WO2017179794A1 - 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법 - Google Patents

소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법 Download PDF

Info

Publication number
WO2017179794A1
WO2017179794A1 PCT/KR2016/014716 KR2016014716W WO2017179794A1 WO 2017179794 A1 WO2017179794 A1 WO 2017179794A1 KR 2016014716 W KR2016014716 W KR 2016014716W WO 2017179794 A1 WO2017179794 A1 WO 2017179794A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum alloy
alloy sheet
heat treatment
baking
magnesium
Prior art date
Application number
PCT/KR2016/014716
Other languages
English (en)
French (fr)
Inventor
김형욱
이윤수
임차용
고동현
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to JP2018547244A priority Critical patent/JP6956101B2/ja
Publication of WO2017179794A1 publication Critical patent/WO2017179794A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/053Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/10Alloys based on aluminium with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/002Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working by rapid cooling or quenching; cooling agents used therefor

Definitions

  • the present invention relates to a high-strength aluminum alloy sheet having excellent baking hardenability and a method for manufacturing the same, in detail, preparing an aluminum-zinc-magnesium-copper-based aluminum alloy sheet (step 1); Solution-treating the aluminum-zinc-magnesium-copper-based aluminum alloy sheet (step 2); And performing a preliminary aging treatment in which the solution-treated aluminum-zinc-magnesium-copper-based aluminum alloy sheet is maintained at 65 to 145 ° C. for 3 to 250 minutes and then cooled to room temperature (step 3).
  • the present invention relates to a method for producing a high strength aluminum alloy sheet having excellent baking hardness.
  • 5000-based (Al-Mg-based) alloy sheet having high strength and excellent formability is mainly used for inner plates requiring high processability.
  • the age hardening type 6000 series (Al-Mg-Si) alloy plate which can be expected to improve strength through paint bake-hardening, which is carried out for 20 to 40 minutes in the range of 170 to 190 ° C, has strength and dent resistance Resistance) is used for outer plates.
  • Tensile properties of the 5000-based, 6000-based aluminum alloy sheet that is currently applied as an aluminum alloy sheet for automobiles are shown in Table 1 below.
  • Korean Patent No. 10-0213678 discloses a method of manufacturing a 6000-based aluminum alloy plate having high baking hardening and high formability.
  • the plate material is manufactured by introducing a stabilized heat treatment that is maintained for 5 seconds to 15 minutes at a temperature of 100 to 160 ° C. immediately after the solution treatment in the manufacturing process for the 6000 series (Al-Mg-Si) alloy plate material for a vehicle body panel material.
  • a method of manufacturing a high strength aluminum-magnesium-silicon alloy which suppresses the change in physical properties due to the natural aging phenomenon during the transfer and storage of the plate and improves the strength during coating baking hardening heat treatment after the body forming.
  • the 6000-based aluminum alloy sheet produced by the above method is low to yield strength of 275 MPa and tensile strength of 363 MPa even after improving the strength after quenching, so that the thickness must be reinforced to secure the rigidity for use as a vehicle body.
  • the weight reduction effect is reduced.
  • Al-Zn- (Mg, Cu) -based alloys which are 7000 series aluminum alloys, are high-strength aluminum alloys having a very high strength comparable to iron, and generally have high specific strengths such as aircraft, railway vehicles, and sporting goods.
  • As a heat treatment alloy used for the required structural materials it can be used in the car body to reduce the weight of transportation equipment, but until now, research on aircraft and other structural materials has been actively conducted, while research for applying the 7000 aluminum alloy to the car body is insufficient. It is true.
  • US Patent Publication No. 2014-0069557 discloses a method of manufacturing a high strength 7000-based aluminum alloy plate material. Specifically, zinc 6.9 to 8.0 wt%, magnesium 1.2 to 2.4 wt%, copper 1.3 to 2.4 wt%, manganese 0.3 wt% or less, 0.05 to 0.25 wt% chromium or zirconium, silicon 0.3 wt% or less, iron 0.35 wt%
  • the hardening hardening treatment was performed to manufacture a high strength 7000-based aluminum alloy sheet.
  • aluminum-zinc-magnesium-copper-based aluminum alloy is an age hardening alloy, and the strength can be improved through the formation of precipitated phase during artificial aging after solution treatment, but generally aluminum-zinc-magnesium-copper aluminum alloy While the aging treatment is carried out at 120 °C for 24 hours, the baking hardening heat treatment of automotive aluminum alloy is carried out for 20 to 40 minutes in the range of 170 to 190 °C, the above conditions are due to overaging due to high temperature There is a problem that causes a decrease in the mechanical properties of the aluminum-zinc-magnesium-copper-based aluminum alloy.
  • the present inventors have developed a 7000-based aluminum alloy sheet manufactured by a method of performing pre-aging treatment after solution treatment. The invention has been completed.
  • An object of the present invention is to provide a high-strength aluminum alloy sheet material having excellent baking hardening and a method for producing the same.
  • step 1 Preparing an aluminum-zinc-magnesium-copper based aluminum alloy sheet (step 1);
  • step 3 Holding the solution-treated aluminum-zinc-magnesium-copper-based aluminum alloy sheet at 65 to 145 ° C. for 3 to 250 minutes and then performing a preliminary aging treatment to cool to room temperature (step 3).
  • a method for producing a high strength aluminum alloy sheet having excellent curability is provided.
  • An aluminum-zinc-magnesium-copper-based aluminum alloy sheet produced by the above method and provides a high strength aluminum alloy sheet having excellent bake hardenability, which has a yield strength value of 400 MPa or more after a bake hardening heat treatment.
  • the aluminum-zinc-magnesium-copper-based aluminum alloy sheet manufacturing method of the present invention is subjected to a pre-aging treatment for 3 to 250 minutes at a temperature of 65 to 145 °C after the solution treatment, due to the natural aging during transport and storage of the plate
  • the strength can be further improved by suppressing the change in physical properties and hardening after forming the vehicle body, and thus there is an advantage in that a lightweight vehicle body having a high strength can be manufactured.
  • 2 to 5 is a graph showing the results of hardness measurement before and after performing the baking hardening heat treatment of the aluminum alloy sheet material prepared according to Examples and Comparative Examples,
  • 6a and 6b are graphs showing the tensile test results before and after performing the baking hardening treatment of the aluminum alloy sheet material prepared according to Examples and Comparative Examples,
  • FIGS. 7A and 7B are transmission electron micrographs showing microstructures before and after baking of aluminum alloy sheets prepared according to Comparative Example 1
  • FIGS. 7C and 7D are baking curing of aluminum alloy sheets prepared according to Comparative Example 1. Transmission electron micrograph showing the microstructure before and after.
  • step 1 Preparing an aluminum-zinc-magnesium-copper based aluminum alloy sheet (step 1);
  • the high strength aluminum alloy sheet may be used as an aluminum alloy sheet for a vehicle body for weight reduction.
  • a process of forming, painting, and baking hardening is performed after the sheet is manufactured, and the mechanical properties of the aluminum alloy sheet may be degraded while the above process is performed.
  • the manufacturing method of the present invention is a method for producing a high strength aluminum alloy sheet material having excellent baking hardenability for producing a sheet material which can improve the mechanical properties in the baking hardening heat treatment process.
  • step 1 is a step of preparing an aluminum-zinc-magnesium-copper-based aluminum alloy sheet.
  • the aluminum alloy sheet may be prepared by remelting an aluminum-zinc-magnesium-copper-based aluminum alloy ingot to a thickness of 4.5 mm after thin sheet casting, and the thin cast aluminum-zinc-magnesium-copper-based aluminum alloy sheet may be formed as a primary material. Annealing, hot rolling, secondary annealing and cold rolling can be performed sequentially to produce an aluminum-zinc-magnesium-copper-based aluminum alloy sheet having a thickness of about 1.0 mm.
  • the manufacturing method of the aluminum-zinc-magnesium-copper-based aluminum alloy sheet is not limited thereto, and other types of casting methods such as mold casting and press casting may be applied, and other forms of processing such as extrusion and forging may be used instead of rolling. The method may be applied.
  • the molten metal may contain 4 to 8% by weight of zinc, 0.5 to 3.5% by weight of magnesium, 0.5 to 2.5% by weight of copper and the remaining components as aluminum.
  • the zinc (Zn) and magnesium (Mg) both have a high solubility in aluminum and form a precipitated phase that contributes to the strength increase upon simultaneous addition, and copper (Cu) also serves to further increase the strength in the aluminum alloy.
  • zinc (Zn), magnesium (Mg) and copper (Cu) is included in the aluminum alloy molten metal in the above content range, the strength of the aluminum alloy sheet produced from the molten metal is improved.
  • step 2 is a step of solution treatment of the aluminum-zinc-magnesium-copper-based aluminum alloy.
  • the solution treatment is a process for heating the alloy to the solid solution range and then quenching to maintain the solid solution state to room temperature, stress relief and supersaturation of the aluminum-zinc-magnesium-copper-based aluminum alloy sheet of step 1 It may be performed for the purpose of preparing a super-saturated solid solution.
  • the solution treatment may be performed by heat treatment at 450 to 510 ° C. for 5 minutes to 2 hours, and then cooling to room temperature.
  • the solution treatment is not limited thereto, and may be performed at a suitable temperature and time range in which the aluminum alloy becomes a completely solid solution.
  • step 3 is performed by maintaining the solution-treated aluminum-zinc-magnesium-copper-based aluminum alloy sheet at 65 to 145 ° C. for 3 to 250 minutes. After this step is a preliminary aging treatment to cool to room temperature.
  • the preliminary aging treatment is performed in order to eliminate the problem that the mechanical properties of the aluminum alloy sheet material is degraded during the bake hardening heat treatment that is subsequently performed to manufacture the vehicle body.
  • the aluminum-zinc-magnesium-copper-based aluminum alloy is an age hardening alloy, which can be aged by maintaining at 120 ° C. for 24 hours after solution treatment to improve strength through formation of a precipitated phase.
  • the baking hardening heat treatment is performed for 20 to 40 minutes in the range of 170 to 190 ° C. after the solution treatment, thereby overaging due to the high temperature.
  • the mechanical properties are deteriorated, and after the solution treatment, natural aging proceeds during the aging process at room temperature until the baking hardening treatment is performed. In heat treatment, a problem may occur in which sufficient strength and dent resistance improvement cannot be obtained.
  • the solution-treated aluminum-zinc-magnesium-copper-based aluminum alloy sheet is maintained at 65 to 145 ° C for 3 to 250 minutes, and then cooled to room temperature, thereby uniformly nucleating sites of the precipitated phase before baking. It can be produced to produce an aluminum alloy with improved hardness and yield strength after baking.
  • the temperature for performing the preliminary aging treatment is less than 65 °C
  • a low diffusion rate of the elements due to the low temperature may cause a problem that does not uniformly generate the nucleation site of the precipitate, if the temperature exceeds 145 °C
  • the diffusion rate of elements may be high, resulting in coarsening of the nucleation site of the precipitated phase or precipitation of the precipitated phase, thereby degrading the formability.
  • the preliminary aging treatment is performed at 65 to 105 °C it is preferable to perform the heat treatment time for 25 to 250 minutes.
  • the heat treatment time is performed in less than 25 minutes in the temperature range of 65 to 105 °C, the nucleation of the precipitated phase is not made, the effect of improving the strength during baking hardening heat treatment may be small, the heat treatment time is If it exceeds 250 minutes, the strength improvement degree does not improve significantly, and manufacturing economy may fall.
  • the preliminary aging treatment is carried out at 106 to 145 °C it is preferable to perform a heat treatment for 3 to 70 minutes.
  • the heat treatment time is performed in the temperature range of 106 to 145 ° C less than 3 minutes, the nucleation of the precipitated phase is not made, the effect of improving the strength during baking hardening heat treatment may be small, the heat treatment time If it exceeds 70 minutes, there is a problem that elongation before baking hardening heat decreases rapidly and moldability decreases.
  • the manufacturing method may further include a step hardening heat treatment of the aluminum-zinc-magnesium-copper-based aluminum alloy plate after step 3, and further, aluminum-zinc-magnesium-copper before the step hardening heat treatment.
  • Forming the aluminum-based aluminum alloy sheet may further include.
  • the calcined hardening heat treatment is a heat treatment process performed when manufacturing a vehicle body, and is a process performed to finally harden the paint by coating a plate after forming processes such as welding, joining, and assembling.
  • the final product is completed through a bake hardening heat treatment which finally hardens the paint after the molding and coating processes as described above.
  • the baking hardening heat treatment may be maintained at 170 to 190 °C for 20 to 40 minutes, and is carried out after the preliminary aging treatment step, thereby improving the hardness and yield strength of the aluminum-zinc-magnesium-copper-based aluminum alloy sheet Can be.
  • the density after the baking hardening heat treatment is 8,000 / ⁇ m 2 To 15,000 / ⁇ m 2 and a precipitated phase of 2 to 12 nm in size.
  • the aluminum alloy sheet produced by the method of the present invention is compared to the case of performing the precuring treatment after performing the conventional solution treatment, 400 MPa of the yield strength 1.26 to 1.50 times improved after the bake curing heat treatment Yield strength value is above.
  • the present invention also provides
  • An aluminum-zinc-magnesium-copper-based aluminum alloy sheet produced by the above method and provides a high strength aluminum alloy sheet having excellent bake hardenability, which has a yield strength value of 400 MPa or more after a bake hardening heat treatment.
  • the high-strength aluminum alloy plate material having excellent baking hardening property of the present invention is a plate material subjected to pre-aging treatment after the solution treatment, it is possible to further improve the strength after the baking hardening heat treatment.
  • the aluminum-zinc-magnesium-copper-based aluminum alloy plate has a size of 2 to 12 nm and a density of 8,000 / ⁇ m 2 after baking hardening heat treatment. It is a high-strength aluminum alloy plate containing a precipitated phase of 15,000 / ⁇ m 2 , and exhibits the effect of improving the strength to more than 400 MPa by baking hardening heat treatment, can be used in the vehicle body of the transport equipment, through which high strength and light transportation There is an advantage that the vehicle body can be manufactured.
  • the high-strength aluminum alloy sheet having excellent baking hardening properties according to the present invention maintains the formability of aluminum-zinc-magnesium-copper-based aluminum alloy through pre-aging treatment under predetermined conditions before baking, while maintaining hardness and yield strength after baking. Since it can be maximized, there is an advantage that can be applied to the weight reduction of parts of the overall industry, such as the transport equipment field or electronics case.
  • Step 1 A 7075 aluminum alloy ingot was redissolved to produce an aluminum-zinc-magnesium-copper-based aluminum alloy sheet having a thickness of about 4.5 mm using a horizontal twin roll casting apparatus, wherein the twin roll cast aluminum-zinc-magnesium- The copper-based aluminum alloy sheet was subjected to annealing heat treatment at 400 ° C. for 1 hour, followed by hot rolling and cold rolling, to prepare an aluminum-zinc-magnesium-copper-based aluminum alloy sheet having a thickness of about 1.0 mm.
  • Step 2 The aluminum-zinc-magnesium-copper-based aluminum alloy sheet was kept at 500 ° C. for 1 hour and subjected to solution treatment.
  • Step 3 The solution-treated aluminum alloy sheet was heat-treated at 90 ° C. for 30 minutes, followed by preliminary aging treatment to cool to room temperature, thereby preparing a high-strength aluminum alloy sheet having excellent bake hardenability.
  • Example 1 Except that the heat treatment time of step 3 in Example 1 was changed to 60 minutes, it was carried out in the same manner as in Example 1 to prepare a high-strength aluminum alloy plate excellent in hardenability.
  • Example 1 Except that the heat treatment time of step 3 in Example 1 was changed to 240 minutes, it was performed in the same manner as in Example 1 to prepare a high-strength aluminum alloy sheet having excellent baking hardenability.
  • Example 1 Except that the heat treatment temperature of step 3 in Example 1 was changed to 120 ° C and the heat treatment time was changed to 5 minutes, it was performed in the same manner as in Example 1 to prepare a high-strength aluminum alloy sheet having excellent baking hardenability.
  • Example 5 Except that the heat treatment time of step 3 in Example 5 is changed to 30 minutes, it was carried out in the same manner as in Example 5 to prepare a high-strength aluminum alloy sheet excellent in hardening hardenability.
  • Example 5 Except that the heat treatment time of step 3 in Example 5 is changed to 60 minutes, it was carried out in the same manner as in Example 5 to prepare a high-strength aluminum alloy plate excellent in hardenability.
  • Example 1 Except that the heat treatment time of step 3 in Example 1 was changed to 5 minutes, it was performed in the same manner as in Example 1 to prepare a high-strength aluminum alloy sheet having excellent baking hardenability.
  • Example 1 Except that the heat treatment time of step 3 in Example 1 was changed to 10 minutes, it was carried out in the same manner as in Example 1 to prepare a high-strength aluminum alloy plate excellent in hardenability.
  • Example 5 Except that the heat treatment time of step 3 in Example 5 was changed to 120 minutes, it was carried out in the same manner as in Example 5 to prepare a high-strength aluminum alloy sheet having excellent baking hardenability.
  • Example 5 Except for changing the heat treatment time of step 3 in Example 5 to 240 minutes was carried out in the same manner as in Example 5 to prepare a high-strength aluminum alloy plate excellent in bake hardenability.
  • Example 1 Except that the heat treatment temperature of step 3 in Example 1 was changed to 150 °C and the preliminary aging treatment time was changed to 5 minutes to prepare a high-strength aluminum alloy sheet excellent in baking hardenability by the same method as Example 1 .
  • Table 2 shows the heat treatment conditions performed in the Examples and Comparative Examples.
  • the aluminum alloy sheet produced in Comparative Examples 2 to 7 was held at 180 ° C. for 30 minutes after coating to measure hardness before and after baking hardening heat treatment with a Vickers hardness tester. At this time, after 11 hardness measurements were carried out using a test condition of 0.3 kg load and a holding time of 5 seconds, the average of the remaining 9 hardness values except the maximum / minimum value was obtained, and the results are shown in FIG. 2.
  • Comparative Examples 2 to 7 has a hardness value of 125 to 135 Hv before performing the baking hardening heat treatment, and has a hardness value of 130 to 140 Hv after performing the baking hardening heat treatment.
  • the hardness value was about 130 Hv before the baking hardening heat treatment and the hardness value was about 140 Hv after the baking hardening heat treatment.
  • the hardness value was about 135 Hv before the hardening hardening treatment, the hardness value was 155 to 165 Hv after the hardening curing treatment, and the hardness value was improved as the heat treatment time increased.
  • step 3 when the heat treatment of step 3 is performed at 90 ° C., when the heat treatment is performed for 10 minutes or more, it can be seen that the hardness value is greatly improved after the bake hardening heat treatment.
  • step 3 when the heat treatment of step 3 is carried out at 120 ° C, it can be seen that the moldability is poor when the heat treatment exceeds 120 minutes.
  • the hardness value was 135 to 145 Hv before the baking hardening heat treatment, and the hardness value was 140 to 145 Hv after the baking hardening heat treatment.
  • step 3 when the heat treatment of step 3 is performed at 150 ° C., it can be confirmed that the degree of hardness value is small even after the baking hardening heat treatment is performed.
  • a plate-shaped tensile specimen having a gauge length of 25 mm and a gauge width of 6 mm was prepared and subjected to a tensile test at room temperature.
  • the aluminum alloy sheet material prepared by Comparative Examples 1 and 7 was subjected to baking hardening treatment, and then made into a thin plate having a thickness of 80 ⁇ m or less, jet polished to produce a specimen for transmission electron microscope, and a transmission voltage of 160 kV.
  • the microstructure was observed using and the results are shown in FIGS. 7A to 7D.
  • the density of the precipitated phase was 3,200 / ⁇ m 2 and the size was 5 to 16 nm. While the 10 nm level was shown, before and after the baking hardening heat treatment in FIGS. 7C and 7D, respectively, the GP zone was stably distributed through the heat treatment of Step 3 for 30 minutes, followed by baking hardening heat treatment. In the case of 7, the density of the precipitated phase was greatly increased to 10,500 / ⁇ m 2 , and the size was 2 to 12 nm, indicating an average level of 6 nm. Through this, it can be expected to exhibit even higher mechanical properties when pre-aging treatment and baking hardening heat treatment.
  • the aluminum-zinc-magnesium-copper-based aluminum alloy sheet manufacturing method of the present invention is subjected to a pre-aging treatment for 3 to 250 minutes at a temperature of 65 to 145 °C after the solution treatment, due to the natural aging during transport and storage of the plate
  • the strength can be further improved by suppressing the change in physical properties and hardening after baking, so that a light weight vehicle body having a high strength can be manufactured.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법에 관한 것으로, 판재 제조시 용체화 처리 이후 65 내지 145 ℃의 온도에서 3 내지 250분 동안 예비 시효처리를 수행함으로써, 판재의 이송 및 보관 중의 자연시효로 인한 물성변화를 억제하고 차체 성형 및 도장 후 소부경화에 의해 강도를 더욱 향상시킬 수 있어, 고강도를 갖는 경량 수송기기 차체를 제조할 수 있는 장점이 있다.

Description

소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법
본 발명은 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법에 관한 것으로, 상세하게는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계(단계 1); 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 용체화 처리하는 단계(단계 2); 및 상기 용체화 처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 시효처리를 수행하는 단계(단계 3);를 포함하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법에 관한 것이다.
국내외적으로 수송기기 부품의 경량화를 통하여 연비 효율성을 향상시키려는 추세에 따라 저밀도 및 고강도를 갖춘 소재에 대한 요구가 증가하고 있으며, 이 중 알루미늄 합금은 우수한 주조성, 가공성, 기계적 특성 등으로 인하여 그 수요가 급격하게 증가되고 있다.
현재 자동차에 적용되는 알루미늄 합금 판재의 경우, 강도가 높고 성형성이 우수한 5000계(Al-Mg계) 합금 판재는 주로 높은 가공성이 요구되는 내판에 사용되고 있으며, 성형 및 페인트 도장 후 페인트를 경화시키기 위하여 170 내지 190 ℃ 범위에서 20 내지 40 분간 실시하는 소부경화(paint bake-hardening)를 통하여 강도 향상을 기대할 수 있는 시효경화형 6000계(Al-Mg-Si계) 합금 판재는 강도 및 내덴트성(찍힘저항성)이 필요한 외판용으로 사용되고 있다. 현재 자동차용 알루미늄 합금 판재로 적용되고 있는 5000계, 6000계 알루미늄 합금 판재의 인장 특성은 하기 표 1과 같다.
합금분류 기계적 특성(인장 특성)
항복강도(MPa) 인장강도(MPa) 연신율(%)
5000계(Al-Mg) AA5022-0 135 275 30
AA5023-0 135 285 33
AA5052-0 90 190 26
AA5052-H32 193 228 12
AA5052-H34 214 262 16
AA5052-H38 255 290 14
AA5182-0 130 275 21
AA5182-19 395 420 4
AA5182-32 230 320 12
AA5182-34 240 340 10
AA5754-0 90 212 22
AA5754-H22 185 245 15
AA5754-H24 215 270 14
AA5754-H26 245 290 10
AA5J32-0 127 284 32
6000계(Al-Mg-Si) AA6016-T4 130 235 28
AA6016-T6 220 280 16
AA6022-T4 155 275 31
AA6022-T6 232 317 22
AA6111-T4 160 290 28
AA6111-T6 339 406 13
AA6K21-T4 130 223 28
한편, 합금판재가 자동차 외판에 사용되기 위해서는 용체화 처리 공정이 끝난 알루미늄 판재를 자동차 제작 관련 업체에 옮기는 시간이 필요하여, 이러한 시간 지체에 따른 자연시효 현상은 상기 합금 판재가 가졌던 원래의 기계적 특성을 변화시켜, 결과적으로 프레스 성형시 불균일성을 야기할 뿐 아니라, 자동차 제작 관련 업체에서 수행하는 소부경화 열처리공정에서 기계적 물성을 저하시키는 문제가 있다.
이러한 문제점을 해결하기 위해, 대한민국 등록특허 제10-0213678호에서는 고 소부경화성 및 고성형성을 갖는 6000계 알루미늄 합금 판재를 제조하는 방법을 개시한 바 있다. 상세하게는 차체 외판재용 6000계(Al-Mg-Si계) 합금 판재에 대하여 제조공정 중 용체화처리 직후 100 내지 160 ℃의 온도에서 5 초 내지 15 분간 유지시키는 안정화 열처리를 도입하여 판재를 제작함으로써 판재의 이송 및 보관시의 자연시효 현상으로 인한 물성변화를 억제하고 차체성형 후 도장 소부경화 열처리 시 강도가 향상된 고강도 알루미늄-마그네슘-실리콘 합금의 제조방법이 개시된 바 있다.
하지만, 상기와 같은 방법으로 제조된 6000계 알루미늄합금 판재는 소부경화 후 강도를 향상시킨 후에도 항복강도 275 MPa 및 인장강도 363 MPa 수준으로 낮아, 차체로 사용하기 위해서는 강성 확보를 위해 두께를 보강해야 하지만, 두께를 보강할 경우, 경량화 효과가 감소되는 문제점이 있다.
한편, 알루미늄 합금 중 7000계열 알루미늄 합금인 Al-Zn-(Mg, Cu)계 합금은 철에 버금가는 매우 높은 강도를 갖는 고강도 알루미늄 합금으로, 항공기, 철도차량, 스포츠 용품 등 일반적으로 높은 비강도가 요구되는 구조재에 사용되는 열처리합금으로서, 수송기기 경량화를 위해 차체에 사용할 수 있으나, 현재까지 7000계 알루미늄 합금을 항공기 및 기타 구조재에 관한 연구는 활발하게 진행된 반면, 자동차 차체에 적용시키기 위한 연구는 부족한 실정이다.
이와 관련된 종래의 기술로, 미국 공개특허 제2014-0069557호에서는 고강도 7000계 알루미늄 합금판재의 제조방법이 개시된 바 있다. 상세하게는 아연 6.9 내지 8.0 중량%, 마그네슘 1.2 내지 2.4 중량%, 구리 1.3 내지 2.4 중량%, 망간 0.3 중량% 이하, 0.05 내지 0.25 중량%의 크롬 또는 지르코늄, 실리콘 0.3 중량% 이하, 철 0.35 중량% 이하, 타이타늄 0.1 중량% 이하 및 알루미늄 잔부를 포함하는 알루미늄 합금 판재에 대하여 차체부품 성형 및 조립을 한 후 소부경화 열처리를 수행하여 고강도 7000계 알루미늄 합금 판재를 제조한 바 있다.
그러나 상기의 제조방법으로 7000계 알루미늄 합금을 제조하는 경우 상기 알루미늄 판재를 자동차 제작 관련 업체에 옮기는 시간에 의해 발생하는 자연시효에 의해 소부경화 열처리 후 강도 상승이 미미한 문제가 있다.
즉, 알루미늄-아연-마그네슘-구리계 알루미늄 합금은 시효경화형 합금으로, 용체화처리 후 인공시효처리 시 석출상의 형성을 통하여 강도를 향상시킬 수 있으나, 일반적으로 알루미늄-아연-마그네슘-구리계 알루미늄 합금의 시효처리는 120 ℃에서 24 시간 유지하는 것으로 이루어지는 반면, 자동차용 알루미늄 합금의 소부경화 열처리는 170 내지 190 ℃ 범위에서 20 내지 40 분간 실시되는 것으로, 상기 조건은 높은 온도로 인하여 과시효에 의해 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금의 기계적 특성의 저하를 야기시키는 문제가 있다. 또한 용체화 처리 후 소부경화 열처리가 수행되기까지 상온에서 방치되는 동안 진행되는 자연시효로 인하여 석출상의 핵생성 사이트가 불균일하게 형성되어 소부경화 열처리 시 충분한 강도 향상 효과를 얻을 수 없는 문제가 있다.
이에 본 발명자들은 상기 문제점을 해결하고 소부경화 열처리 후 강도가 더욱 향상된 7000계 알루미늄합금 판재를 제조하기 위해, 용체화 처리 이후 예비시효처리를 수행하는 방법으로 제조된 7000계 알루미늄합금 판재를 개발하고 본 발명을 완성하였다.
본 발명의 목적은 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법을 제공하는 데 있다.
상기 목적을 달성하기 위해, 본 발명은
알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계(단계 1);
상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 용체화 처리하는 단계(단계 2); 및
상기 용체화 처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 시효처리를 수행하는 단계(단계 3);를 포함하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법을 제공한다.
또한, 본 발명은
상기 제조방법으로 제조되는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재이며, 소부경화 열처리 후 400 MPa 이상의 항복강도 값을 갖는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제공한다.
본 발명의 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재 제조방법은 용체화 처리 이후 65 내지 145 ℃의 온도에서 3 내지 250분 동안 예비시효처리를 수행함으로써, 판재의 이송 및 보관 중의 자연시효로 인한 물성변화를 억제하고 차체 성형 후 소부경화에 의해 강도가 더욱 향상시킬 수 있어, 고강도를 갖는 경량 수송기기 차체를 제조할 수 있는 장점이 있다.
도 1은 본 발명의 알루미늄 합금 판재의 제조공정을 나타낸 그림이고,
도 2 내지 5는 실시예 및 비교예에 따라 제조된 알루미늄합금 판재를 소부경화 열처리를 수행하기 전과 후의 경도측정 결과를 나타낸 그래프이고,
도 6a 및 6b는 실시예 및 비교예에 따라 제조된 알루미늄합금 판재를 소부경화 열처리를 수행하기 전과 후의 인장시험 결과를 나타낸 그래프이고,
도 7a 및 7b 각각은 비교예 1에 따라 제조된 알루미늄합금 판재의 소부경화 전 및 후의 미세구조를 나타낸 투과전자현미경 사진이고, 도 7c 및 7d는 비교예 1에 따라 제조된 알루미늄합금 판재의 소부경화 전 및 후의 미세구조를 나타낸 투과전자현미경 사진이다.
본 발명은,
알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계(단계 1);
상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 용체화 처리하는 단계(단계 2); 및
상기 용체화 처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 시효처리 단계(단계 3);를 포함하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법을 제공한다.
상기 고강도 알루미늄 합금 판재는 경량화를 위한 수송기기 차체용 알루미늄 합금 판재로 사용될 수 있다. 상기 고강도 알루미늄 합금 판재를 차체용으로 사용하기 위해서는 판재 제조 후 성형, 도장 및 소부경화처리하는 과정을 겪게 되는데, 상기 과정을 겪으면서 상기 알루미늄 합금 판재의 기계적 물성이 저하되는 문제가 발생될 수 있다. 이에, 본 발명의 제조방법은 소부경화 열처리과정에서 기계적 물성을 향상시킬 수 있는 판재를 제조하기 위한, 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법이다.
이하, 본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법을 도면을 참고하여 각 단계별로 상세히 설명한다.
본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법에 있어, 단계 1은 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계이다.
상기 알루미늄 합금 판재는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 잉곳을 재용해하여 박판 주조 후 두께 4.5 mm로 제조될 수 있으며, 상기 박판 주조된 알루미늄-아연-마그네슘-구리계 알루미늄 합금판재를 1차 어닐링, 열간압연, 2차 어닐링 및 냉간압연을 순차적으로 진행하여 두께 약 1.0 mm를 갖는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조할 수 있다. 이때, 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재의 제조방법이 이에 한정된 것은 아니며, 금형주조, 가압주조 등 다른 형태의 주조 방법이 적용될 수 있으며, 압연 대신 압출, 단조 등의 다른 형태의 가공 방법이 적용될 수도 있다.
이때 상기 용탕은 아연 4 내지 8 중량%, 마그네슘 0.5 내지 3.5 중량%, 구리 0.5 내지 2.5 중량% 및 잔여 성분을 알루미늄으로 함유할 수 있다. 상기 아연(Zn)과 마그네슘(Mg)은 둘 다 알루미늄에서 높은 고용도를 가지고 동시 첨가 시 강도 상승에 기여하는 석출상을 형성하며, 구리(Cu) 또한, 상기 알루미늄 합금에 강도를 더욱 증가시키는 역할을 하는 것으로, 상기 함량범위로 알루미늄 합금 용탕에 아연(Zn), 마그네슘(Mg) 및 구리(Cu)가 포함되는 경우, 용탕으로부터 제조되는 알루미늄 합금판재의 강도가 향상되는 효과가 있다.
본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법에 있어, 단계 2는 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금을 용체화 처리하는 단계이다.
상기 용체화 처리는 합금을 고용체 범위까지 가열한 후 급냉시켜 고용체(solid solution) 상태를 상온까지 유지하도록 하는 처리로, 상기 단계 1의 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재의 응력해소 및 과포화 고용체(Super-saturated solid solution) 제조를 목적으로 수행될 수 있다. 이때 상기 용체화 처리는 450 내지 510 ℃에서 5분 내지 2시간 동안 열처리한 후 상온으로 냉각시키는 방법으로 수행될 수 있다. 하지만, 상기 용체화 처리가 이에 제한된 것은 아니며, 알루미늄 합금이 완전 고용체가 되는 적절한 온도 및 시간 범위에서 수행될 수 있다.
본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법에 있어, 단계 3은 상기 용체화 처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 시효처리를 수행하는 단계이다.
상기 예비 시효처리는 상기 알루미늄 합금 판재가 이후 차체로 제조되기 위해 수행되는 소부경화 열처리시 기계적 특성이 저하되는 문제를 없애기 위해 수행된다.
알루미늄-아연-마그네슘-구리계 알루미늄 합금은 시효경화형 합금으로, 용체화처리 후 120 ℃에서 24 시간 유지하는 것으로 시효처리하여 석출상의 형성을 통하여 강도를 향상시킬 수 있다. 하지만, 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금을 자동차 차체용으로 사용하는 경우, 용체화 처리 후 소부경화 열처리가 170 내지 190 ℃ 범위에서 20 내지 40 분간 수행되어, 높은 온도로 인하여 과시효되어 기계적 특성이 저하되는 문제가 발생되며, 용체화처리 후 소부경화 열처리가 수행되기까지 상온에서 방치되는 동안 진행되는 자연시효로 인하여 임계크기 이하의 GP zone이 불균일하게 형성되어 성형성의 감소는 물론 소부경화 열처리 시 충분한 강도 및 내덴트성 향상을 얻을 수 없는 문제가 발생될 수 있다.
이에, 본 발명에서는 상기 용체화처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250 분간 유지한 후 상온으로 냉각시킴으로써, 소부경화 전 석출상의 핵생성 사이트를 균일하게 생성하여 소부경화 후 경도 및 항복강도가 향상된 알루미늄 합금을 제조할 수 있다.
이때, 상기 예비 시효처리를 수행하는 온도가 65 ℃ 미만일 경우, 낮은 온도로 인하여 원소들의 확산속도가 낮아 석출상의 핵생성 사이트를 균일하게 생성시키지 못하는 문제가 발생될 수 있으며, 145 ℃를 초과하는 경우, 높은 온도로 인하여 원소들의 확산속도가 높아 석출상의 핵생성 사이트를 조대화하거나 석출상을 석출시켜 성형성이 저하될 수 있다.
한편, 상기 예비 시효처리를 65 내지 105 ℃에서 수행하는 경우에는 열처리 시간을 25 내지 250분 동안 수행하는 것이 바람직하다.
만약, 상기 65 내지 105 ℃의 온도 범위에서 상기 열처리 시간이 25분 미만으로 수행될 경우, 석출상의 핵 생성이 이루어지지 않아, 소부경화 열처리시 강도가 향상되는 효과가 작을 수 있고, 상기 열처리 시간이 250분을 초과하는 경우에는 강도 향상 정도가 크게 향상되지 않아, 제조 경제성이 떨어질 수 있다.
또한, 상기 예비 시효처리를 106 내지 145 ℃에서 수행하는 경우에는 3 내지 70분 동안 열처리를 수행하는 것이 바람직하다.
이 또한, 상기 106 내지 145 ℃의 온도 범위에서 상기 열처리 시간이 3분 미만으로 수행될 경우, 석출상의 핵 생성이 이루어지지 않아, 소부경화 열처리시 강도가 향상되는 효과가 작을 수 있고, 상기 열처리 시간이 70분을 초과하는 경우에는 소부경화 열처리 전 연신율이 급격하게 감소하여 성형성이 감소하는 문제점이 있다.
한편, 상기 제조방법은 상기 단계 3 이후 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 소부경화 열처리하는 단계를 더 포함할 수 있으며, 또한, 상기 소부경화 열처리하기 전 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 성형하는 단계가 더 포함할 수 있다.
소부경화 열처리는 차체를 제조할 경우 수행되는 열처리 공정으로, 판재를 용접, 접합 및 조립과 같은 성형공정을 거친 후 도장하여 최종적으로 페인트를 경화시키기 위해 수행되는 공정이다. 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 차체로 제조할 경우, 상기와 같은 성형공정과 도장 공정을 거친 후 최종적으로 페인트를 경화시키는 소부경화 열처리를 거쳐 최종 제품이 완성된다.
이때, 상기 소부경화 열처리는 170 내지 190 ℃에서 20 내지 40분 동안 유지될 수 있으며, 예비 시효처리단계 이후 수행됨으로써, 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재의 경도 및 항복강도를 향상시킬 수 있다.
본 발명의 제조방법을 통해, 상기 소부경화 열처리 이후 밀도가 8,000/㎛2 내지 15,000/㎛2이고 크기가 2 내지 12 ㎚인 석출상을 포함한다.
또한, 종래의 용체화 처리 후 예비 시효처리를 수행하지 않고 소부경화 열처리를 수행한 경우 대비 본 발명의 제조방법으로 제조된 알루미늄 합금 판재는 상기 소부경화 열처리 후 항복강도가 1.26 내지 1.50 배 향상된 400 MPa 이상의 항복강도 값을 갖는다.
본 발명은 또한,
상기 제조방법으로 제조되는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재이며, 소부경화 열처리 후 400 MPa 이상의 항복강도 값을 갖는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제공한다.
자동차 차체용으로 사용되는 알루미늄 합금 판재는 용체화처리 직후 성형공정을 수행하는 것이 현실적으로 불가하기 때문에, 상온에 방치됨에 따라 자연시효 과정을 거치게 되며, 자연시효된 판재는 성형 및 도장공정을 거친 후 최종적으로 페인트를 경화시키는 소부경화 열처리를 170 내지 190 ℃에서 20 내지 40분 동안 수행되게 된다.
알루미늄-아연-마그네슘-구리계 알루미늄 합금을 자동차 차체용으로 사용하기 위해 종래의 방법인 용체화 처리 후 자연시효를 거쳐 소부경화 열처리가 수행할 경우, 과시효에 의한 기계적 특성의 감소되는 문제가 있는 반면, 본 발명의 소부경화성이 우수한 고강도 알루미늄 합금 판재는 용체화 처리 후 예비 시효처리를 수행한 판재로써, 소부경화 열처리 이후 강도를 더욱 향상시킬 수 있다.
상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재는 소부경화 열처리를 수행한 이후 크기 2 내지 12 ㎚이고 밀도가 8,000/㎛2 내지 15,000/㎛2 인 석출상을 포함하며, 소부경화 열처리에 의해 400 MPa 이상으로 강도가 향상되는 효과를 나타내는 고강도 알루미늄 합금 판재로, 수송기기의 차체에 사용될 수 있으며, 이를 통해 강도가 높고 가벼운 수송기기 차체를 제조할 수 있다는 장점이 있다.
본 발명에 따른 소부경화성이 우수한 고강도 알루미늄 합금 판재는 소부경화 전 소정의 조건에서 예비 시효처리를 통하여 알루미늄-아연-마그네슘-구리계 알루미늄 합금의 성형성을 유지하면서, 소부경화 후 경도 및 항복강도를 극대화시킬 수 있으므로 수송기기 분야 내지 전자제품 케이스 등 산업 전반의 부품 경량화에 적용될 수 있는 장점이 있다.
이하, 실시예 및 실험예를 통하여 본 발명을 상세하게 설명한다.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 한정되는 것은 아니다.
<실시예 1>
다음과 같은 단계를 통해 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
단계 1: 7075 알루미늄 합금잉곳을 재용해하여, 수평형 쌍롤 주조장치를 이용하여 두께 약 4.5 mm의 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하였으며, 상기 쌍롤 주조된 알루미늄-아연-마그네슘-구리계 알루미늄 합금판재를 400 ℃에서 1시간 어닐링열처리 후 열간 압연 및 냉간압연을 순차적으로 진행하여 두께 약 1.0 mm를 갖는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하였다.
단계 2: 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 500 ℃ 에서 1시간 동안 유지하여 용체화 처리하였다.
단계 3: 상기 용체화 처리한 알루미늄 합금 판재를 90 ℃에서 30분 동안 열처리한 후 상온으로 냉각시키는 예비 시효처리를 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 2>
상기 실시예 1에서 단계 3의 열처리 시간을 60분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 3>
상기 실시예 1에서 단계 3의 열처리 시간을 120분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 4>
상기 실시예 1에서 단계 3의 열처리 시간을 240분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 5>
상기 실시예 1에서 단계 3의 열처리 온도를 120 ℃로 달리하고, 열처리 시간을 5분으로 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 6>
상기 실시예 5에서 단계 3의 열처리 시간을 10분으로 달리하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 7>
상기 실시예 5에서 단계 3의 열처리 시간을 30분으로 달리하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<실시예 8>
상기 실시예 5에서 단계 3의 열처리 시간을 60분으로 달리하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 1>
실시예 1에서 단계 3을 수행하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 알루미늄 합금 판재를 제조하였다.
<비교예 2>
상기 실시예 1에서 단계 3의 열처리 온도를 60 ℃로 달리하고 예비 시효처리 시간을 5분으로 달리한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 3>
상기 비교예 2에서 단계 3의 열처리 시간을 10분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 4>
상기 비교예 2에서 단계 3의 열처리 시간을 30분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 5>
상기 비교예 2에서 단계 3의 열처리 시간을 60분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 6>
상기 비교예 2에서 단계 3의 열처리 시간을 120분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 7>
상기 비교예 2에서 단계 3의 열처리 시간을 240분으로 달리하는 것을 제외하고는 비교예 2와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 8>
상기 실시예 1에서 단계 3의 열처리 시간을 5분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 9>
상기 실시예 1에서 단계 3의 열처리 시간을 10분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 10>
상기 실시예 5에서 단계 3의 열처리 시간을 120분으로 달리한 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 11>
상기 실시예 5에서 단계 3의 열처리 시간을 240분으로 달리하는 것을 제외하고는 실시예 5와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 12>
상기 실시예 1에서 단계 3의 열처리 온도를 150 ℃로 달리하고 예비 시효처리 시간을 5분으로 달리하는 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 13>
상기 비교예 12에서 단계 3의 열처리 시간을 10분으로 달리하는 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 14>
상기 비교예 12에서 단계 3의 열처리 시간을 30분으로 달리한 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 15>
상기 비교예 12에서 단계 3의 열처리 시간을 60분으로 달리하는 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 16>
상기 비교예 12에서 단계 3의 열처리 시간을 120분으로 달리하는 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
<비교예 17>
상기 비교예 12에서 단계 3의 열처리 시간을 240분으로 달리하는 것을 제외하고는 비교예 12와 동일한 방법으로 수행하여 소부경화성이 우수한 고강도 알루미늄 합금 판재를 제조하였다.
하기 표 2를 통해 상기 실시예 및 비교예에서 수행한 열처리 조건을 나타내었다.
용체화 처리 단계 3의 열처리 자연시효 소부경화 열처리
비교예 1 500 ℃ 1시간 x X 180 ℃ 30분
비교예 2 60 ℃ 5분 O(일주일)
비교예 3 60 ℃ 10분 O(일주일)
비교예 4 60 ℃ 30분 O(일주일)
비교예 5 60 ℃ 1시간 O(일주일)
비교예 6 60 ℃ 2시간 O(일주일)
비교예 7 60 ℃ 4시간 O(일주일)
비교예 8 90 ℃ 5분 0(일주일)
비교예 9 90 ℃ 10분 O(일주일)
실시예 1 90 ℃ 30분 O(일주일)
실시예 2 90 ℃ 1시간 O(일주일)
실시예 3 90 ℃ 2시간 O(일주일)
실시예 4 90 ℃ 4시간 O(일주일)
실시예 5 120 ℃ 5분 O(일주일)
실시예 6 120 ℃ 10분 O(일주일)
실시예 7 120 ℃ 30분 O(일주일)
실시예 8 120 ℃ 1시간 O(일주일)
비교예 10 120 ℃ 2시간 O(일주일)
비교예 11 120 ℃ 4시간 O(일주일)
비교예 12 150 ℃ 5분 O(일주일)
비교예 13 150 ℃ 10분 O(일주일)
비교예 14 150 ℃ 30분 O(일주일)
비교예 15 150 ℃ 1시간 O(일주일)
비교예 16 150 ℃ 2시간 O(일주일)
비교예 17 150 ℃ 4시간 O(일주일)
<실험예 1> 소부경화 열처리 전과 그 후 경도 비교(1)
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 경도 변화를 확인하기 위하여 이하와 같은 실험을 수행하였다.
비교예 2 내지 7에 의하여 제조된 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 유지하여 소부경화 열처리를 수행하기 전과 후의 경도를 비커스 경도기로 측정하였다. 이때, 하중 0.3 kg, 유지시간 5 초의 시험 조건을 사용하여 11 회의 경도측정을 수행한 후, 최대/최소값을 제외한 나머지 9 개의 경도값의 평균을 구하였으며, 그 결과를 도 2에 나타내었다.
도 2에 나타난 바와 같이, 비교예 2 내지 7에서 소부경화열처리를 수행하기 전 경도값 125 내지 135 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 130 내지 140 Hv를 갖는 것을 알 수 있다.
이를 통해 단계 3의 열처리를 60 ℃에서 수행한 경우, 소부경화 열처리 시 경도값 상승이 10 Hv 미만으로 미미하여 강도 및 내덴트성이 향상되는 정도가 작음을 확인할 수 있다.
<실험예 2> 소부경화 열처리 전과 그 후 경도 비교(2)
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 경도 변화를 확인하기 위하여 이하와 같은 실험을 수행하였다.
실시예 1 내지 4, 비교예 8 및 9에 의하여 제조된 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 유지하여 소부경화 열처리를 수행하기 전과 후의 경도를 상기 실험예 1과 동일한 조건으로 측정하였으며, 그 결과를 도 3에 나타내었다.
도 3에 나타난 바와 같이, 비교예 8 및 9의 경우, 소부경화 열처리를 수행하기 전 경도값 약 130 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 약 140 Hv를 갖는 반면, 실시예 1 내지 4의 경우, 소부경화 열처리를 수행하기 전 경도값 약 135 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 155 내지 165 Hv를 가지며, 열처리 시간이 증가할수록 경도값도 향상됨을 알 수 있다
이를 통해, 단계 3의 열처리를 90 ℃에서 수행하는 경우, 열처리를 10분 이상 수행한 경우, 소부경화 열처리 이후 경도값이 크게 향상되었음을 알 수 있다.
<실험예 3> 소부경화 열처리 전과 그 후 경도 비교(3)
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 경도 변화를 확인하기 위하여 이하와 같은 실험을 수행하였다.
실시예 5 내지 8, 비교예 10 및 11에 의하여 제조된 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 유지하여 소부경화 열처리를 수행하기 전과 후의 경도를 상기 실험예 1과 동일한 조건으로 측정하였으며, 그 결과를 도 4에 나타내었다.
도 4에 나타난 바와 같이, 실시예 5 내지 8의 경우, 소부경화 열처리를 수행하기 전 경도값 약 135 내지 140 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 160 내지 170 Hv를 갖는 것을 통해 소부경화 열처리 후 경도값이 크게 향상된 반면, 비교예 10 및 11의 경우, 소부경화 열처리 전 경도값이 크게 향상되는 것을 알 수 있으며, 이를 통해 비교예 10 및 11에 의해 제조된 알루미늄 합금 판재는 낮은 성형성을 보일 것으로 예상해 볼 수 있다.
이를 통해, 단계 3의 열처리를 120 ℃에서 수행하는 경우, 열처리를 120분을 초과하는 경우, 성형성이 떨어지는 것을 알 수 있다.
<실험예 4> 소부경화 열처리 전과 그 후 경도 비교(4)
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 경도 변화를 확인하기 위하여 이하와 같은 실험을 수행하였다.
비교예 12 내지 17에 의하여 제조된 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 유지하여 소부경화 열처리를 수행하기 전과 후의 경도를 비커스 경도기로 측정하였으며, 그 결과를 도 5에 나타내었다.
도 5에 나타난 바와 같이, 비교예 12 내지 17에서 소부경화열처리를 수행하기 전 경도값 135 내지 145 Hv를 갖고, 소부경화 열처리를 수행한 후 경도값 140 내지 145 Hv를 갖는 것을 알 수 있다.
이를 통해 단계 3의 열처리를 150 ℃에서 수행한 경우, 소부경화 열처리를 수행한 후에도 경도값이 향상되는 정도가 작음을 확인할 수 있다.
<실험예 5> 소부경화 열처리 전과 그 후 인장특성 평가
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 소부경화 열처리 전과 그 후의 인장특성을 평가하기 위하여, 게이지 길이 25 mm, 게이지 폭 6 mm인 판상 인장 시편을 제작하여 상온에서 인장 시험을 수행하였다.
이때, 실시예 1 내지 8, 비교예 8 및 11에 의하여 제조된 알루미늄 합금 판재를 상기 인장 시험을 수행하고, 상기 알루미늄 합금 판재를 도장 후 180 ℃에서 30분 동안 열처리한 후 인장 시험을 수행하였으며, 그 결과를 도 6a 및 6b에 나타내었다.
도 6a 및 6b에 나타난 바와 같이, 연신율의 경우, 실시예 1 내지 8의 경우 소부경화 열처리 전 15.4 내지 22.9% 수준의 연신율을 나타내어 우수한 성형성을 보일 것으로 판단되며, 소부경화 열처리 후에는 18.95 내지 28.04 Hv 수준의 경도값 향상과 401 내지 484 MPa 수준의 항복강도를 나타내어 높은 내덴트성 및 강도를 보일 것을 예상해 볼 수 있다. 이러한 결과는 비교예 1에 의해 제조된 알루미늄 합금의 소부경화 후 인장 특성과 비교하여 100 내지 190 MPa 수준의 항복강도 향상을 나타낸다.
<실험예 6> 석출상 분석
본 발명의 제조방법으로 제조된 알루미늄 합금 판재의 자연시효 전과 소부경화 열처리 후의 석출상의 미세구조를 관찰하기 위하여, 하기와 같은 실험을 수행하였다.
비교예 1 및 실시예 7에 의해 제조된 알루미늄 합금 판재를 소부경화 열처리 한 후 두께 80 ㎛ 이하인 박판으로 제조하고 제트폴리싱을 수행하여 투과전자현미경용 시편으로 제작하여 가속전압이 160 kV인 투과전자현미경을 이용하여 미세구조를 관찰하였으며 그 결과를 도 7a 내지 도 7d에 나타내었다.
도 7a 및 도 7b에 소부 경화 열처리 전 및 후를 각각 나타난 바와 같이, 예비시효 없이 소부경화 열처리를 실시한 비교예 1의 경우, 석출상의 밀도는 3,200/㎛2 였고, 크기는 5 내지 16 ㎚로 평균 10 ㎚ 수준을 나타낸 반면, 도 7c 및 7d에 소부 경화 열처리 전 및 후를 각각 나타낸 바와 같이, 30 분 동안의 단계 3의 열처리를 통하여 GP zone을 안정적으로 분포시킨 후 소부경화 열처리를 실시한 경우 실시예 7의 경우, 석출상의 밀도가 10,500/㎛2로 크게 증가하였으며, 크기는 2 내지 12 ㎚로 평균 6 ㎚ 수준을 나타내었다. 이를 통해, 예비 시효처리한 후 소부경화 열처리를 할 경우 더욱더 높은 기계적 특성을 나타낼 것을 예상해 볼 수 있다.
본 발명의 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재 제조방법은 용체화 처리 이후 65 내지 145 ℃의 온도에서 3 내지 250분 동안 예비시효처리를 수행함으로써, 판재의 이송 및 보관 중의 자연시효로 인한 물성변화를 억제하고 차체 성형 후 소부경화에 의해 강도가 더욱 향상시킬 수 있어, 고강도를 갖는 경량 수송기기 차체를 제조할 수 있다.

Claims (13)

  1. 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 단계(단계 1);
    상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 용체화 처리하는 단계(단계 2); 및
    상기 용체화 처리한 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 65 내지 145 ℃에서 3 내지 250분 동안 유지한 후 상온으로 냉각시키는 예비 시효처리를 수행하는 단계(단계 3);를 포함하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  2. 제1항에 있어서, 상기 예비 시효처리는 65 내지 105 ℃에서 25 내지 250분 동안 유지한 후 상온으로 냉각시키는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  3. 제1항에 있어서, 상기 예비 시효처리는 106 내지 145 ℃에서 3 내지 70분 동안 유지한 후 상온으로 냉각시키는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  4. 제1항에 있어서, 상기 제조방법은 상기 단계 3 이후 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 170 내지 190 ℃에서 20 내지 40 분간 소부경화 열처리하는 단계를 더 포함하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  5. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리를 수행하기 전 상기 알루미늄-아연-마그네슘-구리계 알루미늄 합금을 성형하는 단계를 더 포함되는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  6. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리 이후 밀도가 8,000/㎛2 내지 15,000/㎛2인 석출상을 포함하는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  7. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리 이후 크기가 2 내지 12 ㎚인 석출상을 포함하는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  8. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리 후 상기 단계 3의 예비 시효처리를 수행하지 않고 소부경화 열처리를 수행한 경우 대비 항복강도가 1.26 내지 1.50 배 향상된 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  9. 제4항에 있어서, 상기 제조방법은 상기 소부경화 열처리 후 400 MPa 이상의 항복강도 값을 갖는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재를 제조하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재의 제조방법.
  10. 제1항의 제조방법으로 제조되는 알루미늄-아연-마그네슘-구리계 알루미늄 합금 판재이며, 소부경화 열처리 후 400 MPa 이상의 항복강도 값을 갖는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재.
  11. 제10항에 있어서, 상기 알루미늄 합금 판재는 소부경화 열처리 후 밀도가 8,000/㎛2 내지 15,000/㎛2인 석출상을 포함하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재.
  12. 제10항에 있어서, 상기 알루미늄 합금 판재는 소부경화 열처리 후 크기가 2 내지 12 ㎚인 석출상을 포함하는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재.
  13. 제10항에 있어서, 상기 알루미늄 합금 판재는 수송기기의 차체에 사용되는 것을 특징으로 하는 소부경화성이 우수한 고강도 알루미늄 합금 판재.
PCT/KR2016/014716 2016-04-13 2016-12-15 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법 WO2017179794A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018547244A JP6956101B2 (ja) 2016-04-13 2016-12-15 焼付硬化性に優れた高強度アルミニウム合金板材の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020160045223A KR20170117630A (ko) 2016-04-13 2016-04-13 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법
KR10-2016-0045223 2016-04-13

Publications (1)

Publication Number Publication Date
WO2017179794A1 true WO2017179794A1 (ko) 2017-10-19

Family

ID=60042778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/014716 WO2017179794A1 (ko) 2016-04-13 2016-12-15 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법

Country Status (3)

Country Link
JP (1) JP6956101B2 (ko)
KR (1) KR20170117630A (ko)
WO (1) WO2017179794A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100213678B1 (en) * 1997-03-27 1999-08-02 Korea Machinery & Metal Inst Manufacturing method of al-mg-si alloy with excellent high forming and high strength
US20140069557A1 (en) * 2009-06-12 2014-03-13 Aleris Aluminum Koblenz Gmbh Structural Automotive Part Made From an Al-Zn-Mg-Cu Alloy Product and Method of its Manufacture
JP5498069B2 (ja) * 2009-07-10 2014-05-21 株式会社Uacj 冷間プレス成形用アルミニウム合金板ブランクの製造方法、およびそれによる冷間プレス成形方法および成形品
KR20150042099A (ko) * 2013-10-10 2015-04-20 한국기계연구원 알루미늄-아연-구리-마그네슘 합금 판재의 제조방법 및 이에 따라 제조되는 알루미늄-아연-구리-마그네슘 합금 판재
KR20150047246A (ko) * 2013-10-24 2015-05-04 한국기계연구원 결정립이 미세화된 알루미늄-아연-마그네슘-구리 합금 판재의 제조방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4794862B2 (ja) * 2004-01-07 2011-10-19 新日本製鐵株式会社 塗装焼付け硬化性に優れた6000系アルミニウム合金板の製造方法
JP5685055B2 (ja) * 2010-11-04 2015-03-18 株式会社神戸製鋼所 アルミニウム合金板
CA2967464C (en) * 2014-12-09 2019-11-05 Novelis Inc. Reduced aging time of 7xxx series alloys

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100213678B1 (en) * 1997-03-27 1999-08-02 Korea Machinery & Metal Inst Manufacturing method of al-mg-si alloy with excellent high forming and high strength
US20140069557A1 (en) * 2009-06-12 2014-03-13 Aleris Aluminum Koblenz Gmbh Structural Automotive Part Made From an Al-Zn-Mg-Cu Alloy Product and Method of its Manufacture
JP5498069B2 (ja) * 2009-07-10 2014-05-21 株式会社Uacj 冷間プレス成形用アルミニウム合金板ブランクの製造方法、およびそれによる冷間プレス成形方法および成形品
KR20150042099A (ko) * 2013-10-10 2015-04-20 한국기계연구원 알루미늄-아연-구리-마그네슘 합금 판재의 제조방법 및 이에 따라 제조되는 알루미늄-아연-구리-마그네슘 합금 판재
KR20150047246A (ko) * 2013-10-24 2015-05-04 한국기계연구원 결정립이 미세화된 알루미늄-아연-마그네슘-구리 합금 판재의 제조방법

Also Published As

Publication number Publication date
JP6956101B2 (ja) 2021-10-27
KR20170117630A (ko) 2017-10-24
JP2019500504A (ja) 2019-01-10

Similar Documents

Publication Publication Date Title
WO2017111525A1 (ko) 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
WO2016104880A1 (ko) 내박리성이 우수한 hpf 성형부재 및 그 제조방법
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2016104879A1 (ko) 프레스성형시 내파우더링성이 우수한 hpf 성형부재 및 이의 제조방법
WO2015023012A1 (ko) 초고강도 강판 및 그 제조방법
WO2016104881A1 (ko) 굽힘 특성이 우수한 hpf 성형부재 및 그 제조방법
WO2016105059A1 (ko) 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법
WO2016105064A1 (ko) 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법
WO2018056792A1 (ko) 내식성 및 점용접성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법
WO2019231023A1 (ko) Twb 용접 특성이 우수한 열간성형용 al-fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2020111702A1 (ko) 내구성이 우수한 고강도 강재 및 이의 제조방법
WO2016105062A1 (ko) 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법
WO2020130675A1 (ko) 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2016104837A1 (ko) 표면품질이 우수한 고강도 아연도금강판용 열연강판 및 이의 제조방법
WO2017111322A1 (ko) 연성이 우수한 초고강도 열연강판 및 그 제조방법
WO2018117675A1 (ko) 가공성이 우수한 냉연강판 및 그 제조방법
WO2021112488A1 (ko) 내구성이 우수한 후물 복합조직강 및 그 제조방법
WO2020226301A1 (ko) 전단가공성이 우수한 초고강도 강판 및 그 제조방법
WO2017179794A1 (ko) 소부경화성이 우수한 고강도 알루미늄 합금 판재 및 이의 제조방법
WO2022097965A1 (ko) 내수소취성 및 내충돌성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2022139312A1 (ko) 방향성 전기강판 및 그의 제조방법
WO2018117539A1 (ko) 용접성 및 연성이 우수한 고강도 열연강판 및 이의 제조방법
WO2018117500A1 (ko) 굽힘성 및 신장플랜지성이 우수한 고장력강 및 이의 제조방법
WO2022010030A1 (ko) 생산성, 용접성 및 성형성이 우수한 열간 프레스 성형 부재의 제조 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018547244

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16898756

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 16898756

Country of ref document: EP

Kind code of ref document: A1