 수 있다.
제2 전극(20)은 제1 전극(10)으로부터 이격될 수 있다. 제2 전극(20)은 제1 전극(10)에 포함된 금속과 다른 금속을 포함할 수 있다. 예를 들어, 제2 전극(20)은 은(Ag) 또는 구리(Cu) 중에서 적어도 하나를 포함할 수 있다. 제2 전극(20)은, 예를 들어, 약 10nm 내지 약 100nm의 두께를 가질 수 있다. 제2 전극(20)은, 예를 들어, 화학 기상 증착(CVD) 공정 또는 물리 기상 증착(PVD) 공정을 통해 형성될 수 있다.
몇몇 실시예들에 따르면, 제2 전극(20)은 텔루륨(Te)을 더 포함할 수 있다. 예를 들어, 제2 전극(20)은 은-텔루륨(Ag-Te) 합금 또는 구리-텔루륨(Cu-Te) 합금 중에서 적어도 하나를 포함할 수 있다.
스위칭 층(30)은 제1 전극(10)과 제2 전극(20) 사이에 배치될 수 있다. 스위칭 층(30)은 산화물 반도체를 포함할 수 있다. 구체적으로, 스위칭 층(30)은 p형 산화물 반도체 층(30p) 및 n형 산화물 반도체 층(30n)을 포함할 수 있다. p형 산화물 반도체 층(30p)은, 예를 들어, 니켈 산화물, 구리 산화물, 구리-알루미늄 산화물, 아연-로듐 산화물, 또는 스트론튬-구리 산화물 중에서 적어도 하나를 포함할 수 있다. n형 산화물 반도체 층(30n)은, 예를 들어, 티타늄 산화물, 아연 산화물, 탄탈럼 산화물, 하프늄 산화물, 텅스텐 산화물, 알루미늄 산화물, 니오븀 산화물, 지르코늄 산화물, 인듐 산화물, 인듐-아연 산화물, 갈륨-인듐-아연 산화물, 주석 산화물, 또는 인듐-주석 산화물 중에서 적어도 하나를 포함할 수 있다. p형 산화물 반도체 층(30p) 및 n형 산화물 반도체 층(30n)의 각각은, 예를 들어, 1nm 내지 50nm의 두께를 가질 수 있다. 스위칭 층(30)은, 예를 들어, 화학 기상 증착(CVD) 공정 또는 물리 기상 증착(PVD) 공정을 통해 형성될 수 있다.
p형 산화물 반도체 층(30p)과 n형 산화물 반도체 층(30n)은 서로 접할 수 있다. 다시 말해, p형 산화물 반도체 층(30p)과 n형 산화물 반도체 층(30n)은 pn 접합(pn junction)을 이룰 수 있다. 이에 따라, 스위칭 층(30) 내에 결핍 영역(30d, depletion region)이 형성될 수 있다. 구체적으로, p형 산화물 반도체 층(30p)과 n형 산화물 반도체 층(30n)의 계면 부근에 결핍 영역(30d)이 형성될 수 있다.
결핍 영역(30d)은 p형 산화물 반도체 층(30p) 내에 형성된 제1 결핍 영역(30dp)과 n형 산화물 반도체 층(30n) 내에 형성된 제2 결핍 영역(30dn)을 포함할 수 있다. 제1 결핍 영역(30dp)은 음이온들을 포함할 수 있고, 제2 결핍 영역(30dn)은 양이온들을 포함할 수 있다. 이는, pn 접합의 형성 시, 제2 결핍 영역(30dn)의 전자들(electrons)이 제1 결핍 영역(30dp)으로 확산되기 때문일 수 있다.
결핍 영역(30d)은 그 내부에 형성된 내부 전기장(IF)을 포함할 수 있다. 내부 전기장(IF)은 제1 결핍 영역(30dp)의 음이온들 및 제2 결핍 영역(30dn)의 양이온들로부터 기인한 것일 수 있다. 이에 따라, 내부 전기장(IF)은 제2 결핍 영역(30dn)에서 제1 결핍 영역(30dp)을 향하는 방향을 가질 수 있다.
몇몇 실시예들에 따르면, 도 1a에 도시된 바와 같이, p형 산화물 반도체 층(30p)은 제2 전극(20)에 인접하게 배치될 수 있고, n형 산화물 반도체 층(30n)은 제1 전극(10)에 인접하게 배치될 수 있다. 다시 말해, p형 산화물 반도체 층(30p)은 n형 산화물 반도체 층(30n)과 제2 전극(20) 사이에 배치될 수 있다. 이러한 실시예들에서, 내부 전기장(IF)은 제1 전극(10)에서 제2 전극(20)을 향하는 방향을 가질 수 있다.
다른 실시예들에 따르면, 도 1b에 도시된 바와 같이, p형 산화물 반도체 층(30p)은 제1 전극(10)에 인접하게 배치될 수 있고, n형 산화물 반도체 층(30n)은 제2 전극(20)에 인접하게 배치될 수 있다. 다시 말해, p형 산화물 반도체 층(30p)은 제1 전극(10)과 n형 산화물 반도체 층(30n) 사이에 배치될 수 있다. 이러한 실시예들에서, 내부 전기장(IF)은 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 가질 수 있다.
제1 전극(10)과 제2 전극(20) 사이에 문턱 전압(threshold voltage) 이상의 동작 전압이 가해지면, 스위칭 층(30) 내에 제1 전극(10)과 제2 전극(20)을 연결하는 전도성 필라멘트(미도시)가 형성될 수 있다. 이에 따라, 문턱 스위칭 소자(100a 또는 100b)는 턴-온 상태(혹은, 저저항 상태)가 될 수 있다. 예를 들어, 상기 동작 전압은 상기 스위칭 층(30) 내에 제2 전극(20)에서 제1 전극으로 향하는 방향의 외부 전기장이 생성되도록 가해질 수 있다. 상기 외부 전기장에 의하여 제2 전극(20)에 포함된 금속의 이온들(예를 들어, Ag+ 또는 Cu+)이 제1 전극(10)을 향해 이동할 수 있으며, 이러한 금속 이온들이 이어져 제1 전극(10)과 제2 전극(20)을 연결하는 상기 전도성 필라멘트가 형성될 수 있다.
제1 전극(10)과 제2 전극(20) 사이에 상기 문턱 전압 이하의 전압이 가해지면, 상기 전도성 필라멘트는 끊어질 수 있다. 예를 들어, 상기 동작 전압의 인가가 중단되면 상기 전도성 필라멘트는 끊어질 수 있다. 이에 따라, 문턱 스위칭 소자(100a 또는 100b)는 턴-오프 상태(혹은, 고저항 상태)가 될 수 있다.
내부 전기장(IF)은 문턱 스위칭 소자(100a 또는 100b)가 상기 턴-온 상태에서 상기 턴-오프 상태로 스위치되는 것을 도울 수 있다. 다시 말해, 내부 전기장(IF)은 상기 전도성 필라멘트가 끊어지는 것(혹은, 분해되는 것)을 촉진할 수 있다. 이에 따라, 본 발명의 실시예들에 따른 문턱 스위칭 소자(100a 또는 100b)는 보다 높은 동작 전류(즉, 턴-온 상태에서 문턱 스위칭 소자(100a 또는 100b)를 흐르는 전류) 및 보다 빠른 완화 속도(즉, 턴-온 상태에서 턴-오프 상태로 스위치되는 속도)를 가질 수 있다. 이러한 본 발명의 효과는 이하에서 도 2a 내지 도 2c 또는 도 3a 내지 도 3c를 참조하여 보다 상세히 설명된다.
몇몇 실시예들에 따르면, 문턱 스위칭 소자(100a 또는 100b)는 메모리 장치의 선택 소자로서 이용될 수 있다. 예를 들어, 문턱 스위칭 소자(100a 또는 100b)는 크로스-포인트 구조의 가변 저항 메모리 장치의 선택 소자로서 이용될 수 있다. 이 경우, 서로 교차하는 방향으로 연장되는 한 쌍의 도전 라인들 사이에 문턱 스위칭 소자(100a 또는 100b) 및 가변 저항 소자가 직렬로 연결될 수 있다.
도 2a 내지 도 2c는 본 발명의 실시예들에 따른 문턱 스위칭 소자의 동작을 설명하기 위한 단면도들이다. 구체적으로, 도 2a 내지 도 2c는 도 1a를 참조하여 설명한 문턱 스위칭 소자(100a)의 동작을 설명하기 위한 단면도들이다. 도 1a를 참조하여 설명한 구성과 실질적으로 동일한 구성에 대하여는 동일한 참조 부호가 제공될 수 있으며, 이러한 구성에 대한 중복되는 설명은 생략될 수 있다.
도 2a를 참조하면, 제1 전극(10)과 제2 전극(20) 사이에 문턱 전압보다 낮은 제1 전압(V1)이 가해질 수 있다. 예를 들어, 제1 전극(10)은 접지될 수 있고, 제2 전극(20)에 양의 제1 전압(V1)이 가해질 수 있다.
제1 전압(V1)에 의하여, 제1 전극(10)과 제2 전극(20) 사이에 제1 외부 전기장(EF1)이 형성될 수 있다. 제1 외부 전기장(EF1)은 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 가질 수 있다. 제1 외부 전기장(EF1)은 스위칭 층(30) 내에 전도성 필라멘트를 형성시킬 정도로 충분히 크지 않을 수 있으며, 이에 따라 스위칭 층(30) 내에 전도성 필라멘트가 형성되지 않을 수 있다. 따라서, 문턱 스위칭 소자(100a)는 오프-상태에 있을 수 있다.
도 2b를 참조하면, 제1 전극(10)과 제2 전극(20) 사이에 문턱 전압보다 높은 제2 전압(V2)이 가해질 수 있다. 예를 들어, 제1 전극(10)은 접지될 수 있고, 제2 전극(20)에 양의 제2 전압(V2)이 가해질 수 있다.
제2 전압(V2)에 의하여, 제1 전극(10)과 제2 전극(20) 사이에 제2 외부 전기장(EF2)이 형성될 수 있다. 제2 외부 전기장(EF2)은 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 가질 수 있다. 제2 외부 전기장(EF2)의 크기는 내부 전기장(IF)의 크기보다 클 수 있다.
제2 외부 전기장(EF2)에 의하여, 스위칭 층(30) 내에 제1 전극(10)과 제2 전극(20)을 연결하는 전도성 필라멘트(CF)가 형성될 수 있다. 예를 들어, 제2 외부 전기장(EF2)에 의하여 제2 전극(20)에 포함된 금속의 이온(예를 들어, Ag+ 또는 Cu+)들이 제1 전극(10)을 향해 이동할 수 있으며, 이러한 금속 이온들이 이어져 제1 전극(10)과 제2 전극(20)을 연결하는 전도성 필라멘트(CF)가 형성될 수 있다.
전도성 필라멘트(CF)의 형성으로 인해, 문턱 스위칭 소자(100a)의 저항이 급격하게 감소할 수 있고, 문턱 스위칭 소자(100a)를 흐르는 전류가 급격하게 증가될 수 있다. 즉, 문턱 스위칭 소자(100a)는 온-상태로 스위치될 수 있다.
도 2c를 참조하면, 제1 전극(10)과 제2 전극(20) 사이에 제3 전압(V3)이 가해질 수 있다. 예를 들어, 제3 전압(V3)은 제로(0)일 수 있다.
제3 전압(V3)이 가해지면, 전도성 필라멘트(CF)는 자발적으로 분해될 수 있다. 이에 따라, 제1 전극(10)과 제2 전극(20)을 연결하는 전도성 필라멘트(CF)는 끊어질 수 있다.
제1 전극(10)과 제2 전극(20)을 연결하는 전도성 필라멘트(CF)가 끊어짐에 따라, 문턱 스위칭 소자(100a)의 저항이 급격하게 증가할 수 있고, 문턱 스위칭 소자(100a)를 흐르는 전류가 급격하게 감소될 수 있다. 즉, 문턱 스위칭 소자(100a)는 오프-상태로 스위치될 수 있다.
결핍 영역(30d) 내에 형성된 내부 전기장(IF)이 전도성 필라멘트(CF)의 자발적 분해를 촉진할 수 있다. 예를 들어, 내부 전기장(IF)은 결핍 영역(30d) 내의 금속 이온들에 전기력을 가하여 결핍 영역(30d) 내의 금속 이온들의 이동을 촉진할 수 있다. 문턱 스위칭 소자(100a)에서 내부 전기장(IF)은 제1 전극(10)에서 제2 전극(20)을 향하는 방향을 가질 수 있으므로, 내부 전기장(IF)은 결핍 영역(30d) 내의 금속 이온들이 제2 전극(20)을 향해 이동하는 것을 촉진할 수 있다.
도 3a 내지 도 3c는 본 발명의 실시예들에 따른 문턱 스위칭 소자의 동작을 설명하기 위한 단면도들이다. 구체적으로, 도 3a 내지 도 3c는 도 1b를 참조하여 설명한 문턱 스위칭 소자(100b)의 동작을 설명하기 위한 단면도들이다. 도 1b를 참조하여 설명한 구성과 실질적으로 동일한 구성에 대하여는 동일한 참조 부호가 제공될 수 있으며, 이러한 구성에 대한 중복되는 설명은 생략될 수 있다.
도 3a를 참조하면, 제1 전극(10)과 제2 전극(20) 사이에 문턱 전압보다 낮은 제1 전압(V1)이 가해질 수 있다. 예를 들어, 제1 전극(10)은 접지될 수 있고, 제2 전극(20)에 양의 제1 전압(V1)이 가해질 수 있다.
제1 전압(V1)에 의하여, 제1 전극(10)과 제2 전극(20) 사이에 제1 외부 전기장(EF1)이 형성될 수 있다. 제1 외부 전기장(EF1)은 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 가질 수 있다.
도 2a를 참조하여 설명한 바와 마찬가지로, 스위칭 층(30) 내에 전도성 필라멘트가 형성되지 않을 수 있다. 따라서, 문턱 스위칭 소자(100b)는 오프-상태에 있을 수 있다.
도 3b를 참조하면, 제1 전극(10)과 제2 전극(20) 사이에 문턱 전압보다 높은 제2 전압(V2)이 가해질 수 있다. 예를 들어, 제1 전극(10)은 접지될 수 있고, 제2 전극(20)에 양의 제2 전압(V2)이 가해질 수 있다.
제2 전압(V2)에 의하여, 제1 전극(10)과 제2 전극(20) 사이에 제2 외부 전기장(EF2)이 형성될 수 있다. 제2 외부 전기장(EF2)은 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 가질 수 있다. 문턱 스위칭 소자(100b)에서, 내부 전기장(IF)은 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 가질 수 있으므로, 제2 외부 전기장(EF2)의 방향과 내부 전기장(IF)의 방향은 실질적으로 동일할 수 있다. 제2 외부 전기장(EF2)의 크기는 내부 전기장(IF)의 크기보다 클 수 있다.
도 2b를 참조하여 설명한 바와 마찬가지로, 제2 외부 전기장(EF2)에 의하여, 스위칭 층(30) 내에 제1 전극(10)과 제2 전극(20)을 연결하는 전도성 필라멘트(CF)가 형성될 수 있다. 내부 전기장(IF)이 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 가질 수 있기 때문에, 내부 전기장(IF)도 전도성 필라멘트(CF)의 형성에 도움을 줄 수 있다.
전도성 필라멘트(CF)의 형성으로 인해, 문턱 스위칭 소자(100b)의 저항이 급격하게 감소할 수 있고, 문턱 스위칭 소자(100b)를 흐르는 전류가 급격하게 증가될 수 있다. 즉, 문턱 스위칭 소자(100b)는 온-상태로 스위치될 수 있다.
도 3c를 참조하면, 제1 전극(10)과 제2 전극(20) 사이에 제3 전압(V3)이 가해질 수 있다. 예를 들어, 제3 전압(V3)은 제로(0)일 수 있다.
도 2c를 참조하여 설명한 바와 마찬가지로, 제3 전압(V3)이 가해지면, 전도성 필라멘트(CF)는 자발적으로 분해될 수 있다. 이에 따라, 제1 전극(10)과 제2 전극(20)을 연결하는 전도성 필라멘트(CF)는 끊어질 수 있으며, 문턱 스위칭 소자(100b)는 오프-상태로 스위치될 수 있다.
결핍 영역(30d) 내에 형성된 내부 전기장(IF)이 전도성 필라멘트(CF)의 자발적 분해를 촉진할 수 있다. 예를 들어, 내부 전기장(IF)은 결핍 영역(30d) 내의 금속 이온들에 전기력을 가하여 결핍 영역(30d) 내의 금속 이온들의 이동을 촉진할 수 있다. 문턱 스위칭 소자(100b)에서 내부 전기장(IF)은 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 가질 수 있으므로, 내부 전기장(IF)은 결핍 영역(30d) 내의 금속 이온들이 제1 전극(10)을 향해 이동하는 것을 촉진할 수 있다.
일반적인 문턱 스위칭 소자에서, 두꺼운 전도성 필라멘트가 형성되면 동작 전압의 인가가 중단되더라도 전도성 필라멘트가 자발적으로 분해되지 않는 문제점이 있다. 동작 전압의 인가가 중단되었음에도 전도성 필라멘트가 자발적으로 분해되지 않으면, 소자는 문턱 스위칭 소자가 아닌 비휘발성 메모리 소자로 기능하게 된다. 따라서, 일반적인 문턱 스위칭 소자는 높은 동작 전류를 가지기 어렵다.
본 발명의 실시예들에 따르면, 내부 전기장(IF)으로 인하여, 보다 두꺼운 전도성 필라멘트(CF)가 형성되더라도 전도성 필라멘트(CF)가 자발적으로 분해될 수 있다. 따라서, 본 발명의 실시예들에 따르면, 문턱 스위칭 소자(100a 또는 100b)는 보다 높은 동작 전류를 가질 수 있다.
또한, 본 발명의 실시예들에 따르면, 내부 전기장(IF)으로 인하여, 동작 전압(즉, 제2 전압(V2))의 인가가 중단되었을 때, 전도성 필라멘트(CF)가 보다 빠르게 끊어질 수 있다. 따라서, 본 발명의 실시예들에 따르면, 문턱 스위칭 소자(100a 또는 100b)는 보다 빠른 완화 속도를 가질 수 있다.
도 4는 본 발명의 실험예에 따른 문턱 스위칭 소자의 전압-전류 특성을 나타내는 그래프이다.
본 발명의 실험예에 따른 문턱 스위칭 소자는 도 1a를 참조하여 설명한 문턱 스위칭 소자(100a)의 구조를 갖도록 형성되었다. 구체적으로, 제1 전극, n형 산화물 반도체 층, p형 산화물 반도체 층, 및 제2 전극이 차례로 적층되도록 형성되었다. 제1 전극은 백금으로 형성되었고, n형 산화물 반도체 층은 티타늄 산화물로 형성되었고, p형 산화물 반도체 층은 니켈 산화물로 형성되었고, 그리고 제2 전극은 은으로 형성되었다. n형 산화물 반도체 층의 두께는 약 5nm였고, p형 산화물 반도체 층의 두께는 약 15nm였다.
도 4를 참조하면, 본 발명의 실험예에 따른 문턱 스위칭 소자는 동작 전류가 약 100μA일 때에도 문턱 스위칭 소자로서 동작함을 확인할 수 있다.
도 5a는 비교예에 따른 문턱 스위칭 소자의 저항 특성을 나타내는 그래프이다.
비교예에 따른 문턱 스위칭 소자는 차례로 적층된 제1 전극, 스위칭 층, 및 제2 전극을 갖도록 형성되었다. 제1 전극은 백금으로 형성되었고, 스위칭 층은 티타늄 산화물로 형성되었고, 그리고 제2 전극은 은으로 형성되었다. 스위칭 층의 두께는 약 5nm였다.
비교예에 따른 문턱 스위칭 소자에 각각 약 100nA, 약 1μA, 약 10μA, 및 약 100μA의 전류가 흐르도록 동작 전압을 인가한 후, 상기 동작 전압의 인가를 중단하였다. 그 후, 문턱 전압보다 낮은 약 0.1V의 전압을 비교예에 따른 문턱 스위칭 소자에 다시 인가하여 문턱 스위칭 소자의 저항을 측정하였다.
도 5a를 참조하면, 각각 약 100nA, 약 1μA, 및 약 10μA의 전류가 흐른 후에, 비교예에 따른 문턱 스위칭 소자는 여전히 높은 저항을 가짐을 확인할 수 있다. 이는, 비교예에 따른 문턱 스위칭 소자에 각각 약 100nA, 약 1μA, 및 약 10μA의 전류를 흘린 후 상기 동작 전압의 인가를 중단하면, 상기 동작 전압에 의해 형성되었던 전도성 필라멘트가 자발적으로 끊어짐을 의미한다.
이와 달리, 약 100μA의 전류가 흐른 후에는, 비교예에 따른 문턱 스위칭 소자의 저항이 크게 낮아짐을 확인할 수 있다. 이는, 비교예에 따른 문턱 스위칭 소자에 약 100μA의 전류를 흘린 후 상기 동작 전압의 인가를 중단하더라도, 상기 동작 전압에 의해 형성된 전도성 필라멘트가 자발적으로 끊어지지 않음을 의미한다.
결론적으로, 비교예에 따른 문턱 스위칭 소자는 약 100nA, 약 1μA, 또는 약 10μA의 동작 전류에서는 문턱 스위칭 소자로서 기능하나, 약 100μA의 동작 전류에서는 비휘발성 메모리 소자로서 기능함을 확인할 수 있다.
도 5b는 본 발명의 실험예에 따른 문턱 스위칭 소자의 저항 특성을 나타내는 그래프이다.
본 발명의 실험예에 따른 문턱 스위칭 소자는 도 4에서의 실험예와 동일하게 형성되었다.
본 발명의 실험예에 따른 문턱 스위칭 소자에 각각 약 100nA, 약 1μA, 약 10μA, 및 약 100μA의 전류가 흐르도록 동작 전압을 인가한 후, 상기 동작 전압의 인가를 중단하였다. 그 후, 문턱 전압보다 낮은 약 0.1V의 전압을 본 발명의 실험예에 따른 문턱 스위칭 소자에 다시 인가하여 문턱 스위칭 소자의 저항을 측정하였다.
도 5b를 참조하면, 각각 약 100nA, 약 1μA, 약 10μA, 및 약 100μA의 전류가 흐른 후에, 본 발명의 실험예에 따른 문턱 스위칭 소자는 여전히 높은 저항을 가짐을 확인할 수 있다. 이는, 본 발명의 실험예에 따른 문턱 스위칭 소자에 각각 약 100nA, 약 1μA, 약 10μA, 및 약 100μA의 전류를 흘린 후 상기 동작 전압의 인가를 중단하면, 상기 동작 전압에 의해 형성되었던 전도성 필라멘트가 자발적으로 끊어짐을 의미한다.
즉, 비교예에 따른 문턱 스위칭 소자와 달리, 본 발명의 실험예에 따른 문턱 스위칭 소자는 약 100μA의 동작 전류에서도 문턱 스위칭 소자로서 기능함을 확인할 수 있다.
도 6a 및 도 6b는 본 발명의 실시예들에 따른 문턱 스위칭 소자를 나타내는 단면도들이다.
도 6a 및 도 6b를 참조하면, 문턱 스위칭 소자(100a 또는 100b)는 제1 전극(10), 제2 전극(20), 및 스위칭 층(35)을 포함할 수 있다.
제1 전극(10) 및 제2 전극(20)은 도 1a 및 도 1b를 참조하여 설명한 바와 실질적으로 동일할 수 있다. 설명의 간소화를 위하여, 제1 전극(10) 및 제2 전극(20)에 대한 구체적인 설명은 생략한다.
스위칭 층(35)은 제1 전극(10)과 제2 전극(20) 사이에 개재될 수 있다. 스위칭 층(35)을 강유전 물질을 포함할 수 있다. 예를 들어, 스위칭 층(35)은 납 지르코네이트 티타네이트(lead zirconate titanate; PZT), 스트론튬 비스무트 탄탈레이트(strontium bismuth tantalate; SBT), 하프늄 산화물, 또는 지르코늄 산화물 중에서 적어도 하나를 포함할 수 있다. 스위칭 층(35)이 하프늄 산화물 또는 지르코늄 산화물을 포함하는 경우, 스위칭 층(35)은 불순물로 도핑될 수 있다. 상기 불순물은, 예를 들어, 실리콘(Si), 알루미늄(Al), 게르마늄(Ge), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 나이오븀(Nb), 이트륨(Y), 또는 바륨(Ba), 티타늄(Ti) 중에서 적어도 하나를 포함할 수 있다.
스위칭 층(35)은 내부 전기장(IF)을 포함할 수 있다. 내부 전기장(IF)은 상기 강자성 물질의 자발 분극(spontaneous polarization)으로 인한 것일 수 있다. 예를 들어, 스위칭 층(35)에 일정 크기 이상의 외부 전기장이 가해지면, 상기 강자성 물질이 자발 분극을 가질 수 있고, 그로 인해 스위칭 층(35) 내에 내부 전기장(IF)이 형성될 수 있다. 이러한 자발 분극 및 내부 전기장(IF)은 상기 외부 전기장이 제거되더라도 유지될 수 있다.
몇몇 실시예들에 따르면, 도 6a에 도시된 바와 같이, 내부 전기장(IF)은 제1 전극(10)에서 제2 전극(20)을 향하는 방향을 가질 수 있다. 예를 들어, 스위칭 층(35)에 제2 전극(20)에서 제1 전극(10)을 향하는 외부 전기장이 가해질 수 있다. 이에 따라, 상기 강자성 물질이 제1 전극(10)에서 제2 전극(20)을 향하는 방향의 자발 분극을 가질 수 있고, 상기 자발 분극으로 인해 스위치 층(35) 내에 제1 전극(10)에서 제2 전극(20)을 향하는 방향의 내부 전기장(IF)이 형성될 수 있다. 상기 외부 전기장은 제1 및 제2 전극들(10, 20)을 통해 스위칭 층(35)에 가해질 수 있다. 상기 자발 분극 및 내부 전기장(IF)은 상기 외부 전기장이 제거되어도 유지될 수 있다.
다른 실시예들에 다르면, 도 6b에 도시된 바와 같이, 내부 전기장(IF)은 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 가질 수 있다. 예를 들어, 스위칭 층(35)에 제1 전극(10)에서 제2 전극(20)을 향하는 외부 전기장이 가해질 수 있다. 이에 따라, 상기 강자성 물질이 제2 전극(20)에서 제1 전극(10)을 향하는 방향의 자발 분극을 가질 수 있고, 상기 자발 분극으로 인해 스위치 층(35) 내에 제2 전극(20)에서 제1 전극(10)을 향하는 방향의 내부 전기장(IF)이 형성될 수 있다. 상기 외부 전기장은 제1 및 제2 전극들(10, 20)을 통해 스위칭 층(35)에 가해질 수 있다. 상기 자발 분극 및 내부 전기장(IF)은 상기 외부 전기장이 제거되어도 유지될 수 있다.
제1 전극(10)과 제2 전극(20) 사이에 문턱 전압 이상의 동작 전압이 가해지면, 스위칭 층(30) 내에 제1 전극(10)과 제2 전극(20)을 연결하는 전도성 필라멘트(미도시)가 형성될 수 있다. 이에 따라, 문턱 스위칭 소자(101a 또는 101b)는 턴-온 상태(혹은, 저저항 상태)가 될 수 있다.
제1 전극(10)과 제2 전극(20) 사이에 상기 문턱 전압 이하의 전압이 가해지면, 상기 전도성 필라멘트는 끊어질 수 있다. 예를 들어, 상기 동작 전압의 인가가 중단되면 상기 전도성 필라멘트는 끊어질 수 있다. 이에 따라, 문턱 스위칭 소자(100a 또는 100b)는 턴-오프 상태(혹은, 고저항 상태)가 될 수 있다.
내부 전기장(IF)은 문턱 스위칭 소자(101a 또는 101b)가 상기 턴-온 상태에서 상기 턴-오프 상태로 스위치되는 것을 도울 수 있다. 다시 말해, 내부 전기장(IF)은 상기 전도성 필라멘트가 끊어지는 것(혹은, 분해되는 것)을 촉진할 수 있다. 이에 따라, 본 발명의 실시예들에 따른 문턱 스위칭 소자(101a 또는 101b)는 보다 높은 동작 전류(즉, 턴-온 상태에서 문턱 스위칭 소자(101a 또는 101b)를 흐르는 전류) 및 보다 빠른 완화 속도(즉, 턴-온 상태에서 턴-오프 상태로 스위치되는 속도)를 가질 수 있다.
이러한 본 발명의 효과는 도 2a 내지 도 2c 또는 도 3a 내지 도 3c를 참조하여 설명한 바와 실질적으로 동일할 수 있다. 일 예로, 도 6a에 도시된 바와 같이 내부 전기장(IF)이 제1 전극(10)에서 제2 전극(20)을 향하는 방향을 갖는 경우, 문턱 스위칭 소자(101a)의 동작은 도 2a 내지 도 2c를 참조하여 설명한 문턱 스위칭 소자(100a)의 동작과 실질적으로 동일할 수 있다. 다른 예로, 도 6b에 도시된 바와 같이 내부 전기장(IF)이 제2 전극(20)에서 제1 전극(10)을 향하는 방향을 갖는 경우, 문턱 스위칭 소자(101b)의 동작은 도 3a 내지 도 3c를 참조하여 설명한 문턱 스위칭 소자(100b)의 동작과 실질적으로 동일할 수 있다.
도 7은 본 발명의 실시예들에 따른 전자 장치를 나타내는 단면도이다.
도 7을 참조하면, 전자 장치(200)는 트랜지스터(TR) 및 적어도 하나의 문턱 스위칭 소자(100)를 포함할 수 있다. 문턱 스위칭 소자(100)는 도 1a 및 도 1b를 참조하여 설명한 문턱 스위칭 소자(100a 또는 100b) 또는 도 6a 및 도 6b를 참조하여 설명한 문턱 스위칭 소자(101a 또는 101b)일 수 있다.
트랜지스터(TR)는 반도체 층(SL), 게이트 전극(GE), 게이트 절연막(GI), 및 한 쌍의 소스/드레인 영역들(SD)을 포함할 수 있다.
반도체 층(SL)은 제1 도전형의 반도체 물질을 포함할 수 있다. 예를 들어, 반도체 층(SL)은 실리콘, 저마늄, 및/또는 실리콘-저마늄을 포함할 수 있다.
반도체 층(SL) 상에 게이트 전극(GE)이 배치될 수 있다. 게이트 전극(GE)은 도전 물질을 포함할 수 있다. 예를 들어, 게이트 전극(GE)은 불순물로 도핑된 반도체(일 예로, 도핑된 실리콘, 도핑된 저마늄, 도핑된 실리콘-저마늄), 금속(일 예로, 티타늄, 탄탈늄, 텅스텐), 및/또는 도전성 금속 질화물(일 예로, 티타늄 질화물, 탄탈륨 질화물)을 포함할 수 있다.
반도체 층(SL)과 게이트 전극(GE) 사이에 게이트 절연막(GI)이 배치될 수 있다. 게이트 절연막(GI)은 절연 물질을 포함할 수 있다. 예를 들어, 게이트 절연막(GI)은 실리콘 산화물, 실리콘 질화물, 실리콘 산질화물, 및/또는 금속 산화물을 포함할 수 있다.
게이트 전극(GE)의 양 측의 반도체 층(SL) 내에 한 쌍의 소스/드레인 영역들(SD)이 배치될 수 있다. 소스/드레인 영역들(SD)은 제1 도전형과 다른 제2 도전형을 가질 수 있다. 소스/드레인 영역들(SD) 사이의 반도체 층(SL)은 채널 영역(CH)으로 정의될 수 있다.
몇몇 실시예들에 따르면, 도 7에 도시된 바와 같이, 문턱 스위칭 소자(100)는 소스/드레인 영역들(SD) 중 어느 하나에 전기적으로 연결될 수 있다. 구체적으로, 문턱 스위칭 소자(100)의 제1 전극 또는 제2 전극이 소스/드레인 영역들(SD) 중 어느 하나에 전기적으로 연결될 수 있다.
다른 실시예들에 따르면, 도 7에 도시된 바와 달리, 한 쌍의 문턱 스위칭 소자들(100)이 제공될 수 있다. 이러한 실시예에서, 문턱 스위칭 소자들(100)은 소스/드레인 영역들(SD)에 각각 전기적으로 연결될 수 있다.
트랜지스터(TR)의 소스/드레인 영역들(SD) 중 적어도 하나에 전기적으로 연결되는 적어도 하나의 문턱 스위칭 소자(100)를 제공함으로써, 가파른 문턱 전압 이하 기울기와 높은 온/오프 전류 비율을 갖는 전자 장치(200)가 구현될 수 있다.
이상, 첨부된 도면을 참조하여 본 발명의 실시예를 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예에는 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
Claims (20)
- 서로 이격하는 제1 전극 및 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 배치되는 스위칭 층을 포함하되,
상기 스위칭 층은 p형 산화물 반도체 층 및 n형 산화물 반도체 층을 포함하는 문턱 스위칭 소자.
- 제1 항에 있어서,
상기 p형 산화물 반도체 층 및 상기 n형 산화물 반도체 층은 서로 접하는 문턱 스위칭 소자.
- 제1 항에 있어서,
상기 스위칭 층은 결핍 영역(depletion region)을 포함하는 문턱 스위칭 소자.
- 제1 항에 있어서,
상기 p형 산화물 반도체 층은 니켈 산화물, 구리 산화물, 구리-알루미늄 산화물, 아연-로듐 산화물, 또는 스트론튬-구리 산화물 중에서 적어도 하나를 포함하고,
상기 n형 산화물 반도체 층은 티타늄 산화물, 아연 산화물, 탄탈럼 산화물, 하프늄 산화물, 텅스텐 산화물, 알루미늄 산화물, 니오븀 산화물, 지르코늄 산화물, 인듐 산화물, 인듐-아연 산화물, 갈륨-인듐-아연 산화물, 주석 산화물, 또는 인듐-주석 산화물 중에서 적어도 하나를 포함하는 문턱 스위칭 소자.
- 제1 항에 있어서,
상기 제2 전극은 은 또는 구리 중에서 적어도 하나를 포함하는 문턱 스위칭 소자.
- 제5 항에 있어서,
상기 제2 전극은 텔루륨을 더 포함하는 문턱 스위칭 소자.
- 제5 항에 있어서,
상기 제1 전극은 백금, 텅스텐, 루테늄, 티타늄 질화물, 또는 탄탈럼 질화물 중에서 적어도 하나를 포함하는 문턱 스위칭 소자.
- 제1 항에 있어서,
상기 제1 전극과 상기 제2 전극 사이에 문턱 전압 이상의 동작 전압이 인가되면 저저항 상태가 되고,
상기 동작 전압의 인가가 중단되면 고저항 상태가 되는 문턱 스위칭 소자.
- 제1 항에 있어서,
상기 제1 전극과 상기 제2 전극 사이에 문턱 전압 이상의 동작 전압이 인가되면, 상기 스위칭 층 내에 상기 제1 전극과 상기 제2 전극을 연결하는 전도성 필라멘트가 형성되고,
상기 동작 전압의 인가가 중단되면 상기 전도성 필라멘트는 끊어지는 문턱 스위칭 소자.
- 서로 이격하는 제1 전극 및 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 배치되는 스위칭 층을 포함하되,
상기 스위칭 층은 강유전 물질을 포함하는 문턱 스위칭 소자.
- 제10 항에 있어서,
상기 스위칭 층은 상기 강유전 물질의 자발 분극으로 인한 내부 전기장을 포함하는 문턱 스위칭 소자.
- 제11 항에 있어서,
상기 내부 전기장은 상기 제1 전극에서 상기 제2 전극을 향하는 방향 또는 상기 제2 전극에서 상기 제1 전극을 향하는 방향을 갖는 문턱 스위칭 소자.
- 제10 항에 있어서,
상기 스위칭 층은 납 지르코네이트 티타네이트, 스트론튬 비스무트 탄탈레이트, 하프늄 산화물, 또는 지르코늄 산화물 중에서 적어도 하나를 포함하는 문턱 스위칭 소자.
- 제10 항에 있어서,
상기 제1 전극과 상기 제2 전극 사이에 문턱 전압 이상의 동작 전압이 인가되면 저저항 상태가 되고,
상기 동작 전압의 인가가 중단되면 고저항 상태가 되는 문턱 스위칭 소자.
- 서로 이격하는 제1 전극 및 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 배치되는 스위칭 층을 포함하되,
상기 스위칭 층은 내부 전기장을 포함하는 문턱 스위칭 소자.
- 제15 항에 있어서,
상기 내부 전기장은 상기 제1 전극에서 상기 제2 전극을 향하는 방향을 갖는 문턱 스위칭 소자.
- 제15 항에 있어서,
상기 내부 전기장은 상기 제2 전극에서 상기 제1 전극을 향하는 방향을 갖는 문턱 스위칭 소자.
- 제15 항에 있어서,
상기 스위칭 층은 서로 접하는 p형 산화물 반도체 층 및 n형 산화물 반도체 층을 포함하는 문턱 스위칭 소자.
- 제18 항에 있어서,
상기 p형 산화물 반도체 층과 상기 n형 산화물 반도체 층의 계면 부근에 공핍 영역이 형성되되,
상기 내부 전기장은 상기 공핍 영역에 포함되는 문턱 스위칭 소자.
- 제15 항에 있어서,
상기 스위칭 층은 강유전 물질을 포함하는 문턱 스위칭 소자.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170075082A KR20180136304A (ko) | 2017-06-14 | 2017-06-14 | 문턱 스위칭 소자 |
US15/687,962 US20180366591A1 (en) | 2017-06-14 | 2017-08-28 | Threshold switching device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020170075082A KR20180136304A (ko) | 2017-06-14 | 2017-06-14 | 문턱 스위칭 소자 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20180136304A true KR20180136304A (ko) | 2018-12-24 |
Family
ID=64658319
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170075082A KR20180136304A (ko) | 2017-06-14 | 2017-06-14 | 문턱 스위칭 소자 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20180366591A1 (ko) |
KR (1) | KR20180136304A (ko) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11189717B2 (en) * | 2019-01-10 | 2021-11-30 | Arizona Board Of Regents On Behalf Of Arizona State University | Steep slope transistors with threshold switching devices |
US11283018B2 (en) * | 2019-03-27 | 2022-03-22 | Tetramem Inc. | RRAM-based crossbar array circuits with increased temperature stability for analog computing |
CN111613662B (zh) * | 2020-05-27 | 2021-06-11 | 东北大学 | 偏压诱导共线反铁磁材料产生自旋极化电流的调控方法 |
US11411125B2 (en) * | 2020-10-06 | 2022-08-09 | Applied Materials, Inc. | Ferroelectric-assisted tunneling selector device |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5106031B2 (ja) * | 2007-10-12 | 2012-12-26 | パナソニック株式会社 | 半導体記憶装置及びその製造方法並びに半導体スイッチング装置 |
KR20100049824A (ko) * | 2008-11-04 | 2010-05-13 | 삼성전자주식회사 | 저항 메모리 장치 및 그 제조 방법. |
US8687401B2 (en) * | 2010-01-28 | 2014-04-01 | Fudan University | Ferro-resistive random access memory (Ferro-RRAM), operation method and manufacturing method thereof |
US20130182311A1 (en) * | 2012-01-12 | 2013-07-18 | Visitret Displays Ou | Electrophoretic display |
US9112145B1 (en) * | 2013-01-31 | 2015-08-18 | Crossbar, Inc. | Rectified switching of two-terminal memory via real time filament formation |
US9425237B2 (en) * | 2014-03-11 | 2016-08-23 | Crossbar, Inc. | Selector device for two-terminal memory |
US10043565B2 (en) * | 2014-03-14 | 2018-08-07 | The United States Of America As Represented By The Secretary Of The Army | Ferroelectric mechanical memory based on remanent displacement and method |
-
2017
- 2017-06-14 KR KR1020170075082A patent/KR20180136304A/ko not_active Application Discontinuation
- 2017-08-28 US US15/687,962 patent/US20180366591A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
US20180366591A1 (en) | 2018-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10224370B2 (en) | Device switching using layered device structure | |
US11342356B2 (en) | Memory cells comprising a programmable field effect transistor having a reversibly programmable gate insulator | |
KR20180136304A (ko) | 문턱 스위칭 소자 | |
TWI723356B (zh) | 半導體裝置、其形成方法及應用 | |
KR101791713B1 (ko) | 전계 효과 트랜지스터 및 반도체 장치 | |
US10269868B1 (en) | Semiconductor structure and the method of making the same | |
US8822966B2 (en) | Nonvolatile memory device | |
US10541272B2 (en) | Steep-switch vertical field effect transistor | |
KR102379420B1 (ko) | 낮은 포밍 전압을 갖는 저항성 메모리 셀 | |
US20130009128A1 (en) | Nanoscale switching device | |
CN113644079B (zh) | 铁电组件和包括该铁电组件的交叉点阵列器件 | |
KR20210025464A (ko) | 메모리 셀 신뢰성을 개선하기 위한 데이터 저장 구조물 | |
US20240079496A1 (en) | Negative differential resistance device | |
US9299783B2 (en) | Transistor and method of operating same | |
KR20130111754A (ko) | 가변 저항체 및 이를 이용한 전자 소자들 | |
KR101798766B1 (ko) | 가파른 문턱 전압 이하 기울기를 가지는 문턱 스위칭 소자 및 이를 포함하는 금속 산화물 저항 변화 소자 | |
US12108691B2 (en) | Manufacturing method of memory device | |
US20230354620A1 (en) | Resistive random-access memory using stacked technology | |
US11856874B2 (en) | Semiconductor structure and manufacturing method thereof | |
US20120309188A1 (en) | Method to improve adhesion for a silver filled oxide via for a non-volatile memory device | |
US20230135098A1 (en) | Resistive random access memory and manufacturing method thereof | |
US9153623B1 (en) | Thin film transistor steering element for a non-volatile memory device | |
KR20220169503A (ko) | 반도체 소자 | |
KR20240043404A (ko) | 임계 스위칭 소자를 구비하는 2차원 반도체 소자 | |
KR20180045477A (ko) | 스위칭 제어 특성과 가파른 문턱 전압 이하 기울기를 갖는 문턱 스위칭 소자, 이의 제조방법 및 이를 포함하는 금속 산화물 저항 변화 소자 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |