KR20180026558A - 신호 처리 장치 및 방법, 및 프로그램 - Google Patents

신호 처리 장치 및 방법, 및 프로그램 Download PDF

Info

Publication number
KR20180026558A
KR20180026558A KR1020187005649A KR20187005649A KR20180026558A KR 20180026558 A KR20180026558 A KR 20180026558A KR 1020187005649 A KR1020187005649 A KR 1020187005649A KR 20187005649 A KR20187005649 A KR 20187005649A KR 20180026558 A KR20180026558 A KR 20180026558A
Authority
KR
South Korea
Prior art keywords
signal
frequency
band
frequency band
low
Prior art date
Application number
KR1020187005649A
Other languages
English (en)
Other versions
KR101967122B1 (ko
Inventor
유끼 야마모또
도루 찌넨
미쯔유끼 하따나까
Original Assignee
소니 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 주식회사 filed Critical 소니 주식회사
Publication of KR20180026558A publication Critical patent/KR20180026558A/ko
Application granted granted Critical
Publication of KR101967122B1 publication Critical patent/KR101967122B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/02Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using spectral analysis, e.g. transform vocoders or subband vocoders
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/002Dynamic bit allocation
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/04Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis using predictive techniques
    • G10L19/26Pre-filtering or post-filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/003Changing voice quality, e.g. pitch or formants
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Processing of the speech or voice signal to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques

Abstract

부호화된 음성 신호를 처리하기 위한 방법, 시스템 및 컴퓨터 프로그램 제품이 개시된다. 일 실시형태에서, 시스템은 부호화된 저역 주파수 신호 및 부호화된 저역 주파수 신호를 주파수 시프트하는데 이용되는 부호화된 에너지 정보를 수신한다. 저역 주파수 신호를 복호화하고, 복호화된 신호의 에너지 디프레션을 평활화시킨다. 평화화된 저역 주파수 신호를 주파수 시프트시켜 고역 주파수 신호를 생성한다. 그 후, 저역 주파수 신호 및 고역 주파수 신호를 결합하여 출력한다.

Description

신호 처리 장치 및 방법, 및 프로그램{SIGNAL PROCESSING APPARATUS AND METHOD, AND PROGRAM}
본 발명은 신호 처리 장치 및 방법, 및 프로그램에 관한 것이다. 특히, 일 실시형태는 부호화된 음성 신호를 복호화하는 경우에, 보다 고음질의 음성이 얻어지도록 구성된 신호 처리 장치 및 방법, 및 프로그램에 관한 것이다.
종래, 음성 신호의 부호화 방법으로서, HE-AAC(High Efficiency MPEG(Moving Picture Experts Group) 4 AAC(Advanced AudioCoding))(국제표준규격ISO/IEC 14496-3) 등이 알려져 있다. 이러한 부호화 방법에서는, SBR(Spectral Band Replication)이라 불리는 고역 특징 부호화 기술이 이용되고 있다(예를 들면, 특허문헌 1 참조).
SBR에서는, 음성 신호의 부호화 시에, 부호화된 음성 신호의 저역 성분(이하, 저역 신호, 즉 저역 주파수 신호라 칭함)과 함께, 음성 신호의 고역 성분(이하, 고역 신호, 즉 고역 주파수 신호라 칭함)을 생성하기 위한 SBR 정보가 출력된다. 복호화 장치에서는, 부호화된 저역 신호를 복호화함과 함께, 복호화에 의해 얻어진 저역 신호와 SBR 정보를 이용해서 고역 신호를 생성하고, 저역 신호와 고역 신호로 이루어지는 음성 신호를 얻는다.
구체적으로는, 예를 들면, 복호화에 의해 도 1에 나타내는 저역 신호 SL1이 얻어진 것으로 한다. 여기서, 도 1에서는, 횡축은 주파수를 나타내고, 종축은 음성 신호의 각 주파수의 에너지를 나타내고 있다. 또한, 도면에서 세로 방향의 점선은 스케일팩터 밴드(scalefactor band)의 경계를 나타내고 있다. 스케일팩터 밴드는 QMF(Quadrature Mirror Filter) 분석 필터의 분해능인 주어진 대역폭의 서브밴드를 복수 묶은 대역이다.
도 1에서는, 저역 신호 SL1의 도면에서 우측에 있는 연속하는 7개의 스케일팩터 밴드로 이루어지는 대역을 고역이라 한다. SBR 정보를 복호화함으로써 고역 측의 스케일팩터 밴드마다, 고역 스케일팩터 밴드 에너지 E11 내지 E17이 얻어진다.
그리고, 저역 신호 SL1과 고역 스케일팩터 밴드 에너지가 이용되고, 각 스케일팩터 밴드의 고역 신호가 생성된다. 예를 들면, 스케일팩터 밴드 Bobj의 고역 신호가 생성될 경우, 저역 신호 SL1 중에서 스케일팩터 밴드 Borg의 성분이 스케일팩터 밴드 Bobj의 대역으로 주파수 시프트된다. 주파수 시프트에 의해 얻어진 신호를 게인 조정하여 고역 신호인 것으로 한다. 이때, 주파수 시프트에 의해 얻어진 신호의 평균 에너지가 스케일팩터 밴드 Bobj의 고역 스케일팩터 밴드 에너지 E13과 같은 크기가 되도록 게인 조정이 행해진다.
이러한 처리에 의해, 도 2에 나타내는 고역 신호 SH1이 스케일팩터 밴드 Bobj의 성분으로서 생성된다. 여기서, 도 2에서는, 도 1에서의 경우와 대응하는 부분에는 동일한 부호를 병기하여, 그 설명은 생략하거나 줄인다.
이와 같이, 음성 신호의 복호화 측에서, 저역 신호와 SBR 정보를 이용하여 부호화 및 복호화된 저역 신호에는 포함되어 있지 않은 고역 성분을 생성해 대역을 확장함으로써, 고음질의 음성을 재생할 수 있게 된다.
일본 특허 공보(PCT 출원의 번역문) 제2001-521648호
그러나, 도 2의 스케일팩터 밴드 Borg와 같이, 고역 신호의 생성에 이용하는 저역 신호 SL1에 홀(hole)이 존재할 경우, 즉, 고역 주파수 신호를 생성하는데 이용되는 에너지 디프레션을 포함한 형상의 에너지 스펙트럼을 갖는 저역 주파수 신호가 존재하는 경우, 얻어진 고역 신호 SH1의 형상은 원래(original) 신호의 주파수 형상과는 크게 다른 형상이 될 가능성이 높아, 청감상의 열화의 원인으로 된다. 여기서는, 저역 신호에 홀이 존재하고 있는 상태란, 주어진 대역 에너지가 인접하는 대역 에너지에 비해 현저히 작고, 저역의 파워 스펙트럼(각 주파수의 에너지의 파형)의 일부가 도면에서 하방으로 돌출하고 있는 상태를 말한다. 달리 말하자면, 일부 대역 성분의 에너지가 디프레스된 상태, 즉 에너지 디프레션을 포함한 형상의 에너지 스펙트럼을 말한다.
도 2의 예에서는, 고역 신호, 즉 고역 주파수 신호의 생성에 이용하는 저역 신호, 즉 저역 주파수 신호 SL1에 디프레션이 있기 때문에, 고역 신호 SH1에도 디프레션이 생겨버린다. 이와 같이 고역 신호의 생성에 이용하는 저역 신호에 디프레션이 있으면, 더 이상 고역 성분을 정밀하게 재현할 수 없어, 복호화에 의해 얻어진 음성 신호에 청감상의 열화가 생길 수 있다.
또한, SBR에서는, 게인 리미팅(gain limiting) 및 보간(interpolation)으로 불리는 처리가 행해질 수 있다. 일부 경우에는, 그러한 처리가 고역 성분에 디프레션을 발생시키는 원인이 될 수 있다.
여기에서, 게인 리미팅은 복수의 서브밴드로 이루어지는 제한된 밴드 내에서 게인의 피크값을 제한된 밴드 내에서의 게인의 평균값으로 억제하는 처리이다.
예를 들면, 저역 신호의 복호화에 의해 도 3에 나타내는 저역 신호 SL2가 얻어진 것으로 한다. 여기에서, 도 3에서는 횡축은 주파수를 나타내고, 종축은 음성 신호의 각 주파수의 에너지를 나타내고 있다. 또한, 도면에서 세로방향의 점선은 스케일팩터 밴드의 경계를 나타낸다.
도 3에서는, 저역 신호 SL2의 도면에서의 우측에 있는 연속하는 7개의 스케일팩터 밴드로 이루어지는 대역을 고역이라 한다. SBR 정보를 복호화함에 의해, 고역 스케일팩터 밴드 에너지 E21 내지 E27이 얻어진다.
또한, 3개의 스케일팩터 밴드 Bobj1 내지 Bobj3으로 이루어지는 대역을 제한된 밴드(limited band)라 한다. 또한, 저역 신호 SL2의 스케일팩터 밴드 Borg1 내지 Borg3의 각각의 성분이 이용되고, 고역 측의 스케일팩터 밴드 Bobj1 내지 Bobj3의 고역 신호의 각각이 생성되는 것으로 한다.
따라서, 기본적으로는, 스케일팩터 밴드 Bobj2의 고역 신호 SH2의 생성 시에는, 저역 신호 SL2의 스케일팩터 밴드 Borg2의 평균 에너지와 고역 스케일팩터 밴드 에너지 E22 간의 에너지 차분 G2에 따라 게인 조정이 이루어진다. 달라 말하자면, 저역 신호 SL2의 스케일팩터 밴드 Borg2의 성분이 주파수 시프트되어 그 결과 얻어진 신호에 에너지 차분 G2를 곱하여 게인 조정이 행해진다. 이를 고역 신호 SH2라 한다.
그런데, 게인 리미팅에서, 제한된 밴드 내의 스케일팩터 밴드 Bobj1 내지 Bobj3의 에너지 차분 G1 내지 G3의 평균값 G보다도 에너지 차분 G2가 큰 경우, 주파수 시프트 후의 신호에 곱해지는 에너지 차분 G2를 평균값 G라 할 것이다. 달리 말하자면, 스케일팩터 밴드 Bobj2의 고역 신호의 게인은 낮게 억제될 것이다.
도 3의 예에서는, 저역 신호 SL2의 스케일팩터 밴드 Borg2의 에너지는 인접하는 스케일팩터 밴드 Borg1 및 Borg3의 에너지에 비해 작아졌다. 달리 말하자면, 스케일팩터 밴드 Borg2의 부분에 디프레션이 생겼다.
이에 대하여, 저역 성분의 적용처(application destination)인 스케일팩터 밴드 Bobj2의 고역 스케일팩터 밴드 에너지 E22는, 스케일팩터 밴드 Bobj1 및 Bobj3의 고역 스케일팩터 밴드 에너지보다도 크다.
그 때문에, 스케일팩터 밴드 Bobj2의 에너지 차분 G2는 제한된 밴드 내의 에너지 차분의 평균값 G보다도 높아져, 스케일팩터 밴드 Bobj2의 고역 신호의 게인이 게인 리미팅에 의해 낮게 억제될 수 있다.
따라서, 스케일팩터 밴드 Bobj2에서는, 고역 신호 SH2의 에너지가 고역 스케일팩터 밴드 에너지 E22보다도 대폭 낮아져, 생성된 고역 신호의 주파수 형상은 원래 신호의 주파수 형상과는 크게 다른 형상으로 된다. 따라서, 복호화에 의해 최종적으로 얻어진 음성에는 청감상 열화가 생겨버린다.
또한, 보간은 주파수 시프트와 게인 조정을 스케일팩터 밴드마다 보다는 서브밴드마다 행하는 고역 신호 생성 기술이다.
예를 들면, 도 4에 도시한 바와 같이, 저역 신호 SL3의 서브밴드 Borg1 내지Borg3의 각각이 이용되고, 고역 측의 서브밴드 Bobj1 내지 Bobj3의 각각의 고역 신호가 생성되고, 서브밴드 Bobj1 내지 Bobj3으로 이루어지는 대역이 제한된 밴드인 것으로 한다.
여기에서, 도 4에서는, 횡축은 주파수를 나타내고, 종축은 음성 신호의 각 주파수의 에너지를 나타낸다. 또한, SBR 정보의 복호화에 의해, 스케일팩터 밴드마다 고역 스케일팩터 밴드 에너지 E31 내지 E37이 얻어진다.
도 4의 예에서는, 저역 신호 SL3의 서브밴드 Borg2의 에너지는, 인접하는 서브밴드 Borg1 및 Borg3의 에너지에 비해 작아져, 서브밴드 Borg2의 부분에 디프레션이 생겼다. 그 때문에, 도 3에서의 경우와 마찬가지로, 저역 신호 SL3의 서브밴드 Borg2의 에너지와 고역 스케일팩터 밴드 에너지 E33의 에너지 차분은, 제한된 밴드 내의 에너지 차분의 평균값보다도 높아진다. 따라서, 서브밴드 Bobj2의 고역 신호 SH3의 게인은 게인 리미팅에 의해 낮게 억제될 수 있다.
그 결과, 서브밴드 Bobj2에서는, 고역 신호 SH3의 에너지가 고역 스케일팩터 밴드 에너지 E33보다도 대폭 낮아져, 생성된 고역 신호의 주파수 형상은 원래 신호의 주파수 형상과는 크게 다른 형상으로 될 수 있다. 이에 의해, 도 3에서의 경우와 마찬가지로, 복호화에 의해 얻어진 음성에는 청감상 열화가 생겨버린다.
이상과 같이, SBR에서는, 고역 신호의 생성에 이용하는 저역 신호의 파워 스펙트럼의 형상(주파수 형상)으로 인해 음성 신호의 복호화 측에서 고음질의 음성이 얻어지지 않는 경우가 있었다.
<발명의 요약>
음성 신호를 처리하는 컴퓨터 구현 방법이 개시된다. 이 방법은 음성 신호에 대응하는 부호화된 저역 주파수 신호를 수신하는 단계를 포함할 수 있다. 이 방법은 신호를 복호화하여 에너지 디프레션(depression)을 포함하는 형상의 에너지 스펙트럼을 갖는 복호화된 신호를 생성하는 단계를 더 포함할 수 있다. 또한, 이 방법은 복호화된 신호에 대해 필터 처리를 행하는 단계 - 필터 처리는 복호화된 신호를 저역 주파수 대역 신호로 분할함 - 를 포함할 수 있다. 이 방법은 또한, 복호화된 신호에 대해 평활화 처리를 행하는 단계 - 평활화 처리는 복호화된 신호의 에너지 디프레션을 평활화함 - 를 포함할 수 있다. 이 방법은 평활화되고 복호화된 신호에 대해 주파수 시프트를 행하는 단계 - 주파수 시프트는 저역 주파수 대역 신호로부터 고역 주파수 대역 신호를 생성함 - 를 더 포함할 수 있다. 또한, 이 방법은 저역 주파수 대역 신호와 고역 주파수 대역 신호를 결합하여 출력 신호를 생성하는 단계를 포함할 수 있다. 이 방법은 출력 신호를 출력하는 단계를 더 포함할 수 있다.
또한, 신호를 처리하는 장치가 개시된다. 이 장치는 음성 신호에 대응하는 부호화된 저역 주파수 신호를 수신하여 부호화된 신호를 복호화함으로써 에너지 디프레션을 포함하는 형상의 에너지 스펙트럼을 갖는 복호화된 신호를 생성하도록 구성된 저역 주파수 복호화 회로를 포함할 수 있다. 또한, 장치는 복호화된 신호에 대해 필터 처리를 행하도록 구성된 필터 처리부 - 필터 처리는 복호화된 신호를 저역 주파수 대역 신호로 분할함 - 를 포함할 수 있다. 장치는 또한, 복호화된 신호에 대해 평활화 처리를 행하며, 평활화되어 복호화된 신호에 대해 주파수 시프트를 행하도록 구성된 고역 주파수 생성 회로 - 평활화 처리는 에너지 디프레션을 평활화하고, 주파수 시프트는 저역 주파수 대역 신호로부터 고역 주파수 대역 신호를 생성함 - 를 포함할 수 있다. 장치는 저역 주파수 대역 신호와 고역 주파수 대역 신호를 결합하여 출력 신호를 생성하고, 출력 신호를 출력하도록 구성된 결합 회로를 추가로 포함할 수 있다.
또한, 프로세서에 의해 실행될 때, 음성 신호를 처리하는 방법을 수행하는 명령어를 포함한 유형의(tangibly embodied) 컴퓨터 판독가능 기억 매체가 개시된다. 상기 방법은 음성 신호에 대응하는 부호화된 저역 주파수 신호를 수신하는 단계를 포함할 수 있다. 상기 방법은 부호화된 신호를 복호화하여 에너지 디프레션을 포함하는 형상의 에너지 스펙트럼을 갖는 복호화된 신호를 생성하는 단계를 더 포함할 수 있다. 또한, 상기 방법은 복호화된 신호에 대해 필터 처리를 행하는 단계 - 필터 처리는 복호화된 신호를 저역 주파수 대역 신호로 분할함 - 를 포함할 수 있다. 상기 방법은 또한, 복호화된 신호에 대해 평활화 처리를 행하는 단계 - 평활화 처리는 복호화된 신호의 에너지 디프레션을 평활화함 - 를 포함할 수 있다. 상기 방법은 평활화되고 복호화된 신호에 대해 주파수 시프트를 행하는 단계 - 주파수 시프트는 저역 주파수 대역 신호로부터 고역 주파수 대역 신호를 생성함 - 를 더 포함할 수 있다. 또한, 상기 방법은 저역 주파수 대역 신호와 고역 주파수 대역 신호를 결합하여 출력 신호를 생성하는 단계를 포함할 수 있다. 상기 방법은 출력 신호를 출력하는 단계를 더 포함할 수 있다.
본 발명의 일 양상에 따르면, 음성 신호를 복호 하는 경우에,보다 고음질한 음성을 얻을 수 있다.
도 1은 종래의 SBR에 대해 설명하는 도면이다.
도 2는 종래의 SBR에 대해서 설명하는 도면이다.
도 3은 종래의 게인 리미팅에 대해서 설명하는 도면이다.
도 4는 종래의 보간에 대해서 설명하는 도면이다.
도 5는 본 발명을 적용한 SBR에 대해서 설명하는 도면이다.
도 6은 본 발명을 적용한 인코더의 일 실시형태의 구성 예를 도시하는 도면이다.
도 7은 부호화 처리를 설명하는 흐름도이다.
도 8은 본 발명을 적용한 디코더의 일 실시형태의 구성 예를 도시하는 도면이다.
도 9는 복호화 처리를 설명하는 흐름도이다.
도 10은 부호화 처리를 설명하는 흐름도이다.
도 11은 복호화 처리를 설명하는 흐름도이다.
도 12는 부호화 처리를 설명하는 흐름도이다.
도 13은 복호화 처리를 설명하는 흐름도이다.
도 14는 컴퓨터의 구성 예를 도시하는 블록도이다.
이하, 도면을 참조하여 본 발명을 적용한 실시형태에 대해서 설명한다.
<본 발명의 개요>
우선, 도 5를 참조하여 본 발명을 적용한 SBR에 의한 음성 신호의 대역 확장에 대해서 설명한다. 여기서, 도 5에서는, 횡축은 주파수를 나타내고, 종축은 음성 신호의 각 주파수의 에너지를 나타낸다. 여기서, 도면에서 세로 방향의 점선은 스케일팩터 밴드의 경계를 나타낸다.
예를 들면, 음성 신호의 복호화 측에서, 부호화 측으로부터 수신한 데이터로부터 저역 신호 SL11과, 고역 측의 각 스케일팩터 밴드 Bobj1 내지 Bobj7의 고역 스케일팩터 밴드 에너지 Eobj1 내지 Eobj7이 얻어진 것으로 한다. 그리고, 저역 신호 SL11 및 고역 스케일팩터 밴드 에너지 Eobj1 내지 Eobj7이 이용되고, 각 스케일팩터 밴드 Bobj1 내지 Bobj7의 고역 신호가 생성되는 것으로 한다.
여기서는, 저역 신호 SL11의 스케일팩터 밴드 Borg1의 성분을 이용하여 고역 측의 스케일팩터 밴드 Bobj3의 고역 신호를 생성하는 것을 상정한다.
도 5의 예에서는, 저역 신호 SL11의 파워 스펙트럼은 스케일팩터 밴드 Borg1부분에서, 도면에서 하측으로 크게 디프레스되어 있다. 달리 말하자면, 다른 대역에 비해 에너지가 작아진다. 그 때문에, 종래의 SBR에 의해 스케일팩터 밴드 Bobj3의 고역 신호를 생성하면, 얻어진 고역 신호에도 디프레션이 생겨버려, 음성에 청감상의 열화가 생겨버리게 된다.
따라서, 본 실시형태에서는, 우선 저역 신호 SL11의 스케일팩터 밴드 Borg1의 성분에 대하여 평탄화 처리(즉, 평활화 처리)를 행한다. 이에 의해, 평탄화 후의 스케일팩터 밴드 Borg1의 저역 신호 H11이 얻어진다. 이 저역 신호 H11의 파워 스펙트럼은 저역 신호 SL11의 파워 스펙트럼에서의 스케일팩터 밴드 Borg1에 인접하는 대역의 부분에 평탄하게 접속된다. 달리 말하자면, 평탄화, 즉 평활화 후의 저역 신호 SL11은 스케일팩터 밴드 Borg1에 디프레션이 발생하지 않는 신호가 된다.
그렇게 함에 있어서, 저역 신호 SL11의 평탄화가 행해지면, 평탄화에 의해 얻어진 저역 신호 H11이 스케일팩터 밴드 Bobj3의 대역으로 주파수 시프트된다. 주파수 시프트에 의해 얻어진 신호를 게인 조정하여 고역 신호 H12라고 한다.
이때, 저역 신호 H11의 각 서브밴드의 에너지의 평균값은 스케일팩터 밴드Borg1의 평균 에너지 Eorg1로서 산출된다. 그리고, 평균 에너지 Eorg1과 고역 스케일팩터 밴드 에너지 Eobj3의 비에 따라, 주파수 시프트 후의 저역 신호 H11의 게인 조정이 행해진다. 구체적으로는, 주파수 시프트 후의 저역 신호 H11의 각 서브밴드의 에너지의 평균값이 고역 스케일팩터 밴드 에너지 Eobj3과 거의 같은 크기가 되도록 게인 조정이 행해진다.
도 5에서는, 디프레션이 없는 저역 신호 H11이 이용되고, 고역 신호 H12이 생성되기 때문에, 고역 신호 H12의 각 서브밴드의 에너지는 고역 스케일팩터 밴드 에너지 Eobj3과 거의 같은 크기로 된다. 따라서, 원래 신호의 고역 신호와 거의 같은 고역 신호가 얻어진다.
이렇게 하여, 평탄화된 저역 신호를 이용해서 고역 신호를 생성하면, 고정밀도로 음성 신호의 고역 성분을 생성할 수 있고, 종래 저역 신호의 파워 스펙트럼의 디프레션에 의해 생긴 음성 신호의 청감상의 열화를 개선할 수 있다. 달리 말하자면, 고음질의 음성을 얻을 수 있게 된다.
또한, 저역 신호를 평탄화하면, 파워 스펙트럼의 디프레션을 제거할 수 있으므로, 평탄화된 저역 신호를 이용해서 고역 신호를 생성하면, 게인 리미팅 및 보간이 행해질 경우라도, 음성 신호의 청감상의 열화를 방지할 수 있다.
여기서, 고역 신호의 생성에 이용되는 저역 측의 모든 대역 성분에 대하여 행해지도록 구성될 수 있거나, 저역 신호의 평탄화는 저역 측의 대역 성분 중에서 디플레션이 생긴 대역 성분에 대해서만 행해지도록 구성될 수 있다. 또한, 디프레션이 생겨나는 대역 성분에 대해서만 평탄화가 행해질 경우, 평탄화 대상으로 되는 대역은, 서브밴드를 단위로 한 대역이면, 단일 서브밴드일 수 있거나, 복수의 서브밴드로 구성되는 임의의 폭의 대역일 수도 있다.
또한, 이하, 스케일팩터 밴드 등의 몇몇 서브밴드로 이루어지는 다른 대역에 대해서, 그 대역을 구성하는 각 서브밴드의 에너지의 평균값을 대역의 평균 에너지라 칭하기로 한다.
다음으로, 본 발명을 적용한 인코더와 디코더에 대해서 설명한다. 여기서는, 이하에서, 스케일팩터 밴드를 단위로 하여 고역 신호의 생성을 행할 경우를 예로 설명하지만, 고역 신호의 생성은 하나 또는 복수의 서브밴드로 이루어지는 개개 대역마다 행하는 것도 물론 가능하다.
<제1 실시형태>
<인코더의 구성>
도 6은 본 발명을 적용한 인코더의 일 실시형태의 구성 예를 도시하는 도면이다.
인코더(11)는 다운샘플러(21), 저역 주파수 부호화 회로인 저역 부호화 회로(22), QMF 분석 필터 처리부(23), 고역 주파수 부호화 회로인 고역 부호화 회로(24), 및 다중화 회로(25)로 구성된다. 인코더(11)의 다운샘플러(21) 및 QMF 분석 필터 처리부(23)에는, 음성 신호인 입력 신호가 공급된다.
다운샘플러(21)는 공급된 입력 신호를 다운 샘플링하는 것에 의해, 입력 신호의 저역 성분인 저역 신호를 추출하여, 저역 부호화 회로(22)에 공급한다. 저역 부호화 회로(22)는 다운샘플러(21)로부터 공급된 저역 신호를 주어진 부호화 스킴에 따라 부호화하고, 그 결과 얻어진 저역 부호화 데이터를 다중화 회로(25)에 공급한다. 저역 신호를 부호화하는 방법으로서, 예를 들면, AAC 스킴(scheme)이 있다.
QMF 분석 필터 처리부(23)는 공급된 입력 신호에 대해 QMF 분석 필터를 이용한 필터 처리를 행하고, 입력 신호를 복수의 서브밴드 신호로 분할한다. 예를 들면, 필터 처리에 의해, 입력 신호의 주파수 대역 전체가 64개로 분할되고, 그들 64개의 대역(서브밴드)의 성분이 추출된다. QMF 분석 필터 처리부(23)는 필터 처리에 의해 얻어진 각 서브밴드의 신호를 고역 부호화 회로(24)에 공급한다.
또한, 이하, 입력 신호의 각 서브밴드의 신호를 서브밴드 신호라고도 칭하기로 한다. 특히, 다운샘플러(21)에 의해 추출되는 저역 신호의 대역을 저역으로 하여, 저역 측의 각 서브밴드의 서브밴드 신호를 저역 서브밴드 신호, 즉 저역 주파수 대역 신호라고 칭한다. 또한, 입력 신호의 전체의 대역 중 저역 측의 대역보다도 주파수가 높은 대역을 고역으로 하여, 고역 측의 서브밴드의 서브밴드 신호를 고역 서브밴드 신호, 즉 고역 주파수 대역 신호라고 칭한다.
또한, 이하에서는, 저역보다도 주파수가 높은 대역을 고역으로 하여 설명을 계속하지만, 저역과 고역의 일부가 겹치도록 해도 좋다. 달리 말하자면, 저역과 고역이 서로 공유하는 대역이 포함되도록 구성될 수 있다.
고역 부호화 회로(24)는 QMF 분석 필터 처리부(23)로부터 공급된 서브밴드 신호에 기초해서 SBR 정보를 생성하여, 다중화 회로(25)에 공급한다. 여기서, SBR 정보는 원래 신호인 입력 신호의 고역 측의 각 스케일팩터 밴드의 고역 스케일팩터 밴드 에너지를 얻기 위한 정보이다.
다중화 회로(25)는 저역 부호화 회로(22)로부터의 저역 부호화 데이터와, 고역 부호화 회로(24)로부터의 SBR 정보를 다중화하고, 다중화에 의해 얻어진 비트스트림을 출력한다.
부호화 처리의 설명
한편, 인코더(11)에 입력 신호가 입력되어, 입력 신호의 부호화가 지시되면, 인코더(11)는 부호화 처리를 행해서 입력 신호의 부호화를 행한다. 이하, 도 7의 흐름도를 참조하여 인코더(11)에 의한 부호화 처리에 대해서 설명한다.
스텝 S11에서, 다운샘플러(21)는 공급된 입력 신호를 다운샘플링해서 저역 신호를 추출하여, 저역 부호화 회로(22)에 공급한다.
스텝 S12에서, 저역 부호화 회로(22)는 다운샘플러(21)로부터 공급된 저역 신호를, 예를 들면, AAC 스킴에 따라 부호화하고, 그 결과 얻어진 저역 부호화 데이터를 다중화 회로(25)에 공급한다.
스텝 S13에서, QMF 분석 필터 처리부(23)는 공급된 입력 신호에 대하여 QMF 분석 필터를 이용한 필터 처리를 행하고, 그 결과 얻어진 각 서브밴드의 서브밴드 신호를 고역 부호화 회로(24)에 공급한다.
스텝 S14에서, 고역 부호화 회로(24)는 QMF 분석 필터 처리부(23)로부터 공급된 서브밴드 신호에 기초하여 고역 측의 각 스케일팩터 밴드마다 고역 스케일팩터 밴드 에너지 Eobj, 즉 에너지 정보를 산출한다.
달리 말하자면, 고역 부호화 회로(24)는 고역 측의 연속하는 몇 개의 서브밴드로 이루어지는 대역을 스케일팩터 밴드로 하고, 스케일팩터 밴드 내의 각 서브밴드의 서브밴드 신호를 이용하여 각 서브밴드의 에너지를 산출한다. 그리고, 고역 부호화 회로(24)는 스케일팩터 밴드 내의 각 서브밴드의 에너지의 평균값을 산출하고, 산출한 에너지의 평균값을 그 스케일팩터 밴드의 고역 스케일팩터 밴드 에너지Eobj라 한다. 이에 의해, 예를 들면, 도 5의 고역 스케일팩터 밴드 에너지, 즉 에너지 정보 Eobj1 내지 Eobj7이 산출된다.
스텝 S15에서, 고역 부호화 회로(24)는 복수의 스케일팩터 밴드의 고역 스케일팩터 밴드 에너지 Eobj, 즉 에너지 정보를 주어진 부호화 스킴에 따라 부호화하고, SBR 정보를 생성한다. 예를 들면, 고역 스케일팩터 밴드 에너지 Eobj는 스칼라 양자화, 차분 부호화, 가변 길이 부호화, 또는 다른 스킴에 따라 부호화된다. 고역 부호화 회로(24)는 부호화에 의해 얻어진 SBR 정보를 다중화 회로(25)에 공급한다.
스텝 S16에서, 다중화 회로(25)는 저역 부호화 회로(22)로부터의 저역 부호화 데이터와 고역 부호화 회로(24)로부터의 SBR 정보를 다중화하고, 다중화에 의해 얻어진 비트스트림을 출력하고, 부호화 처리는 종료한다.
그렇게 함에 있어서, 인코더(11)는 입력 신호를 부호화하고, 저역 부호화 데이터와 SBR 정보가 다중화된 비트스트림을 출력한다. 따라서, 이 비트스트림의 수신측에서는, 저역 부호화 데이터를 복호해서 저역 신호, 즉 저역 주파수 신호를 얻음과 함께, 저역 신호와 SBR 정보를 이용해서 고역 신호, 즉 고역 주파수 신호를 생성한다. 저역 신호와 고역 신호로 이루어지는 넓은 대역의 음성 신호를 얻을 수 있다.
디코더의 구성
다음으로, 도 6의 인코더(11)로부터 출력된 비트스트림을 수신해서 복호하는 디코더에 대해서 설명한다. 예를 들면, 디코더는 도 8에 도시한 바와 같이 구성된다.
달리 말하자면, 디코더(51)는 디멀티플렉싱 회로(61), 저역 주파수 복호화 회로인 저역 복호화 회로(62), QMF 분석 필터 처리부(63), 고역 주파수 생성 회로인 고역 복호화 회로(64) 및 결합 회로인 QMF 합성 필터 처리부(65)로 구성된다.
디멀티플렉싱 회로(61)는 인코더(11)로부터 수신한 비트스트림을 디멀티플렉싱하고, 저역 부호화 데이터 및 SBR 정보를 추출한다. 디멀티플렉싱 회로(61)는 디멀티플렉싱에 의해 얻어진 저역 부호화 데이터를 저역 복호화 회로(62)에 공급하고, 디멀티플렉싱에 의해 얻어진 SBR 정보를 고역 복호화 회로(64)에 공급한다.
저역 복호화 회로(62)는 디멀티플렉싱 회로(61)로부터 공급된 저역 부호화 데이터를 인코더(11)에서 이용하는 저역 신호의 부호화 스킴(예를 들면, AAC 스킴)에 대응하는 복호화 스킴으로 복호하고, 그 결과 얻어진 저역 주파수 신호인 저역 신호를 QMF 분석 필터 처리부(63)에 공급한다. QMF 분석 필터 처리부(63)는 저역 복호화 회로(62)로부터 공급된 저역 신호에 대하여 QMF 분석 필터를 이용한 필터 처리를 행하고, 저역 신호로부터 저역 측의 각 서브밴드의 서브밴드 신호를 추출한다. 달리 말하자면, 저역 신호의 대역 분할이 행해진다. QMF 분석 필터 처리부(63)는 필터 처리에 의해 얻어진 저역 측의 각 서브밴드의 저역 주파수 대역 신호인 저역 서브밴드 신호를 고역 복호화 회로(64) 및 QMF 합성 필터 처리부(65)에 공급한다.
고역 복호화 회로(64)는 디멀티플렉싱 회로(61)로부터 공급된 SBR 정보와 QMF 분석 필터 처리부(63)로부터 공급된 저역 주파수 대역 신호인 저역 서브밴드 신호를 이용하여 고역 측의 각 스케일팩터 밴드의 고역 신호를 생성하고, QMF 합성 필터 처리부(65)에 공급한다.
QMF 합성 필터 처리부(65)는 QMF 분석 필터 처리부(63)로부터 공급된 저역 서브밴드 신호와 고역 복호화 회로(64)로부터 공급된 고역 신호를 QMF 합성 필터를 이용한 필터 처리에 의해 합성, 즉 결합하여 출력 신호를 생성한다. 이 출력 신호는 저역과 고역의 각 서브밴드의 성분으로 이루어지는 음성 신호이며, QMF 합성 필터 처리부(65)로부터 후단의 스피커 또는 여타 재생부에 출력된다.
복호 처리의 설명
도 8에 나타낸 디코더(51)에 인코더(11)로부터 비트스트림이 공급되어 비트스트림의 복호화가 지시되면, 디코더(51)는 복호화 처리를 행해서 출력 신호를 생성한다. 이하, 도 9의 흐름도를 참조하여 디코더(51)에 의한 복호화 처리에 대해서 설명한다.
스텝 S41에서, 디멀티플렉싱 회로(61)는 인코더(11)로부터 수신한 비트스트림을 디멀티플렉싱한다. 그리고, 디멀티플렉싱 회로(61)는 비트스트림의 디멀티플렉싱에 의해 얻어진 저역 부호화 데이터를 저역 복호화 회로(62)에 공급함과 함께, SBR 정보를 고역 복호화 회로(64)에 공급한다.
스텝 S42에서, 저역 복호화 회로(62)는 저역 복호화 회로(62)로부터 공급된 저역 부호화 데이터를 복호하고, 그 결과 얻어진 저역 신호, 즉 저역 주파수 신호를 QMF 분석 필터 처리부(63)에 공급한다.
스텝 S43에서, QMF 분석 필터 처리부(63)는 저역 복호화 회로(62)로부터 공급된 저역 신호에 대하여 QMF 분석 필터를 이용한 필터 처리를 행한다. 그리고, QMF 분석 필터 처리부(63)는 필터 처리의 결과 얻어진 저역 측의 각 서브밴드의 저역 서브밴드 신호, 즉 저역 주파수 대역 신호를 고역 복호화 회로(64) 및 QMF 합성 필터 처리부(65)에 공급한다.
스텝 S44에서, 고역 복호화 회로(64)는 저역 복호화 회로(62)로부터 공급된 SBR 정보를 복호화한다. 이에 의해, 고역 측의 각 스케일팩터 밴드의 고역 스케일팩터 밴드 에너지 Eobj, 즉 에너지 정보가 얻어진다.
스텝 S45에서, 고역 복호화 회로(64)는 QMF 분석 필터 처리부(63)로부터 공급된 저역 서브밴드 신호에 대하여 평탄화 처리, 즉 평활화 처리를 행한다.
예를 들면, 고역 복호화 회로(64)는 고역 측의 특정 스케일팩터 밴드에 대해서, 그 스케일팩터 밴드의 고역 신호를 생성하는데 이용되는 저역 측의 스케일팩터 밴드를 평탄화 처리의 대상 스케일팩터 밴드로 취한다. 여기서, 고역 측의 각 스케일팩터 밴드의 고역 신호의 생성에 이용되는 저역 측의 스케일팩터 밴드는, 미리 정해지는 것으로 한다.
다음으로, 고역 복호화 회로(64)는 저역 측의 처리 대상의 스케일팩터 밴드를 구성하는 각 서브밴드의 저역 서브밴드 신호에 대하여 평탄화 필터를 이용한 필터 처리를 행한다. 구체적으로는, 고역 복호화 회로(64)는 저역 측의 처리 대상의 스케일팩터 밴드를 구성하는 각 서브밴드의 저역 서브밴드 신호에 기초하여, 그들의 서브밴드의 에너지를 산출하고, 산출한 각 서브밴드의 에너지의 평균값을 평균 에너지로서 산출한다. 고역 복호화 회로(64)는 처리 대상의 스케일팩터 밴드를 구성하는 각 서브밴드의 저역 서브밴드 신호에 그들 서브밴드의 에너지와 평균 에너지의 비를 곱함으로써 각 서브밴드의 저역 서브밴드 신호를 평탄화한다.
예를 들면, 처리 대상으로 삼은 스케일팩터 밴드가 3개의 서브밴드 SB1 내지SB3로 구성되는 것으로 하고, 그들의 서브밴드의 에너지로서 에너지 E1 내지 E3이 얻어진 것으로 한다. 이 경우, 서브밴드 SB1 내지 SB3의 에너지 E1 내지 E3의 평균값이 평균 에너지 EA로서 산출된다.
그리고, 서브밴드 SB1 내지 SB3의 저역 서브밴드 신호의 각각에 에너지의 비의 값인 EA/E1, EA/E2, 및 EA/E3를 곱한다. 이렇게 하여, 에너지의 비가 곱해진 저역 서브밴드 신호가 평탄화된 저역 서브밴드 신호로 된다.
여기서, 에너지 E1 내지 E3의 최대값과 서브밴드의 에너지 간의 비를 그 서브밴드의 저역 서브밴드 신호와 곱함으로써 저역 서브밴드 신호를 평탄화하도록 구성하여도 된다. 각 서브밴드의 저역 서브밴드 신호의 평탄화는, 그들의 서브밴드로 이루어지는 스케일팩터 밴드의 파워 스펙트럼이 평탄화되기만 하면, 어떤 식으로도 행해질 수 있다.
그렇게 함에 있어서, 이제부터 생성하려고 하는 고역 측의 각 스케일팩터 밴드에 대해서, 그들의 스케일팩터 밴드의 생성에 이용되는 저역 측의 스케일팩터 밴드를 구성하는 각 서브밴드의 저역 서브밴드 신호가 평탄화된다.
스텝 S46에서, 고역 복호화 회로(64)는 고역 측의 스케일팩터 밴드의 생성에 이용되는 저역 측의 각 스케일팩터 밴드에 대해서, 그들의 스케일팩터 밴드의 평균 에너지 Eorg를 산출한다.
구체적으로는, 고역 복호화 회로(64)는 저역 측의 스케일팩터 밴드를 구성하는 각 서브밴드의 평탄화 후의 저역 서브밴드 신호를 이용하여 각 서브밴드의 에너지를 산출하고, 또한, 그들의 서브밴드의 에너지의 평균값을 평균 에너지 Eorg로서 산출한다.
스텝 S47에서, 고역 복호화 회로(64)는 고역 주파수 대역 신호인 고역 측의 스케일팩터 밴드의 생성에 이용되는, 저역 주파수 대역 신호인 저역 측의 각 스케일팩터 밴드의 신호를, 생성하려고 하는 고역 측의 스케일팩터 밴드의 주파수 대역으로 주파수 시프트시킨다. 달리 말하자면, 저역 측의 스케일팩터 밴드를 구성하는 평탄화 후의 각 서브밴드의 저역 서브밴드 신호가 주파수 시프트되어 고역 주파수 대역 신호가 생성된다.
스텝 S48에서, 고역 복호화 회로(64)는 고역 스케일팩터 밴드 에너지 Eobj와 평균 에너지 Eorg 간의 비에 따라 주파수 시프트 후의 저역 서브밴드 신호를 게인 조정하고, 고역 측의 스케일팩터 밴드의 고역 서브밴드 신호를 생성한다.
예를 들면, 이후 생성하려고 하는 고역 측의 스케일팩터 밴드를 고역 스케일팩터 밴드라 하고, 그 고역 스케일팩터 밴드의 생성에 이용되는 저역 측의 스케일팩터 밴드를 저역 스케일팩터 밴드라 한다.
고역 복호화 회로(64)는 저역 스케일팩터 밴드를 구성하는 주파수 시프트 후의 각 서브밴드의 저역 서브밴드 신호의 에너지 평균값이 고역 스케일팩터 밴드의 고역 스케일팩터 밴드 에너지와 거의 같은 크기가 되도록, 평탄화 후의 저역 서브밴드 신호를 게인 조정한다.
그렇게 함에 있어서, 주파수 시프트 및 게인 조정된 저역 서브밴드 신호를 고역 스케일팩터 밴드의 각 서브밴드의 고역 서브밴드 신호라 하고, 고역 측의 스케일팩터 밴드의 각 서브밴드의 고역 서브밴드 신호로 이루어지는 신호를 고역 측의 스케일팩터 밴드의 신호(고역 신호)라 한다. 고역 복호화 회로(64)는 생성된 고역 측의 각 스케일팩터 밴드의 고역 신호를 QMF 합성 필터 처리부(65)에 공급한다.
스텝 S49에서, QMF 합성 필터 처리부(65)는 QMF 분석 필터 처리부(63)로부터 공급된 저역 서브밴드 신호와 고역 복호화 회로(64)로부터 공급된 고역 신호를 QMF 합성 필터를 이용한 필터 처리에 따라 합성, 즉 결합하여, 출력 신호를 생성한다. 그리고, QMF 합성 필터 처리부(65)는 생성된 출력 신호를 출력하고, 복호화 처리는 종료한다.
그렇게 함에 있어서, 디코더(51)는 저역 서브밴드 신호를 평탄화, 즉 평활화하고, 평탄화 후의 저역 서브밴드 신호와 SBR 정보를 이용하여, 고역 측의 각 스케일팩터 밴드의 고역 신호를 생성한다. 이렇게 하여, 평탄화한 저역 서브밴드 신호를 이용해서 고역 신호를 생성함으로써, 고음질의 음성을 재생할 수 있는 출력 신호를 간단히 얻을 수 있다.
여기서, 이상에서는, 저역 측의 모든 대역이 평탄화, 즉 평활화되는 것으로 설명했다. 그러나, 디코더(51) 측에서, 저역 중에서 디프레션이 생긴 대역에 대해서만 평탄화가 행해져도 좋다. 그러한 경우, 예를 들면, 디코더(51)에서, 저역 신호를 이용하여 디프레션이 생긴 주파수 대역을 검출한다.
제2 실시형태
<부호화 처리의 설명>
또한, 인코더(11)는 저역에서 디프레션이 생긴 대역의 위치 정보와 그 대역의 평탄화에 이용되는 정보를 생성하고, 그들의 정보가 포함되는 SBR 정보를 출력하도록 구성될 수 있다. 그러한 경우, 인코더(11)는 도 10에 나타내는 부호화 처리를 행한다.
이하, 도 10의 흐름도를 참조하여 디프레션이 생긴 대역의 위치 정보 등이 포함된 SBR 정보가 출력되는 경우에서의 부호화 처리에 대해서 설명한다.
여기서, 스텝 S71 내지 스텝 S73의 처리는, 도 7의 스텝 S11 내지 스텝 S13의 처리와 마찬가지이므로, 그 설명은 생략하거나 줄인다. 스텝 S73의 처리가 행해지면, 고역 부호화 회로(24)에는, 각 서브밴드의 서브밴드 신호가 공급된다.
스텝 S74에서, 고역 부호화 회로(24)는 QMF 분석 필터 처리부(23)로부터 공급된 저역 측의 서브밴드의 저역 서브밴드 신호에 기초하여 저역의 주파수 대역 중에서 디프레션이 있는 대역을 검출한다.
구체적으로는, 예를 들면, 고역 부호화 회로(24)는 저역의 각 서브밴드의 에너지의 평균값을 산출하여 저역 전체 에너지의 평균값인 평균 에너지 EL을 산출한다. 그리고, 고역 부호화 회로(24)는 저역의 서브밴드 중에서 평균 에너지 EL과 서브밴드 에너지 간의 차분이 미리 정한 임계값 이상이 되는 서브밴드를 검출한다. 달리 말하자면, 평균 에너지 EL에서 서브밴드의 에너지를 감산해서 얻어진 값이 임계값 이상인 서브밴드가 검출된다.
또한, 고역 부호화 회로(24)는 차분이 임계값 이상이 되는 전술한 서브밴드로 이루어지는 대역 - 몇 개의 연속하는 서브밴드로 이루어지는 대역이기도 함 - 을 디프레션이 있는 대역(이하, 평탄화 대역이라 칭함)으로 취한다. 여기서, 평탄화 대역은 1개의 서브밴드로 이루어지는 대역일 경우도 있다.
스텝 S75에서, 고역 부호화 회로(24)는 평탄화 대역마다, 평탄화 대역의 위치를 나타내는 평탄화 위치 정보와, 그 평탄화 대역의 평탄화에 이용되는 평탄화 게인 정보를 산출한다. 고역 부호화 회로(24)는 각 평탄화 대역의 평탄화 위치 정보 및 평탄화 게인 정보로 이루어지는 정보를 평탄화 정보로 취한다.
구체적으로는, 고역 부호화 회로(24)는 평탄화 대역이라고 한 대역을 나타내는 정보를 평탄화 위치 정보로 취한다. 또한, 고역 부호화 회로(24)는 평탄화 대역을 구성하는 서브밴드마다, 평균 에너지 EL과 그 서브밴드의 에너지의 차분 DE를 산출하고, 평탄화 대역을 구성하는 각 서브밴드의 차분 DE로 이루어지는 정보를 평탄화 게인 정보로 취한다.
스텝 S76에서, 고역 부호화 회로(24)는 QMF 분석 필터 처리부(23)로부터 공급된 서브밴드 신호에 기초하여, 고역 측의 각 스케일팩터 밴드의 고역 스케일팩터 밴드 에너지 Eobj를 산출한다. 여기서, 스텝 S76에서는, 도 7의 스텝 S14와 마찬가지의 처리가 행해진다.
스텝 S77에서, 고역 부호화 회로(24)는 고역 측의 각 스케일팩터 밴드의 고역 스케일팩터 밴드 에너지 Eobj와 각 평탄화 대역의 평탄화 정보를 스칼라 양자화 등의 부호화 스킴에 따라 부호화하여, SBR 정보를 생성한다. 고역 부호화 회로(24)는 생성된 SBR 정보를 다중화 회로(25)에 공급한다.
그 후, 스텝 S78의 처리가 행해지고, 부호화 처리는 종료하지만, 스텝 S78의 처리는 도 7의 스텝 S16의 처리와 마찬가지이므로, 그 설명은 생략하거나 줄인다.
그렇게 함에 있어서, 인코더(11)는 저역으로부터 평탄화 대역을 검출하고, 각 평탄화 대역의 평탄화에 이용되는 평탄화 정보가 포함되는 SBR 정보를 저역 부호화 데이터와 함께 출력한다. 이에 의해, 디코더(51) 측에서, 더 간단히 평탄화 대역의 평탄화를 행할 수 있게 된다.
<복호 처리의 설명>
또한, 도 10의 흐름도를 참조하여 설명한 부호화 처리에 의해 출력된 비트스트림이 디코더(51)에 송신되면, 그 비트스트림을 수신한 디코더(51)는 도 11에 나타내는 복호화 처리를 행한다. 이하, 도 11의 흐름도를 참조하여 디코더(51)에 의한 복호화 처리에 대해서 설명한다.
여기서, 스텝 S101 내지 스텝 S104의 처리는 도 9의 스텝 S41 내지 스텝 S44의 처리와 마찬가지이므로, 그 설명은 생략하거나 줄인다. 단, 스텝 S104의 처리에서는, SBR 정보의 복호화에 의해, 고역 스케일팩터 밴드 에너지 Eobj와 각 평탄화 대역의 평탄화 정보가 얻어진다.
스텝 S105에서, 고역 복호화 회로(64)는 평탄화 정보를 이용하여 평탄화 정보에 포함되는 평탄화 위치 정보에 의해 나타내지는 평탄화 대역을 평탄화한다. 달리 말하자면, 고역 복호화 회로(64)는 평탄화 위치 정보에 의해 나타내지는 평탄화 대역을 구성하는 서브밴드의 저역 서브밴드 신호에, 그 서브밴드의 차분 DE를 가산함으로써 평탄화를 행한다. 여기에서, 평탄화 대역의 서브밴드마다의 차분 DE는 평탄화 정보에 평탄화 게인 정보로서 포함되는 정보이다.
그렇게 함에 있어서, 저역 측의 서브밴드 중에서 평탄화 대역을 구성하는 각 서브밴드의 저역 서브밴드 신호가 평탄화된다. 그 후, 평탄화된 저역 서브밴드 신호가 이용되고, 스텝 S106 내지 스텝 S109의 처리가 행해지고, 복호화 처리는 종료한다. 여기서, 이들의 스텝 S106 내지 스텝 S109의 처리는 도 9의 스텝 S46 내지 스텝 S49의 처리와 마찬가지이므로, 그 설명은 생략하거나 줄인다.
그렇게 함에 있어서, 디코더(51)는 SBR 정보에 포함되는 평탄화 정보를 이용하고, 평탄화 대역의 평탄화를 행하고, 고역 측의 각 스케일팩터 밴드의 고역 신호를 생성한다. 이와 같이 평탄화 정보를 이용해서 평탄화 대역의 평탄화를 행함으로써, 더 간단하고 신속하게 고역 신호를 생성할 수 있다.
제3 실시형태
<부호화 처리의 설명>
또한, 제2 실시형태에서는, 평탄화 정보를 그대로 SBR 정보에 포함시켜서 디코더(51)에 송신하는 것을 설명했다. 그러나, 평탄화 정보를 벡터 양자화시켜 SBR 정보에 포함되도록 구성해도 좋다.
그러한 경우, 예를 들면, 인코더(11)의 고역 부호화 회로(24)는 평활화 위치 정보인 복수의 평탄화 위치 정보 벡터와 그들의 평탄화 위치 정보 벡터를 특정하는 위치 인덱스가 연관되어 있는 위치 테이블을 기록한다(log). 여기에서, 평탄화 위치 정보 벡터는 하나 또는 복수의 평탄화 대역의 평탄화 위치 정보의 각각을 엘리먼트로 취하는 벡터이며, 평탄화 대역의 주파수가 낮은 순으로 그들의 평탄화 위치 정보를 배열해서 얻어지는 벡터이다.
여기서, 위치 테이블에는, 동일한 수의 엘리먼트로 이루어지는 서로 다른 평탄화 위치 정보 벡터뿐만 아니라, 서로 다른 수의 엘리먼트로 이루어지는 복수의 평탄화 위치 정보 벡터가 기록되어 있다.
또한, 인코더(11)의 고역 부호화 회로(24)는 복수의 평탄화 게인 정보 벡터와 그들의 평탄화 게인 정보 벡터를 특정하는 게인 인덱스가 연관되어 있는 게인 테이블을 기록한다. 여기서, 평탄화 게인 정보 벡터는, 하나 또는 복수의 평탄화 대역의 평탄화 게인 정보의 각각을 엘리먼트로 취하는 벡터이며, 평탄화 대역의 주파수가 낮은 순으로 그들의 평탄화 게인 정보를 배열해서 얻어지는 벡터다.
위치 테이블의 경우와 마찬가지로, 게인 테이블에도, 동일한 수의 엘리먼트로 이루어지는 서로 상이한 복수의 평탄화 게인 정보 벡터나, 서로 다른 수의 엘리먼트로 이루어지는 복수의 평탄화 게인 정보 벡터가 기록된다.
인코더(11)에 위치 테이블과 게인 테이블이 이와 같이 하여 기록되어 있을 경우, 인코더(11)는 도 12에 나타내는 부호화 처리를 행한다. 이하, 도 12의 흐름도를 참조하여 인코더(11)에 의한 부호화 처리에 대해서 설명한다.
여기서, 스텝 S141 내지 스텝 S145의 처리의 각각은 도 10의 스텝 S71 내지 스텝 S75의 각각과 마찬가지이므로, 그 설명은 생략하거나 줄인다.
스텝 S145의 처리가 행해지면, 입력 신호의 저역의 각 평탄화 대역에 대해 평탄화 위치 정보 및 평탄화 게인 정보가 얻어진다. 그렇게 하면, 고역 부호화 회로(24)는 주파수 대역의 낮은 순으로 각 평탄화 대역의 평탄화 위치 정보를 배열하여 평탄화 위치 정보 벡터로서 취하고, 또한 주파수 대역의 낮은 순으로 각 평탄화 대역의 평탄화 게인 정보를 배열하여 평탄화 게인 정보 벡터로서 취한다.
스텝 S146에서, 고역 부호화 회로(24)는 얻어진 평탄화 위치 정보 벡터 및 평탄화 게인 정보 벡터에 대응하는 위치 인덱스 및 게인 인덱스를 취득한다.
달리 말하자면, 고역 부호화 회로(24)는 위치 테이블에 기록되어 있는 평탄화 위치 정보 벡터 중에서, 스텝 S145에서 얻어진 평탄화 위치 정보 벡터까지의 유클리드(Euclidean) 거리가 가장 짧은 평탄화 위치 정보 벡터를 특정한다. 그리고, 고역 부호화 회로(24)는 특정된 평탄화 위치 정보 벡터에 연관되어 있는 위치 인덱스를 위치 테이블로부터 취득한다.
마찬가지로, 고역 부호화 회로(24)는 게인 테이블에 기록되어 있는 평탄화 게인 정보 벡터 중에서, 스텝 S145에서 얻어진 평탄화 게인 정보 벡터까지의 유클리드 거리가 가장 짧은 평탄화 게인 정보 벡터를 특정한다. 그리고, 고역 부호화 회로(24)는 특정된 평탄화 게인 정보 벡터에 연관되어 있는 게인 인덱스를 게인 테이블로부터 취득한다.
그렇게 함에 있어서, 위치 인덱스와 게인 인덱스가 취득되면, 계속해서 스텝 S147의 처리가 행해지고, 고역 측의 각 스케일팩터 밴드의 고역 스케일팩터 밴드 에너지 Eobj가 산출된다. 여기서, 스텝 S147의 처리는 도 10의 스텝 S76의 처리와 마찬가지이므로, 그 설명은 생략되거나 줄인다.
스텝 S148에서, 고역 부호화 회로(24)는 각 고역 스케일팩터 밴드 에너지 Eobj와 스텝 S146에서 취득된 위치 인덱스 및 게인 인덱스를 스칼라 양자화 등의 부호화 스킴에 따라 부호화하여 SBR 정보를 생성한다. 고역 부호화 회로(24)는 생성된 SBR 정보를 다중화 회로(25)에 공급한다.
그 후, 스텝 S149의 처리가 행해지고, 부호화 처리는 종료하지만, 스텝 S149의 처리는 도 10의 스텝 S78의 처리와 마찬가지이므로, 그 설명은 생략하거나 줄인다.
그렇게 함에 있어서, 인코더(11)는 저역으로부터 평탄화 대역을 검출하고, 각 평탄화 대역의 평탄화에 이용하는 평탄화 정보를 얻기 위한 위치 인덱스 및 게인 인덱스가 포함되는 SBR 정보를 저역 부호화 데이터와 함께 출력한다. 이에 의해, 인코더(11)로부터 출력되는 비트스트림의 정보량을 삭감할 수 있다.
<복호화 처리의 설명>
또한, SBR 정보에 위치 인덱스 및 게인 인덱스가 포함되어 있을 경우, 디코더(51)의 고역 복호화 회로(64)에는 위치 테이블과 게인 테이블이 미리 기록되어 있다.
이와 같이, 디코더(51)가 위치 테이블과 게인 테이블을 기록하고 있을 경우, 디코더(51)는 도 13에 나타내는 복호화 처리를 행한다. 이하, 도 13의 흐름도를 참조하여 디코더(51)에 의한 복호화 처리에 대해서 설명한다.
여기서, 스텝 S171 내지 스텝 S174의 처리는 도 11의 스텝 S101 내지 스텝 S104의 처리와 마찬가지이므로, 그 설명은 생략하거나 줄인다. 단, 스텝 S174의 처리에서는, SBR 정보의 복호화에 의해, 고역 스케일팩터 밴드 에너지 Eobj와 위치 인덱스 및 게인 인덱스가 얻어진다.
스텝 S175에서, 고역 복호화 회로(64)는 위치 인덱스 및 게인 인덱스에 기초하여 평탄화 위치 정보 벡터와 평탄화 게인 정보 벡터를 취득한다.
달리 말하자면, 고역 복호화 회로(64)는 기록되어 있는 위치 테이블로부터 복호화에 의해 얻어진 위치 인덱스에 연관되어 있는 평탄화 위치 정보 벡터를 취득하고, 게인 테이블로부터 복호화에 의해 얻어진 게인 인덱스에 연관되어 있는 평탄화 게인 정보 벡터를 취득한다. 이와 같이 하여 얻어진 평탄화 위치 정보 벡터와 평탄화 게인 정보 벡터로부터, 각 평탄화 대역의 평탄화 정보, 즉 각 평탄화 대역의 평탄화 위치 정보와 평탄화 게인 정보가 얻어진다.
각 평탄화 대역의 평탄화 정보가 얻어지면, 그 후, 스텝 S176 내지 스텝 S180의 처리가 행해져서 복호화 처리는 종료하지만, 이들의 처리는 도 11의 스텝 S105 내지 스텝 S109의 처리와 마찬가지이므로, 그 설명은 생략하거나 줄인다.
그렇게 함에 있어서, 디코더(51)는 SBR 정보에 포함되는 위치 인덱스 및 게인 인덱스로부터 각 평탄화 대역의 평탄화 정보를 얻어서 평탄화 대역의 평탄화를 행하고, 고역 측의 각 스케일팩터 밴드의 고역 신호를 생성한다. 이와 같이 하여 위치 인덱스 및 게인 인덱스로부터 평탄화 정보를 얻도록 함으로써, 수신하는 비트스트림의 정보량을 삭감할 수 있다.
전술한 일련의 처리는, 하드웨어에 의해 실행될 수도 있고, 소프트웨어에 의해 실행될 수도 있다. 일련의 처리를 소프트웨어에 의해 실행하는 경우에는, 그 소프트웨어를 구성하는 프로그램이 특수 목적의 하드웨어에 내장되어 있는 컴퓨터,또는, 이와는 다르게, 각종의 프로그램을 설치함으로써 각종의 기능을 실행할 수 있는, 예를 들면, 범용의 퍼스널 컴퓨터 등에 프로그램 기록 매체로부터 설치된다.
도 14는 전술한 일련의 처리를 프로그램에 따라 실행하는 컴퓨터의 하드웨어의 구성 예를 도시하는 블록도이다.
컴퓨터에서, CPU(Central Processing Unit; 201), ROM(Read Only Memory; 202) 및 RAM(Random Access Memory; 203)은 버스(204)에 의해 서로 접속되어 있다.
버스(204)에는, 또한, 입/출력 인터페이스(205)가 접속되어 있다. 입/출력 인터페이스(205)에는 키보드(keyboard), 마우스, 마이크로폰 등으로 구성되는 입력부(206); 디스플레이, 스피커 등으로 이루어지는 출력부(207); 하드디스크, 불휘발성의 메모리 등으로 이루어지는 기록부(208); 네트워크 인터페이스 등으로 이루어지는 통신부(209) 및 자기 디스크, 광 디스크, 광 자기 디스크, 혹은 반도체 메모리 등의 이동식(removable) 매체(211)를 구동하는 드라이브(210)가 접속되어 있다.
이상과 같이 구성되는 컴퓨터에서는, CPU(201)가, 예를 들면, 기록부(208)에 기록되어 있는 프로그램을 입/출력 인터페이스(205) 및 버스(204)를 통해 RAM(203)에 로딩하여 실행함으로써, 전술한 일련의 처리가 행해진다.
컴퓨터(CPU(201))가 실행하는 프로그램은, 예를 들면, 자기 디스크(플렉시블 디스크를 포함), 광 디스크(CD-ROM(Compact Disc-Read Only Memory), DVD(Digital Versatile Disc) 등), 광 자기 디스크, 혹은 반도체 메모리 등으로 이루어지는 패키지 매체인 이동식 매체(211)에 기록한다. 이와는 다르게, 프로그램은 근거리 통신망(LAN), 인터넷 또는 디지털 위성 방송과 같은 유선 또는 무선의 전송 매체를 통해 제공된다.
그리고, 프로그램은 이동식 매체(211)를 드라이브(210)에 장착함으로써 입/출력 인터페이스(205)를 통해 기록부(208)에 설치될 수 있다. 또한, 프로그램은 유선 또는 무선의 전송 매체를 통해 통신부(209)에서 수신하고, 기록부(208)에 설치될 수 있다. 기타, 프로그램은 ROM(202)이나 기록부(208)에 미리 설치해 둘 수 있다.
여기서, 컴퓨터가 실행하는 프로그램은 본 명세서에서 설명하는 순서에 따라 시계열로 처리가 행해지는 프로그램이어도 좋고, 병렬로, 또는, 호출이 행해질 때와 같은 필요한 타이밍에서 처리가 행해지는 프로그램이어도 좋다.
여기서, 본 발명의 실시형태는 전술한 실시형태에 한정되는 것이 아니라, 본 발명의 요지를 일탈하지 않는 범위에 있어서 여러 가지는 변경이 가능하다.
11 : 인코더
22 : 저역 부호화 회로, 즉, 저역 주파수 부호화 회로
24 : 고역 부호화 회로, 즉, 고역 주파수 부호화 회로
25 : 멀티플렉싱 회로
51 : 디코더
61 : 디멀티플렉싱 회로
63 : QMF 분석 필터 처리부
64 : 고역 복호화 회로, 즉, 고역 주파수 생성 회로
65 : QMF 합성 필터 처리부, 즉, 결합 회로

Claims (3)

  1. 음성 신호를 처리하기 위한 컴퓨터 구현 방법으로서,
    상기 음성 신호에 대응하는 부호화된 신호를 복호화하여 복호화된 신호를 생성하는 단계,
    상기 복호화된 신호에 대해 필터 처리를 행하는 단계 - 상기 필터 처리는 상기 복호화된 신호를 저역 주파수 대역 신호로 분할함 - ,
    복수의 저역 주파수 대역 신호의 평균 에너지를 산출하는 단계,
    선택된 저역 주파수 대역 신호의 에너지에 대한 상기 복수의 저역 주파수 대역 신호의 평균 에너지의 비를 산출함으로써, 상기 저역 주파수 대역 신호 중 선택된 것에 대한 비를 산출하는 단계,
    상기 저역 주파수 대역 신호의 에너지 디프레션을 평활화하기 위하여, 상기 선택된 저역 주파수 대역 신호에 상기 산출된 비를 곱하는 단계,
    평활화된 상기 저역 주파수 대역 신호에 대해 주파수 시프트를 행하는 단계 - 상기 주파수 시프트는 상기 저역 주파수 대역 신호로부터 고역 주파수 대역 신호를 생성함 -,
    상기 저역 주파수 대역 신호와 상기 고역 주파수 대역 신호를 결합하여 출력 신호를 생성하는 단계, 및
    상기 출력 신호를 출력하는 단계를 포함하는, 음성 신호를 처리하기 위한 컴퓨터 구현 방법.
  2. 음성 신호를 처리하기 위한 장치로서,
    상기 음성 신호에 대응하는 부호화된 신호를 복호화하여 복호화된 신호를 생성하도록 구성된 복호화 회로,
    상기 복호화된 신호에 대해 필터 처리를 행하도록 구성된 필터 처리부 - 상기 필터 처리는 상기 복호화된 신호를 저역 주파수 대역 신호로 분할함 - ,
    복수의 저역 주파수 대역 신호의 평균 에너지를 산출하고,
    선택된 저역 주파수 대역 신호의 에너지에 대한 상기 복수의 저역 주파수 대역 신호의 평균 에너지의 비를 산출함으로써, 상기 저역 주파수 대역 신호 중 선택된 것에 대한 비를 산출하고,
    상기 저역 주파수 대역 신호의 에너지 디프레션을 평활화하기 위하여, 상기 선택된 저역 주파수 대역 신호에 상기 산출된 비를 곱하고,
    평활화된 상기 저역 주파수 대역 신호에 대해 주파수 시프트를 행하도록 구성된 고역 주파수 생성 회로 - 상기 주파수 시프트는 상기 저역 주파수 대역 신호로부터 고역 주파수 대역 신호를 생성함 -, 및
    상기 저역 주파수 대역 신호와 상기 고역 주파수 대역 신호를 결합하여 출력 신호를 생성하고, 상기 출력 신호를 출력하도록 구성된 결합 회로를 포함하는, 음성 신호를 처리하기 위한 장치.
  3. 프로세서에 의해 실행될 때, 음성 신호를 처리하는 방법을 수행하는 명령어를 포함한 유형의(tangibly embodied) 컴퓨터 판독가능 기록 매체로서,
    상기 방법은,
    상기 음성 신호에 대응하는 부호화된 신호를 복호화하여 복호화된 신호를 생성하는 단계,
    상기 복호화된 신호에 대해 필터 처리를 행하는 단계 - 상기 필터 처리는 상기 복호화된 신호를 저역 주파수 대역 신호로 분할함 - ,
    복수의 저역 주파수 대역 신호의 평균 에너지를 산출하는 단계,
    선택된 저역 주파수 대역 신호의 에너지에 대한 상기 복수의 저역 주파수 대역 신호의 평균 에너지의 비를 산출함으로써, 상기 저역 주파수 대역 신호 중 선택된 것에 대한 비를 산출하는 단계,
    상기 저역 주파수 대역 신호의 에너지 디프레션을 평활화하기 위하여, 상기 선택된 저역 주파수 대역 신호에 상기 산출된 비를 곱하는 단계,
    평활화된 상기 저역 주파수 대역 신호에 대해 주파수 시프트를 행하는 단계 - 상기 주파수 시프트는 상기 저역 주파수 대역 신호로부터 고역 주파수 대역 신호를 생성함 -,
    상기 저역 주파수 대역 신호와 상기 고역 주파수 대역 신호를 결합하여 출력 신호를 생성하는 단계, 및
    상기 출력 신호를 출력하는 단계를 포함하는, 유형의 컴퓨터 판독가능 기록 매체.
KR1020187005649A 2010-08-03 2011-07-27 신호 처리 장치 및 방법, 및 프로그램 KR101967122B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2010-174758 2010-08-03
JP2010174758A JP6075743B2 (ja) 2010-08-03 2010-08-03 信号処理装置および方法、並びにプログラム
PCT/JP2011/004260 WO2012017621A1 (en) 2010-08-03 2011-07-27 Signal processing apparatus and method, and program

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020127007903A Division KR101835156B1 (ko) 2010-08-03 2011-07-27 신호 처리 장치 및 방법, 및 프로그램

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020197009132A Division KR102057015B1 (ko) 2010-08-03 2011-07-27 신호 처리 장치 및 방법, 및 프로그램

Publications (2)

Publication Number Publication Date
KR20180026558A true KR20180026558A (ko) 2018-03-12
KR101967122B1 KR101967122B1 (ko) 2019-04-08

Family

ID=45559144

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020187005649A KR101967122B1 (ko) 2010-08-03 2011-07-27 신호 처리 장치 및 방법, 및 프로그램
KR1020197009132A KR102057015B1 (ko) 2010-08-03 2011-07-27 신호 처리 장치 및 방법, 및 프로그램
KR1020127007903A KR101835156B1 (ko) 2010-08-03 2011-07-27 신호 처리 장치 및 방법, 및 프로그램

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020197009132A KR102057015B1 (ko) 2010-08-03 2011-07-27 신호 처리 장치 및 방법, 및 프로그램
KR1020127007903A KR101835156B1 (ko) 2010-08-03 2011-07-27 신호 처리 장치 및 방법, 및 프로그램

Country Status (17)

Country Link
US (4) US9406306B2 (ko)
EP (4) EP2471063B1 (ko)
JP (1) JP6075743B2 (ko)
KR (3) KR101967122B1 (ko)
CN (2) CN102549658B (ko)
AR (1) AR082447A1 (ko)
AU (4) AU2011287140A1 (ko)
BR (1) BR112012007187B1 (ko)
CA (1) CA2775314C (ko)
CO (1) CO6531467A2 (ko)
HK (2) HK1171858A1 (ko)
MX (1) MX2012003661A (ko)
RU (3) RU2550549C2 (ko)
SG (1) SG10201500267UA (ko)
TR (1) TR201809449T4 (ko)
WO (1) WO2012017621A1 (ko)
ZA (1) ZA201202197B (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5754899B2 (ja) 2009-10-07 2015-07-29 ソニー株式会社 復号装置および方法、並びにプログラム
JP5652658B2 (ja) 2010-04-13 2015-01-14 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
JP5850216B2 (ja) 2010-04-13 2016-02-03 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
JP5609737B2 (ja) 2010-04-13 2014-10-22 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
US9047875B2 (en) 2010-07-19 2015-06-02 Futurewei Technologies, Inc. Spectrum flatness control for bandwidth extension
JP6075743B2 (ja) * 2010-08-03 2017-02-08 ソニー株式会社 信号処理装置および方法、並びにプログラム
JP5707842B2 (ja) 2010-10-15 2015-04-30 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
JP5743137B2 (ja) 2011-01-14 2015-07-01 ソニー株式会社 信号処理装置および方法、並びにプログラム
JP6037156B2 (ja) 2011-08-24 2016-11-30 ソニー株式会社 符号化装置および方法、並びにプログラム
JP5942358B2 (ja) 2011-08-24 2016-06-29 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
JP5975243B2 (ja) 2011-08-24 2016-08-23 ソニー株式会社 符号化装置および方法、並びにプログラム
RU2725416C1 (ru) * 2012-03-29 2020-07-02 Телефонактиеболагет Лм Эрикссон (Пабл) Расширение полосы частот гармонического аудиосигнала
RU2649944C2 (ru) 2012-07-02 2018-04-05 Сони Корпорейшн Устройство декодирования, способ декодирования, устройство кодирования, способ кодирования и программа
RU2625945C2 (ru) * 2013-01-29 2017-07-19 Фраунхофер-Гезелльшафт Цур Фердерунг Дер Ангевандтен Форшунг Е.Ф. Устройство и способ для генерирования сигнала с улучшенным спектром, используя операцию ограничения энергии
EP2830063A1 (en) 2013-07-22 2015-01-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus, method and computer program for decoding an encoded audio signal
JP6531649B2 (ja) 2013-09-19 2019-06-19 ソニー株式会社 符号化装置および方法、復号化装置および方法、並びにプログラム
RU2764260C2 (ru) 2013-12-27 2022-01-14 Сони Корпорейшн Устройство и способ декодирования
CN109313908B (zh) * 2016-04-12 2023-09-22 弗劳恩霍夫应用研究促进协会 用于对音频信号进行编码的音频编码器以及方法
CN112562703A (zh) * 2020-11-17 2021-03-26 普联国际有限公司 一种音频的高频优化方法、装置和介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521648A (ja) 1997-06-10 2001-11-06 コーディング テクノロジーズ スウェーデン アクチボラゲット スペクトル帯域複製を用いた原始コーディングの強化
US20080120118A1 (en) * 2006-11-17 2008-05-22 Samsung Electronics Co., Ltd. Method and apparatus for encoding and decoding high frequency signal
KR20080070831A (ko) * 2005-11-30 2008-07-31 마츠시타 덴끼 산교 가부시키가이샤 서브밴드 부호화 장치 및 서브밴드 부호화 방법
WO2009029037A1 (en) * 2007-08-27 2009-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive transition frequency between noise fill and bandwidth extension
KR101835156B1 (ko) * 2010-08-03 2018-03-06 소니 주식회사 신호 처리 장치 및 방법, 및 프로그램

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4628529A (en) * 1985-07-01 1986-12-09 Motorola, Inc. Noise suppression system
US5956674A (en) 1995-12-01 1999-09-21 Digital Theater Systems, Inc. Multi-channel predictive subband audio coder using psychoacoustic adaptive bit allocation in frequency, time and over the multiple channels
US6073100A (en) * 1997-03-31 2000-06-06 Goodridge, Jr.; Alan G Method and apparatus for synthesizing signals using transform-domain match-output extension
CN1144179C (zh) * 1997-07-11 2004-03-31 索尼株式会社 声音信号解码方法和装置、声音信号编码方法和装置
JP4792160B2 (ja) * 1998-08-26 2011-10-12 シーメンス アクチエンゲゼルシヤフト ガス拡散電極を製造するためのスクリーン印刷法およびスクリーン印刷ペースト
GB2342548B (en) * 1998-10-02 2003-05-07 Central Research Lab Ltd Apparatus for,and method of,encoding a signal
SE9903553D0 (sv) * 1999-01-27 1999-10-01 Lars Liljeryd Enhancing percepptual performance of SBR and related coding methods by adaptive noise addition (ANA) and noise substitution limiting (NSL)
US6829360B1 (en) * 1999-05-14 2004-12-07 Matsushita Electric Industrial Co., Ltd. Method and apparatus for expanding band of audio signal
JP3454206B2 (ja) * 1999-11-10 2003-10-06 三菱電機株式会社 雑音抑圧装置及び雑音抑圧方法
CA2290037A1 (en) * 1999-11-18 2001-05-18 Voiceage Corporation Gain-smoothing amplifier device and method in codecs for wideband speech and audio signals
SE0004163D0 (sv) * 2000-11-14 2000-11-14 Coding Technologies Sweden Ab Enhancing perceptual performance of high frequency reconstruction coding methods by adaptive filtering
FR2821501B1 (fr) * 2001-02-23 2004-07-16 France Telecom Procede et dispositif de reconstruction spectrale d'un signal a spectre incomplet et systeme de codage/decodage associe
SE0101175D0 (sv) * 2001-04-02 2001-04-02 Coding Technologies Sweden Ab Aliasing reduction using complex-exponential-modulated filterbanks
US7260541B2 (en) * 2001-07-13 2007-08-21 Matsushita Electric Industrial Co., Ltd. Audio signal decoding device and audio signal encoding device
US6988066B2 (en) * 2001-10-04 2006-01-17 At&T Corp. Method of bandwidth extension for narrow-band speech
US6895375B2 (en) * 2001-10-04 2005-05-17 At&T Corp. System for bandwidth extension of Narrow-band speech
DE60323331D1 (de) * 2002-01-30 2008-10-16 Matsushita Electric Ind Co Ltd Verfahren und vorrichtung zur audio-kodierung und -dekodierung
US20030187663A1 (en) * 2002-03-28 2003-10-02 Truman Michael Mead Broadband frequency translation for high frequency regeneration
JP2003316394A (ja) 2002-04-23 2003-11-07 Nec Corp 音声復号システム、及び、音声復号方法、並びに、音声復号プログラム
US7447631B2 (en) * 2002-06-17 2008-11-04 Dolby Laboratories Licensing Corporation Audio coding system using spectral hole filling
JP2005533271A (ja) * 2002-07-16 2005-11-04 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ オーディオ符号化
JP3579047B2 (ja) * 2002-07-19 2004-10-20 日本電気株式会社 オーディオ復号装置と復号方法およびプログラム
AU2003252727A1 (en) * 2002-08-01 2004-02-23 Matsushita Electric Industrial Co., Ltd. Audio decoding apparatus and audio decoding method based on spectral band repliction
SE0202770D0 (sv) * 2002-09-18 2002-09-18 Coding Technologies Sweden Ab Method for reduction of aliasing introduces by spectral envelope adjustment in real-valued filterbanks
EP1543307B1 (en) * 2002-09-19 2006-02-22 Matsushita Electric Industrial Co., Ltd. Audio decoding apparatus and method
US7330812B2 (en) * 2002-10-04 2008-02-12 National Research Council Of Canada Method and apparatus for transmitting an audio stream having additional payload in a hidden sub-channel
EP2665294A2 (en) * 2003-03-04 2013-11-20 Core Wireless Licensing S.a.r.l. Support of a multichannel audio extension
US7318035B2 (en) * 2003-05-08 2008-01-08 Dolby Laboratories Licensing Corporation Audio coding systems and methods using spectral component coupling and spectral component regeneration
US7844451B2 (en) * 2003-09-16 2010-11-30 Panasonic Corporation Spectrum coding/decoding apparatus and method for reducing distortion of two band spectrums
BRPI0415464B1 (pt) * 2003-10-23 2019-04-24 Panasonic Intellectual Property Management Co., Ltd. Aparelho e método de codificação de espectro.
ATE527654T1 (de) * 2004-03-01 2011-10-15 Dolby Lab Licensing Corp Mehrkanal-audiodecodierung
EP3336843B1 (en) * 2004-05-14 2021-06-23 Panasonic Intellectual Property Corporation of America Speech coding method and speech coding apparatus
KR20070012832A (ko) * 2004-05-19 2007-01-29 마츠시타 덴끼 산교 가부시키가이샤 부호화 장치, 복호화 장치 및 이들의 방법
US7716046B2 (en) * 2004-10-26 2010-05-11 Qnx Software Systems (Wavemakers), Inc. Advanced periodic signal enhancement
US20060106620A1 (en) * 2004-10-28 2006-05-18 Thompson Jeffrey K Audio spatial environment down-mixer
US8255231B2 (en) 2004-11-02 2012-08-28 Koninklijke Philips Electronics N.V. Encoding and decoding of audio signals using complex-valued filter banks
SE0402651D0 (sv) * 2004-11-02 2004-11-02 Coding Tech Ab Advanced methods for interpolation and parameter signalling
RU2376657C2 (ru) * 2005-04-01 2009-12-20 Квэлкомм Инкорпорейтед Системы, способы и устройства для высокополосного предыскажения шкалы времени
ATE421845T1 (de) * 2005-04-15 2009-02-15 Dolby Sweden Ab Zeitliche hüllkurvenformgebung von entkorrelierten signalen
WO2007026821A1 (ja) * 2005-09-02 2007-03-08 Matsushita Electric Industrial Co., Ltd. エネルギー整形装置及びエネルギー整形方法
WO2007037361A1 (ja) * 2005-09-30 2007-04-05 Matsushita Electric Industrial Co., Ltd. 音声符号化装置および音声符号化方法
CN102623014A (zh) * 2005-10-14 2012-08-01 松下电器产业株式会社 变换编码装置和变换编码方法
JP4876574B2 (ja) * 2005-12-26 2012-02-15 ソニー株式会社 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP4863713B2 (ja) * 2005-12-29 2012-01-25 富士通株式会社 雑音抑制装置、雑音抑制方法、及びコンピュータプログラム
WO2007114291A1 (ja) * 2006-03-31 2007-10-11 Matsushita Electric Industrial Co., Ltd. 音声符号化装置、音声復号化装置、およびこれらの方法
US20100161323A1 (en) * 2006-04-27 2010-06-24 Panasonic Corporation Audio encoding device, audio decoding device, and their method
US8260609B2 (en) * 2006-07-31 2012-09-04 Qualcomm Incorporated Systems, methods, and apparatus for wideband encoding and decoding of inactive frames
EP2063418A4 (en) * 2006-09-15 2010-12-15 Panasonic Corp AUDIO CODING DEVICE AND AUDIO CODING METHOD
US8295507B2 (en) * 2006-11-09 2012-10-23 Sony Corporation Frequency band extending apparatus, frequency band extending method, player apparatus, playing method, program and recording medium
JP5141180B2 (ja) 2006-11-09 2013-02-13 ソニー株式会社 周波数帯域拡大装置及び周波数帯域拡大方法、再生装置及び再生方法、並びに、プログラム及び記録媒体
KR101375582B1 (ko) * 2006-11-17 2014-03-20 삼성전자주식회사 대역폭 확장 부호화 및 복호화 방법 및 장치
JP4930320B2 (ja) 2006-11-30 2012-05-16 ソニー株式会社 再生方法及び装置、プログラム並びに記録媒体
US8015368B2 (en) * 2007-04-20 2011-09-06 Siport, Inc. Processor extensions for accelerating spectral band replication
KR101355376B1 (ko) 2007-04-30 2014-01-23 삼성전자주식회사 고주파수 영역 부호화 및 복호화 방법 및 장치
US8041577B2 (en) * 2007-08-13 2011-10-18 Mitsubishi Electric Research Laboratories, Inc. Method for expanding audio signal bandwidth
CA2698031C (en) * 2007-08-27 2016-10-18 Telefonaktiebolaget Lm Ericsson (Publ) Method and device for noise filling
CN101790756B (zh) * 2007-08-27 2012-09-05 爱立信电话股份有限公司 瞬态检测器以及用于支持音频信号的编码的方法
WO2009054393A1 (ja) 2007-10-23 2009-04-30 Clarion Co., Ltd. 高域補間装置および高域補間方法
KR101373004B1 (ko) * 2007-10-30 2014-03-26 삼성전자주식회사 고주파수 신호 부호화 및 복호화 장치 및 방법
JP5404412B2 (ja) * 2007-11-01 2014-01-29 パナソニック株式会社 符号化装置、復号装置およびこれらの方法
JP5547081B2 (ja) * 2007-11-02 2014-07-09 華為技術有限公司 音声復号化方法及び装置
US20090132238A1 (en) * 2007-11-02 2009-05-21 Sudhakar B Efficient method for reusing scale factors to improve the efficiency of an audio encoder
JP2009116275A (ja) * 2007-11-09 2009-05-28 Toshiba Corp 雑音抑圧、音声スペクトル平滑化、音声特徴抽出、音声認識及び音声モデルトレーニングための方法及び装置
US8688441B2 (en) * 2007-11-29 2014-04-01 Motorola Mobility Llc Method and apparatus to facilitate provision and use of an energy value to determine a spectral envelope shape for out-of-signal bandwidth content
WO2009081568A1 (ja) * 2007-12-21 2009-07-02 Panasonic Corporation 符号化装置、復号装置および符号化方法
US20100280833A1 (en) * 2007-12-27 2010-11-04 Panasonic Corporation Encoding device, decoding device, and method thereof
ATE518224T1 (de) * 2008-01-04 2011-08-15 Dolby Int Ab Audiokodierer und -dekodierer
US8433582B2 (en) * 2008-02-01 2013-04-30 Motorola Mobility Llc Method and apparatus for estimating high-band energy in a bandwidth extension system
US20090201983A1 (en) * 2008-02-07 2009-08-13 Motorola, Inc. Method and apparatus for estimating high-band energy in a bandwidth extension system
WO2009110738A2 (ko) * 2008-03-03 2009-09-11 엘지전자(주) 오디오 신호 처리 방법 및 장치
ES2898865T3 (es) * 2008-03-20 2022-03-09 Fraunhofer Ges Forschung Aparato y método para sintetizar una representación parametrizada de una señal de audio
KR20090122142A (ko) * 2008-05-23 2009-11-26 엘지전자 주식회사 오디오 신호 처리 방법 및 장치
PL3246918T3 (pl) * 2008-07-11 2023-11-06 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Dekoder audio, sposób dekodowania sygnału audio oraz program komputerowy
MY155538A (en) * 2008-07-11 2015-10-30 Fraunhofer Ges Forschung An apparatus and a method for generating bandwidth extension output data
BRPI0910792B1 (pt) 2008-07-11 2020-03-24 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. "sintetizador de sinal de áudio e codificador de sinal de áudio"
CN102099855B (zh) * 2008-08-08 2012-09-26 松下电器产业株式会社 频谱平滑化装置、编码装置、解码装置、通信终端装置、基站装置以及频谱平滑化方法
WO2010028299A1 (en) * 2008-09-06 2010-03-11 Huawei Technologies Co., Ltd. Noise-feedback for spectral envelope quantization
US8352279B2 (en) * 2008-09-06 2013-01-08 Huawei Technologies Co., Ltd. Efficient temporal envelope coding approach by prediction between low band signal and high band signal
CN101770776B (zh) * 2008-12-29 2011-06-08 华为技术有限公司 瞬态信号的编码方法和装置、解码方法和装置及处理系统
PL3598447T3 (pl) * 2009-01-16 2022-02-14 Dolby International Ab Transpozycja harmonicznych rozszerzona o iloczyn wektorowy
JP4945586B2 (ja) * 2009-02-02 2012-06-06 株式会社東芝 信号帯域拡張装置
US8463599B2 (en) * 2009-02-04 2013-06-11 Motorola Mobility Llc Bandwidth extension method and apparatus for a modified discrete cosine transform audio coder
EP2239732A1 (en) * 2009-04-09 2010-10-13 Fraunhofer-Gesellschaft zur Förderung der Angewandten Forschung e.V. Apparatus and method for generating a synthesis audio signal and for encoding an audio signal
CO6440537A2 (es) * 2009-04-09 2012-05-15 Fraunhofer Ges Forschung Aparato y metodo para generar una señal de audio de sintesis y para codificar una señal de audio
US8392200B2 (en) 2009-04-14 2013-03-05 Qualcomm Incorporated Low complexity spectral band replication (SBR) filterbanks
TWI591625B (zh) 2009-05-27 2017-07-11 杜比國際公司 從訊號的低頻成份產生該訊號之高頻成份的系統與方法,及其機上盒、電腦程式產品、軟體程式及儲存媒體
US8971551B2 (en) 2009-09-18 2015-03-03 Dolby International Ab Virtual bass synthesis using harmonic transposition
JP5223786B2 (ja) * 2009-06-10 2013-06-26 富士通株式会社 音声帯域拡張装置、音声帯域拡張方法及び音声帯域拡張用コンピュータプログラムならびに電話機
US8515768B2 (en) * 2009-08-31 2013-08-20 Apple Inc. Enhanced audio decoder
JP5754899B2 (ja) 2009-10-07 2015-07-29 ソニー株式会社 復号装置および方法、並びにプログラム
US8447617B2 (en) * 2009-12-21 2013-05-21 Mindspeed Technologies, Inc. Method and system for speech bandwidth extension
KR101423737B1 (ko) * 2010-01-21 2014-07-24 한국전자통신연구원 오디오 신호의 디코딩 방법 및 장치
JP5588025B2 (ja) 2010-03-09 2014-09-10 フラウンホーファーゲゼルシャフト ツール フォルデルング デル アンゲヴァンテン フォルシユング エー.フアー. パッチ境界整合を用いてオーディオ信号を処理するための装置および方法
JP5850216B2 (ja) 2010-04-13 2016-02-03 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
JP5652658B2 (ja) 2010-04-13 2015-01-14 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
JP5609737B2 (ja) 2010-04-13 2014-10-22 ソニー株式会社 信号処理装置および方法、符号化装置および方法、復号装置および方法、並びにプログラム
CN103069484B (zh) * 2010-04-14 2014-10-08 华为技术有限公司 时/频二维后处理
PL2596497T3 (pl) * 2010-07-19 2014-10-31 Dolby Int Ab Przetwarzanie sygnałów audio podczas rekonstrukcji wysokiej częstotliwości
US8560330B2 (en) * 2010-07-19 2013-10-15 Futurewei Technologies, Inc. Energy envelope perceptual correction for high band coding
US9047875B2 (en) * 2010-07-19 2015-06-02 Futurewei Technologies, Inc. Spectrum flatness control for bandwidth extension
JP2012058358A (ja) * 2010-09-07 2012-03-22 Sony Corp 雑音抑圧装置、雑音抑圧方法およびプログラム
JP5707842B2 (ja) * 2010-10-15 2015-04-30 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
WO2012052802A1 (en) * 2010-10-18 2012-04-26 Nokia Corporation An audio encoder/decoder apparatus
JP5743137B2 (ja) * 2011-01-14 2015-07-01 ソニー株式会社 信号処理装置および方法、並びにプログラム
JP5704397B2 (ja) 2011-03-31 2015-04-22 ソニー株式会社 符号化装置および方法、並びにプログラム
JP6037156B2 (ja) 2011-08-24 2016-11-30 ソニー株式会社 符号化装置および方法、並びにプログラム
JP5942358B2 (ja) 2011-08-24 2016-06-29 ソニー株式会社 符号化装置および方法、復号装置および方法、並びにプログラム
JP5975243B2 (ja) * 2011-08-24 2016-08-23 ソニー株式会社 符号化装置および方法、並びにプログラム
JP5845760B2 (ja) * 2011-09-15 2016-01-20 ソニー株式会社 音声処理装置および方法、並びにプログラム
EP2761618B1 (en) * 2011-09-29 2016-11-30 Dolby International AB High quality detection in fm stereo radio signals
CN104205210A (zh) * 2012-04-13 2014-12-10 索尼公司 解码设备和方法、音频信号处理设备和方法以及程序
RU2649944C2 (ru) * 2012-07-02 2018-04-05 Сони Корпорейшн Устройство декодирования, способ декодирования, устройство кодирования, способ кодирования и программа
CN103748629B (zh) * 2012-07-02 2017-04-05 索尼公司 解码装置和方法、编码装置和方法以及程序
JP2014123011A (ja) * 2012-12-21 2014-07-03 Sony Corp 雑音検出装置および方法、並びに、プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001521648A (ja) 1997-06-10 2001-11-06 コーディング テクノロジーズ スウェーデン アクチボラゲット スペクトル帯域複製を用いた原始コーディングの強化
KR20080070831A (ko) * 2005-11-30 2008-07-31 마츠시타 덴끼 산교 가부시키가이샤 서브밴드 부호화 장치 및 서브밴드 부호화 방법
US20080120118A1 (en) * 2006-11-17 2008-05-22 Samsung Electronics Co., Ltd. Method and apparatus for encoding and decoding high frequency signal
WO2009029037A1 (en) * 2007-08-27 2009-03-05 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive transition frequency between noise fill and bandwidth extension
KR101835156B1 (ko) * 2010-08-03 2018-03-06 소니 주식회사 신호 처리 장치 및 방법, 및 프로그램

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DEN BRINKER, et al. An overview of the coding standard MPEG-4 audio amendments 1 and 2: HE-AAC, SSC, and HE-AAC v2. EURASIP Journal on Audio, Speech, and Music Processing. 2009. *
Marina Bosi, et al. ISO/IEC MPEG-2 advanced audio coding. Journal of the Audio engineering society, 1997, Vol.45. No.10, pp.789-814. *
Per Ekstrand. Bandwidth extension of audio signals by spectral band replication. 1st IEEE Benelux Workshop on Model based Processing and Coding of Audio (MPCA-2002). 2002.11.15.* *

Also Published As

Publication number Publication date
CN102549658A (zh) 2012-07-04
AU2018204110B2 (en) 2020-05-21
CA2775314C (en) 2020-03-31
CN102549658B (zh) 2014-08-27
EP3584793B1 (en) 2022-04-13
EP3584793A1 (en) 2019-12-25
AU2020220212B2 (en) 2021-12-23
AU2018204110A1 (en) 2018-06-28
US11011179B2 (en) 2021-05-18
HK1204133A1 (en) 2015-11-06
EP3340244A1 (en) 2018-06-27
KR101967122B1 (ko) 2019-04-08
RU2765345C2 (ru) 2022-01-28
AU2011287140A1 (en) 2012-04-19
CO6531467A2 (es) 2012-09-28
KR20190037370A (ko) 2019-04-05
AU2016202800A1 (en) 2016-05-26
SG10201500267UA (en) 2015-03-30
US10229690B2 (en) 2019-03-12
HK1171858A1 (en) 2013-04-05
US20130124214A1 (en) 2013-05-16
TR201809449T4 (tr) 2018-07-23
EP2471063A1 (en) 2012-07-04
AR082447A1 (es) 2012-12-05
BR112012007187A2 (pt) 2016-03-29
BR112012007187B1 (pt) 2020-12-15
WO2012017621A1 (en) 2012-02-09
RU2015110509A (ru) 2016-10-20
US20170337928A1 (en) 2017-11-23
CA2775314A1 (en) 2012-02-09
EP4086901A1 (en) 2022-11-09
JP6075743B2 (ja) 2017-02-08
US20190164558A1 (en) 2019-05-30
US9406306B2 (en) 2016-08-02
CN104200808A (zh) 2014-12-10
KR102057015B1 (ko) 2019-12-17
RU2018130363A3 (ko) 2021-11-23
RU2550549C2 (ru) 2015-05-10
US9767814B2 (en) 2017-09-19
JP2012037582A (ja) 2012-02-23
RU2666291C2 (ru) 2018-09-06
EP2471063A4 (en) 2014-01-22
EP2471063B1 (en) 2018-04-04
RU2012111784A (ru) 2013-10-27
MX2012003661A (es) 2012-04-30
KR20130107190A (ko) 2013-10-01
EP3340244B1 (en) 2019-09-04
AU2020220212A1 (en) 2020-09-10
RU2015110509A3 (ko) 2018-06-27
RU2018130363A (ru) 2020-02-21
US20160322057A1 (en) 2016-11-03
ZA201202197B (en) 2012-11-28
KR101835156B1 (ko) 2018-03-06
CN104200808B (zh) 2017-08-15
AU2016202800B2 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
KR101967122B1 (ko) 신호 처리 장치 및 방법, 및 프로그램
US10224054B2 (en) Signal processing apparatus and signal processing method, encoder and encoding method, decoder and decoding method, and program
KR101221918B1 (ko) 신호 처리 방법 및 장치
JP4934427B2 (ja) 音声信号復号化装置及び音声信号符号化装置
JP5038138B2 (ja) 周波数領域のウィナーフィルターを用いた空間オーディオコーディングのための時間エンベロープの整形
AU2011282276C1 (en) Spectrum flatness control for bandwidth extension
JP5485909B2 (ja) オーディオ信号処理方法及び装置
JP2007017908A (ja) 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
JP2011059714A (ja) 信号符号化装置及び方法、信号復号装置及び方法、並びにプログラム及び記録媒体
KR20160138373A (ko) 부호화 장치, 복호 장치, 부호화 방법, 복호 방법, 및 프로그램
JP6439843B2 (ja) 信号処理装置および方法、並びにプログラム
JP6210338B2 (ja) 信号処理装置および方法、並びにプログラム
JP2005004119A (ja) 音響信号符号化装置及び音響信号復号化装置
JP2005148539A (ja) オーディオ信号符号化装置およびオーディオ信号符号化方法

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant