KR20180043789A - 완전 세라믹 마이크로캡슐화된 핵연료의 제조 방법 - Google Patents
완전 세라믹 마이크로캡슐화된 핵연료의 제조 방법 Download PDFInfo
- Publication number
- KR20180043789A KR20180043789A KR1020187005090A KR20187005090A KR20180043789A KR 20180043789 A KR20180043789 A KR 20180043789A KR 1020187005090 A KR1020187005090 A KR 1020187005090A KR 20187005090 A KR20187005090 A KR 20187005090A KR 20180043789 A KR20180043789 A KR 20180043789A
- Authority
- KR
- South Korea
- Prior art keywords
- fuel
- ceramic
- mixture
- die
- ceramic powder
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 72
- 239000000919 ceramic Substances 0.000 title claims abstract description 71
- 238000004519 manufacturing process Methods 0.000 title abstract description 16
- 239000003758 nuclear fuel Substances 0.000 title description 4
- 239000000446 fuel Substances 0.000 claims abstract description 138
- 239000002245 particle Substances 0.000 claims abstract description 39
- 239000000843 powder Substances 0.000 claims abstract description 34
- 239000000203 mixture Substances 0.000 claims abstract description 24
- 238000005245 sintering Methods 0.000 claims abstract description 22
- 238000002156 mixing Methods 0.000 claims abstract description 8
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 35
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 30
- 230000008569 process Effects 0.000 claims description 21
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 14
- 229910002804 graphite Inorganic materials 0.000 claims description 11
- 239000010439 graphite Substances 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 9
- 238000012545 processing Methods 0.000 claims description 5
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 claims description 4
- 229910001093 Zr alloy Inorganic materials 0.000 abstract description 9
- 239000003094 microcapsule Substances 0.000 abstract description 3
- 239000011159 matrix material Substances 0.000 description 27
- 230000004992 fission Effects 0.000 description 19
- 239000000047 product Substances 0.000 description 13
- 229910000439 uranium oxide Inorganic materials 0.000 description 10
- 229910052770 Uranium Inorganic materials 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 239000002296 pyrolytic carbon Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- JFALSRSLKYAFGM-UHFFFAOYSA-N uranium(0) Chemical compound [U] JFALSRSLKYAFGM-UHFFFAOYSA-N 0.000 description 6
- 238000000227 grinding Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000007731 hot pressing Methods 0.000 description 4
- 239000002699 waste material Substances 0.000 description 4
- 229910026551 ZrC Inorganic materials 0.000 description 3
- OTCHGXYCWNXDOA-UHFFFAOYSA-N [C].[Zr] Chemical compound [C].[Zr] OTCHGXYCWNXDOA-UHFFFAOYSA-N 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 239000002826 coolant Substances 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 239000011858 nanopowder Substances 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- XLYOFNOQVPJJNP-ZSJDYOACSA-N Heavy water Chemical compound [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005253 cladding Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 238000002490 spark plasma sintering Methods 0.000 description 2
- 239000002915 spent fuel radioactive waste Substances 0.000 description 2
- ZSLUVFAKFWKJRC-IGMARMGPSA-N 232Th Chemical compound [232Th] ZSLUVFAKFWKJRC-IGMARMGPSA-N 0.000 description 1
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910052778 Plutonium Inorganic materials 0.000 description 1
- 229910052776 Thorium Inorganic materials 0.000 description 1
- 229910052768 actinide Inorganic materials 0.000 description 1
- 150000001255 actinides Chemical class 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 229910052805 deuterium Inorganic materials 0.000 description 1
- FCTBKIHDJGHPPO-UHFFFAOYSA-N dioxouranium Chemical compound O=[U]=O FCTBKIHDJGHPPO-UHFFFAOYSA-N 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- OYEHPCDNVJXUIW-UHFFFAOYSA-N plutonium atom Chemical compound [Pu] OYEHPCDNVJXUIW-UHFFFAOYSA-N 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000012797 qualification Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
- G21C3/62—Ceramic fuel
- G21C3/623—Oxide fuels
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/5158—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on actinide compounds
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/56—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
- C04B35/565—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
- C04B35/62831—Carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
- C04B35/62831—Carbides
- C04B35/62834—Silicon carbide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62802—Powder coating materials
- C04B35/62828—Non-oxide ceramics
- C04B35/62839—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62894—Coating the powders or the macroscopic reinforcing agents with more than one coating layer
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
- C04B35/62897—Coatings characterised by their thickness
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C21/00—Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
- G21C21/02—Manufacture of fuel elements or breeder elements contained in non-active casings
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C21/00—Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
- G21C21/02—Manufacture of fuel elements or breeder elements contained in non-active casings
- G21C21/04—Manufacture of fuel elements or breeder elements contained in non-active casings by vibrational compaction or tamping of fuel in the jacket
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/06—Casings; Jackets
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/16—Details of the construction within the casing
- G21C3/20—Details of the construction within the casing with coating on fuel or on inside of casing; with non-active interlayer between casing and active material with multiple casings or multiple active layers
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
- G21C3/62—Ceramic fuel
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/42—Selection of substances for use as reactor fuel
- G21C3/58—Solid reactor fuel Pellets made of fissile material
- G21C3/62—Ceramic fuel
- G21C3/626—Coated fuel particles
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3217—Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3225—Yttrium oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/32—Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
- C04B2235/3224—Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
- C04B2235/3227—Lanthanum oxide or oxide-forming salts thereof
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5409—Particle size related information expressed by specific surface values
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5445—Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5454—Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/60—Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
- C04B2235/602—Making the green bodies or pre-forms by moulding
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/77—Density
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/74—Physical characteristics
- C04B2235/79—Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/94—Products characterised by their shape
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C3/00—Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
- G21C3/02—Fuel elements
- G21C3/04—Constructional details
- G21C3/045—Pellets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
-
- Y02E30/40—
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
- Metallurgy (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
현재, 상업적으로 선택되는 UO2지르칼로이 연료는 확립되고 간단한 제조 공정 때문에 경제적이다. 그러나, 시스템 안정성을 향상시킬 수 있는 UO2지르칼로이의 대안이 필요하다. 잠재적으로 본질적으로 안전한 연료이고 UO2지르칼로이 시스템보다 개선 된, 완전 세라믹 마이크로캡슐(FCM) 연료 시스템은 이를 생산하는 알려진 방법 때문에 엄두를 못 낼 정도로 비싸다. 본 명세서에서는 FCM 연료와 동일하거나 우수한 연료를 지속적으로 대량생산하는 새로운 생산 경로 및 장치를 개시하는데, 이는 복수의 삼각구조 등방성 연료입자를 제공하는 단계, 혼합물을 형성하기 위하여 복수의 삼각구조 등방성 연료입자에 세라믹 분말을 혼합하는 단계; 혼합물을 다이에 배치하는 단계; 다이에 전류를 인가하여 직류소결에 의해 연료 요소로 혼합물을 소결시키는 단계를 포함한다.
Description
본 발명은 개선된 핵분열 연료를 형성하는 개선된 방법에 관한 것이다. 보다 구체적으로, 본 발명은 사고에 견딜 수 있는 완전 세라믹 마이크로캡슐화된 연료의 대량 생산 방법에 관한 것이다.
본 출원은 2015년 7월 25일자로 출원된 미국 가출원 제 62/196,975호에 대한 우선권을 주장하며, 그 내용 전체가 본 명세서에 참고로 인용된다.
하기의 배경기술에 대한 설명에서, 특정 구조 및/또는 방법을 참조한다. 그러나, 하기의 참조는 이러한 구조 및/또는 방법이 선행 기술을 구성한다는 것을 인정하는 것으로 해석되어서는 안 된다. 출원인은 그러한 구조 및/또는 방법이 선행 기술로서의 자격을 갖지 않음을 증명할 권리를 명백하게 갖는다.
근본적으로 모든 상업용 원자로가 초기 핵분열 물질로 우라늄을 사용하지만, 상업용 핵연료는 특정 원자로 유형에 따라 구체적인 여러 형태가 될 수 있다. 가장 일반적인 연료 유형은, 경수로(LWR)의 얇은 지르코늄 합금 클래딩(cladding) 내에 수용된 우라늄 옥사이드(UO2) 펠렛(pellet)이다. 이 연료 유형은 LWR의 두 변종(variant)인, 가압 경수로(PWR) 및 비등수형 경수로(BWR) 구성에 사용된다. 이 UO2 펠렛은 전통적인 세라믹 공정 경로를 통해 대량 생산된다. 일단 적절한 순도 및 농축도의 분말이 얻어지면, 가압 후 수소 존재 하에 소결되고, 센터리스 연삭(centerless grinding)에 의해 최종 치수로 얻어진다. 출발 분말은 자연 농축, 재생 우라늄(RU), 또는 혼합 산화물(MOX)을 포함할 수 있지만, CANDU(캐나다 중수소 우라늄) 중수감속형 원자로 연료의 생산을 위해 지르칼로이 클래드(clad) 내의 UO2에 도달하는 매우 유사한 공정이 뒤따른다. CANDU와 LWR은 현존하는 국제 원자력 발전소의 대다수를 차지하고, 이로써 지르칼로이 클래드 내의 UO2를 지배적인 핵연료 시스템으로 만든다. 이 연료의 지르칼로이 클래드는 LWR 및 CANDU 시스템의 주 핵분열 가스 장벽이다.
프리즘(prismatic) 또는 페블 베드(pebble-bed) 구성에 관계없이 중요한 상업용 원자력 플랫폼이 될 수 있는 고온 가스 냉각 원자로(HTGR)는, 핵분열 생산물 보존의 주 장벽으로 특별히 설계된 연료를 사용한다. 이는 SiC가 압력 용기가 되도록, UO2(또는 다른) 연료 커널(kernel) 주위에 있는 탄소, 그라파이트 및 SiC의 엔지니어링(engineering) 층을 통해 달성된다. TRISO(삼각구조 등방성) 연료로도 알려진 이 구조는, 직경이 ~1mm정도 되는 많은 작은 구체(sphere)와 결합된 후 호스트 그래파이트 매트릭스(host graphite matrix)로 압축되고, 적은 수의 상업용 원자로에 사용되어 왔다. 이러한 연료의 주요한 안전상 장점은, 특정 사고 조건 하에서 냉각제와 상호 작용할 수 있는 지르칼로이 클래드의 제거이다.
최근에는, TRISO가 HTGR의 경우와 같이 그라파이트로 압축되기보다는, 강하고 불투과성(impermeable)인 실리콘 카바이드(SiC) 매트릭스 내에서 압축되는 연료 형태가 개발되었다. 이 비교적 새로운 TRISO 기반의 SiC 매트릭스 연료는 완전 세라믹 마이크로캡슐화된(FCM) 연료라고 불린다. 이러한 SiC 매트릭스 내에서 복수의 TRISO 입자를 혼합하면 핵분열 생산물 방출에 대한 두 개의 장벽이 되어, LWR 표준 UO2-지르칼로이 또는 HTGR-표준 TRISO-그라파이트 컴팩트와 비교하여 핵연료의 안정성 측면이 크게 향상된다.
HTGR TRISO및 FCM은 틀림없이 핵 시스템에 안전상의 이점을 전달하지만, TRISO 그 자체와 FCM이 처리되는 방법론은 UO2 공정에 비해 복잡하기 때문에, 연료가 약간 비싸지거나 FCM의 경우에는 잠정적으로 대량생산에 부적합해지는 결과에 이른다. 현재, FCM 공정에 요구되는 상대적으로 높은 온도 및 압력으로 인해, 열간 프레싱(hot pressing)이 선호되는 방법이었는데, 이것은 핵연료에 요구되는 대량생산 레벨에 도움되는 공정이 아니다. 게다가, 연료의 이종 성질을 감안할 때, UO2 및 현재의 FCM 공정에 공통적인 센터리스 연삭 단계는, TRISO 커널의 노출이 바람직하지 않다는 점에서 문제가 있다. 따라서, 완전 세라믹 마이크로캡슐 TRISO 기반 연료의 형태로 향상된 핵분열 연료를 형성하는 개선된 방법이 여전히 필요하다.
아래에 설명된 공정으로, 완전 조밀 세라믹 내에 완전히 마이크로캡슐화된 TRISO를 포함하는 연료의 대량생산을 달성할 수 있다는 것이 밝혀졌다. 따라서, 이 공정은 핵분열 생성물 방출에 대한 두 개의 장벽을 포함하는 개선된 핵분열 연료의 대량생산을 가능하게 하여, 다른 핵분열 연료와 비교하여 핵연료의 안정성 측면을 크게 향상시킨다.
완전 조밀 세라믹 내에 완전히 마이크로캡슐화된 TRISO를 포함하는 연료의 대량생산을 달성하는 하나의 방법은, 복수의 삼각구조 등방성 연료 입자를 제공하는 단계; 혼합물을 형성하기 위하여 복수의 삼각구조 등방성 연료입자에 세라믹 분말을 혼합하는 단계; 혼합물을 다이에 배치하는 단계; 다이에 전류를 인가하여 직류소결에 의해 연료 요소로 혼합물을 소결시키는 단계를 포함한다.
상기 방법에 따른 실시예에서, 방법은 혼합물을 다이 내의 세라믹 연료 슬리브(sleeve) 내에 배치하는 단계 전에 세라믹 연료 슬리브에 혼합물을 첨가하는 단계를 더 포함한다.
상기 방법에 따른 실시예에서, 세라믹 연료 슬리브는 실리콘 카바이드(SiC)를 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 세라믹 연료 슬리브는 세라믹 분말과 동일한 조성을 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 다이는 하나보다 많은 평행 개구를 포함하고, 방법은 개구 각각에 세라믹 분말과 함께 복수의 삼각구조 등방성 연료 입자들의 혼합물을 배치하는 단계를 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 다이는 하나보다 많은 평행 개구를 포함하고, 방법은 개구 각각에 세라믹 분말과 함께 복수의 삼각구조 등방성 연료 입자들의 혼합물을 함유하는 세라믹 연료 슬리브를 배치하는 단계를 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 다이는 그라파이트를 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 연료 요소는 소결 공정 후에 정밀한 외부 부품 치수를 가지며, 정밀한 외부 부품 치수를 얻기 위해 소결 공정 후에 추가적인 공정이 발생하지 않는다.
상기 방법들 중 어느 하나에 따른 실시예에서, 세라믹 분말은 탄화 규소(SiC)를 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 세라믹 분말은 소결 첨가제를 추가로 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 소결 첨가제는 알루미나 또는 희토류 금속 산화물 또는 이들의 조합물을 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 희토류 금속 산화물은 이트리아이다.
상기 방법들 중 어느 하나에 따른 실시예에서, 세라믹 분말은 세라믹 분말의 총 중량의 10중량퍼센트 이하의 양으로 소결 첨가제를 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 연료 요소는 근사 화학량론적 SiC를 포함한다.
상기 방법들 중 어느 하나에 따른 실시예에서, 연료 요소를 형성하기 위한 총 실행시간은 1시간 미만이다.
본 발명의 실시예는 다음과 같이 도면을 참조하여 예를 들어 설명될 것이다.
도 1은 다중 연료 다이 내에서 처리되는 FCM 연료를 도시하는 개략도이다.
도 2는 직류 소결(DCS) 공정을 사용하여 압축된 대용 FCM의 결과를 나타내는 그래프이다.
도 3은 DCS에 의해 제조된 FCM 미세구조의 SEM 현미경사진이다.
도 1은 다중 연료 다이 내에서 처리되는 FCM 연료를 도시하는 개략도이다.
도 2는 직류 소결(DCS) 공정을 사용하여 압축된 대용 FCM의 결과를 나타내는 그래프이다.
도 3은 DCS에 의해 제조된 FCM 미세구조의 SEM 현미경사진이다.
다음의 구체적인 내용은, 동일한 도면 부호가 동일한 요소를 나타내는 첨부도면과 연결하여 독해될 수 있다.
도1은 다중 프레스 다이 블록에서의 FCM 연료의 형성 및 처리를 도시하는 개략도이다. 도 1에서, 미처리된 연료 요소(1)는 세라믹 매트릭스(3)와 혼합된 복수의 마이크로캡슐 연료 입자(10)를 포함한다. 복수의 마이크로캡슐화된 연료 입자(10)는 삼각구조 등방성(TRISO) 연료 입자일 수 있다. 본 명세서에서 사용된 “TRISO 연료 입자”라는 용어는 연료 커널 및 연료 커널을 둘러싸는 등방성 물질의 하나 이상의 층을 포함하는 임의의 유형의 미세 연료 입자를 지칭한다. 단지 예시로써, 연료 입자(10)는 약 1mm의 직경을 가질 수 있다.
도 1에 도시된 실시예에서, 연료 입자(10)는 그 중앙에 연료 커널(11)을 포함한다. 연료 커널은 산화물, 카바이드 또는 옥시카바이드 형태의 핵분열 물질 및/또는 핵연료 원료물질(fertile material)(예:우라늄, 플루토늄, 토륨 등)을 포함할 수 있다. 특정 실시예에서, 연료 커널(11)은 임의의 적합한 농축 수준의 저농축 우라늄(LEU)을 포함한다.
연료 요소가 폐기물 완화 및/또는 처분 목적으로 사용되는 경우, 연료 커널(11)은 사용된 연료로부터 추출되거나 다른 방식으로 재처리된 초우라늄 원소(TRU) 및/또는 핵분열 생성물을 택일적 또는 부가적으로 포함할 수 있다.
예를 들어, 연료 요소는 예컨대 경수로 또는 폐기된 핵무기에서 생성된 초우라늄 폐기물의 파괴에 사용될 수 있다. 이를 위해, 연료 요소는 경수로의 사용 후 연료 및/또는 핵무기의 코어로부터 추출된 초우라늄 원소로 형성된 연료 커널(11)을 포함할 수 있다. 특정 실시예에 따르면, 설명된 방법에 따라 형성된 연료 요소는 경수로의 연료로써 사용되어 초우라늄 폐기물을 파괴할 수 있고, 동시에 그것으로부터 전력을 생성할 수 있다.
도 1에 도시된 연료 입자(10)는 또한 연료 커널(11) 위에 코팅된 4개의 별개의 층, 즉 (1)다공성 탄소 완충층(15); (2)내부 열분해 탄소(PyC)층(14); (3)세라믹층(13); 및 (4)외부 PyC층(12)을 포함한다.
다공성 탄소 완충층(15)은 연료 커널(11)을 둘러싸고, 연료 커널(11) 밖으로 확산하는 핵분열 가스의 축적 및 연료 커널(11)이 연료 사이클 중에 겪을 수 있는 어떠한 기계적 변형도 수용하기 위한 저장소로서의 역할을 한다.
내부 PyC층(14)은 비교적 조밀한 PyC로 형성될 수 있고, 탄소 완충층(15)을 밀봉한다.
세라믹층(13)은 SiC 재료로 형성될 수 있고, 연료 커널(11)을 위한 주 핵분열 생성물 장벽 및 압력 용기로서 작용하며, 가스 및 금속 분열 생성물을 보유할 수 있다. 세라믹층(13)은 또한 연료 입자(10)의 전체적인 구조적 완전성을 제공한다.
일부 실시예에서, 세라믹층(13) 내의 SiC는 지르코늄 카바이드(ZrC) 또는 SiC 및/또는 ZrC와 유사한 특성을 갖는 임의의 다른 적절한 재료로 대체되거나 보충될 수 있다.
외부 PyC층(12)은 작동 중에 화학적 공격으로부터 세라믹층(13)을 보호하고 핵분열 생성물에 대한 추가적인 확산 경계로서 작용한다. 외부 PyC층(12)은 또한 주변 세라믹 매트릭스(3)에 결합하기 위한 기판으로써 작용할 수 있다.
연료 입자(10)의 구성 및/또는 조성은 전술한 실시예에 한정되지 않는다. 대신, 본 발명에 따른 연료 입자는, 원하는 연료 입자의 특성에 따라 하나 이상의 추가 층을 포함하거나 하나 이상의 층을 생략할 수 있음을 이해해야 한다. 예를 들어, 특정 실시예에서, 연료 입자는 매트릭스 물질과 혼합되기 전에 추가적인 세라믹층(즉, SiC층)으로 오버코팅된다.
특정 실시예에서, 세라믹 매트릭스(3)는 소결 첨가제와 혼합된 SiC 분말을 포함하고, 분말 기반 슬러리, 테이프 주조를 위한 세라믹 슬러리 또는 당업계에 공지된 임의의 다른 혼합물 유형의 형태일 수 있다. 혼합 전에, 연료 입자(10)는 적절한 표면 보호 물질로 코팅될 수 있다. SiC 분말은 1 μm 미만의 평균 크기 및/또는 20m2/g 초과의 비표면적을 가질 수 있다. 예로써, SiC 분말의 크기는 약 15nm 내지 약 51nm 범위일 수 있고, 평균 입자 크기는 약 35nm이다.
혼합 동안에 또는 혼합 전에, 예를 들어 알루미나 및 희토류 산화물(예:Y2O3)과 같은 소결 첨가제가 SiC 분말에 개별적으로 또는 조합되어 첨가될 수 있고 그리고/또는 SiC 분말 표면 상에 코팅될 수 있다. 특정 실시예에서, 소결 첨가제의 양은 10 중량퍼센트 이하, 또는 보다 특정한 실시예에서는, 6중량퍼센트 내지 10 중량퍼센트이다. 연료 입자(10)와 혼합할 때, SiC 분말을 함유하는 SiC 기반 전구체 재료는 사용되는 혼합 및/또는 제조 방법에 따라 다양한 물리적 상태(예:분말, 액체, 슬러리 등)일 수 있다.
소결 첨가제의 제한된 질량 분율을 갖는 SiC 분말의 작은 크기 또는 큰 비표면적은, 연료 입자(10)의 완전성을 보장하기에 충분한 조건에서 고결정질, 완전 밀도에 가까운, SiC 매트릭스의 형성을 가능하게 할 수 있다. SiC매트릭스는 정상 작동 및 사고 온도에서 방출될 수 있고 원자로의 냉각제를 오염시킬 수 있는 핵분열 생성물에 추가적인 장벽을 제공한다. SiC매트릭스는 또한 폐기 후 핵분열 생성물을 담는데 도움이 된다.
예를 들어, 도 3은 본 명세서에 설명된 방법들과 일치하는 방법으로 제조된 연료 요소(20)를 현미경으로 본 부분 단면도를 도시한다. 도면으로부터 알 수 있는 바와 같이, 연료 요소(20)는 연료 입자(10)와 세라믹 매트릭스(3) 사이에 매우 깨끗한 계면을 갖는다. 또한, 세라믹 매트릭스(3)는 매우 낮은 다공성(예를 들면, 겨우 약3-4°/0의 폐쇄 미세다공성)을 가지고, 연료 입자(10)로부터 방출되는 핵분열 생성물/악티나이드 확산 및 기타 방사능에 대한 보조 장벽으로써 작용하는 기체 불투과성 장벽을 형성한다.
또한, 세라믹 매트릭스(3)는 헬륨에 대해 매우 낮은 투과성(예를 들어, 약10-10 내지 10-11 m2/s)을 가지며, 이것은 그라파이트의 투과성보다 상당히 낮아서 헬륨을 냉각제로 사용하는 가스 냉각 원자로에 특히 적합하다. 세라믹 매트릭스(3)의 낮은 투과성은 또한 핵분열 생성물 가스의 보유를 보장할 수 있다.
또한, 본원에 기재된 방법에 따라 제조된 연료 요소(1)는 UO2 연료 요소의 것보다 상당히 높은 열전도율을 갖는다. 더 높은 열전도율은 많은 이로운 효과를 가지고 있다. 예를 들어, 더 높은 열전도율은 보다 높은 온도에서 원자로를 작동시키는 것을 가능하게 한다. 더 높은 온도에서 원자로를 작동시키는 것은 효율 및 전력밀도를 증가시켜서 원자로 크기를 감소시킬 수 있다. 높은 열전도율은 또한 전체적인 연료 완전성을 유지하면서 연료 요소의 높은 연소도를 가능하게 한다. 게다가, 위에서 간단히 언급했듯이, 높은 연소도는 전체 폐기물 양을 줄이는 것 뿐만 아니라 가능한 핵 확산 및 전용 기회를 제한할 수 있다. 또한 높은 열전도율을 갖는 연료는 냉각제 손실사고(LOCA)와 같은 사고 조건동안 덜 심각한 온도 과도 현상을 겪을 수 있다. 경수로의 작동 조건에서, TRISO 연료 입자 및 SiC 매트릭스 외부의 핵분열 생성물(기체 포함)의 이동은 일어나지 않을 것으로 예상된다.
또한, 세라믹 매트릭스(3)는 그라파이트 또는 UO2보다 높은 파괴 강도, 높은 조사(irradiation) 내성 및 낮은 조사 팽창을 갖는다. 보다 나은 조사 성능과 나은 열전도율의 조합은 그라파이트 또는 UO2 연료 요소에 비해 더 나은 기계적 성능으로 이어질 수 있다. 특정 실시 예에서, 결과적인 세라믹 매트릭스(3)는 근사 화학량론 방사선 내성인 형태의 SiC로 간주되어, 연료 요소가 상당한 연소 (예:60-99% 연소) 후에도 직접 처분을 위해 저장 안정성을 갖는 것을 허용한다.
전술한 바와 같이, 연료 입자 및 세라믹 매트릭스를 포함하는 연료 요소를 제조하기 위한 종래의 방법은, 연료 입자 및 세라믹 매트릭스의 혼합물을 열간 프레싱(hot pressing)하는 것을 포함한다. 예를 들어, 혼합물은 파손되지 않고 외부 세라믹 매트릭스와 긴밀하게 결합된 상태로 유지되는 TRISO 입자를 둘러싸고 연속적이며 기공이 없는 큰 결정을 가지는 세라믹 매트릭스를 얻기 위해, 10MPa 을 초과하지 않지만 근접하는 압력을 받고, 1850°C를 초과하지 않지만 근접하는 온도에 노출된다. 열간 프레싱 후에, 연료 요소는 최종 구성을 얻기 위한 공정이 이루어질 것이다. 이 공정에는 일반적으로 UO2 공정에 공통적인 센터리스 연삭 단계가 포함된다. 또한, 전술한 바와 같이, 연료 요소의 이종 성질은, 연삭 단계가 바람직하지 않게 TRISO 커널을 노출시킬 수 있다는 것을 규정한다.
본원에 설명된 방법의 실시예에서, 최종 형상을 갖는 미가공체(green body)를 제조함으로써 연삭 단계와 같은 추가의 가공이 회피된다. 도 1에 도시된 미가공체 또는 미처리된 연료 요소(1)는 튜브로 도시된 세라믹 연료 슬리브(2) 내에 세라믹 매트릭스(3)와 혼합된 연료 입자(10)를 포함한다. 연료 요소가 사용되도록 의도된 원자로의 유형 및/또는 작동 특성에 따라 원통형 펠렛, 구체(sphere), 또는 연장된 봉(rod)과 같은 다른 형태도 적합하다는 것에 유의해야 한다.
세라믹 연료 슬리브(2)는, 예를 들어 세라믹 매트릭스와 유사한 계통의 SiC 또는 핵 등급(nuclear grade) 그라파이트로 제조될 수 있다. 대안적으로, 세라믹 연료 슬리브는 SiC 섬유 또는 나노 분말 SiC의 중간 밀도 미가공체를 포함할 수 있다. 세라믹 연료 슬리브가 나노 분말 SiC의 중간 밀도 미가공체인 경우, 나노 분말 성분은 세라믹 매트릭스와 비슷한 양의 알루미나 및 이트리아를 함유하게 된다. 세라믹 연료 슬리브의 나노 분말 SiC의 특정 실시예에서, SiC 분말은 세라믹 매트릭스의 SiC 분말보다 다소 커서 소결 중에 유동을 지연시키고, 이로써 이 외벽을 통한 TRISO의 이동을 억제한다.
세라믹 연료 슬리브의 벽 두께는 연료 구조 및 원자로 중성자 고려사항에 따라 결정된다. 특정 실시예에서, 벽 두께는 0.5mm 이상이다. 보다 견고한 구조가 요구되는 경우, 벽 두께는 최대 2mm까지 증가될 수 있다. 세라믹 연료 슬리브를 사용하면 최종 가공이 필요하지 않다.
연료 입자(10)와 세라믹 매트릭스(3)의 혼합물은 전체적으로 또는 혼합물의 상부 및 하부 층에 연료 입자가 없는 층 구조로 균일할 수 있다. 이 층 구조의 예시가 도 1에 도시되어 있고, 참조번호 3A는 미가공체의 중심 영역 또는 세라믹 매트릭스 분말 성분과 함께 연료 입자를 함유하는 미가공된 연료 요소(1)를 지칭하며, 참조번호 3B는 연료 입자를 함유하지 않는 상부 및 하부 영역을 지칭한다. 특정 실시예에서, 3B층의 공칭 최종 두께는 세라믹 연료 슬리브의 벽 두께와 동일하거나 유사하다. 예를 들어, 3B층의 공칭 두께는 0.5mm 내지 2mm이다.
특정 실시예에서, 3B층이 존재하는 경우, 원자로 냉각제 호환성 문제로 인한 감소된 양의 소결제를 갖는 층으로써 기능할 것이다. 소결제의 레벨을 0과 같은 정도로 낮을 수 있다. 특정 실시예에서, 3B층이 존재하는 경우, 핵분열 생성물을 이동시켜 연료의 자유표면에 도달하기 위한 경로 길이를 증가시킴으로써, 연료에 추가적인 안정성을 제공하는 기능을 한다.
미가공체 또는 미처리된 연료 요소(1)는 추가적인 제조를 위해 다중 프레스 내성 다이 블록(4)에 배치됨으로써 압축된다. 도 1에서, 다중 프레스 내성 다이 블록(4)은 미가공체 또는 미처리된 연료 요소(1)를 위한 다수의 평행한 개구를 포함한다. 다이 블록이 압축을 위해 다수의 미가공체 또는 미처리된 연료 요소(1)를 동시에 보유할 수 있는 경우, 병렬적인 샘플 처리를 허용함으로써 처리 시간을 현저하게 감소시킨다. 예를 들어, 본원에 개시된 방법의 실시예를 이용하는 경우, 연료 요소의 제조를 위한 총 실행시간은 1시간 미만이다. 특정 실시예에서, 총 실행시간은 45분 미만이다. 또 다른 특정 실시예에서, 총 실행시간은 35분을 넘지 않는다. 또한, 단일 다이의 평행한 개구들에 다수의 미가공체 또는 미처리된 연료 요소를 압축하여 보유함으로써, 대량생산과 동일한 연료 일관성을 가진다. 특정 실시예에서, 다이 블록은 그라파이트로 형성된다.
다중 프레스 내성 다이 블록(4)은 로딩된 후에, DCS(직류 소결 시스템) 내에 배치된다. 기능면에서 스파크 플라즈마 소결 시스템(SPS)과 유사한 DCS는, 다이 블록(10)을 통해 그리고 더 적은 정도로 미가공체 또는 미처리된 연료 요소(1)를 통해 전류를 통과시켜서, 제어된 방식으로 목표 온도에 빠르게 도달한다.
특정 실시예에서, DCS 변수는 3.22g/cc의 엔벨로프(envelope) 밀도(이론값과 근사한)를 갖는 연료 요소를 얻도록 제어된다. 그러한 한 변수는, 냉간 프레스된 분말의 열팽창으로 상대적으로 먼저 팽창하고 소결 공정이 시작됨에 따라 수축하는 것을 포함하는 다이 변위를 포함한다. 이 방법에서, 총 다이 변위는 초기 냉간 프레스 밀도에 의존하며, 최종 생성물은 넓은 범위의 초기 냉간 프레스 분말 밀도에 걸쳐 이론값에 근사한 것으로 밝혀졌다. 이러한 이유로 특정 실시예에서, TRISO 입자의 세라믹 외피의 파괴를 피하기 위해 5 내지 10 MPa의 초기 저온 냉간 압력이 선택된다. 또 다른 변수는 온도 기울기를 포함한다. 기존의 열간 프레싱 방법에서 온도 기울기는 약 10°C/분 이다. 그러나 DCS 공정은 동일한 매트릭스 미세구조와, 이론값에 근사한 밀도를 10°C/분 이상의 컴팩트한 가열 속도로 얻을 수 있다. 예를 들어, 가열 속도는 40, 50 또는 70°C/분보다 크고 200, 180, 160 또는 150°C/분보다 작을 수 있다. 특정한 실시예에서, 온도 기울기 또는 열 발생률은 70 내지 150°C/분이다. 그러나 다른 실시예에서는 DCS 공정동안 온도가 유지된다. 특정 실시예에서, 온도는 보다 특정한 실시예에서 1650 내지 1900°C, 또는 1700 내지 1800°C로 유지된다
예시
도 2는 3.22g/cc의 엔벨로프 밀도(이론치에 근사한)에 도달한 대표적인 연료에 대한 온도 기울기 및 다이 변위를 제공한다. 이 공정에서는 5MPa의 부하가 적용되면서 1700°C 의 공정 온도가, 10분의 유지시간동안 선택되었다. FCM 부분의 제거 및 냉각을 포함한 총 가동시간은 35분으로, 열간 프레스된 FCM 생산에 수 시간이 소요되는 것과 비교된다.
별도의 도면에 도시되어 있지만, 하나의 도면 또는 실시예에 도시되고 설명된 임의의 특징부들은 전술한 임의의 다른 실시예들로 대체되거나 추가될 수 있다.
본 발명의 바람직한 실시예와 관련하여 설명하였지만, 첨부된 청구범위에서 정의된 본 발명의 범위를 벗어나지 않는 선에서, 특별히 설명되지 않은 부가, 삭제, 수정 및 대체가 이루어질 수 있음은 당업자에게 이해될 수 있을 것이다.
Claims (15)
- 복수의 삼각구조 등방성 연료입자를 제공하는 단계,
혼합물을 형성하기 위하여 복수의 삼각구조 등방성 연료입자에 세라믹 분말을 혼합하는 단계,
혼합물을 다이에 배치하는 단계; 및
다이에 전류를 인가하여 직류소결에 의해 연료 요소로 혼합물을 소결시키는 단계를 포함하는 방법. - 제1항에 있어서,
혼합물을 다이 내의 세라믹 연료 슬리브 내에 배치하는 단계 전에 세라믹 연료 슬리브에 혼합물을 첨가하는 단계를 더 포함하는 방법. - 제2항에 있어서,
세라믹 연료 슬리브는 실리콘 카바이드(SiC)를 포함하는 방법. - 제2항에 있어서,
세라믹 연료 슬리브는 세라믹 분말과 동일한 조성을 포함하는 방법. - 제1항에 있어서,
다이는 하나보다 많은 평행 개구를 포함하고
방법은 개구 각각에 세라믹 분말과 복수의 삼각구조 등방성 연료 입자들의 혼합물을 배치하는 단계를 포함하는 방법. - 제2항에 있어서,
다이는 하나보다 많은 평행 개구를 포함하고,
방법은 개구 각각에 세라믹 분말과 복수의 삼각구조 등방성 연료 입자들의 혼합물을 함유하는 세라믹 연료 슬리브를 배치하는 단계를 포함하는 방법. - 제6항에 있어서,
다이는 그라파이트를 포함하는 방법. - 제1항에 있어서,
연료 요소는 소결 공정 후에 정밀한 외부 부품 치수를 가지며, 정밀한 외부 부품 치수를 얻기 위해 소결 공정 후에 추가적인 공정이 발생하지 않는 방법. - 제1항에 있어서,
세라믹 분말은 실리콘 카바이드(SiC)를 포함하는 방법. - 제9항에 있어서,
세라믹 분말은 소결 첨가제를 추가로 포함하는 방법. - 제10항에 있어서,
소결 첨가제는 알루미나 또는 희토류 금속 산화물 또는 이들의 조합을 포함하는 방법. - 제11항에 있어서,
희토류 금속 산화물은 이트리아인 방법. - 제10항에 있어서,
세라믹 분말은 세라믹 분말의 총 중량의 10중량퍼센트 이하의 양으로 소결 첨가제를 포함하는 방법. - 제9항에 있어서,
연료 요소는 근사 화학량론적 SiC를 포함하는 방법. - 제14항에 있어서,
연료 요소를 형성하기 위한 총 실행시간은 1시간 미만인 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020237034251A KR20230148265A (ko) | 2015-07-25 | 2016-07-25 | 완전 세라믹 마이크로캡슐화된 핵연료의 제조 방법 |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562196975P | 2015-07-25 | 2015-07-25 | |
US62/196,975 | 2015-07-25 | ||
PCT/US2016/043897 WO2017019620A1 (en) | 2015-07-25 | 2016-07-25 | Method for fabrication of fully ceramic microencapsulated nuclear fuel |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237034251A Division KR20230148265A (ko) | 2015-07-25 | 2016-07-25 | 완전 세라믹 마이크로캡슐화된 핵연료의 제조 방법 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20180043789A true KR20180043789A (ko) | 2018-04-30 |
Family
ID=57837915
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020187005090A KR20180043789A (ko) | 2015-07-25 | 2016-07-25 | 완전 세라믹 마이크로캡슐화된 핵연료의 제조 방법 |
KR1020237034251A KR20230148265A (ko) | 2015-07-25 | 2016-07-25 | 완전 세라믹 마이크로캡슐화된 핵연료의 제조 방법 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020237034251A KR20230148265A (ko) | 2015-07-25 | 2016-07-25 | 완전 세라믹 마이크로캡슐화된 핵연료의 제조 방법 |
Country Status (11)
Country | Link |
---|---|
US (1) | US10109378B2 (ko) |
EP (1) | EP3326173B1 (ko) |
KR (2) | KR20180043789A (ko) |
CN (1) | CN108028080A (ko) |
CA (1) | CA2993794C (ko) |
ES (1) | ES2796367T3 (ko) |
HK (1) | HK1251350A1 (ko) |
PL (1) | PL3326173T3 (ko) |
RU (1) | RU2723561C2 (ko) |
WO (1) | WO2017019620A1 (ko) |
ZA (1) | ZA201801133B (ko) |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101677175B1 (ko) | 2015-08-07 | 2016-11-21 | 서울시립대학교 산학협력단 | 기지상보다 수축율이 큰 코팅층을 갖는 삼층구조 등방성 핵연료 입자를 포함하는 완전 세라믹 캡슐형 핵연료 조성물, 소재 및 그 제조방법 |
RU2735243C2 (ru) | 2016-03-29 | 2020-10-29 | Ультра Сейф Ньюклеар Корпорейшн | Полностью керамическое микроинкапсулированное топливо, изготовленное с выгорающим поглотителем в качестве интенсификатора спекания |
KR102338164B1 (ko) | 2016-03-29 | 2021-12-09 | 울트라 세이프 뉴클리어 코포레이션 | 마이크로캡슐화된 핵 연료의 인성 증진 |
WO2017172177A1 (en) * | 2016-03-29 | 2017-10-05 | Ultra Safe Nuclear Corporation | PROCESS FOR RAPID PROCESSING OF SiC AND GRAPHITIC MATRIX TRISO-BEARING PEBBLE FUELS |
ES2776802T3 (es) | 2017-05-12 | 2020-08-03 | Westinghouse Electric Sweden Ab | Pastilla de combustible nuclear, barra de combustible y conjunto combustible |
CN108249925B (zh) * | 2017-12-20 | 2021-01-05 | 中核北方核燃料元件有限公司 | 一种全陶瓷微封装燃料芯块的制备方法 |
CN108249926A (zh) * | 2017-12-21 | 2018-07-06 | 中核北方核燃料元件有限公司 | 一种环形fcm芯块制备方法 |
RU2679117C1 (ru) * | 2018-02-01 | 2019-02-06 | Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) | Способ получения керамического ядерного топлива |
US11189383B2 (en) | 2018-12-02 | 2021-11-30 | Ultra Safe Nuclear Corporation | Processing ultra high temperature zirconium carbide microencapsulated nuclear fuel |
WO2021067901A1 (en) | 2019-10-04 | 2021-04-08 | Ultra Safe Nuclear Corporation | Integrated in-vessel neutron shield |
US11931763B2 (en) | 2019-11-08 | 2024-03-19 | Abilene Christian University | Identifying and quantifying components in a high-melting-point liquid |
KR102460227B1 (ko) * | 2020-09-14 | 2022-10-28 | 서울시립대학교 산학협력단 | 완전 세라믹 캡슐형 핵연료에서 다층구조 등방성 핵연료 입자의 부피 분율을 제어하는 방법, 다층구조 등방성 핵연료 입자의 코팅용 조성물 및 그 소결체 |
CN112271006B (zh) * | 2020-10-14 | 2022-05-13 | 中国科学院合肥物质科学研究院 | 一种具有大长径比通孔的蜂窝状钼基金属陶瓷的加工方法 |
CN112242203B (zh) * | 2020-10-19 | 2022-04-22 | 中国核动力研究设计院 | 一种装载fcm燃料的组件栅格布置形式 |
CA3220042A1 (en) | 2021-06-04 | 2022-12-29 | Lorenzo Venneri | Fuel-moderator inversion for safer nuclear reactors |
RU2770890C1 (ru) * | 2021-12-13 | 2022-04-25 | Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") | Высокотемпературный плотный композитный материал ядерного топлива и способ его получения |
Family Cites Families (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2950238A (en) | 1955-09-29 | 1960-08-23 | Kenneth C Nicholson | Silicon carbide bodies for use in nuclear reactors |
DE1932567C3 (de) | 1969-06-27 | 1975-06-26 | Kernforschungsanlage Juelich Gmbh, 5170 Juelich | Verfahren zur Herstellung von Brenn- und/oder Brutelementen für Kernreaktoren |
US3826754A (en) | 1971-06-16 | 1974-07-30 | Gen Electric | Chemical immobilization of fission products reactive with nuclear reactor components |
US4297169A (en) | 1976-06-29 | 1981-10-27 | General Electric Company | Nuclear fuel assembly and process |
US4597936A (en) | 1983-10-12 | 1986-07-01 | Ga Technologies Inc. | Lithium-containing neutron target particle |
US4683114A (en) | 1984-12-05 | 1987-07-28 | Westinghouse Electric Corp. | Burnable absorber-containing nuclear fuel pellets and formation of the same |
US4707330A (en) | 1985-01-08 | 1987-11-17 | Westinghouse Electric Corp. | Zirconium metal matrix-silicon carbide composite nuclear reactor components |
JPS61232269A (ja) | 1985-04-04 | 1986-10-16 | 新日本製鐵株式会社 | 硼素含有炭化珪素粉末の製造法 |
US4869867A (en) | 1987-11-25 | 1989-09-26 | General Electric Company | Nuclear fuel |
US4963758A (en) * | 1988-10-17 | 1990-10-16 | General Atomics | Method of making compacts containing precise amounts of nuclear fuel |
US4978480A (en) | 1988-12-29 | 1990-12-18 | General Atomics | Method of making nuclear fuel compacts |
FR2683373B1 (fr) | 1991-10-31 | 1994-03-04 | Pechiney Uranium | Elements combustibles nucleaires comportant un piege a produits de fission a base d'oxyde. |
FR2744557B1 (fr) * | 1996-02-07 | 1998-02-27 | Commissariat Energie Atomique | Materiau combustible nucleaire composite et procede de fabrication du materiau |
US5805657A (en) | 1997-07-28 | 1998-09-08 | The United States Of America As Represented By The United States Department Of Energy | Nuclear fuel elements made from nanophase materials |
US6162543A (en) | 1998-12-11 | 2000-12-19 | Saint-Gobain Industrial Ceramics, Inc. | High purity siliconized silicon carbide having high thermal shock resistance |
US20030113447A1 (en) | 2001-12-13 | 2003-06-19 | Sherwood Walter J. | Process and compositions for making ceramic articles |
DE10249355B4 (de) | 2002-10-23 | 2005-08-04 | Framatome Anp Gmbh | Brennstoffpellet für einen Kernreaktor und Verfahren zu seiner Herstellung |
ATE400877T1 (de) | 2004-03-01 | 2008-07-15 | Pebble Bed Modular Reactor Pty | Kernbrennstoff |
US20060039524A1 (en) | 2004-06-07 | 2006-02-23 | Herbert Feinroth | Multi-layered ceramic tube for fuel containment barrier and other applications in nuclear and fossil power plants |
LU91158B1 (en) | 2005-03-25 | 2006-09-26 | Euratom | Head end process for the reprocessing of reactor core material |
JP2006234405A (ja) | 2005-02-22 | 2006-09-07 | Nuclear Fuel Ind Ltd | 被覆燃料粒子とオーバコート粒子とそれらの製造方法 |
JP2007010472A (ja) | 2005-06-30 | 2007-01-18 | Nuclear Fuel Ind Ltd | 高温ガス炉燃料用オーバーコート粒子の製造方法及び装置 |
JP2007086024A (ja) | 2005-09-26 | 2007-04-05 | Nuclear Fuel Ind Ltd | 球型燃料用一次球の製造方法 |
RU2317601C1 (ru) * | 2006-06-13 | 2008-02-20 | Открытое акционерное общество "Новосибирский завод химконцентратов" | Способ изготовления таблетированного топлива для тепловыделяющих элементов |
FR2909799A1 (fr) | 2006-12-12 | 2008-06-13 | Commissariat Energie Atomique | Procede et fabrication d'elements de combustible nucleaire et contenant pour la mise en oeuvre d'un tel procede |
WO2009079069A2 (en) | 2007-10-04 | 2009-06-25 | Lawrence Livermore National Security, Llc | Solid hollow core fuel for fusion-fission engine |
CN102007547B (zh) | 2008-04-16 | 2014-03-19 | 株式会社东芝 | 核燃料球芯块的制造方法、燃料组件及其制造方法和铀粉末 |
US20100158772A1 (en) | 2008-06-13 | 2010-06-24 | Decode Biostructures, Inc. | Nanovolume microcapillary crystallization system |
FR2936348B1 (fr) * | 2008-09-23 | 2013-07-05 | Commissariat Energie Atomique | Procede de preparation d'un combustible mixte comprenant de l'uranium et au moins un actinide et/ou lanthanide mettant en oeuvre une resine echangeuse de cations. |
WO2010086431A1 (de) | 2009-01-30 | 2010-08-05 | Ald Vacuum Technologies Gmbh | Brennelement mit spalt- und brutstoff sowie verfahren zu dessen herstellung |
US20100290578A1 (en) | 2009-05-12 | 2010-11-18 | Radix Power And Energy Corporation | Deployable electric energy reactor |
US20110317794A1 (en) | 2010-06-03 | 2011-12-29 | Francesco Venneri | Nuclear fuel assembly and related methods for spent nuclear fuel reprocessing and management |
CN101844766B (zh) * | 2010-06-12 | 2012-01-11 | 武汉理工大学 | 快速制备碳化锆陶瓷粉体的方法 |
US9299464B2 (en) * | 2010-12-02 | 2016-03-29 | Ut-Battelle, Llc | Fully ceramic nuclear fuel and related methods |
US20130077731A1 (en) | 2011-03-28 | 2013-03-28 | Torxx Group Inc. | Ceramic encapsulations for nuclear materials and systems and methods of production and use |
KR20130102766A (ko) | 2012-03-08 | 2013-09-23 | 주식회사에스티엑스종합기술원 | 다중피복 구조로 형성된 핵연료 |
US10790065B2 (en) | 2012-08-15 | 2020-09-29 | University Of Florida Research Foundation, Inc. | High density UO2 and high thermal conductivity UO2 composites by spark plasma sintering (SPS) |
US20140326232A1 (en) * | 2013-05-02 | 2014-11-06 | Joe Traeger | Dual-fuel gas-pellet burner assembly |
US10032528B2 (en) * | 2013-11-07 | 2018-07-24 | Ultra Safe Nuclear Corporation | Fully ceramic micro-encapsulated (FCM) fuel for CANDUs and other reactors |
CN104575626B (zh) * | 2014-12-19 | 2017-06-06 | 清华大学 | 用于球床高温气冷堆的示踪微球 |
CN104634922B (zh) * | 2015-02-27 | 2016-04-13 | 安徽工业大学 | 一种可拆卸式固体燃料悬浮燃烧实验测试装置及测试方法 |
WO2017172177A1 (en) | 2016-03-29 | 2017-10-05 | Ultra Safe Nuclear Corporation | PROCESS FOR RAPID PROCESSING OF SiC AND GRAPHITIC MATRIX TRISO-BEARING PEBBLE FUELS |
RU2735243C2 (ru) | 2016-03-29 | 2020-10-29 | Ультра Сейф Ньюклеар Корпорейшн | Полностью керамическое микроинкапсулированное топливо, изготовленное с выгорающим поглотителем в качестве интенсификатора спекания |
KR102338164B1 (ko) | 2016-03-29 | 2021-12-09 | 울트라 세이프 뉴클리어 코포레이션 | 마이크로캡슐화된 핵 연료의 인성 증진 |
-
2016
- 2016-07-25 RU RU2018106636A patent/RU2723561C2/ru active
- 2016-07-25 KR KR1020187005090A patent/KR20180043789A/ko not_active Application Discontinuation
- 2016-07-25 CN CN201680043823.XA patent/CN108028080A/zh active Pending
- 2016-07-25 KR KR1020237034251A patent/KR20230148265A/ko active IP Right Grant
- 2016-07-25 EP EP16831203.1A patent/EP3326173B1/en active Active
- 2016-07-25 CA CA2993794A patent/CA2993794C/en active Active
- 2016-07-25 PL PL16831203T patent/PL3326173T3/pl unknown
- 2016-07-25 ES ES16831203T patent/ES2796367T3/es active Active
- 2016-07-25 WO PCT/US2016/043897 patent/WO2017019620A1/en active Application Filing
- 2016-07-25 US US15/218,245 patent/US10109378B2/en active Active
-
2018
- 2018-02-19 ZA ZA2018/01133A patent/ZA201801133B/en unknown
- 2018-08-16 HK HK18110562.7A patent/HK1251350A1/zh unknown
Also Published As
Publication number | Publication date |
---|---|
ZA201801133B (en) | 2019-07-31 |
WO2017019620A1 (en) | 2017-02-02 |
CN108028080A (zh) | 2018-05-11 |
CA2993794C (en) | 2023-08-29 |
RU2723561C2 (ru) | 2020-06-16 |
EP3326173A4 (en) | 2019-03-20 |
CA2993794A1 (en) | 2017-02-02 |
KR20230148265A (ko) | 2023-10-24 |
ES2796367T3 (es) | 2020-11-26 |
RU2018106636A3 (ko) | 2019-12-18 |
US20170025192A1 (en) | 2017-01-26 |
PL3326173T3 (pl) | 2020-10-19 |
RU2018106636A (ru) | 2019-08-26 |
HK1251350A1 (zh) | 2019-01-25 |
EP3326173A1 (en) | 2018-05-30 |
US10109378B2 (en) | 2018-10-23 |
EP3326173B1 (en) | 2020-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10109378B2 (en) | Method for fabrication of fully ceramic microencapsulation nuclear fuel | |
KR101793896B1 (ko) | 완전한 세라믹 핵연료 및 관련된 방법 | |
CN108885907B (zh) | 用可燃毒物作为烧结助剂制成的全陶瓷微封装燃料 | |
US10475543B2 (en) | Dispersion ceramic micro-encapsulated (DCM) nuclear fuel and related methods | |
US11557403B2 (en) | Process for rapid processing of SiC and graphitic matrix triso-bearing pebble fuels | |
KR101733832B1 (ko) | 핵연료, 핵연료 요소, 핵연료 어셈블리 및 핵연료의 제조 방법 | |
JP6699882B2 (ja) | 核燃料コンパクト、核燃料コンパクトの製造方法、及び核燃料棒 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AMND | Amendment | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
E601 | Decision to refuse application | ||
X091 | Application refused [patent] | ||
E601 | Decision to refuse application | ||
E801 | Decision on dismissal of amendment |