CN108028080A - 全陶瓷微封装核燃料的制造方法 - Google Patents

全陶瓷微封装核燃料的制造方法 Download PDF

Info

Publication number
CN108028080A
CN108028080A CN201680043823.XA CN201680043823A CN108028080A CN 108028080 A CN108028080 A CN 108028080A CN 201680043823 A CN201680043823 A CN 201680043823A CN 108028080 A CN108028080 A CN 108028080A
Authority
CN
China
Prior art keywords
fuel
ceramic
method described
mixture
mould
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201680043823.XA
Other languages
English (en)
Inventor
L·L·斯尼德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympic Safety Nuclear Power Co
Ultra Safe Nuclear Corp
Original Assignee
Olympic Safety Nuclear Power Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympic Safety Nuclear Power Co filed Critical Olympic Safety Nuclear Power Co
Publication of CN108028080A publication Critical patent/CN108028080A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/623Oxide fuels
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/5158Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on actinide compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62831Carbides
    • C04B35/62834Silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62802Powder coating materials
    • C04B35/62828Non-oxide ceramics
    • C04B35/62839Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62894Coating the powders or the macroscopic reinforcing agents with more than one coating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/628Coating the powders or the macroscopic reinforcing agents
    • C04B35/62897Coatings characterised by their thickness
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C21/00Apparatus or processes specially adapted to the manufacture of reactors or parts thereof
    • G21C21/02Manufacture of fuel elements or breeder elements contained in non-active casings
    • G21C21/04Manufacture of fuel elements or breeder elements contained in non-active casings by vibrational compaction or tamping of fuel in the jacket
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/06Casings; Jackets
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/16Details of the construction within the casing
    • G21C3/20Details of the construction within the casing with coating on fuel or on inside of casing; with non-active interlayer between casing and active material with multiple casings or multiple active layers
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/42Selection of substances for use as reactor fuel
    • G21C3/58Solid reactor fuel Pellets made of fissile material
    • G21C3/62Ceramic fuel
    • G21C3/626Coated fuel particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5409Particle size related information expressed by specific surface values
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5445Particle size related information expressed by the size of the particles or aggregates thereof submicron sized, i.e. from 0,1 to 1 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/79Non-stoichiometric products, e.g. perovskites (ABO3) with an A/B-ratio other than 1
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C3/00Reactor fuel elements and their assemblies; Selection of substances for use as reactor fuel elements
    • G21C3/02Fuel elements
    • G21C3/04Constructional details
    • G21C3/045Pellets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Metallurgy (AREA)
  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

目前,由于已经建立的和简单的制造工艺,因此选择的商业燃料UO2‑锆合金是经济的。然而,在寻求可以改善系统安全性的UO2‑锆合金的替代品。完全陶瓷微封装(FCM)燃料系统是潜在的固有安全燃料,是对UO2‑锆合金系统的改进,而基于已知的生产方法,其是非常昂贵的。本文公开了通过提供多个三元结构‑各向同性燃料颗粒而产生与大规模生产一致相同或更佳的FCM燃料的新生产路线和固定装置;将多个三元结构‑各向同性燃料颗粒与陶瓷粉末混合以形成混合物;将混合物放入模具中;并向模具施加电流以通过直流烧结将混合物烧结成燃料元件。

Description

全陶瓷微封装核燃料的制造方法
发明领域
本公开涉及形成改良核裂变燃料的改进方法。更具体地说,本公开涉及用于批量生产可耐受事故的全陶瓷微封装燃料的方法。
相关申请的参考
本申请要求于2015年7月25日提交的美国临时申请号62/196,975的权益,其全部内容通过引用并入本文。
背景技术
在下面的背景讨论中,参考了某些结构和/或方法。然而,下面的参考不应被解释为承认这些结构和/或方法构成了现有技术。申请人明确保留证明这种结构和/或方法不作为现有技术的权利。
商业核燃料可以具有特定反应堆类型的许多形式,尽管基本上所有商业动力反应堆都使用铀作为最初的裂变材料。最常见的燃料类型是容纳在轻水反应堆(LWR)的薄锆合金包层内的氧化铀(UO2)颗粒。该燃料类型用于两种LWR变体:压力水反应堆(PWR)和沸水反应堆(BWR)配置。这种UO2颗粒是通过传统的陶瓷加工路线批量生产的。一旦获得了适当纯度和浓缩的粉末,将其压制,然后在氢气存在下烧结,并通过无心磨削取得最终尺寸。尽管起始粉末可包括天然富集、回收铀(RU)或混合氧化物(MOX),但以非常类似于生产CANDU(加拿大氘-铀)重水慢化反应堆燃料的过程取得带有锆锡合金包壳的UO2。CANDU和LWR构成了现在的国际核动力舰队中的绝大多数,这使锆合金包壳中的UO2成为主导的核燃料系统。可以说,这种燃料的锆合金包壳是这些LWR和CANDU系统中主要的裂变气体屏障。
高温气冷堆(HTGR)尚未成为重要的商业核平台,无论是棱柱形还是卵石床配置,都利用专门设计的燃料作为裂变产物滞留的主要屏障。这是通过在UO2(或其他)燃料核周围建造碳、石墨和SiC的层来实现的,使得SiC成为压力容器。这种结构(也称为TRISO(三元结构各向同性)燃料)与许多这样的直径约1mm级的小球结合,然后将其压实(压制)成主体石墨基体(模版),并且已经用于少数商业动力堆。这种燃料的主要安全优势是消除了在某些事故情况下可能与冷却剂相互作用的锆合金包层。
最近,已经开发了一种燃料形式,其中TRISO不像在HTGR中那样以石墨压制成,而是在坚固且不可渗透的碳化硅(SiC)基体中压制。这种相对较新的基于TRISO的SiC基体燃料被称为全陶瓷微封装(FCM)燃料。在这种SiC基体中混合多个TRISO颗粒形成了针对裂变产物释放的两个屏障,与LWR-标准的UO2-锆合金或HTGR-标准的TRISO-石墨合金相比,显著增强了核燃料的安全性。
尽管HTGR TRISO和FCM可以向核系统提供安全效益,但TRISO本身和FCM处理的方法比UO2方法更复杂,导致要么燃料稍微昂贵,要么对于FCM,可能不适合大规模生产。目前,由于FCM加工所需的温度和压力相对较高,热压是首选方法,但本身不是一种核燃料大规模生产水平所需的方法。此外,考虑到燃料的不同性质,UO2和当前FCM工艺中常见的无心磨削步骤存在着问题,因为不希望有TRISO内核的暴露。因此,仍然需要一种改进方法,其形成以全陶瓷微封装TRISO基体燃料为形式的增强型裂变燃料。
发明内容
已经发现,如下所述的方法可以实现燃料的大批量生产,所述燃料包括在完全致密的陶瓷内完全微封装的TRISO。因此,该方法能够批量生产改进的裂变燃料,其包含针对裂变产物释放的两个屏障,因此与其他裂变燃料相比,显著增强了核燃料的安全性。
一种实现大批量生产燃料的方法,所述燃料包括完全微封装在完全致密陶瓷内的TRISO,包括:提供多个三元结构-各向同性燃料颗粒;将多个三元结构-各向同性燃料颗粒与陶瓷粉末混合以形成混合物;将该混合物放入模具中;并向模具施加电流以通过直流烧结将混合物烧结成燃料元件。
在根据上述方法的一个实施例中,该方法还包括:将所述混合物添加到一陶瓷燃料套管中,然后将置于所述陶瓷燃料套管内的所述混合物置于所述模具。
在根据上述方法的实施例中,所述陶瓷燃料套管包括碳化硅(SiC)。
在根据上述任何方法的实施例中,所述陶瓷燃料套管包括与陶瓷粉末相同的成分。
在根据上述任何方法的实施例中,所述模具包括一个以上的平行开口,并且该方法包括将多个三元结构-各向同性燃料颗粒与陶瓷粉末的混合物放置在每个开口中。
在根据上述方法中的任一实施例中,所述模具包括一个以上的平行开口,并且该方法包括将陶瓷燃料套管放置在每个开口中,所述陶瓷燃料套管包含多个三元结构-各向同性燃料颗粒与陶瓷粉末的混合物。
在根据上述方法中的任一实施例中,所述模具包括石墨。
在根据上述方法中的任一实施例中,所述燃料元件在烧结过程之后具有精确的外部尺寸,其中在烧结过程之后不进行额外的用于获得精确的外部尺寸的加工步骤。
在根据上述方法中的任一实施例中,所述陶瓷粉末包括碳化硅(SiC)。
在根据上述方法中的任一实施例中,所述陶瓷粉末还包含烧结添加剂。
在根据上述方法中的任一实施例中,所述烧结添加剂包含氧化铝或稀土金属氧化物或其组合。
在根据上述方法中的任一实施例中,所述稀土金属氧化物是氧化钇。
在根据上述方法中的任一实施例中,所述陶瓷粉末包括烧结添加剂,其量为陶瓷粉末总重量的至多10%(重量)。
在根据上述方法中的任一实施例中,所述燃料元件包括接近化学计量的SiC。
在根据上述方法中的任一实施例中,用于形成所述燃料元件的总运行时间小于一小时。
附图简要说明
现在将参照附图以举例的方式描述本发明的实施例,其中:
图1示出了在多燃料模具内处理的FCM燃料示意图;
图2说明了使用直流烧结(DCS)过程压实的替代FCM结果曲线图;以及
图3是由DCS生产的FCM微结构SEM显微照片。
具体实施方式
可以结合附图来阅读下面的详细描述,其中相同的附图标记表示相同的元件。
图1为示出多冲模具块中FCM燃料的形成和处理的示意图。在图1中,未处理的燃料元件1包括与陶瓷基体3混合的多个微封装燃料颗粒10。多个微封装燃料颗粒10可以是三元结构各向同性(TRISO)燃料颗粒。如本文所用,术语“TRISO燃料颗粒”是指任何类型的微燃料颗粒,其包含燃料核和围绕燃料核的一层或多层各向同性材料。仅作为示例,燃料颗粒10可具有约1毫米的直径。
在图1所示的实施例中,燃料颗粒10在其中心包括燃料核11。燃料核可包括氧化物、碳化物或碳氧化物形式的可裂变和/或增殖性材料(例如,铀、钚、钍等)。在特定实施例中,燃料核11包括任何合适的浓缩水平的低浓缩铀(LEU)。
当燃料元件用于减少和/或处置废物目的时,燃料核11可以可选地或另外包括从乏燃料中提取或以其他方式再加工的超铀元素(TRU)和/或裂变产物。
例如,燃料元件可以用于销毁由例如轻水反应堆或退役核武器产生的超铀废物。为此目的,燃料元件可包括由从轻水反应堆的乏燃料和/或核武器的核心中提取的超铀元素形成的燃料核11。根据一个具体实施例,根据所述方法形成的燃料元件可用作轻水反应堆的燃料,在销毁超铀废物的同时从中发电。
图1所示的燃料颗粒10还包括涂覆在燃料核11上的四个不同的层,即(1)多孔碳缓冲层15;(2)内部热解碳(PyC)层14;(3)陶瓷层13;和(4)外部PyC层12。
多孔碳缓冲层15围绕燃料核11并且用作储器(reservoir),以承受从燃料核11扩散出来的累积的裂变气体以及燃料核11在燃料循环期间可能发生的任何机械变形。
内PyC层14可由相对密实的PyC形成并且密封碳缓冲层15。
陶瓷层13可由SiC材料形成并且用作燃料核11的主要裂变产物屏障和压力容器,从而在其中保留气态和金属的裂变产物。陶瓷层13还提供了燃料颗粒10的整体结构完整性。
在一些实施例中,陶瓷层13中的SiC可以用碳化锆(ZrC)或具有与SiC和/或ZrC性质相似的任何其他合适的材料替换或补充。
外部PyC层12保护陶瓷层13免受运行期间的化学侵蚀,并作为裂变产物的附加扩散边界。外部PyC层12也可以作为基板用于结合周围的陶瓷基体3。
燃料颗粒10的结构和/或组成不限于上述实施例。相反,应该理解的是,根据所需的燃料颗粒性质,与本公开一致的燃料颗粒可包括一个或多个附加层、或者省略一个或多个层。例如,在某些实施例中,在与基体材料混合之前,燃料颗粒用另外的陶瓷层(即,SiC层)涂覆。
在特定实施例中,陶瓷基体3包括与烧结添加剂混合的SiC粉末,并且可以是粉末基浆料、用于流延成型的陶瓷浆料,或本领域已知的任何其他混合物类型的形式。在混合之前,燃料颗粒10可涂覆有合适的表面保护材料。SiC粉末可具有小于1μm的平均尺寸和/或大于20m2/g的比表面积。举例来说,SiC粉末的尺寸可以在约15nm至约51nm的范围内,平均粒径为约35nm。
在混合期间或混合之前,烧结添加剂(例如氧化铝和稀土氧化物,例如Y2O3)可以单独地或组合地添加到SiC粉末和/或涂覆到SiC粉末表面上。在某些实施例中,烧结添加剂的量为至多10%(重量),或者在更特定的实施例中为6%(重量)至10%(重量)。当与燃料颗粒10混合时,取决于所使用的混合和/或制造方法,包含SiC粉末的SiC基前体材料可以处于各种物理状态(例如,粉末、液体、浆料等)。
小尺寸或大比表面积SiC粉末(具有有限质量分数的烧结添加剂)可以在足以确保燃料颗粒10完整性的条件下形成高结晶性、接近饱和密度的SiC基体。SiC基体为裂变产物提供了额外的屏障,所述裂变产物在正常运行和事故温度下可能释放并且污染反应堆冷却剂。SiC基体还有助于在处理后容纳裂变产物。
例如,图3示出了用与本文所述方法一致的方法制造的燃料元件20的微观局部剖视图。从图中可以看出,燃料元件20在燃料颗粒10和陶瓷基体3之间具有非常清晰的界面。此外,陶瓷基体3具有非常低的孔隙率(例如,只有约3-4°/0的封闭微孔隙度),从而形成不可渗透气体的屏障,其作为裂变产物/锕系元素扩散和来自燃料颗粒10的其他放射性释放的第二屏障。
另外,陶瓷基体3对氦的渗透性非常低(例如约10-10至10-11m2/s),这基本上比石墨低,使其特别适用于使用氦气作为冷却剂的气体冷却反应堆。陶瓷基体3的低渗透性也可以确保裂变产物气体的保留。
此外,根据本文描述的方法制造的燃料元件1具有比UO2燃料元件高得多的导热率。较高的导热率有许多有益的效果。例如,较高的热导率可以允许在较高的温度下运行核反应堆。在较高的温度下运行反应器可以增加效率和功率密度,这可允许减小反应器尺寸。较高的热导率在保持总的燃料完整性的同时还可允许更高的燃料元件燃耗。而且,正如上面简要提到的,更高的燃耗可能不仅会减少整体的废物量,还会限制可能的核扩散和转移机会。此外,具有高导热率的燃料在诸如失水事故(LOCA)的事故状况期间可经历严重度较低的温度瞬变。在轻水反应堆运行条件下,不会发生TRISO燃料颗粒和SiC基体外部的裂变产物(包括气体)的迁移。
此外,陶瓷基体3比石墨或UO2具有更高的断裂强度、更高的抗辐射性和更低的照射膨胀性。与石墨或UO2燃料元件相比,更好的照射性能和更好的导热性的组合可以引起更好的机械性能。在具体的实施例中,所得到的陶瓷基体3被认为是近化学计量比的耐辐射形式的SiC,从而即使在基本燃耗(例如60-99%燃耗)之后,燃料元件也能够稳定储存以供直接处置。
如上所述,用于制造包括燃料颗粒和陶瓷基体的燃料元件的以往方法包括热压燃料颗粒和陶瓷基体的混合物。例如,混合物将受到接近但不超过10MPa的压力和接近但不超过1850℃的温度的影响,以获得围绕TRISO颗粒的连续的、无孔的、大粒度的陶瓷基体,其保持与外部陶瓷基体无损且紧密的结合。热压之后,对燃料元件进行加工以获得最终配置。该加工通常包括UO2工艺常见的无心磨削步骤。而且,如上所述,燃料元件的不同性质使得磨削步骤可能不合需要地暴露TRISO核。
在本文描述的方法的实施例中,通过准备具有最终构造的生坯来避免诸如磨削步骤的进一步处理。图1所示的生坯或未处理的燃料元件1包括在陶瓷燃料套管2(其被示为管)内与陶瓷基体3混合的燃料颗粒10。应注意其它形状也是合适的,例如根据打算使用的燃料元件的核反应堆类型和/或运行特性,为圆柱形颗粒、球体或细长杆。
陶瓷燃料套管2可以由例如与陶瓷基体体系(pedigree)相似的SiC或由核级石墨制成。或者,陶瓷燃料套管可以包括SiC纤维或纳米粉末SiC的中密度生坯。在陶瓷燃料套管是纳米粉末SiC的中密度生坯的情况下,纳米粉末组分将包含与陶瓷基体相似量的氧化铝和氧化钇。在陶瓷燃料套筒是纳米粉末SiC的某些实施例中,SiC粉末稍微大于陶瓷基体的SiC粉末,以在烧结期间阻止流动,从而抑制TRISO通过该外壁移动。
陶瓷燃料套管的壁厚由燃料结构和反应堆中子的考虑决定。在某些实施例中,壁厚为0.5mm或更大。在需要更多刚性结构的地方,壁厚可以增加到2毫米。陶瓷燃料套管的使用有助于消除对最终加工的需求。
燃料颗粒10和陶瓷基体3的混合物可以是整体上均一的,也可以是分层结构,其中混合物的顶层和底层不含燃料颗粒。图1中示出了这种分层结构的一个例子,附图标记3A表示包含燃料颗粒以及陶瓷基体粉末成分的生坯或未加工的燃料元件1的中央区域,而附图标记3B表示不含燃料颗粒的顶部和底部区域。在某些实施例中,3B层的公称最终厚度等于或类似于陶瓷燃料套管的壁厚的厚度。例如,3B层的公称厚度为0.5至2mm。
在某些实施例中,3B层(如果存在的话)的功能是具有减少的烧结助剂含量的层,以便解决反应堆冷却剂兼容性问题。烧结助剂的含量可以低至零。在某些实施例中,3B层(如果存在的话)的功能是通过增加迁移裂变产物到达燃料自由表面的路径长度,从而为燃料提供增加的安全性。
生坯或未加工的燃料元件1,通过放置在多冲电阻模具4中而被压实,以便进一步制造。在图1中,多冲电阻模具4包含多个用于生坯或未处理的燃料元件1的平行开口。通过允许平行地对样品进行处理,能够同时保持多个生坯或未处理的燃料元件1的模具块,可显著减少处理时间。例如,利用本文公开的方法的实施例,生产燃料元件的总运行时间可少于一个小时。在某些实施例中,总运行时间少于45分钟。在更多的某些实施例中,总运行时间不超过35分钟。此外,通过在单个模具的并行开口中保持并压缩多个生坯或未处理的燃料元件,可获得与大规模生产相一致的相同燃料。在特定实施例中,该模具块由石墨形成。
在装载多冲电阻模具块4之后,将其放置在直流烧结系统(DCS)内。与放电等离子体烧结系统(SPS)类似,DCS使电流通过模具块10并且以较少的程度使得生坯或未加工的燃料元件1以受控的方式快速达到目标温度。
在特定实施例中,控制DCS参数以获得具有3.22g/cc包裹密度(接近理论值)的燃料元件。一个这种参数包括模具位移,其包括伴随着冷压粉末的热膨胀的相对的首先膨胀,然后随着烧结过程的开始发生收缩。在该方法中,总的模具位移取决于初始的冷压密度,并且已发现,在宽范围的初始冷压粉末密度下,最终产品接近理论值。为此,在某些实施例中,选择5-10MPa的初始冷压以避免破坏TRISO颗粒的陶瓷壳。另一个参数包括温度斜坡。在现有的热压方法中,温度斜坡约为10℃/分钟。然而,采用大于10℃/min的压缩加热速率,DCS处理可以获得相同的基体微观结构和接近于理论值的密度。例如,所述加热速率可以大于40、50或70℃/min,并且小于200、180、160或150℃/min。在特定实施例中,温度斜坡或加热速率在70至150℃/分钟之间。在一个实施例是DCS处理期间的保持温度。在某些实施例中,保持温度为1650至1900℃,或在更具体的实施例中,保持温度为1700至1800℃。
实施例
图2提供了实现3.22g/cc包裹密度(接近理论值)的代表性燃料的温度斜坡和模具位移。在该运行中,选择1700℃的工艺温度,保持时间为10分钟,同时施加5MPa的负荷。总运行时间(包括FCM部件的去除和冷却时间)为35分钟,与热压FCM的生产需要的几个小时相比,是有利的。
尽管以分开的附图示出,但是在一个附图或实施例中示出和描述的任何特征可以被替换或添加到上述任何其他实施例。
尽管结合其优选实施例进行了描述,但是本领域技术人员将理解,可以在不脱离如所附权利要求限定的本发明范围的情况下,进行本文未具体描述的任何添加、删除、修改和替换。

Claims (15)

1.一种方法,其特征在于,所述方法包括.
提供多个三元结构-各向同性燃料颗粒;
将多个所述三元结构-各向同性燃料颗粒与陶瓷粉末混合以形成混合物;
将所述混合物放入模具中;以及
向所述模具施加电流以通过直流烧结将所述混合物烧结成燃料元件。
2.根据权利要求1所述的方法,其特征在于,所述方法还包括:将所述混合物添加到一陶瓷燃料套管中,然后将置于所述陶瓷燃料套管内的所述混合物置于所述模具。
3.根据权利要求2所述的方法,其特征在于,所述陶瓷燃料套管包括碳化硅(SiC)。
4.根据权利要求2所述的方法,其特征在于,所述陶瓷燃料套管包括与所述陶瓷粉末相同的组分。
5.根据权利要求1所述的方法,其特征在于,所述模具包括一个以上的平行开口,并且所述方法包括将多个所述三元结构-各向同性燃料颗粒与陶瓷粉末的混合物放置在每个所述开口中。
6.根据权利要求1所述的方法,其特征在于,所述模具包括一个以上的平行开口,并且所述方法包括:将陶瓷燃料套管放置在每个所述开口中,所述陶瓷燃料套管包含多个所述三元结构-各向同性燃料颗粒与陶瓷粉末的混合物。
7.根据权利要求6所述的方法,其特征在于,所述模具包括石墨。
8.根据权利要求1所述的方法,其特征在于,所述燃料元件在烧结过程之后具有精确的外部尺寸,其中在烧结过程之后不进行额外的用于获得精确的外部尺寸的加工步骤。
9.根据权利要求1所述的方法,其特征在于,所述陶瓷粉末包括碳化硅(SiC)。
10.根据权利要求9所述的方法,其特征在于,所述陶瓷粉末还包含烧结添加剂。
11.根据权利要求10所述的方法,其特征在于,所述烧结添加剂包括氧化铝或稀土金属氧化物或其组合。
12.根据权利要求11所述的方法,其特征在于,所述稀土金属氧化物是氧化钇。
13.根据权利要求10所述的方法,其特征在于,所述陶瓷粉末包括所述烧结添加剂,所述烧结添加剂的量为所述陶瓷粉末总重量的至多10%(重量)。
14.根据权利要求9所述的方法,其特征在于,所述燃料元件包括接近化学计量的SiC。
15.根据权利要求14所述的方法,其特征在于,用于形成所述燃料元件的总运行时间小于一小时。
CN201680043823.XA 2015-07-25 2016-07-25 全陶瓷微封装核燃料的制造方法 Pending CN108028080A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201562196975P 2015-07-25 2015-07-25
US62/196,975 2015-07-25
PCT/US2016/043897 WO2017019620A1 (en) 2015-07-25 2016-07-25 Method for fabrication of fully ceramic microencapsulated nuclear fuel

Publications (1)

Publication Number Publication Date
CN108028080A true CN108028080A (zh) 2018-05-11

Family

ID=57837915

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201680043823.XA Pending CN108028080A (zh) 2015-07-25 2016-07-25 全陶瓷微封装核燃料的制造方法

Country Status (11)

Country Link
US (1) US10109378B2 (zh)
EP (1) EP3326173B1 (zh)
KR (2) KR20180043789A (zh)
CN (1) CN108028080A (zh)
CA (1) CA2993794C (zh)
ES (1) ES2796367T3 (zh)
HK (1) HK1251350A1 (zh)
PL (1) PL3326173T3 (zh)
RU (1) RU2723561C2 (zh)
WO (1) WO2017019620A1 (zh)
ZA (1) ZA201801133B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271006A (zh) * 2020-10-14 2021-01-26 中国科学院合肥物质科学研究院 一种具有大长径比通孔的蜂窝状钼基金属陶瓷的加工方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101677175B1 (ko) * 2015-08-07 2016-11-21 서울시립대학교 산학협력단 기지상보다 수축율이 큰 코팅층을 갖는 삼층구조 등방성 핵연료 입자를 포함하는 완전 세라믹 캡슐형 핵연료 조성물, 소재 및 그 제조방법
PL3437107T3 (pl) 2016-03-29 2021-04-06 Ultra Safe Nuclear Corporation W pełni ceramiczne mikrokapsułkowane paliwo jądrowe wykonane ze zużywalnej trucizny do wsparcia spiekania
CN108885908A (zh) 2016-03-29 2018-11-23 奥卓安全核能公司 用于SiC和石墨基质TRISO式块燃料的快速加工的方法
PL3437106T3 (pl) 2016-03-29 2021-07-12 Ultra Safe Nuclear Corporation Wzmocnienie wytrzymałości w mikrokapsułkowanym paliwie jądrowym
EP3401924B1 (en) * 2017-05-12 2019-12-11 Westinghouse Electric Sweden AB A nuclear fuel pellet, a fuel rod, and a fuel assembly
CN108249925B (zh) * 2017-12-20 2021-01-05 中核北方核燃料元件有限公司 一种全陶瓷微封装燃料芯块的制备方法
CN108249926A (zh) * 2017-12-21 2018-07-06 中核北方核燃料元件有限公司 一种环形fcm芯块制备方法
RU2679117C1 (ru) * 2018-02-01 2019-02-06 Федеральное государственное бюджетное учреждение науки Институт химии Дальневосточного отделения Российской академии наук (ИХ ДВО РАН) Способ получения керамического ядерного топлива
US11189383B2 (en) 2018-12-02 2021-11-30 Ultra Safe Nuclear Corporation Processing ultra high temperature zirconium carbide microencapsulated nuclear fuel
WO2021067903A1 (en) 2019-10-04 2021-04-08 Ultra Safe Nuclear Corporation Nuclear reactor core architecture with enhanced heat transfer and safety
US11931763B2 (en) 2019-11-08 2024-03-19 Abilene Christian University Identifying and quantifying components in a high-melting-point liquid
KR102460227B1 (ko) * 2020-09-14 2022-10-28 서울시립대학교 산학협력단 완전 세라믹 캡슐형 핵연료에서 다층구조 등방성 핵연료 입자의 부피 분율을 제어하는 방법, 다층구조 등방성 핵연료 입자의 코팅용 조성물 및 그 소결체
CN112242203B (zh) * 2020-10-19 2022-04-22 中国核动力研究设计院 一种装载fcm燃料的组件栅格布置形式
CA3220042A1 (en) 2021-06-04 2022-12-29 Lorenzo Venneri Fuel-moderator inversion for safer nuclear reactors
RU2770890C1 (ru) * 2021-12-13 2022-04-25 Акционерное Общество "Российский Концерн По Производству Электрической И Тепловой Энергии На Атомных Станциях" (Ао "Концерн Росэнергоатом") Высокотемпературный плотный композитный материал ядерного топлива и способ его получения

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164743A (zh) * 1996-02-07 1997-11-12 法国原子能委员会 核燃料复合材料及其制备方法
CN101844766A (zh) * 2010-06-12 2010-09-29 武汉理工大学 快速制备碳化锆陶瓷粉体的方法
WO2012075094A2 (en) * 2010-12-02 2012-06-07 Logos Technologies, Inc. Fully ceramic nuclear fuel and related methods
WO2014028731A1 (en) * 2012-08-15 2014-02-20 University Of Florida Research Foundation, Inc. High density uo2 and high thermal conductivity uo2 composites by spark plasma sintering (sps)
US20140326233A1 (en) * 2013-05-02 2014-11-06 Joe Traeger Dc pellet burner assembly
CN104575626A (zh) * 2014-12-19 2015-04-29 清华大学 用于球床高温气冷堆的示踪微球
CN104634922A (zh) * 2015-02-27 2015-05-20 安徽工业大学 一种可拆卸式固体燃料悬浮燃烧实验测试装置及测试方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2950238A (en) 1955-09-29 1960-08-23 Kenneth C Nicholson Silicon carbide bodies for use in nuclear reactors
DE1932567C3 (de) 1969-06-27 1975-06-26 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Verfahren zur Herstellung von Brenn- und/oder Brutelementen für Kernreaktoren
US3826754A (en) 1971-06-16 1974-07-30 Gen Electric Chemical immobilization of fission products reactive with nuclear reactor components
US4297169A (en) 1976-06-29 1981-10-27 General Electric Company Nuclear fuel assembly and process
US4597936A (en) 1983-10-12 1986-07-01 Ga Technologies Inc. Lithium-containing neutron target particle
US4683114A (en) 1984-12-05 1987-07-28 Westinghouse Electric Corp. Burnable absorber-containing nuclear fuel pellets and formation of the same
US4707330A (en) 1985-01-08 1987-11-17 Westinghouse Electric Corp. Zirconium metal matrix-silicon carbide composite nuclear reactor components
JPS61232269A (ja) 1985-04-04 1986-10-16 新日本製鐵株式会社 硼素含有炭化珪素粉末の製造法
US4869867A (en) 1987-11-25 1989-09-26 General Electric Company Nuclear fuel
US4963758A (en) * 1988-10-17 1990-10-16 General Atomics Method of making compacts containing precise amounts of nuclear fuel
US4978480A (en) 1988-12-29 1990-12-18 General Atomics Method of making nuclear fuel compacts
FR2683373B1 (fr) 1991-10-31 1994-03-04 Pechiney Uranium Elements combustibles nucleaires comportant un piege a produits de fission a base d'oxyde.
US5805657A (en) 1997-07-28 1998-09-08 The United States Of America As Represented By The United States Department Of Energy Nuclear fuel elements made from nanophase materials
US6162543A (en) 1998-12-11 2000-12-19 Saint-Gobain Industrial Ceramics, Inc. High purity siliconized silicon carbide having high thermal shock resistance
US20030113447A1 (en) 2001-12-13 2003-06-19 Sherwood Walter J. Process and compositions for making ceramic articles
DE10249355B4 (de) 2002-10-23 2005-08-04 Framatome Anp Gmbh Brennstoffpellet für einen Kernreaktor und Verfahren zu seiner Herstellung
DE602005008057D1 (de) 2004-03-01 2008-08-21 Pebble Bed Modular Reactor Pty Kernbrennstoff
US20060039524A1 (en) 2004-06-07 2006-02-23 Herbert Feinroth Multi-layered ceramic tube for fuel containment barrier and other applications in nuclear and fossil power plants
LU91158B1 (en) 2005-03-25 2006-09-26 Euratom Head end process for the reprocessing of reactor core material
JP2006234405A (ja) 2005-02-22 2006-09-07 Nuclear Fuel Ind Ltd 被覆燃料粒子とオーバコート粒子とそれらの製造方法
JP2007010472A (ja) 2005-06-30 2007-01-18 Nuclear Fuel Ind Ltd 高温ガス炉燃料用オーバーコート粒子の製造方法及び装置
JP2007086024A (ja) 2005-09-26 2007-04-05 Nuclear Fuel Ind Ltd 球型燃料用一次球の製造方法
RU2317601C1 (ru) * 2006-06-13 2008-02-20 Открытое акционерное общество "Новосибирский завод химконцентратов" Способ изготовления таблетированного топлива для тепловыделяющих элементов
FR2909799A1 (fr) 2006-12-12 2008-06-13 Commissariat Energie Atomique Procede et fabrication d'elements de combustible nucleaire et contenant pour la mise en oeuvre d'un tel procede
EP2196070B1 (en) * 2007-10-04 2017-01-25 Lawrence Livermore National Security, LLC Control of a laser inertial confinement fusion-fission power plant
EP2280400A4 (en) 2008-04-16 2016-06-15 Toshiba Kk PROCESS FOR PRODUCTION OF NUCLEAR FUEL PASTIL, FUEL ASSEMBLY, PROCESS FOR PRODUCTION OF FUEL ASSEMBLY, AND URANIUM POWDER
US20100158772A1 (en) 2008-06-13 2010-06-24 Decode Biostructures, Inc. Nanovolume microcapillary crystallization system
FR2936348B1 (fr) * 2008-09-23 2013-07-05 Commissariat Energie Atomique Procede de preparation d'un combustible mixte comprenant de l'uranium et au moins un actinide et/ou lanthanide mettant en oeuvre une resine echangeuse de cations.
WO2010086431A1 (de) 2009-01-30 2010-08-05 Ald Vacuum Technologies Gmbh Brennelement mit spalt- und brutstoff sowie verfahren zu dessen herstellung
US20100290578A1 (en) 2009-05-12 2010-11-18 Radix Power And Energy Corporation Deployable electric energy reactor
US20110317794A1 (en) 2010-06-03 2011-12-29 Francesco Venneri Nuclear fuel assembly and related methods for spent nuclear fuel reprocessing and management
WO2012129677A1 (en) 2011-03-28 2012-10-04 Torxx Group Inc. Ceramic encapsulations for nuclear materials and systems and methods of production and use
KR20130102766A (ko) 2012-03-08 2013-09-23 주식회사에스티엑스종합기술원 다중피복 구조로 형성된 핵연료
US10032528B2 (en) 2013-11-07 2018-07-24 Ultra Safe Nuclear Corporation Fully ceramic micro-encapsulated (FCM) fuel for CANDUs and other reactors
PL3437106T3 (pl) 2016-03-29 2021-07-12 Ultra Safe Nuclear Corporation Wzmocnienie wytrzymałości w mikrokapsułkowanym paliwie jądrowym
PL3437107T3 (pl) 2016-03-29 2021-04-06 Ultra Safe Nuclear Corporation W pełni ceramiczne mikrokapsułkowane paliwo jądrowe wykonane ze zużywalnej trucizny do wsparcia spiekania
CN108885908A (zh) 2016-03-29 2018-11-23 奥卓安全核能公司 用于SiC和石墨基质TRISO式块燃料的快速加工的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1164743A (zh) * 1996-02-07 1997-11-12 法国原子能委员会 核燃料复合材料及其制备方法
CN101844766A (zh) * 2010-06-12 2010-09-29 武汉理工大学 快速制备碳化锆陶瓷粉体的方法
WO2012075094A2 (en) * 2010-12-02 2012-06-07 Logos Technologies, Inc. Fully ceramic nuclear fuel and related methods
WO2014028731A1 (en) * 2012-08-15 2014-02-20 University Of Florida Research Foundation, Inc. High density uo2 and high thermal conductivity uo2 composites by spark plasma sintering (sps)
US20140326233A1 (en) * 2013-05-02 2014-11-06 Joe Traeger Dc pellet burner assembly
CN104575626A (zh) * 2014-12-19 2015-04-29 清华大学 用于球床高温气冷堆的示踪微球
CN104634922A (zh) * 2015-02-27 2015-05-20 安徽工业大学 一种可拆卸式固体燃料悬浮燃烧实验测试装置及测试方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
K.A. TERRANI: "Fabrication and characterization of fully ceramic microencapsulated fuels", 《JOURNAL OF NUCLEAR MATERIALS》 *
赵珍: "SPS制备碳化硅陶瓷的研究", 《粉末冶金工业》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112271006A (zh) * 2020-10-14 2021-01-26 中国科学院合肥物质科学研究院 一种具有大长径比通孔的蜂窝状钼基金属陶瓷的加工方法
CN112271006B (zh) * 2020-10-14 2022-05-13 中国科学院合肥物质科学研究院 一种具有大长径比通孔的蜂窝状钼基金属陶瓷的加工方法

Also Published As

Publication number Publication date
ES2796367T3 (es) 2020-11-26
CA2993794A1 (en) 2017-02-02
EP3326173A1 (en) 2018-05-30
CA2993794C (en) 2023-08-29
US20170025192A1 (en) 2017-01-26
WO2017019620A1 (en) 2017-02-02
US10109378B2 (en) 2018-10-23
ZA201801133B (en) 2019-07-31
HK1251350A1 (zh) 2019-01-25
KR20180043789A (ko) 2018-04-30
KR20230148265A (ko) 2023-10-24
EP3326173A4 (en) 2019-03-20
EP3326173B1 (en) 2020-04-22
PL3326173T3 (pl) 2020-10-19
RU2018106636A3 (zh) 2019-12-18
RU2723561C2 (ru) 2020-06-16
RU2018106636A (ru) 2019-08-26

Similar Documents

Publication Publication Date Title
CN108028080A (zh) 全陶瓷微封装核燃料的制造方法
CN108885907B (zh) 用可燃毒物作为烧结助剂制成的全陶瓷微封装燃料
KR101793896B1 (ko) 완전한 세라믹 핵연료 및 관련된 방법
US11264141B2 (en) Composite moderator for nuclear reactor systems
US11557403B2 (en) Process for rapid processing of SiC and graphitic matrix triso-bearing pebble fuels
TW201838952A (zh) 經燒結之核燃料丸,燃料棒,燃料組件及製造經燒結之核燃料丸的方法
KR20190098008A (ko) 열전도도가 향상된 핵연료 소결체 및 이의 제조방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1251350

Country of ref document: HK

RJ01 Rejection of invention patent application after publication

Application publication date: 20180511

RJ01 Rejection of invention patent application after publication