KR20170117630A - 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법 - Google Patents

소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법 Download PDF

Info

Publication number
KR20170117630A
KR20170117630A KR1020160045223A KR20160045223A KR20170117630A KR 20170117630 A KR20170117630 A KR 20170117630A KR 1020160045223 A KR1020160045223 A KR 1020160045223A KR 20160045223 A KR20160045223 A KR 20160045223A KR 20170117630 A KR20170117630 A KR 20170117630A
Authority
KR
South Korea
Prior art keywords
aluminum alloy
heat treatment
alloy sheet
hardening
zinc
Prior art date
Application number
KR1020160045223A
Other languages
English (en)
Inventor
김형욱
이윤수
임차용
고동현
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020160045223A priority Critical patent/KR20170117630A/ko
Priority to PCT/KR2016/014716 priority patent/WO2017179794A1/ko
Priority to JP2018547244A priority patent/JP6956101B2/ja
Publication of KR20170117630A publication Critical patent/KR20170117630A/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor

Abstract

본 발명은 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법에 관한 것으로, 판재 제조시 용체화 처리 이후 65 내지 145 ℃의 온도에서 3 내지 250분 동안 예비열처리를 수행함으로써, 판재의 이송 및 보관 중의 자연시효로 인한 물성변화를 억제하고 차체 성형 및 도장 후 소부경화에 의해 강도를 더욱 향상시킬 수 있어, 고강도를 갖는 경량 수송기기 차체를 제조할 수 있는 장점이 있다.

Description

소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법 {High-strength aluminum alloy plate with superior bake-hardenability and manufacturing method thereof}
본 발명은 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법에 관한 것으로, 상세하게는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계(단계 1); 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 용체화 처리하는 단계(단계 2); 및 상기 용체화처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 열처리 단계(단계 3);를 포함하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법에 관한 것이다.
국내외적으로 수송기기 부품의 경량화를 통하여 연비 효율성을 향상시키려는 추세에 따라 저밀도 및 고강도를 갖춘 소재에 대한 요구가 증가하고 있으며, 이 중 알루미늄 합금은 우수한 주조성, 가공성, 기계적 특성 등으로 인하여 그 수요가 급격하게 증가되고 있다.
현재 자동차에 적용되는 알루미늄 합금 판재의 경우, 강도가 높고 성형성이 우수한 5000계(Al-Mg계) 합금 판재는 주로 높은 가공성이 요구되는 내판에 사용되고 있으며, 성형 및 페인트 도장 후 페인트를 경화시키기 위하여 170 내지 190 ℃ 범위에서 20 내지 40 분간 실시하는 소부경화(paint bake-hardening)를 통하여 강도 향상을 기대할 수 있는 시효경화형 6000계(Al-Mg-Si계) 합금 판재는 강도 및 내덴트성(찍힘저항성)이 필요한 외판용으로 사용되고 있다. 현재 자동차용 알루미늄 합금 판재로 적용되고 있는 5000계, 6000계 알루미늄 합금 판재의 인장 특성은 하기 표 1과 같다.

합금분류
기계적 특성(인장 특성)
항복강도(MPa) 인장강도(MPa) 연신율(%)







5000계(Al-Mg)
AA5022-0 135 275 30
AA5023-0 135 285 33
AA5052-0 90 190 26
AA5052-H32 193 228 12
AA5052-H34 214 262 16
AA5052-H38 255 290 14
AA5182-0 130 275 21
AA5182-19 395 420 4
AA5182-32 230 320 12
AA5182-34 240 340 10
AA5754-0 90 212 22
AA5754-H22 185 245 15
AA5754-H24 215 270 14
AA5754-H26 245 290 10
AA5J32-0 127 284 32


6000계
(Al-Mg-Si)

AA6016-T4 130 235 28
AA6016-T6 220 280 16
AA6022-T4 155 275 31
AA6022-T6 232 317 22
AA6111-T4 160 290 28
AA6111-T6 339 406 13
AA6K21-T4 130 223 28
한편, 합금판재가 자동차 외판에 사용되기 위해서는 용체화 처리 공정이 끝난 알루미늄 판재를 자동차 제작 관련 업체에 옮기는 시간이 필요하여, 이러한 시간 지체에 따른 자연시효 현상은 상기 합금 판재가 가졌던 원래의 기계적 특성을 변화시켜, 결과적으로 프레스 성형시 불균일성을 야기할 뿐 아니라, 자동차 제작 관련 업체에서 수행하는 소부경화 열처리공정에서 기계적 물성을 저하시키는 문제가 있다.
이러한 문제점을 해결하기 위해, 대한민국 등록특허 제10-0213678호에서는 고 소부경화성 및 고성형성을 갖는 6000계 알루미늄 합금 판재를 제조하는 방법을 개시한 바 있다. 상세하게는 차체 외판재용 6000계(Al-Mg-Si계) 합금 판재에 대하여 제조공정 중 용체화처리 직후 100 내지 160 ℃의 온도에서 5 초 내지 15 분간 유지시키는 안정화 열처리를 도입하여 판재를 제작함으로써 판재의 이송 및 보관시의 자연시효 현상으로 인한 물성변화를 억제하고 차체성형 후 도장 소부경화 열처리 시 강도가 향상된 고강도 알루미늄-마그네슘-실리콘 합금의 제조방법이 개시된 바 있다.
하지만, 상기와 같은 방법으로 제조된 6000계 알루미늄합금 판재는 소부경화 후 강도를 향상시킨 후에도 항복강도 275 MPa 및 인장강도 363 MPa 수준으로 낮아, 차체로 사용하기 위해서는 강성 확보를 위해 두께를 보강해야 하지만, 두께를 보강할 경우, 경량화 효과가 감소되는 문제점이 있다.
한편, 알루미늄 합금 중 7000계열 알루미늄 합금인 Al-Zn-(Mg, Cu)계 합금은 철에 버금가는 매우 높은 강도를 갖는 고강도 알루미늄 합금으로, 항공기, 철도차량, 스포츠 용품 등 일반적으로 높은 비강도가 요구되는 구조재에 사용되는 열처리합금으로서, 수송기기 경량화를 위해 차체에 사용할 수 있으나, 현재까지 7000계 알루미늄 합금을 항공기 및 기타 구조재에 관한 연구는 활발하게 진행된 반면, 자동차 차체에 적용시키기 위한 연구는 부족한 실정이다.
이와 관련된 종래의 기술로, 미국 공개특허 제2014-0069557호에서는 고강도 7000계 알루미늄 합금판재의 제조방법이 개시된 바 있다. 상세하게는 아연 6.9 내지 8.0 중량%, 마그네슘 1.2 내지 2.4 중량%, 구리 1.3 내지 2.4 중량%, 망간 0.3 중량% 이하, 0.05 내지 0.25 중량%의 크롬 또는 지르코늄, 실리콘 0.3 중량% 이하, 철 0.35 중량% 이하, 타이타늄 0.1 중량% 이하 및 알루미늄 잔부를 포함하는 알루미늄 합금 판재에 대하여 차체부품 성형 및 조립을 한 후 소부경화 열처리를 수행하여 고강도 7000계 알루미늄 합금 판재를 제조한 바 있다.
그러나 상기의 제조방법으로 7000계 알루미늄 합금을 제조하는 경우 상기 알루미늄 판재를 자동차 제작 관련 업체에 옮기는 시간에 의해 발생하는 자연시효에 의해 소부경화 열처리 후 강도 상승이 미미한 문제가 있다.
즉, 알루미늄-아연-마그네슘-구리계 알루미늄 합금은 시효경화형 합금으로, 용체화처리 후 인공시효처리 시 석출상의 형성을 통하여 강도를 향상시킬 수 있으나, 일반적으로 알루미늄-아연-마그네슘-구리계 알루미늄 합금의 시효처리는 120 ℃에서 24 시간 유지하는 것으로 이루어지는 반면, 자동차용 알루미늄 합금의 소부경화 열처리는 170 내지 190 ℃ 범위에서 20 내지 40 분간 실시되는 것으로, 상기 조건은 높은 온도로 인하여 과시효에 의해 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금의 기계적 특성의 저하를 야기시키는 문제가 있다. 또한 용체화 처리 후 소부경화 열처리가 수행되기까지 상온에서 방치되는 동안 진행되는 자연시효로 인하여 석출상의 핵생성 사이트가 불균일하게 형성되어 소부경화 열처리 시 충분한 강도 향상 효과를 얻을 수 없는 문제가 있다.
이에 본 발명자들은 상기 문제점을 해결하고 소부경화 열처리 후 강도가 더욱 향상된 7000계 알루미늄합금 판재를 제조하기 위해, 용체화 처리 이후 예비열처리를 수행하는 방법으로 제조된 7000계 알루미늄합금 판재를 개발하고 본 발명을 완성하였다.
대한민국 등록특허 제10-0213678호 미국 공개특허 제2014-0069557호
본 발명의 목적은 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법을 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은
알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계(단계 1);
상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 용체화 처리하는 단계(단계 2); 및
상기 용체화 처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 열처리 단계(단계 3);를 포함하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법을 제공한다.
또한, 본 발명은
상기 제조방법으로 제조되는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재이며, 소부경화 열처리 후 400 MPa 이상의 항복강도 값을 갖는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제공한다.
본 발명의 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재 제조방법은 용체화 처리 이후 65 내지 145 ℃의 온도에서 3 내지 250분 동안 예비열처리를 수행함으로써, 판재의 이송 및 보관 중의 자연시효로 인한 물성변화를 억제하고 차체 성형 후 소부경화에 의해 강도가 더욱 향상시킬 수 있어, 고강도를 갖는 경량 수송기기 차체를 제조할 수 있는 장점이 있다.
도 1은 본 발명의 알루미늄 합금 판재의 제조공정을 나타낸 그림이고,
도 2 내지 5는 실시예 및 비교예에 따라 제조된 알루미늄합금 판재를 소부경화 열처리를 수행하기 전과 후의 경도측정 결과를 나타낸 그래프이고,
도 6은 실시예 및 비교예에 따라 제조된 알루미늄합금 판재를 소부경화 열처리를 수행하기 전과 후의 인장시험 결과를 나타낸 그래프이고,
도 7은 실시예 및 비교예에 따라 제조된 알루미늄합금 판재를 소부경화 열처리를 수행하기 전과 후의 미세구조를 나타낸 투과전자현미경 사진이다.
본 발명은,
알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계(단계 1);
상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 용체화 처리하는 단계(단계 2); 및
상기 용체화 처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 열처리 단계(단계 3);를 포함하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법을 제공한다.
상기 고강도 알루미늄 합금 판재는 경량화를 위한 수송기기 차체용 알루미늄 합금 판재로 사용될 수 있다. 상기 고강도 알루미늄 합금 판재를 차체용으로 사용하기 위해서는 판재 제조 후 성형, 도장 및 소부경화처리하는 과정을 겪게 되는데, 상기 과정을 겪으면서 상기 알루미늄 합금 판재의 기계적 물성이 저하되는 문제가 발생될 수 있다. 이에, 본 발명의 제조방법은 소부경화 열처리과정에서 기계적 물성을 향상시킬 수 있는 판재를 제조하기 위한, 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법이다.
이하, 본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법을 도면을 참고하여 각 단계별로 상세히 설명한다.
본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법에 있어, 단계 1은 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계이다.
상기 알루미늄 합금 판재는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 잉곳을 재용해하여 박판 주조 후 두께 4.5 mm로 제조될 수 있으며, 상기 박판 주조된 알루미늄-아연-마그네슘-구리계 알루미늄 합금판재를 1차 어닐링, 열간압연, 2차 어닐링 및 냉간압연을 순차적으로 진행하여 두께 약 1.0 mm를 갖는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조할 수 있다. 이때, 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재의 제조방법이 이에 한정된 것은 아니며, 금형주조, 가압주조 등 다른 형태의 주조 방법이 적용될 수 있으며, 압연 대신 압출, 단조 등의 다른 형태의 가공 방법이 적용될 수도 있다.
이때 상기 용탕은 아연 4 내지 8 중량%, 마그네슘 0.5 내지 3.5 중량%, 구리 0.5 내지 2.5 중량% 및 잔여 성분을 알루미늄으로 함유할 수 있다. 상기 아연(Zn)과 마그네슘(Mg)은 둘 다 알루미늄에서 높은 고용도를 가지고 동시 첨가 시 강도 상승에 기여하는 석출상을 형성하며, 구리(Cu) 또한, 상기 알루미늄 합금에 강도를 더욱 증가시키는 역할을 하는 것으로, 상기 함량범위로 알루미늄 합금 용탕에 아연(Zn), 마그네슘(Mg) 및 구리(Cu)가 포함되는 경우, 용탕으로부터 제조되는 알루미늄 합금판재의 강도가 향상되는 효과가 있다.
본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법에 있어, 단계 2는 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금을 용체화 처리하는 단계이다.
상기 용체화 처리는 합금을 고용체 범위까지 가열한 후 급냉시켜 고용체(solid solution) 상태를 상온까지 유지하도록 하는 처리로, 상기 단계 1의 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재의 응력해소 및 과포화 고용체(Super-saturated solid solution) 제조를 목적으로 수행될 수 있다. 이때 상기 용체화 처리는 450 내지 510 ℃에서 5분 내지 2시간 동안 열처리한 후 상온으로 냉각시키는 방법으로 수행될 수 있다. 하지만, 상기 용체화 처리가 이에 제한된 것은 아니며, 알루미늄 합금이 완전 고용체가 되는 적절한 온도 및 시간 범위에서 수행될 수 있다.
본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법에 있어, 단계 3은 상기 용체화 처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 열처리 단계이다.
상기 예비 열처리는 상기 알루미늄 합금 판재가 이후 차체로 제조되기 위해 수행되는 소부경화 열처리시 기계적 특성이 저하되는 문제를 없애기 위해 수행된다.
알루미늄-아연-마그네슘-구리계 알루미늄 합금은 시효경화형 합금으로, 용체화처리 후 120 ℃에서 24 시간 유지하는 것으로 시효처리하여 석출상의 형성을 통하여 강도를 향상시킬 수 있다. 하지만, 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금을 자동차 차체용으로 사용하는 경우, 용체화 처리 후 소부경화 열처리가 170 내지 190 ℃ 범위에서 20 내지 40 분간 수행되어, 높은 온도로 인하여 과시효되어 기계적 특성이 저하되는 문제가 발생되며, 용체화처리 후 소부경화 열처리가 수행되기까지 상온에서 방치되는 동안 진행되는 자연시효로 인하여 임계크기 이하의 GP zone이 불균일하게 형성되어 성형성의 감소는 물론 소부경화 열처리 시 충분한 강도 및 내덴트성 향상을 얻을 수 없는 문제가 발생될 수 있다.
이에, 본 발명에서는 상기 용체화처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250 분간 유지한 후 상온으로 냉각시킴으로써, 소부경화 전 석출상의 핵생성 사이트를 균일하게 생성하여 소부경화 후 경도 및 항복강도가 향상된 알루미늄 합금을 제조할 수 있다.
이때, 상기 예비 열처리를 수행하는 온도가 65 ℃ 미만일 경우, 낮은 온도로 인하여 원소들의 확산속도가 낮아 석출상의 핵생성 사이트를 균일하게 생성시키지 못하는 문제가 발생될 수 있으며, 145 ℃를 초과하는 경우, 높은 온도로 인하여 원소들의 확산속도가 높아 석출상의 핵생성 사이트를 조대화하거나 석출상을 석출시켜 성형성이 저하될 수 있다.
한편, 상기 예비 열처리를 65 내지 105 ℃에서 수행하는 경우에는 열처리 시간을 25 내지 250분 동안 수행하는 것이 바람직하다.
만약, 상기 65 내지 105 ℃의 온도 범위에서 상기 열처리 시간이 25분 미만으로 수행될 경우, 석출상의 핵 생성이 이루어지지 않아, 소부경화 열처리시 강도가 향상되는 효과가 작을 수 있고, 상기 열처리 시간이 250분을 초과하는 경우에는 강도 향상 정도가 크게 향상되지 않아, 제조 경제성이 떨어질 수 있다.
또한, 상기 예비 열처리를 106 내지 145 ℃에서 수행하는 경우에는 3 내지 70분 동안 열처리를 수행하는 것이 바람직하다.
이 또한, 상기 106 내지 145 ℃의 온도 범위에서 상기 열처리 시간이 3분 미만으로 수행될 경우, 석출상의 핵 생성이 이루어지지 않아, 소부경화 열처리시 강도가 향상되는 효과가 작을 수 있고, 상기 열처리 시간이 70분을 초과하는 경우에는 소부경화 열처리 전 연신율이 급격하게 감소하여 성형성이 감소하는 문제점이 있다.
한편, 상기 제조방법은 상기 단계 3 이후 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 소부경화 열처리하는 단계를 더 포함할 수 있으며, 또한, 상기 소부경화 열처리하기 전 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 성형하는 단계가 더 포함할 수 있다.
소부경화 열처리는 차체를 제조할 경우 수행되는 열처리 공정으로, 판재를 용접, 접합 및 조립과 같은 성형공정을 거친 후 도장하여 최종적으로 페인트를 경화시키기 위해 수행되는 공정이다. 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 차체로 제조할 경우, 상기와 같은 성형공정과 도장 공정을 거친 후 최종적으로 페인트를 경화시키는 소부경화 열처리를 거쳐 최종 제품이 완성된다.
이때, 상기 소부경화 열처리는 170 내지 190 ℃에서 20 내지 40분 동안 유지될 수 있으며, 예비 열처리단계 이후 수행됨으로써, 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재의 경도 및 항복강도를 향상시킬 수 있다.
본 발명의 제조방법을 통해, 상기 소부경화 열처리 이후 밀도가 8,000/㎛2 내지 15,000/㎛2이고 크기가 2 내지 12 ㎚인 석출상을 포함한다.
또한, 종래의 용체화 처리 후 예비 열처리를 수행하지 않고 소부경화 열처리를 수행한 경우 대비 본 발명의 제조방법으로 제조된 알루미늄 합금 판재는 상기 소부경화 열처리 후 항복강도가 1.26 내지 1.50 배 향상된 400 MPa 이상의 항복강도 값을 갖는다.
본 발명은 또한,
상기 제조방법으로 제조되는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재이며, 소부경화 열처리 후 400 MPa 이상의 항복강도 값을 갖는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제공한다.
자동차 차체용으로 사용되는 알루미늄 합금 판재는 용체화처리 직후 성형공정을 수행하는 것이 현실적으로 불가하기 때문에, 상온에 방치됨에 따라 자연시효 과정을 거치게 되며, 자연시효된 판재는 성형 및 도장공정을 거친 후 최종적으로 페인트를 경화시키는 소부경화 열처리를 170 내지 190 ℃에서 20 내지 40분 동안 수행되게 된다.
알루미늄-아연-마그네슘-구리계 알루미늄 합금을 자동차 차체용으로 사용하기 위해 종래의 방법인 용체화 처리 후 자연시효를 거쳐 소부경화 열처리가 수행할 경우, 과시효에 의한 기계적 특성의 감소되는 문제가 있는 반면, 본 발명의 소부경화성이 우수한 고강도 알루미늄 합금 판재는 용체화 처리 후 예비 열처리를 수행한 판재로써, 소부경화 열처리 이후 강도를 더욱 향상시킬 수 있다.
상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재는 소부경화 열처리를 수행한 이후 크기 2 내지 12 ㎚이고 밀도가 8,000/㎛2 내지 15,000/㎛2 인 석출상을 포함하며, 소부경화 열처리에 의해 400 MPa 이상으로 강도가 향상되는 효과를 나타내는 고강도 알루미늄 합금 판재로, 수송기기의 차체에 사용될 수 있으며, 이를 통해 강도가 높고 가벼운 수송기기 차체를 제조할 수 있다는 장점이 있다.
본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재는 소부경화 전 소정의 조건에서 예비 열처리를 통하여 알루미늄-아연-마그네슘-구리계 알루미늄 합금의 성형성을 유지하면서, 소부경화 후 경도 및 항복강도를 극대화시킬 수 있으므로 수송기기 분야 내지 전자제품 케이스 등 산업 전반의 부품 경량화에 적용될 수 있는 장점이 있다.
이하, 실시예 및 실험예를 통하여 본 발명을 상세하게 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
<실시예 1>
다음과 같은 단계를 통해 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
단계 1: 7075 알루미늄 합금잉곳을 재용해하여, 수평형 쌍롤 주조장치를 이용하여 두께 약 4.5 mm의 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하였으며, 상기 쌍롤 주조된 알루미늄-아연-마그네슘-구리계 알루미늄 합금판재를 400 ℃에서 1시간 어닐링열처리 후 열간 압연 및 냉간압연을 순차적으로 진행하여 두께 약 1.0 mm를 갖는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하였다.
단계 2: 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 500 ℃ 에서 1시간 동안 유지하여 용체화 처리하였다.
단계 3: 상기 용체화 처리한 알루미늄 합금 판재를 90 ℃에서 30분 동안 예비 열처리한 후 상온으로 냉각시켜 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 2>
상기 실시예 1에서 단계 3의 예비 열처리 시간을 60분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 3>
상기 실시예 1에서 단계 3의 예비 열처리 시간을 120분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 4>
상기 실시예 1에서 단계 3의 예비 열처리 시간을 240분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 5>
상기 실시예 1에서 단계 3의 예비 열처리 온도를 120 ℃로 달리하고, 열처리 시간을 5분으로 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 6>
상기 실시예 5에서 단계 3의 예비 열처리 시간을 10분으로 달리하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 7>
상기 실시예 5에서 단계 3의 예비 열처리 시간을 30분으로 달리하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 8>
상기 실시예 5에서 단계 3의 예비 열처리 시간을 60분으로 달리하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 1>
실시예 1에서 단계 3의 예비열처리를 수행하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 알루미늄 합금 판재를 제조하였다.
<비교예 2>
상기 실시예 1에서 단계 3의 예비 열처리 온도를 60 ℃로 달리하고 예비 열처리 시간을 5분으로 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 3>
상기 비교예 2에서 단계 3의 예비 열처리 시간을 10분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 4>
상기 비교예 2에서 단계 3의 예비 열처리 시간을 30분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 5>
상기 비교예 2에서 단계 3의 예비 열처리 시간을 60분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 6>
상기 비교예 2에서 단계 3의 예비 열처리 시간을 120분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 7>
상기 비교예 2에서 단계 3의 예비 열처리 시간을 240분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 8>
상기 실시예 1에서 단계 3의 예비 열처리 시간을 5분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 9>
상기 실시예 1에서 단계 3의 예비 열처리 시간을 10분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 10>
상기 실시예 5에서 단계 3의 예비 열처리 시간을 120분으로 달리한 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 11>
상기 실시예 5에서 단계 3의 예비 열처리 시간을 240분으로 달리하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 12>
상기 실시예 1에서 단계 3의 예비 열처리 온도를 150 ℃로 달리하고 예비 열처리 시간을 5분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 13>
상기 비교예 12에서 단계 3의 예비 열처리 시간을 10분으로 달리하는 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 14>
상기 비교예 12에서 단계 3의 열처리 시간을 30분으로 달리한 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 15>
상기 비교예 12에서 단계 3의 예비 열처리 시간을 60분으로 달리하는 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 16>
상기 비교예 12에서 단계 3의 예비 열처리 시간을 120분으로 달리하는 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 17>
상기 비교예 12에서 단계 3의 예비 열처리 시간을 240분으로 달리하는 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
하기 표 2를 통해 상기 실시예 및 비교예에서 수행한 열처리 조건을 나타내었다.
용체화 처리 예비 열처리 자연시효 소부경화 열처리
비교예 1











500 ℃ 1시간

x X











180 ℃ 30분










비교예 2 60 ℃ 5분 O(일주일)
비교예 3 60 ℃ 10분 O(일주일)
비교예 4 60 ℃ 30분 O(일주일)
비교예 5 60 ℃ 1시간 O(일주일)
비교예 6 60 ℃ 2시간 O(일주일)
비교예 7 60 ℃ 4시간 O(일주일)
비교예 8 90 ℃ 5분 0(일주일)
비교예 9 90 ℃ 10분 O(일주일)
실시예 1 90 ℃ 30분 O(일주일)
실시예 2 90 ℃ 1시간 O(일주일)
실시예 3 90 ℃ 2시간 O(일주일)
실시예 4 90 ℃ 4시간 O(일주일)
실시예 5 120 ℃ 5분 O(일주일)
실시예 6 120 ℃ 10분 O(일주일)
실시예 7 120 ℃ 30분 O(일주일)
실시예 8 120 ℃ 1시간 O(일주일)
비교예 10 120 ℃ 2시간 O(일주일)
비교예 11 120 ℃ 4시간 O(일주일)
비교예 12 150 ℃ 5분 O(일주일)
비교예 13 150 ℃ 10분 O(일주일)
비교예 14 150 ℃ 30분 O(일주일)
비교예 15 150 ℃ 1시간 O(일주일)
비교예 16 150 ℃ 2시간 O(일주일)
비교예 17 150 ℃ 4시간 O(일주일)
<실험예 1> 소부경화 열처리 전과 그 후 경도 비교(1)
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 경도 변화를 확인하기 위하여 이하와 같은 실험을 수행하였다.
비교예 2 내지 7에 의하여 제조된 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 유지하여 소부경화 열처리를 수행하기 전과 후의 경도를 비커스 경도기로 측정하였다. 이때, 하중 0.3 kg, 유지시간 5 초의 시험 조건을 사용하여 11 회의 경도측정을 수행한 후, 최대/최소값을 제외한 나머지 9 개의 경도값의 평균을 구하였으며, 그 결과를 도 2에 나타내었다.
도 2에 나타난 바와 같이, 비교예 2 내지 7에서 소부경화열처리를 수행하기 전 경도값 125 내지 135 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 130 내지 140 Hv를 갖는 것을 알 수 있다.
이를 통해 예비 열처리를 60 ℃에서 수행한 경우, 소부경화 열처리 시 경도값 상승이 10 Hv 미만으로 미미하여 강도 및 내덴트성이 향상되는 정도가 작음을 확인할 수 있다.
<실험예 2> 소부경화 열처리 전과 그 후 경도 비교(2)
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 경도 변화를 확인하기 위하여 이하와 같은 실험을 수행하였다.
실시예 1 내지 4, 비교예 8 및 9에 의하여 제조된 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 유지하여 소부경화 열처리를 수행하기 전과 후의 경도를 상기 실험예 1과 동일한 조건으로 측정하였으며, 그 결과를 도 3에 나타내었다.
도 3에 나타난 바와 같이, 비교예 8 및 9의 경우, 소부경화 열처리를 수행하기 전 경도값 약 130 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 약 140 Hv를 갖는 반면, 실시예 1 내지 4의 경우, 소부경화 열처리를 수행하기 전 경도값 약 135 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 155 내지 165 Hv를 가지며, 열처리 시간이 증가할수록 경도값도 향상됨을 알 수 있다
이를 통해, 예비 열처리를 90 ℃에서 수행하는 경우, 열처리를 10분 이상 수행한 경우, 소부경화 열처리 이후 경도값이 크게 향상되었음을 알 수 있다.
<실험예 3> 소부경화 열처리 전과 그 후 경도 비교(3)
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 경도 변화를 확인하기 위하여 이하와 같은 실험을 수행하였다.
실시예 5 내지 8, 비교예 10 및 11에 의하여 제조된 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 유지하여 소부경화 열처리를 수행하기 전과 후의 경도를 상기 실험예 1과 동일한 조건으로 측정하였으며, 그 결과를 도 4에 나타내었다.
도 4에 나타난 바와 같이, 실시예 5 내지 8의 경우, 소부경화 열처리를 수행하기 전 경도값 약 135 내지 140 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 160 내지 170 Hv를 갖는 것을 통해 소부경화 열처리 후 경도값이 크게 향상된 반면, 비교예 10 및 11의 경우, 소부경화 열처리 전 경도값이 크게 향상되는 것을 알 수 있으며, 이를 통해 비교예 10 및 11에 의해 제조된 알루미늄 합금 판재는 낮은 성형성을 보일 것으로 예상해 볼 수 있다.
이를 통해, 예비 열처리를 120 ℃에서 수행하는 경우, 열처리를 120분을 초과하는 경우, 성형성이 떨어지는 것을 알 수 있다.
<실험예 4> 소부경화 열처리 전과 그 후 경도 비교(4)
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 경도 변화를 확인하기 위하여 이하와 같은 실험을 수행하였다.
비교예 12 내지 17에 의하여 제조된 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 유지하여 소부경화 열처리를 수행하기 전과 후의 경도를 비커스 경도기로 측정하였으며, 그 결과를 도 5에 나타내었다.
도 5에 나타난 바와 같이, 비교예 12 내지 17에서 소부경화열처리를 수행하기 전 경도값 135 내지 145 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 140 내지 145 Hv를 갖는 것을 알 수 있다.
이를 통해 예비 열처리를 150 ℃에서 수행한 경우, 소부경화 열처리를 수행한 후에도 경도값이 향상되는 정도가 작음을 확인할 수 있다.
<실험예 5> 소부경화 열처리 전과 그 후 인장특성 평가
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 인장특성을 평가하기 위하여, 게이지 길이 25 mm, 게이지 폭 6 mm인 판상 인장 시편을 제작하여 상온에서 인장 시험을 수행하였다.
이때, 실시예 1 내지 8, 비교예 8 및 11에 의하여 제조된 알루미늄 합금 판재를 상기 인장 시험을 수행하고, 상기 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 열처리한 후 인장 시험을 수행하였으며, 그 결과를 도 6에 나타내었다.
도 6에 나타난 바와 같이, 연신율의 경우, 실시예 1 내지 8의 경우 소부경화 열처리 전 15.4 내지 22.9% 수준의 연신율을 나타내어 우수한 성형성을 보일 것으로 판단되며, 소부경화 열처리 후에는 18.95 내지 28.04 Hv 수준의 경도값 향상과 401 내지 484 MPa 수준의 항복강도를 나타내어 높은 내덴트성 및 강도를 보일 것을 예상해 볼 수 있다. 이러한 결과는 비교예 1에 의해 제조된 알루미늄 합금의 소부경화 후 인장 특성과 비교하여 100 내지 190 MPa 수준의 항복강도 향상을 나타낸다.
<실험예 6> 석출상 분석
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 자연시효 전과 소부경화 열처리 후의 석출상의 미세구조를 관찰하기 위하여, 하기와 같은 실험을 수행하였다.
비교예 1 및 실시예 7에 의해 제조된 알루미늄 합금 판재를 소부경화 열처리 한 후 두께 80 ㎛ 이하인 박판으로 제조하고 제트폴리싱을 수행하여 투과전자현미경용 시편으로 제작하여 가속전압이 160 kV인 투과전자현미경을 이용하여 미세구조를 관찰하였으며 그 결과를 도 7에 나타내었다.
도 7에 나타난 바와 같이, 예비시효 없이 소부경화 열처리를 실시한 비교예 1의 경우, 석출상의 밀도는 3,200/㎛2 였고, 크기는 5 내지 16 ㎚로 평균 10 ㎚ 수준을 나타낸 반면, 30 분 동안의 예비 열처리를 통하여 GP zone을 안정적으로 분포시킨 후 소부경화 열처리를 실시한 경우 실시예 7의 경우, 석출상의 밀도가 10,500/㎛2로 크게 증가하였으며, 크기는 2 내지 12 ㎚로 평균 6 ㎚ 수준을 나타내었다. 이를 통해, 예비열처리 후 소부경화 열처리를 할 경우 더욱더 높은 기계적 특성을 나타낼 것을 예상해 볼 수 있다.

Claims (13)

  1. 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계(단계 1);
    상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 용체화 처리하는 단계(단계 2); 및
    상기 용체화 처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 열처리 단계(단계 3);를 포함하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  2. 제1항에 있어서, 상기 예비 열처리는 65 내지 105 ℃에서 25 내지 250분 동안 수행되는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  3. 제1항에 있어서, 상기 예비 열처리는 106 내지 145 ℃에서 3 내지 70분 동안 수행되는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  4. 제1항에 있어서, 상기 제조방법은 상기 단계 3 이후 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 170 내지 190 ℃에서 20 내지 40 분간 소부경화 열처리하는 단계를 더 포함하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  5. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리를 수행하기 전 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금을 성형하는 단계를 더 포함되는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  6. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리 이후 밀도가 8,000/㎛2 내지 15,000/㎛2인 석출상을 포함하는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  7. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리 이후 크기가 2 내지 12 ㎚인 석출상을 포함하는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  8. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리 후 상기 단계 3의 예비 열처리를 수행하지 않고 소부경화 열처리를 수행한 경우 대비 항복강도가 1.26 내지 1.50 배 향상된 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  9. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리 후 400 MPa 이상의 항복강도 값을 갖는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  10. 제1항의 제조방법으로 제조되는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재이며, 소부경화 열처리 후 400 MPa 이상의 항복강도 값을 갖는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재.
  11. 제10항에 있어서, 상기 알루미늄 합금 판재는 소부경화 열처리 후 밀도가 8,000/㎛2 내지 15,000/㎛2인 석출상을 포함하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재.
  12. 제10항에 있어서, 상기 알루미늄 합금 판재는 소부경화 열처리 후 크기가 2 내지 12 ㎚인 석출상을 포함하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재.
  13. 제10항에 있어서, 상기 알루미늄 합금 판재는 수송기기의 차체에 사용되는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재.
KR1020160045223A 2016-04-13 2016-04-13 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법 KR20170117630A (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020160045223A KR20170117630A (ko) 2016-04-13 2016-04-13 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법
PCT/KR2016/014716 WO2017179794A1 (ko) 2016-04-13 2016-12-15 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법
JP2018547244A JP6956101B2 (ja) 2016-04-13 2016-12-15 焼付硬化性に優れた高強度アルミニウム合金板材の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160045223A KR20170117630A (ko) 2016-04-13 2016-04-13 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020170155918A Division KR101820012B1 (ko) 2017-11-21 2017-11-21 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법

Publications (1)

Publication Number Publication Date
KR20170117630A true KR20170117630A (ko) 2017-10-24

Family

ID=60042778

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160045223A KR20170117630A (ko) 2016-04-13 2016-04-13 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법

Country Status (3)

Country Link
JP (1) JP6956101B2 (ko)
KR (1) KR20170117630A (ko)
WO (1) WO2017179794A1 (ko)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100213678B1 (en) * 1997-03-27 1999-08-02 Korea Machinery & Metal Inst Manufacturing method of al-mg-si alloy with excellent high forming and high strength
JP4794862B2 (ja) * 2004-01-07 2011-10-19 新日本製鐵株式会社 塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法
US8613820B2 (en) * 2009-06-12 2013-12-24 Aleris Aluminum Duffel Bvba Structural automotive part made from an Al—Zn—Mg—Cu alloy product and method of its manufacture
JP5498069B2 (ja) * 2009-07-10 2014-05-21 株式会社Uacj 冷間プレス成形用アルミニウム合金板ブランクの製造方法、およびそれによる冷間プレス成形方法および成形品
JP5685055B2 (ja) * 2010-11-04 2015-03-18 株式会社神戸製鋼所 アルミニウム合金板
KR20150042099A (ko) * 2013-10-10 2015-04-20 한국기계연구원 알루미늄-아연-구리-마그네슘 합금 판재의 제조방법 및 이에 따라 제조되는 알루미늄-아연-구리-마그네슘 합금 판재
KR20150047246A (ko) * 2013-10-24 2015-05-04 한국기계연구원 결정립이 미세화된 알루미늄-아연-마그네슘-구리 합금 판재의 제조방법
ES2764206T3 (es) * 2014-12-09 2020-06-02 Novelis Inc Tiempo de envejecimiento reducido de aleación de la serie 7xxx

Also Published As

Publication number Publication date
JP6956101B2 (ja) 2021-10-27
WO2017179794A1 (ko) 2017-10-19
JP2019500504A (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
JP7321828B2 (ja) 高強度6xxxアルミニウム合金及びその作製方法
US9254879B2 (en) Formed automotive part made from an aluminium alloy product and method of its manufacture
JP2614686B2 (ja) 形状凍結性及び塗装焼付硬化性に優れた成形加工用アルミニウム合金の製造方法
EP3662091A1 (en) 6xxxx-series rolled sheet product with improved formability
EP3230484A1 (en) Reduced aging time of 7xxx series alloy
WO2019167469A1 (ja) Al-Mg-Si系アルミニウム合金材
EP3359699B1 (en) A process for warm forming an age hardenable aluminum alloy in t4 temper
CN113302327A (zh) 7xxx系列铝合金产品
KR20210032429A (ko) 성형 및 조립에 적합한 7xxx 알루미늄 합금 박판 시트 제조 방법
JP2022512990A (ja) 急速に時効した高強度かつ熱処理可能なアルミニウム合金製品、及びそれを製造する方法
KR101820012B1 (ko) 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법
WO2018206696A1 (en) Method of manufacturing an al-si-mg alloy rolled sheet product with excellent formability
JP2020139228A (ja) アルミニウム合金押出材の製造方法
WO2006056481A1 (en) Aluminium alloy sheet for automotive applications
US11827967B2 (en) Method for producing aluminum alloy extruded material
KR20170117630A (ko) 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법
JPH04147951A (ja) 成形性、形状凍結性及び塗装焼付硬化性に優れた成形加工用アルミニウム合金材の製造法
KR101787550B1 (ko) 마그네슘 합금 및 이의 제조방법
JP2020125524A (ja) アルミニウム合金部材の製造方法
KR20200061647A (ko) 알루미늄 합금 및 그 제조방법

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
E601 Decision to refuse application
E801 Decision on dismissal of amendment
A107 Divisional application of patent