WO2022010030A1 - 생산성, 용접성 및 성형성이 우수한 열간 프레스 성형 부재의 제조 방법 - Google Patents

생산성, 용접성 및 성형성이 우수한 열간 프레스 성형 부재의 제조 방법 Download PDF

Info

Publication number
WO2022010030A1
WO2022010030A1 PCT/KR2020/011662 KR2020011662W WO2022010030A1 WO 2022010030 A1 WO2022010030 A1 WO 2022010030A1 KR 2020011662 W KR2020011662 W KR 2020011662W WO 2022010030 A1 WO2022010030 A1 WO 2022010030A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
heating
temperature
blank
furnace
Prior art date
Application number
PCT/KR2020/011662
Other languages
English (en)
French (fr)
Inventor
김홍기
손현성
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to EP20944436.3A priority Critical patent/EP4180146A4/en
Priority to JP2023501479A priority patent/JP2023534207A/ja
Publication of WO2022010030A1 publication Critical patent/WO2022010030A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/002Extruding materials of special alloys so far as the composition of the alloy requires or permits special extruding methods of sequences
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/003Cooling or heating of work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/13Modifying the physical properties of iron or steel by deformation by hot working
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/028Including graded layers in composition or in physical properties, e.g. density, porosity, grain size
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Definitions

  • the present invention relates to a method for manufacturing a hot press-formed member excellent in productivity, weldability and formability.
  • the application of high-strength steel using a hot press forming method is actively progressing in response to the demand for vehicle weight reduction and safety improvement.
  • heating and rapid cooling of the material are essential.
  • Aluminum plated steel or aluminum alloy plated steel is used to suppress scale generation at high temperatures.
  • Aluminum plated steel or aluminum alloy plated steel has a problem of melting of the plated layer during rapid heating, and is generally heated at a slow rate in an atmospheric heating furnace.
  • the heating method in such an atmospheric heating furnace is a pattern of heating in a heating furnace set to the same atmospheric temperature or sequentially increasing the atmospheric temperature in a continuous heating furnace such as a roller hearth furnace having a plurality of heating zones. In some cases, it is heated with However, since the heating is performed at a slow rate in this way, it has to be heated in the furnace for a certain period of time to secure the time to reach the target temperature, and there is a problem in that the productivity deteriorates as the holding time in the furnace increases. .
  • a method of increasing the heating temperature is sometimes applied to shorten the holding time in the heating furnace.
  • a problem in weldability is deteriorated according to the increase in the thickness of the diffusion layer in the plating layer due to the increase in the heating temperature is caused.
  • An object of the present invention is to solve the above problems, and to provide a method for manufacturing a hot press-formed member with improved productivity, weldability, and formability.
  • One aspect of the present invention provides a method for manufacturing a hot press-formed member, comprising:
  • the heating furnace is a continuous heating furnace including sections A, B, and C sequentially provided in the conveying direction of the blank,
  • the heating in section A is about a (0.2 min, 750 °C), b (1.0 min, 750 °C), c (1.0 min, 800 °C), d (1.5 min, 900 °C), e (0.2 min, 900 °C) °C) satisfies the conditions stipulated by the figure abcde having the accumulated furnace holding time and atmospheric temperature coordinates,
  • the heating in section B is about f( min, 930° C.), g ( min, 930° C.), h ( min, 960°C), i( min, 960° C.), which satisfies the conditions stipulated by fghi having a cumulative furnace holding time and atmospheric temperature coordinates,
  • the heating in the C section is about j ( min, 870 ° C), k ( min, 870 ° C), l ( min, 940 °C), m ( min, 940 °C), but meets the conditions stipulated by the figure jklm having the accumulated furnace holding time and atmospheric temperature coordinates, but the highest atmospheric temperature is lower than the highest atmospheric temperature of the B section,
  • It provides a method of manufacturing a hot press-formed member that takes less than 2 seconds from the time the blank is seated until the molding is performed.
  • the T represents the sum of the time required for the step of transporting and settling and the time required before the molding is performed after the blank is seated, and the unit is s (seconds).
  • the t represents the thickness of the blank, and the unit is mm
  • the temp represents the extraction temperature by heating, and the unit is °C.
  • 1 is a graph showing a heating pattern for an aluminum plating material having a thickness of 1.2 mm.
  • FIG. 2 is a graph showing comparison of temperature increase analysis experimental values and analysis values under various furnace ambient temperature conditions for an aluminum plating material having a thickness of 1.2 mm.
  • FIG. 3 is a graph showing the preferred cumulative holding time in a furnace versus ambient temperature conditions of the present invention for heating an aluminum plating material having a thickness of 1.2 mm.
  • FIG. 4 is a photograph showing the observation result of the plating layer of an experimental example in which an aluminum plating material having a silver thickness of 1.2 mm was heated under several heating conditions.
  • FIG. 6 is a graph showing the comparison of experimental values and analysis values for the temperature change according to the time of cooling in air after extraction in a heating furnace of an aluminum plating material having a material thickness of 0.9 and 1.8 mm.
  • a method of manufacturing a hot press-formed member includes heating a blank of an aluminum-based plated steel sheet in a heating furnace; Taking out the heated blank from the heating furnace and transferring it between the upper and lower molds of the mold mounted on the press to be seated; and a molding step in which molding is performed after the upper mold of the mold contacts the seated blank.
  • the method for manufacturing the hot press-formed member may include, subsequent to the forming step, a cooling step in a mold for rapidly cooling the molded material by maintaining the upper die of the die after reaching the press bottom dead center; and taking out the molded member taking out the cooled molded member.
  • the aluminum-based plated steel sheet may be an aluminum plated steel sheet or an aluminum alloy plated steel sheet.
  • the composition of the plating layer may include, by weight, Si: 5 to 11%, Fe: 4.5% or less, the remainder Al, and other unavoidable impurities.
  • the composition of the base steel sheet is by weight, C: 0.1 to 0.5%, Si: 0.1 to 2%, Mn: 0.5 to 3%, Cr: 0.01 to 0.5%, Al: 0.001 to 1.0%, P: 0.05% or less, S: 0.02% or less, N: 0.02% or less, B: 0.002 to 0.005%, the balance may include Fe and other unavoidable impurities.
  • the heating furnace may be a continuous heating furnace including sections A, B, and C, which are sequentially provided in the conveying direction of the blank.
  • the section A, section B, and section C do not necessarily need to be provided adjacent to each other in the conveying direction of the blank, and it is sufficient if the above-described sequence is satisfied along the conveying direction of the blank. That is, in the section A, section B, and section C, each section may consist of one heating zone, and may consist of several heating zones within each section.
  • an additional section set to a temperature between the temperature ranges of the preceding and subsequent steps may be further included.
  • heating is performed in a heating furnace set to the same atmospheric temperature, or in a continuous heating furnace such as a roller hearth furnace having a plurality of heating zones, in which the atmospheric temperature is sequentially increased in a pattern. Sometimes there is heating.
  • the present inventors paid attention to that, if the atmospheric temperature is set high during the temperature increase process of section B, heating is performed faster than a conventional heating furnace setting method, and thus productivity can be improved by shortening the holding time in the furnace.
  • the temperature of section C of the subsequent process is set lower than the temperature of section B, which is the above-described temperature increase process, the final heating temperature is set low, and the problem of poor weldability can be solved.
  • the minimization of the time to reach 900 ° C. the minimization of the time for the temperature of the material in the section taken out from the heating furnace to reach the extraction temperature of the furnace, or the material in the heating furnace Whether or not the total accumulated holding time in the heating furnace until taken out is less than or equal to the time at which the thickness of the diffusion layer becomes 15 ⁇ m or the like.
  • the section B set to the above-mentioned high temperature is too wide, the thickness of the diffusion layer increases as the time heated and maintained at a high temperature is too long, resulting in poor weldability.
  • the section B set to the high temperature is too narrow, the effect of productivity improvement due to the rapid heating cannot be obtained.
  • to maintain the initial section A of the heating furnace at a high temperature there is a problem in that energy consumption increases, and there is no need to set the ambient temperature to be unnecessarily high at the initial stage of the heating.
  • the material once heated to a sufficient temperature has already been transformed into austenite, it is only necessary to maintain the temperature and time at which only the alloying of the plating layer can be sufficiently obtained. If a high ambient temperature is maintained until this stage, a problem of poor weldability due to an excessive increase in the thickness of the diffusion layer may occur, so it may be set to a relatively low temperature.
  • a heating pattern as shown in FIG. 1 was performed on an aluminum plating material having a material thickness of 1.2 mm. That is, in section A, which is the initial heating stage, it was set relatively low in consideration of energy saving and the fact that it was impossible to set a high ambient temperature. After that, in section B, the highest temperature was set to speed up the heating of the material, and the material was set to reach a sufficient temperature. Subsequently, in section C after the material reached a sufficient temperature, the temperature was set to a lower temperature than that of step B again. As shown in FIG. 1 , when the temperature of the furnace is set differently for each section, the 1.2mm material is maintained at 900° C. when the cumulative heating furnace holding time taken out is 4.5 minutes. These results are derived from the heating analysis results for radiative and convective heat transfer in the furnace atmosphere. Hereinafter, the heating conditions in each section will be described in more detail.
  • the atmospheric temperature in each section to be described later includes a plurality of heating zones, and in each heating zone, in a heating furnace capable of controlling the atmospheric temperature to be distinguished from each other, the atmosphere maintenance temperature in each heating zone (that is, the temperature of the region in which the actual ambient temperature is maintained in one heating zone).
  • the atmosphere maintenance temperature in one heating zone may be a temperature measured at a representative point of a region where the actual atmospheric temperature is maintained.
  • the center (1/2) in the longitudinal direction for one heating zone, 1/4 in the width direction, and a point 250 mm away from the blank position in the height direction, etc. can be heard At this time, it is considered that the atmospheric temperature in each section is maintained at the above-described atmospheric maintenance temperature in each heating zone corresponding to each section.
  • the cumulative holding time in the furnace in each section is, in the heating furnace including the plurality of heating zones described above and capable of controlling the atmospheric temperature in each heating zone to be distinguished from each other, from the point in time when the blank, which is a material, is put into the heating furnace. It may mean a holding time from the last heating zone of the heating zone corresponding to each of the above-described sections to the point in time when the blank, which is a material, is taken out.
  • each heating zone may be divided by a partition wall or the like, or may be divided without a partition wall or the like. Therefore, when each heating zone can be divided by a partition wall, etc., the above-described method is applied as it is.
  • the entire heating furnace when there is no partition wall, etc., the entire heating furnace is divided into n zones (for example, 5 or more) in the transport direction of the blank, and each divided zone is divided into one zone. can see.
  • the entire furnace is divided into 20 zones, so that each divided zone can be viewed as one zone.
  • the temperature measured at the center (1/2) in the longitudinal direction, 1/4 in the width direction, and 250 mm away from the blank position in the height direction for each zone is measured as described above. It can be seen as the atmosphere maintenance temperature in each section.
  • the heating in the A section is set to an atmospheric temperature of about 750 ⁇ 900 °C
  • the B section is set to an atmospheric temperature of about 930 ⁇ 960 °C
  • the C section is It may be set to an ambient temperature of about 870° C. or higher and lower than the ambient temperature selected in the section B.
  • the temperature rises faster than when a single temperature of the final temperature is set, and the holding time in the furnace can be shortened.
  • by controlling the temperature and time in an appropriate range at which only the alloying of the plating layer can be sufficiently obtained at the same time it is possible to prevent the problem of poor weldability due to the excessive diffusion layer being generated. Accordingly, it is possible to effectively provide a hot press forming method capable of achieving both excellent productivity and weldability.
  • FIG. 2 is a graph showing the feasibility of the aforementioned heating analysis technology, and comparing the heating analysis experimental values and analysis values under various furnace ambient temperature conditions for an aluminum plating material having a material thickness of 1.2 mm.
  • the experimental value one temperature data per second was obtained after maintaining a thermocouple attached to the material in the heating furnace.
  • the analysis value is a result of predicting such a condition with the above-mentioned analysis technique, and as shown in FIG. 2 , it can be seen that the analysis value expresses the experimental value well.
  • the present inventors have additionally discovered that the temperature increase pattern of the material depends on the thickness of the material, the ambient temperature, and the holding time for each temperature region by analyzing the temperature increase pattern under various conditions.
  • the thickness of the material, the ambient temperature and each atmosphere We have learned that the length of time we stay at the temperature is important. Accordingly, the present inventors have completed the present invention by paying attention to the point that it is necessary to select an appropriate holding time according to the thickness of the material and the ambient temperature. It will be described in detail below.
  • the heating in the A section is about a (0.2 min, 750 ° C), b (1.0 min, 750 °C), c (1.0 min, 800 °C), d (1.5 min, 900 °C), e (0.2 min, 900 °C) of the accumulated furnace holding time and heating furnace atmospheric temperature coordinates defined by figure abcde conditions can be met.
  • the atmospheric temperature in the furnace in section A is preferably set within the range of about 750 to 900 ° C. If the atmospheric temperature in the heating furnace in the section A is set to less than about 750° C., there is a problem in that productivity deteriorates as the initial temperature increase rate is too slow. On the other hand, if the atmospheric temperature in the heating furnace in the section A is set to exceed about 900° C., there is a problem in that energy consumption increases by maintaining the initial region of the heating furnace at a high temperature.
  • heating in section A affects not only the ambient temperature but also the holding time on the temperature increase rate.
  • the present inventors have intensively studied the ambient temperature and holding time in the heating furnace for heating in section A, and found that it is preferable to set the conditions of section A as shown in FIG. 3 . That is, when the atmospheric temperature of section A is a low temperature of about 750 ° C, the holding time of section A is set as short as about 1 minute or less, and when the atmospheric temperature of section A is a high temperature of about 900 ° C.
  • the holding time is preferably about 1.5 minutes or less.
  • the duration of the section A may be about 0.2 minutes or more.
  • the thickness of the material may also have an effect.
  • the effect of thickness is reflected in the heating in section B and section C, which will be described later, and the influence in section A is somewhat small, from a practical point of view, it can be set regardless of the thickness of the material in section A (Fig. 5) see (a)).
  • the heating in section B is about f( min, 930° C.), g ( min, 930° C.), h ( min, 960°C), i( min, 960° C.) can satisfy the conditions stipulated by fghi having a cumulative holding time in the furnace and an atmosphere temperature coordinate.
  • the unit of the coordinates of fghi is f(1.3[min]+ ⁇ (t[mm]-1.2[mm])/0.6[mm] ⁇ 0.5[min], 930[°C]), g(3.8 [min]+ ⁇ (t[mm]-1.2[mm])/0.6[mm] ⁇ 0.5[min], 930[°C]), h(3.3[min]+ ⁇ (t[mm]-1.2[ mm])/0.6[mm] ⁇ 0.5[min], 960[°C]), i(0.8[min]+ ⁇ (t[mm]-1.2[mm])/0.6[mm] ⁇ 0.5[min] ], 960 [°C]).
  • Heating in section B is the region with the highest atmospheric temperature in the furnace, and affects the temperature increase rate and maximum temperature of the material in the high temperature region.
  • the atmospheric temperature of the section B When the atmospheric temperature of the section B is low, the maximum temperature is lowered and the temperature increase rate is lowered, whereas when the atmospheric temperature of the section B is high, the maximum temperature is increased and the temperature increase rate is also increased. Therefore, it is preferable to set the atmospheric temperature of section B as high as possible. However, if the atmospheric temperature of section B is too high, the material is heated to a too high temperature, and weldability may deteriorate, so it is necessary to set a preferable range.
  • section B from a section having an atmospheric temperature of about 930 ° C. or higher to a section having the highest atmospheric temperature (ie, the highest atmospheric maintenance temperature) is considered as section B.
  • a section having an atmospheric temperature lower than the highest atmospheric temperature following the section having the highest atmospheric temperature is regarded as a section distinct from the B section.
  • the B section consists of a first section B having an atmospheric temperature of about 930° C. and a second section B having an atmospheric temperature of about 950° C., and thereafter having an ambient temperature of about 935° C.
  • section C When a section is included, it can be seen as section C from a section having an ambient temperature of about 935° C., which is a lower atmospheric temperature condition than about 950° C., which is the highest ambient temperature.
  • the atmospheric temperature of the section B may be set in the range of about 930 to 960 °C.
  • the atmospheric temperature of the section B exceeds about 960 ° C., there is a limitation of the heating furnace equipment, but there is a problem in that the weldability is inferior because the temperature is set too high in terms of alloying of the plating layer.
  • the atmospheric temperature of the section B is less than about 930° C., as the temperature increase rate is too low, it takes a long time to reach the desired temperature, and there is a problem in that the productivity is deteriorated according to the increase of the cycle time.
  • the holding time of section B also affects the temperature increase rate of the material and the maximum heating temperature of the material. That is, if the holding time of the B stage is too short, a sufficient temperature increase effect cannot be obtained, and if the holding time of the B stage is too long, the material is maintained at a high temperature for too long, alloying proceeds excessively, and accordingly, the thickness of the diffusion layer decreases There may be a problem in that the increase in weldability is poor.
  • the lower limit of the holding time in section B may be about 0.5 minutes or more in order to exhibit the effect of improving productivity by rapid temperature rise.
  • the upper limit of the holding time may be about 4.8 minutes.
  • the holding time of section B means the time for which the material is maintained only in section B, and is a concept distinct from the accumulated in-furnace holding time described later.
  • the cumulative holding time in the furnace up to the section B also affects the temperature increase rate of the material and the maximum heating temperature of the material in the high temperature region.
  • the accumulated holding time in the furnace until the end of section B is long. It is okay to shorten the holding time.
  • the in-furnace cumulative holding time refers to the in-furnace cumulative holding time until the end of section B, not the holding time of section B itself. That is, it refers to the accumulated holding time heated in the furnace until the end of the B section including all the heating holding times in the furnace preceding the B section (for example, if there is only A section before the B section, the A section and B It means the in-furnace holding time in the section, and if there is an additional section between the A section and the B section, it means the accumulated time in the furnace including all of the A section, the B section, and the additional section).
  • This cumulative holding time is important because of the following reasons.
  • the holding time of section A when the holding time of section A is short, the holding time of section B itself must be slightly longer in order to increase the temperature to a sufficient temperature, and conversely, when the holding time of section A is long, the holding time of section B is somewhat short. You need to consider that you can lose. That is, in order to improve productivity by reducing the heating time, which is the objective of the present invention, it is necessary to consider not only the maintenance time of the B section itself but also the time before the B section.
  • the purpose of the section B is for the purpose of rapid temperature rise, and it is desirable in terms of weldability while obtaining the same temperature increase effect to avoid staying for a long time at the high temperature of step B by unnecessarily lengthening the holding time of section B. do. Therefore, based on these results, when the effect of material thickness is not considered (ie, when the material thickness is 1.2 mm), the cumulative holding time in the furnace up to section B is the maximum when the temperature in section B is about 930°C. It can be maintained for less than about 3.8 minutes.
  • the temperature increase pattern of the material also depends on the thickness of the material. Accordingly, the present inventor found that it was necessary to adjust the accumulated holding time in the furnace up to section B according to the thickness as shown in FIG. That is, the cumulative holding time in the furnace up to section B may be carried out within the range defined by the figure fghi of the 1.2 mm material in FIG. 3, and proportionally increased by about 0.5 minutes as the material thickness increases by 0.6 mm. Conversely, when the thickness of the material becomes thinner, it can be carried out within the range of proportionally decreasing by about 0.5 minutes as the thickness decreases by 0.6 mm.
  • the present inventors considered the effect of the thickness of the material, the heating atmosphere in section B when the thickness t of the material is 1.5 mm It was further found that the temperature could be set to an optimized condition.
  • the atmospheric temperature of the section B when the t is 1.5 mm or less, the atmospheric temperature of the section B may be greater than about 930°C and less than 940°C.
  • the B section should have a high ambient temperature in order to obtain a rapid temperature rise of the material, but considering that the holding time in the heating furnace may be slightly fluctuated due to abnormal measures in the actual operation, heating to an ambient temperature that is not too high good to do Therefore, when the thickness of the material is 1.5 mm or less, it is most advantageous in terms of minimizing the possibility of poor weldability to control the atmospheric temperature of the section B in the above-described range.
  • the atmospheric temperature of section B when t is 1.5 mm or less, more preferably, the atmospheric temperature of section B may be greater than about 930 ° C. and less than 935 ° C., and most preferably about 931 to 934 ° C., through which the effect of minimizing weldability defects can be further improved.
  • the atmospheric temperature of section B when t is greater than 1.5 mm, the atmospheric temperature of section B may be greater than about 930°C and less than 950°C.
  • the B section should have a high ambient temperature in order to obtain a rapid temperature rise of the material, but considering that the holding time in the heating furnace may be slightly fluctuated due to abnormal measures in the actual operation, heating to an ambient temperature that is not too high good to do Therefore, when the thickness of the material exceeds 1.5 mm, it is most advantageous in terms of minimizing the possibility of weldability defects to control the atmospheric temperature of the section B in the above-described range. This is in consideration of the fact that when the material thickness is increased, the temperature of section B should be slightly higher than that of the thin material.
  • the atmospheric temperature of section B may be more preferably greater than about 930° C. and less than 945° C., and most preferably about 931 to 940° C., through which the weldability is improved. can be improved
  • the atmospheric temperature of the section B is controlled to more than about 940 ° C.
  • the temperature of section B is increased to ensure rapid temperature rise, so that the accumulated holding time in the entire furnace is not increased. Therefore, it is possible to secure a more stable austenite structure in the heating process, and as a result, more excellent bendability.
  • the highest atmospheric temperature (Tb) (ie, the highest atmospheric maintenance temperature) of the B section may be about 938° C. or less, more preferably about 935° C. or less, and most preferably about It may be below 934°C. Through this, it is possible to achieve coexistence of excellent productivity and weldability.
  • the heating in the C section is about j ( min, 870 ° C), k ( min, 870 ° C), l ( min, 940 °C), m ( min, 940°C), the conditions stipulated by the figure jklm having the accumulated furnace holding time and atmospheric temperature coordinates are met, but the maximum atmospheric temperature of section C (that is, the highest atmospheric temperature of section C) is the highest of section B It may be lower than the atmospheric temperature (ie, the maximum atmospheric maintenance temperature of section B).
  • the unit of the coordinates of jklm is j (3.7 [min] + ⁇ (t [mm]-1.2 [mm])/0.6 [mm] ⁇ [min], 870 [°C]), k (11.7 [min]) ]+ ⁇ (t[mm]-1.2[mm])/0.6[mm] ⁇ 2[min], 870[°C]), l(7.03[min]+ ⁇ (t[mm]-1.2[mm]) )/0.6[mm] ⁇ 2[min], 940[°C]), m(2.53[min]+ ⁇ (t[mm]-1.2[mm])/0.6[mm] ⁇ [min], 940[ °C]).
  • the heating in section C affects the final holding temperature of the material.
  • the reason for setting the maximum atmospheric temperature in the C section to be lower than the highest atmospheric temperature in the B section is that when the atmospheric temperature in the C section is as high as the B section, the material is heated at a high temperature for a long time, resulting in poor weldability because there is That is, the heating in section B is set to a high temperature because the purpose of increasing the heating rate of the material is large, and heating in section C is for the purpose of controlling the final holding temperature of the material, so it is too high or too low This is because it is preferable not to set the temperature.
  • the atmospheric temperature in the C section is set to less than about 870 ° C, the material take-out temperature is too low, and the subsequent transfer step and the cooling step before molding are cooled to a too low temperature, resulting in a problem that the temperature during molding is too low. and, accordingly, the moldability may be poor.
  • the atmospheric temperature of section C may be lower than the atmospheric temperature of section B in terms of improving weldability, or the atmospheric temperature of section C is the lowest atmospheric temperature of section B (that is, , the lowest atmospheric maintenance temperature) may be set to be lower than that.
  • the B section when it includes a first B section at about 930°C and a second B section at 960°C, the C section is about 870°C or higher and the first B section
  • the ambient temperature may be set to be lower than about 930°C (ie, less than 930°C).
  • the maximum atmospheric temperature of section C may be set to about Tb-20 °C or less, or about Tb-30 °C or less, based on the maximum atmospheric temperature (Tb) of section B. It can also be set to a range (in this case, the highest atmospheric temperature means the highest atmospheric maintenance temperature, as described above).
  • Tb maximum atmospheric temperature
  • the highest atmospheric temperature means the highest atmospheric maintenance temperature, as described above.
  • the present inventors confirmed that, when the temperature difference between the B section and the C section is about 20 ° C., the material reaches the temperature of the C section within a short time (for example, about 30 seconds or less). Therefore, the temperature difference between the B section and the C section is about 20 °C or more, and it is most preferable that the C section is about 870 °C or more.
  • the accumulated holding time in the furnace until the end of section C also affects the final holding temperature. If the atmospheric temperature in section C is low, the accumulated holding time in the furnace until the end of section C is long. do.
  • the accumulated holding time in the furnace until the end of the C section also refers to the in-furnace accumulated holding time up to the C section, not the holding time of the C section itself. In this case, the above-described accumulated holding time in the furnace may be equally applied.
  • This cumulative holding time is important because of the following reasons. For example, if the holding time in the furnace just before section C is short, the holding time of section C itself must be slightly longer for sufficient alloying, and conversely, if the holding time in the furnace just before section C is long, the duration of section C is long. It is necessary to consider that the holding time may be slightly shorter. That is, the improvement of productivity by reducing the heating time for the purpose of the present invention is achieved, but for sufficient alloying, it is necessary to consider not only the maintenance time of the C section itself but also the time before the C section. The accumulated holding time in the furnace until the end of section C was derived through analysis of various embodiments to be described in detail later.
  • the cumulative holding time in the furnace until the end of section C is about 870 ° C. when the ambient temperature is about 870 ° C. It may be 3.7 to 11.7 minutes, and may be about 2.53 to 7.03 minutes when the ambient temperature is about 940°C.
  • the atmospheric temperature in section C is high, if the accumulated holding time in the furnace until the end of section C is too long, the heating time becomes too long, resulting in poor productivity and poor weldability.
  • the atmospheric temperature of section C is low, the total accumulated holding time in the furnace up to step C must be increased to compensate for this.
  • the temperature increase pattern of the material in the C section also depends on the thickness of the material. Therefore, it was confirmed through temperature rise analysis for various thicknesses that it was necessary to adjust the accumulated holding time in the furnace until the end of section C according to the thickness as shown in FIG. 5(c).
  • the cumulative holding time in the furnace until the end of section C is within the range defined by the figure jklm of the 1.2 mm material in FIG. 3, and as the material thickness increases by 0.6 mm, the minimum holding time increases proportionally by 1 minute, The maximum holding time can be carried out within the range of proportionally increasing by 2 minutes. Conversely, as the thickness of the material decreases by 0.6 mm, the minimum holding time proportionally decreases by 1 minute and the maximum holding time decreases by 2 minutes.
  • the present invention can be set to satisfy the accumulated furnace holding time and atmospheric temperature defined by the figure jklm that reflects even the influence of the thickness described above.
  • the heating in section C may be performed at an atmospheric temperature of about 935° C. or less, or more preferably, about 930° C. or less.
  • the maximum atmospheric temperature (ie, the highest atmospheric maintenance temperature) of the section C may be about 935° C. or less, or more preferably about 930° C. or less, thereby further improving productivity and weldability.
  • the holding time in section C may be about 0.5 minutes or more, and if the holding time in section C is less than about 0.5 minutes, the final holding temperature may not be reached, but it is specifically limited is not doing
  • the atmospheric temperature of section C may be about 870°C or more and less than 880°C. This is because the alloying of the plating layer proceeds much faster if maintained at a high temperature during heating, so if the material thickness is 1.5 mm or less, it is most advantageous in terms of weldability to keep the C section temperature, which is the final holding temperature, at about 870°C or more and less than 880°C. to be.
  • the atmospheric temperature of section C when t is greater than 1.5 mm, the atmospheric temperature of section C may be about 870°C or more and less than 900°C. This is because alloying of the plating layer proceeds much faster if maintained at a high temperature during heating, so if the material thickness exceeds 1.5 mm, it is most advantageous in terms of weldability to keep the C section temperature, which is the final holding temperature, low at about 870°C to less than 900°C. Because. This is in consideration of the fact that when the thickness of the material increases, the temperature of section C should be slightly higher than that of the thin material.
  • the holding time in each section B and C is about 0.5 minutes or more, respectively.
  • the holding time in each section B and C does not mean the accumulated time, but refers to the holding time of each section B itself and the holding time of the section C itself. If the holding time is less than about 0.5 minutes in at least one section of the B section and the C section, it may be difficult to expect the effect of a rapid temperature increase in the B section and a low final maintenance temperature in the C section, but specifically limiting this it is not
  • the heating step may be performed so that the value of Relation 2 below satisfies 2 or more.
  • the value of Relation 2 is an empirical value, a unit is not particularly determined.
  • T n represents the furnace atmosphere temperature in the nth section in the conveying direction of the blank, and the unit is ° C.
  • the t n is the heating furnace maintained in the nth section in the conveying direction of the blank represents time, and the unit is minutes.
  • the t total represents the total holding time in the furnace, and the unit is minutes.
  • x represents the number of sections maintained at a specific ambient temperature in the furnace.
  • k is section B In the case of the last section, it is an integer of 3, in the case of sections after section B, it is an integer of -1, and in other cases, it is an integer of 1.
  • the t represents the thickness of the blank, and the unit is mm.
  • the nth section is a section maintained at a specific atmospheric temperature, and refers to a section existing in the nth direction in the conveying direction of the blank, and each section existing in the conveying direction of the blank is the atmospheric temperature.
  • the heating furnace holding time in the nth section means the holding time of each section itself, not the cumulative holding time in the heating furnace.
  • the holding time in each section is, in the heating furnace including a plurality of heating zones described above and capable of controlling the atmospheric temperature in each heating zone separately from each other, the holding time in each heating zone corresponding to each section can mean
  • the time for which the material is maintained in the one heating zone is from the point in time when the blank, which is the material, is input to the point in time when the blank is taken out from the one heating zone.
  • the section B means from a section having an atmospheric temperature of about 930 ° C. or higher to a section having the highest atmospheric temperature
  • the last section of the B section is the highest atmospheric temperature (that is, the highest atmospheric temperature) means a section with
  • the term "after section B” means a section that exists after section B in the conveying direction of the blank, except for section B, divided by the heating furnace atmosphere temperature.
  • section A (ambient temperature: T1, holding time: t1)
  • section B (ambient temperature: T2, holding time: t2)
  • first section C (ambient temperature: T3, holding time: t3)
  • second C A case in which a section (ambient temperature: T4, holding time: t4) exists will be described.
  • Relation 2 is [ ⁇ (T1-870) ⁇ t1/t total ⁇ 0.1334 ⁇ 1 ⁇ + ⁇ (T2-870) ⁇ t2/t total ⁇ 0.1334 ⁇ 3 ⁇ + ⁇ (T3-870) ⁇ t3/t total ⁇ 0.1334 ⁇ (-1) ⁇ + ⁇ (T4-870) ⁇ t4/t total ⁇ 0.1334 ⁇ (-1) ⁇ ]/t.
  • the present inventors have additionally studied a method that can further improve the shape precision of the product in addition to productivity, weldability, and formability.
  • the difference in the heating atmosphere temperature based on 870 ° C in each section was multiplied by the ratio of the time occupied by each section during the entire process by 0.1334 (V cal ). studied. Specifically, since it is desirable to have a large value in terms of productivity before the section maintained at the highest atmospheric temperature, the V cal value has a (+) sign (that is, k corresponds to (+1)), and among them, the highest atmosphere Since the period maintained at the temperature has the greatest influence, the V cal value is affected by (+3) times (ie, k corresponds to an integer of 3).
  • the smaller value of V cal reduces the thickness of the diffusion layer, which is preferable in terms of weldability, so it has a value of a (-) sign.
  • the present inventors found the following through detailed process analysis of the cooling process in the hot press forming process.
  • the heated blank is extracted from the furnace and then transferred to the mold installed in the press. During this transfer process, it is cooled by air cooling. Then, after the blank is seated in the lower mold, after the blank supply jig avoids within the press operation range, the press slide starts to descend, and after a certain period of time, the upper mold starts to contact the blank. Molding starts substantially after this upper mold has contacted the blank. As described above, it takes a certain amount of time before the molding is performed after the blank is seated.
  • FIG. 6 is a comparative graph of the experimental values for the temperature change according to the time of cooling in the air after heating to 900° C. for the aluminum-plated steel sheet having a material thickness of 0.9 and 1.8 mm, and then extracting it from the heating furnace and the analysis values for the air cooling process. . As shown in FIG. 6 , it can be seen that the analysis values predict the experimental values well.
  • the T represents the sum of the time required for the step of transferring and seating and the time required before the molding is performed after the blank is seated, and the unit is s (seconds).
  • the t represents the thickness of the material, and the unit is mm
  • the temp represents the extraction temperature by heating, and the unit is °C.
  • Relation 1 is a value obtained empirically, a unit may not be particularly determined. It is sufficient if the unit of T is s (seconds), t is mm, and the unit of temp satisfies °C.
  • the T may be greater than about 10 seconds, more preferably about 11 seconds or more. That is, in the present invention, even if the T exceeds about 10 seconds, it is possible to secure excellent formability, and through this, it is possible to apply even to a facility with a slightly slow transfer device speed, so unnecessary investment in equipment is not required, thereby securing economical efficiency. .
  • the thickness (t) of the material may be in the range of about 0.6 to 2.6 mm. If the thickness of the material is less than about 0.6 mm, the material becomes too thin, and a problem of sagging when transported in a continuous heating furnace may occur. .
  • cooling is carried out in the steps of air cooling during the transfer process and cooling by the lower mold after the blank is seated before molding is performed.
  • the part that comes into contact with the lower mold or a structure such as a lifter that supports the blank of the lower mold does not come into contact and is cooled faster than the part that is air-cooled. Therefore, in terms of overall air cooling of the blank, it is only necessary to satisfy the above relation 1-1 [T ⁇ 8.2 ⁇ t], but after the blank is seated in the lower mold, the time required until the upper mold comes into contact with the upper mold and molding is performed is also not large. I realized it was important.
  • the time required from the seating of the blank until the molding is performed may be 2 seconds or less.
  • the present inventors heated a 1.2mm-thick material and extracted it to 900°C, transported for 8 seconds and contacted the lower type lifter for 1 second, conveyed for 7 seconds and contacted the lower type lifter for 2 seconds, and 6 seconds
  • the temperature of each area in contact with the lifter was observed under the conditions of transporting for a while and contacting the lower type lifter for 3 seconds. As a result, it was confirmed that when the lower type lifter was in contact for more than 2 seconds, the area was cooled by more than 50°C compared to the non-contact area.
  • the cooling time with only the lower mold of the mold until the upper mold of the mold comes into contact exceeds 2 seconds, the lower mold of the mold is not in contact.
  • the blank area is at a level of 700°C.
  • the part in contact with the lower mold of the mold is cooled to a level of 650 ° C. Accordingly, there is a possibility that the forming operation is not performed and the problem of becoming scrap may occur.
  • the process is performed so that the heated blank satisfies the above relation (1) until the upper mold comes into contact with the upper mold to start molding, and the time required after the above-mentioned blank is seated until molding is performed is 2 seconds or less. can be controlled.
  • the thickness of the plating layer of the blank may be 20 ⁇ m or more.
  • the thickness of the plating layer of the blank may be more preferably 25 ⁇ m or more, thereby suppressing the rate of increase in the thickness of the diffusion layer, thereby further improving weldability.
  • the upper limit of the thickness of the blank plating layer is not particularly limited, but when the thickness of the plating layer is increased unnecessarily, a problem of slowing down the alloying rate of the plating layer may occur.
  • the thickness of the diffusion layer of the molding member may be 15 ⁇ m or less. Since the diffusion layer has high resistance due to poor conductivity, if the thickness of the diffusion layer is too thick, it may cause a problem of spatter generation due to large local heat generation during welding. Therefore, it is preferable to control the thickness of the diffusion layer to be 15 ⁇ m or less.
  • the diffusion layer of the molding member may mean a layer including an intermetallic compound of Fe and Al, and examples of the intermetallic compound of Fe and Al include FeAl, Fe 3 Al, and the like. In addition, it may further include some of the components derived from the plating layer.
  • the thickness of the alloy layer of the molding member may be 27 ⁇ 50 ⁇ m. If the alloy layer thickness of the molded member is less than 27 ⁇ m, there may be a problem of insufficient corrosion resistance, if the alloy layer thickness is more than 50 ⁇ m, there is room to deepen the problem of seizure of the plating layer in the mold during molding. From the viewpoint of further improving the above-described effects, the thickness of the alloy layer of the molding member may be, and more preferably, 35 to 50 ⁇ m. On the other hand, the thickness of the alloy layer of the molding member means the total thickness of the coating including the diffusion layer.
  • the ratio of the thickness of the diffusion layer of the molding member to the thickness of the alloy layer of the molding member may be 0.5 or less, and more preferably 0.33 or less.
  • a plated steel sheet was obtained by immersing the base steel sheet having a composition containing Fe and other unavoidable impurities in a plating bath Al-Si9%-Fe3%. With respect to the aluminum-plated steel sheet having a thickness of 1.2 mm thus obtained, the blank is heated in a heating furnace to satisfy the conditions shown in Tables 1 and 2 below, transferred between the upper and lower molds of the mold, and then cooled, formed and taken out by seating the lower mold.
  • a hot press-formed member was manufactured through the steps of At this time, for a heating furnace including a plurality of heating zones and in which the atmospheric temperature is controlled to be distinguished from each other in each heating zone, the atmospheric maintenance temperature in each heating zone is measured with a thermocouple, and each section in Table 1 below It is expressed as the atmosphere maintenance temperature in
  • the holding time in each section is shown in Table 1 below by measuring from the input time of the blank, which is a material, to the take-out time, based on each heating zone corresponding to each section.
  • the cumulative holding time in each section is shown in Table 1 below by measuring the time from when the blank as a material is input to the heating furnace to the time when the blank as a material is taken out from each heating zone corresponding to each heating furnace.
  • Weldability was classified as follows according to the welding current range value during resistance welding (the range value between the minimum current value that can secure the minimum nugget diameter and the maximum current value where spatter occurs). In this case, for the welding current range, a correlation equation between the diffusion layer thickness and the welding current range was used.
  • Formability was classified as follows, based on a blank temperature of 650° C. before molding, which is a standard for management to suppress the occurrence of defective products.
  • the productivity was determined by classifying as follows.
  • the time maintained at that temperature was classified as follows according to whether or not it existed in section B, and productivity was evaluated through this. This is because it is desirable not to maintain the temperature for a long time in an unnecessarily high temperature region because only the effect of increasing the temperature increase rate needs to be achieved in section B.
  • the productivity was evaluated by classifying as follows.
  • FIG. 4 a scanning electron microscope (SEM) photograph of the plating layer for the above-described experimental examples is shown in FIG. 4 .
  • a hot press-formed member was manufactured in the same manner as in Experimental Example 4, except that the conditions of Tables 9 and 10 were changed, and properties were evaluated in the same manner as in Experimental Example 4.
  • the thickness of the plating layer of the blank is 20 ⁇ m or more
  • the thickness of the diffusion layer of the molded member is 15 ⁇ m or less
  • the alloy layer thickness of the molded member is 27-50 ⁇ m
  • the thickness of the molded member with respect to the thickness of the plating layer of the member The ratio of the thickness of the diffusion layer (diffusion layer thickness / alloy layer thickness) was 0.33 or less, in the case of Inventive Example 18, which satisfies all of the above conditions, compared to Inventive Example 19, which did not satisfy one or more of the above conditions, it was confirmed that the weldability was more improved. .
  • a blank of a plated steel sheet was formed in the same manner as in Experimental Example 1, except that the hot press-formed member was manufactured to satisfy the conditions of Tables 11 to 13 below.
  • the same evaluation method as in Experimental Example 1 was applied, and the shape precision of the molded member was additionally measured.
  • the productivity was evaluated based on the following criteria according to whether or not the temperature of the material reached the furnace extraction temperature when taking out from the heating furnace.
  • the shape precision was measured using a checking fixture at 10 points of the same measurement area for the molded member obtained from each invention example and comparative example, and the condition is more severe than +/-0.5mm, which is the typical shape precision requirement range.
  • the number of measurement points satisfying within +/-0.4 mm was measured.
  • a hot press-formed member was manufactured in the same manner as in Experimental Example 3, except that the conditions of Table 14 were changed.
  • properties were evaluated according to the same criteria as in Experimental Example 3, except for evaluation by the following method.
  • the bendability was performed by a three-point bending test, and the bending angle was measured when the maximum load occurred and classified according to the following criteria.
  • Inventive Examples 24 and 25 satisfying the manufacturing conditions of the hot press-formed member according to the present invention were excellent in productivity, weldability, and formability.
  • the thickness of the blank is more than 1.5 mm
  • Inventive Example 24 in which the temperature of the B section satisfies more than 940 ° C. and 960 ° C. or less compared to Inventive Example 25 which does not satisfy this, the productivity, weldability and molding described above In addition to the properties, it was confirmed that the bendability was more excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)
  • Control Of Heat Treatment Processes (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)

Abstract

열간 프레스 성형 부재의 제조 방법으로서, 알루미늄계 도금 강판의 블랭크를 가열로에서 가열하는 단계; 가열된 블랭크를 가열로에서 취출하여 프레스에 장착된 금형의 상형 및 하형 사이로 이송하여 안착시키는 단계; 및 상기 금형의 상형이 상기 안착된 블랭크에 접촉한 후 성형이 수행되는 성형 단계;를 포함하고, 상기 가열로는 블랭크의 이송방향으로 순차로 구비되는 A 구간, B 구간 및 C 구간을 포함하는 연속식 가열로이고, 상기 A 구간에서의 가열은 약 a(0.2분, 750℃), b(1.0분, 750℃), c(1.0분, 800℃), d(1.5분, 900℃), e(0.2분, 900℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 도형 abcde에 의해 규정되는 조건을 충족하고, 상기 B 구간에서의 가열은 약 f( <수학식 1>분, 930℃), g( <수학식 2>분, 930℃), h( <수학식 3>분, 960℃), i( <수학식 4>분, 960℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 fghi에 의해 규정되는 조건을 충족하고, 상기 C 구간에서의 가열은 약 j( <수학식 5>분, 870℃), k( <수학식 6>분, 870℃), l( <수학식 7>분, 940℃), m( <수학식 8>분, 940℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 도형 jklm에 의해 규정되는 조건을 충족하되, 최고 분위기 온도는 상기 B 구간의 최고 분위기 온도보다 낮고, 하기 관계식 1을 충족하고, 상기 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간은 2초 이하인, 열간 프레스 성형 부재의 제조 방법을 제공한다. [관계식 1] T ≤ 8.2×t+(temp-900)/30 (상기 T는 이송하여 안착시키는 단계의 소요시간과 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간의 합을 나타내고, 단위는 s(초)이다. 상기 t는 블랭크의 두께를 나타내고, 단위는 mm 이다. 상기 temp는 가열로 추출온도를 나타내고, 단위는 ℃이다.)

Description

생산성, 용접성 및 성형성이 우수한 열간 프레스 성형 부재의 제조 방법
본 발명은 생산성, 용접성 및 성형성이 우수한 열간 프레스 성형 부재의 제조 방법에 관한 것이다.
차량 경량화 및 안전성 향상 요구에 따라 열간 프레스 성형 방법을 활용한 고강도강 적용이 활발하게 진행되고 있다. 열간 프레스 성형 공정에는 소재의 가열 및 급속 냉각 공정이 필수적이다. 고온에서 스케일 발생을 억제하기 위하여 알루미늄 도금 강재 혹은 알루미늄 합금 도금 강재가 사용된다. 알루미늄 도금 강재 혹은 알루미늄 합금 도금 강재는 급속 가열 시 도금층 용융의 문제가 있어, 일반적으로 분위기 가열로에서 느린 속도로 가열이 되고 있다.
이러한 분위기 가열로에서의 가열 방법은 동일한 분위기 온도로 설정된 가열로에서 가열을 하거나, 복수의 가열 존을 갖는 롤러 허스 퍼니스(roller hearth furnace)와 같은 연속식 가열로에서 순차적으로 분위기 온도를 상승하는 패턴으로 가열을 하는 경우가 있다. 하지만 이러한 방식으로는 느린 속도로 가열이 되다보니 목표로 한 온도에 도달하는 시간 확보를 위해서 일정 시간 동안 가열로 안에서 가열이 되어야 하고, 가열로 내 유지 시간의 증가에 따라 생산성이 나빠지는 문제가 있다.
이에, 가열로 내 유지 시간 단축을 위해서 가열 온도를 상승하는 방안이 적용되기도 하는데, 이러한 경우 가열 온도 상승에 의한 도금층 내 확산층 두께의 증가에 따라 용접성이 불리해지는 문제가 야기된다.
따라서, 생산성 향상을 위해서는 가열 속도를 더 빠르게 하여 로 내 유지 시간을 줄이는 방안이 요구되고, 생산된 성형품의 용접성 확보를 위해서는 블랭크의 가열 온도를 높게 유지하지 않도록 하여 확산층 두께를 최소화하는 방안이 요구된다.
하지만 통상적인 방법으로는 로 내 유지시간 단축과 가열온도 하강은 서로 반대의 효과를 주기 때문에 동시에 적용을 할 수 없다는 기술적인 문제가 존재한다.
한편, 전술한 문제에 더하여, 용접성의 향상을 위해 가열로의 온도를 계속 낮추면 추가적으로 성형성이 불량해질 수 있는 문제가 있다. 따라서, 우수한 생산성, 용접성 및 성형성을 모두 확보 가능한 기술은 지금까지 개발되지 않았다.
(선행기술문헌) 공개공보 제2006-0054479호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 생산성, 용접성 및 성형성이 모두 개선된 열간 프레스 성형 부재의 제조 방법을 제공하고자 한다.
본 발명의 과제는 전술한 내용에 한정하지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 누구라도 본 발명 명세서 전반에 걸친 내용으로부터 본 발명의 추가적인 과제를 이해하는 데 어려움이 없을 것이다.
본 발명의 일 측면은, 열간 프레스 성형 부재의 제조 방법으로서,
알루미늄계 도금 강판의 블랭크를 가열로에서 가열하는 단계;
가열된 블랭크를 가열로에서 취출하여 프레스에 장착된 금형의 상형 및 하형 사이로 이송하여 안착시키는 단계; 및
상기 금형의 상형이 상기 안착된 블랭크에 접촉한 후 성형이 수행되는 성형 단계;를 포함하고,
상기 가열로는 블랭크의 이송방향으로 순차로 구비되는 A 구간, B 구간 및 C 구간을 포함하는 연속식 가열로이고,
상기 A 구간에서의 가열은 약 a(0.2분, 750℃), b(1.0분, 750℃), c(1.0분, 800℃), d(1.5분, 900℃), e(0.2분, 900℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 도형 abcde에 의해 규정되는 조건을 충족하고,
상기 B 구간에서의 가열은 약 f(
Figure PCTKR2020011662-appb-img-000001
분, 930℃), g(
Figure PCTKR2020011662-appb-img-000002
분, 930℃), h(
Figure PCTKR2020011662-appb-img-000003
분, 960℃), i(
Figure PCTKR2020011662-appb-img-000004
분, 960℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 fghi에 의해 규정되는 조건을 충족하고,
상기 C 구간에서의 가열은 약 j(
Figure PCTKR2020011662-appb-img-000005
분, 870℃), k(
Figure PCTKR2020011662-appb-img-000006
분, 870℃), l(
Figure PCTKR2020011662-appb-img-000007
분, 940℃), m(
Figure PCTKR2020011662-appb-img-000008
분, 940℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 도형 jklm에 의해 규정되는 조건을 충족하되, 최고 분위기 온도는 상기 B 구간의 최고 분위기 온도보다 낮고,
하기 관계식 1을 충족하고,
상기 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간은 2초 이하인, 열간 프레스 성형 부재의 제조 방법을 제공한다.
[관계식 1]
T ≤ 8.2×t+(temp-900)/30
(상기 T는 이송하여 안착시키는 단계의 소요시간과 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간의 합을 나타내고, 단위는 s(초)이다. 상기 t는 블랭크의 두께를 나타내고, 단위는 mm 이다. 상기 temp는 가열로 추출온도를 나타내고, 단위는 ℃이다.)
본 발명의 일 측면에 따르면, 생산성, 용접성 및 성형성이 개선된 열간 프레스 성형 부재의 제조 방법을 제공할 수 있다.
본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않고, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 두께 1.2mm인 알루미늄 도금재에 대한 가열 패턴을 나타낸 그래프이다.
도 2는 두께 1.2mm인 알루미늄 도금재에 대해 다양한 로 분위기 온도 조건에서의 승온 해석 실험치와 해석치의 비교를 보여주는 그래프이다.
도 3은 두께 1.2mm인 알루미늄 도금재의 가열에 대한 본 발명의 바람직한 누적 로내 유지시간 대비 분위기 온도 조건을 나타낸 그래프이다.
도 4는 은 두께 1.2mm인 알루미늄 도금재에 대해 몇가지 가열 조건으로 가열한 실험예의 도금층 관찰 결과를 나타낸 사진이다.
도 5는 소재의 두께 변화까지 고려한 알루미늄 도금재의 가열에 대한 조건을 나타낸 것이다.
도 6은 소재 두께 0.9 및 1.8mm인 알루미늄 도금재의 가열로에서 추출 후 공기 중에서 냉각되는 시간에 따른 온도 변화에 대한 실험치와 해석치 비교를 나타낸 그래프이다.
이하, 본 발명의 바람직한 실시형태들을 설명한다. 그러나, 본 발명의 실시형태는 여러 가지 다른 형태로 변형될 수 있고, 본 발명의 범위가 이하 설명하는 실시형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위하여 제공되는 것이다.
이하, 본 발명의 열간 프레스 성형 부재의 제조 방법에 대하여 자세히 설명한다. 본 명세서에서 특별히 달리 정의하지 않는 한, 당해 기술분야에서 통상적으로 사용되는 모든 용어 및 방법을 본 발명에도 적용 가능하다.
본 발명의 일 측면에 따른 열간 프레스 성형 부재의 제조 방법은, 알루미늄계 도금 강판의 블랭크를 가열로에서 가열하는 단계; 가열된 블랭크를 가열로에서 취출하여 프레스에 장착된 금형의 상형 및 하형 사이로 이송하여 안착시키는 단계; 및 상기 금형의 상형이 상기 안착된 블랭크에 접촉한 후 성형이 수행되는 성형 단계;를 포함할 수 있다.
혹은, 상기 열간 프레스 성형 부재의 제조방법은, 상기 성형 단계에 후속하여, 상기 금형의 상형이 프레스 하사점에 도달한 후 유지함으로써 성형된 소재를 급냉하는 금형 내 냉각 단계; 및 냉각된 성형 부재를 취출하는 성형 부재의 취출 단계;를 더 포함할 수 있다.
본 발명의 일 측면에 따르면, 상기 알루미늄계 도금 강판은 알루미늄 도금 강판 또는 알루미늄 합금 도금 강판일 수 있다. 이 때, 특별히 한정하는 것은 아니나, 일례로서 도금층의 조성이 중량%로, Si: 5~11%, Fe: 4.5% 이하, 잔부 Al, 기타 불가피한 불순물을 포함할 수 있다. 또한, 소지강판의 조성은 중량%로, C: 0.1~0.5%, Si: 0.1~2%, Mn: 0.5~3%, Cr: 0.01~0.5%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, B: 0.002~0.005%, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
본 발명의 일 측면에 따르면, 상기 가열로는 블랭크의 이송방향으로 순차로 구비되는 A 구간, B 구간 및 C 구간을 포함하는 연속식 가열로일 수 있다. 이 때, 상기 A 구간, B 구간 및 C 구간은 블랭크의 이송방향으로 반드시 인접하여 구비될 필요는 없고, 블랭크의 이송방향을 따라 전술한 순서를 충족하면 족하다. 즉, 상기 A 구간, B 구간 및 C 구간은 각 구간이 하나의 가열 존으로 구성될 수도 있고, 각 구간 내에서도 여러 가열 존으로 구성될 수도 있다. 또한, 각 구간의 사이에(즉, A 구간과 B 구간의 사이, 또는 B 구간과 C 구간의 사이), 전후 단계의 온도 범위 사이의 온도로 설정된 추가의 구간을 더 포함할 수도 있다.
종래의 분위기 가열 방법으로는, 동일한 분위기 온도로 설정된 가열로에서 가열을 하거나, 복수의 가열 존을 갖는 롤러 허스 퍼니스(roller hearth furnace)와 같은 연속식 가열로로서 순차적으로 분위기 온도를 상승하는 패턴으로 가열을 하는 경우가 있다.
그런데, 이러한 방식으로는 느린 속도로 가열이 진행되기 때문에, 목표 온도에 도달하는 시간의 확보를 위해서는 일정 시간 동안 가열로 안에서의 가열이 필수였고, 가열로 내 유지 시간의 증가에 따라 생산성이 불량해지는 문제가 있었다.
이에 본 발명자들은, B 구간의 승온되는 과정 중에 분위기 온도를 높게 설정하면 통상적인 가열로 설정 방법보다 가열이 빠르게 수행되어, 로 내 유지 시간은 단축시켜 생산성을 향상시킬 수 있음에 착안하였다. 또한, 동시에 후속하는 과정의 C 구간의 온도를 전술한 승온 과정인 B 구간의 온도보다 낮게 설정하면 최종 가열 온도는 낮게 설정되어 용접성이 불량해지는 문제도 해소할 수 있는 점에 착안하였다.
한편, 전술한 생산성을 결정하는 요인으로서, 900℃에 도달하는 시간의 최소화, 가열로에서 취출되는 구간에서의 소재의 온도가 가열로의 취출 온도에 도달하는 시간의 최소화, 혹은 가열로에서 소재가 취출될 때까지 가열로에서의 총 누적 유지 시간이 확산층 두께 15㎛가 되는 시간 이하인 지 여부 등이 있다. 전술한 시간들을 최소화함으로써 최종 제품인 성형 부재의 목적하는 물성을 확보 가능한 사이클 타임을 최소화할 수 있고, 이를 통해 생산성을 향상시킬 수 있다.
그런데, 앞서 언급한 높은 온도로 설정된 B 구간이 너무 넓으면, 높은 온도로 가열되어 유지되는 시간이 너무 길어짐에 따라 확산층 두께가 증가하여 용접성이 불량해지는 문제가 발생할 수 있다. 반면에, 높은 온도로 설정된 B 구간이 너무 좁으면 가열이 빠르게 수행됨에 따른 생산성 향상의 효과를 얻을 수 없게 된다. 한편, 가열로의 초기 구간인 A 구간을 높은 온도로 유지하려면 에너지 소모가 많아지는 문제가 있고 승온되는 초기에는 불필요하게 높은 분위기 온도로 설정할 필요가 없다. 또한, 소재의 장입부의 오픈된 구조로 인한 열기 배출 및 차가운 소재의 투입으로 인해 처음부터 높은 분위기 온도로 설정할 수 없는 문제도 존재한다.
또한, 일단 충분한 온도까지 가열된 소재는 이미 오스테나이트로 변태가 완료되었기 때문에 도금층의 합금화만 충분히 얻어질 수 있는 온도 및 시간만 유지하면 된다. 이 단계에서까지 높은 분위기 온도를 유지할 경우, 확산층 두께의 과도한 증가에 따른 용접성 열위 문제가 발생하게 되므로 상대적으로 낮은 온도로 설정하여도 된다.
이와 같은 점을 고려하여, 본 발명에서는 일례로 소재 두께 1.2mm인 알루미늄 도금재에 대해 도 1과 같은 가열 패턴을 실시하였다. 즉, 가열 초기인 A 구간에서는 에너지 절약 및 높은 분위기 온도로 설정 불가한 점을 고려하여 상대적으로 낮게 설정하였다. 이후, B 구간에서는 소재의 가열을 빠르게 하기 위해 가장 높은 온도로 설정하여, 소재가 충분한 온도에 도달하도록 설정하였다. 이어서, 소재가 충분한 온도에 도달한 후의 C 구간에서는 다시 B 단계보다는 낮은 온도로 설정하였다. 도 1과 같이 가열로를 구간별로 다르게 온도 설정한 경우, 1.2mm 소재는 취출되는 누적 가열로 유지 시간이 4.5분인 시점에서 900℃를 유지하고 있다. 이와 같은 결과는 가열로 분위기에서의 복사 및 대류 열전달에 대한 가열 해석 결과로부터 도출된 것이다. 이하에서는, 각 구간에서의 가열 조건에 대하여 보다 상세히 설명한다.
한편, 본 명세서에 있어서, 후술하는 각 구간에서의 분위기 온도는, 다수의 가열존을 포함하고 각 가열존에서 서로 구별되게 분위기 온도의 제어가 가능한 가열로에 있어서, 각 가열존에서의 분위기 유지 온도(즉, 하나의 가열존에서 실제 분위기 온도가 유지되는 영역의 온도)를 의미할 수 있다. 예를 들어, 하나의 가열존에서의 분위기 유지 온도는 실제 분위기 온도가 유지되는 영역의 대표 지점에서 측정한 온도일 수 있다. 특별히 한정하는 것은 아니나, 전술한 대표 지점의 일례로서, 하나의 가열존에 대하여 길이 방향으로 중앙(1/2)이고, 폭 방향으로 1/4이면서, 높이 방향으로 블랭크 위치 부분에서 250mm 떨어진 지점 등을 들 수 있다. 이 때, 각 구간에서의 분위기 온도는, 각 구간에 대응하는 각 가열존에서의 전술한 분위기 유지 온도로 유지되는 것으로 본다.
또한, 각 구간에서의 누적 로내 유지시간은, 전술한 다수의 가열존을 포함하고 각 가열존에서 서로 구별되게 분위기 온도의 제어가 가능한 가열로에 있어서, 가열로에 소재인 블랭크가 투입되는 시점에서부터 전술한 각 구간에 대응하는 가열존 중 마지막 가열존에서 소재인 블랭크가 취출되는 시점까지의 유지시간을 의미할 수 있다.
한편, 전술한 가열로에 있어서, 각 가열존은 격벽 등에 의해 구분되어 있을 수도 있고, 격벽 등이 없이 구분되어 있을 수도 있다. 따라서, 각 가열존이 격벽 등에 의해 구분될 수 있는 경우에는 전술한 방법을 그대로 적용한다.
반면, 전술한 가열로에 있어서, 격벽 등이 없는 경우에는 전체 가열로를 블랭크의 이송방향으로 n개 구역(예를 들어, 5개 이상)으로 등분하여, 각각의 등분된 구역을 하나의 구간으로 볼 수 있다. 본 발명의 한가지 구현례에서는 전체 가열로를 20개 구역으로 등분하여, 각각의 등분된 구역을 하나의 구간으로 볼 수 있다. 이 때, 하나의 구역에서는 전술한 바와 같이, 각 구역에 대하여 길이 방향으로 중앙(1/2)이고, 폭 방향으로 1/4이면서, 높이 방향으로 블랭크 위치 부분에서 250mm 떨어진 지점에서 측정한 온도를 각 구간에서의 분위기 유지 온도로 볼 수 있다.
일례로, 본 발명의 일 측면에 따르면, 상기 A 구간에서의 가열은 약 750~900℃의 분위기 온도로 설정하고, 상기 B 구간은 약 930~960℃의 분위기 온도로 설정하고, 상기 C 구간은 약 870℃ 이상이고 상기 B 구간에서 선택된 분위기 온도보다 낮은 분위기 온도로 설정할 수 있다. 이와 같은 방법을 활용하는 경우, 최종 온도의 단일한 온도로 설정한 경우에 비해 승온이 빨리 되어, 로내 유지 시간을 단축할 수 있다. 또한, 동시에 도금층의 합금화만 충분히 얻어질 수 있는 온도 및 시간의 적정 범위로 제어함으로써, 과도한 확산층이 생성됨으로 인한 용접성이 불량해지는 문제를 방지할 수 있다. 이에 따라, 우수한 생산성 및 용접성의 양립이 가능한 열간 프레스 성형 방법을 효과적으로 제공할 수 있다.
한편, 도 2는 앞서 언급한 가열 해석 기술의 타당성을 보여주는 것으로서, 소재 두께 1.2mm인 알루미늄 도금재에 대해 다양한 로 분위기 온도 조건에서의 가열 해석 실험치와 해석치의 비교를 보여주는 그래프이다. 실험치는 소재에 써모커플(thermocouple)을 붙인 것을 가열로 내에 유지한 후 1초당 1개씩의 온도 데이터를 확보하였다. 해석치는 이와 같은 조건에 대해 앞서 언급한 해석 기술로 예측한 결과로서, 도 2에서 보는 바와 같이 해석치는 실험치를 잘 표현하고 있음을 알 수 있다.
본 발명자들은 다양한 조건에서의 승온 양상을 분석함으로써, 소재의 승온 패턴은 소재의 두께, 분위기 온도 및 각 온도 영역별 유지 시간 등에 의존하는 것을 추가적으로 발견하였다. 앞서 언급한 바와 같이, 높은 분위기 온도 영역에서 머무르는 시간이 과도해지는 것을 피하고, 동시에 반대로 높은 분위기 온도 영역에서 머무르는 시간이 너무 좁아 빠른 가열 효과를 얻을 수 없는 것도 피하기 위해서는 소재의 두께와 분위기 온도와 각 분위기 온도에 머무르는 시간이 중요함을 알게 되었다. 이에, 본 발명자들은 소재의 두께와 분위기 온도에 따라 적절한 유지 시간을 선정하는 것이 필요하다는 점에 착안하여 본 발명을 완성하기에 이르렀다. 이하에서 상세히 설명한다.
구체적으로, 누적 로내 유지시간을 X축으로 하고, 가열로 내의 분위기 온도를 Y축으로 하는 그래프를 기준으로, 상기 A 구간에서의 가열은 약 a(0.2분, 750℃), b(1.0분, 750℃), c(1.0분, 800℃), d(1.5분, 900℃), e(0.2분, 900℃)의 누적 로내 유지시간 및 가열로 내 분위기 온도 좌표를 가지는 도형 abcde에 의해 규정되는 조건을 충족하도록 할 수 있다.
먼저 A 구간에서의 가열은 가열로 앞부분의 온도 설정 영역으로 초기의 승온 속도에 영향을 미치므로, 상기 A 구간에서의 가열로 내 분위기 온도는 약 750~900℃ 범위 내로 설정하는 것이 바람직하다. 상기 A 구간에서의 가열로 내 분위기 온도를 약 750℃ 미만으로 설정하면, 초기의 승온 속도가 너무 느려짐에 따라 생산성이 나빠지는 문제가 있다. 반면, 상기 A 구간에서의 가열로 내 분위기 온도를 약 900℃ 초과하여 설정하면, 가열로의 초기 영역을 높은 온도로 유지함으로써 에너지 소모가 많아지는 문제가 있다.
한편, A 구간에서의 가열은 분위기 온도뿐만 아니라, 유지 시간도 승온 속도에 영향을 미친다. 이 때, 가열 속도를 높이기 위하여, A 구간에서의 분위기 온도가 낮을 경우는 A 구간에서의 유지 시간을 작게 잡고, A 구간의 분위기 온도가 높을 경우에는 A 구간에서의 유지 시간을 길게 잡아도 무방하다. 이에, 본 발명자들은 A 구간에서의 가열에 대한 바람직한 가열로 내 분위기 온도 및 유지 시간에 대하여 예의 검토한 결과, 도 3에 도시된 바와 같이 A 구간의 조건을 설정하는 것이 바람직함을 발견하였다. 즉, 상기 A 구간의 분위기 온도가 약 750℃로 낮은 온도인 경우에는 A 구간의 유지시간은 약 1분 이하로 짧게 잡고, A 구간의 분위기 온도가 약 900℃로 높은 온도인 경우에는 A 구간의 유지 시간은 약 1.5분 이하로 하는 것이 바람직하다. 한편, 상기 A 구간은 가열로 입측의 통과하는 시간을 감안하여, A 구간의 유지 시간은 약 0.2분 이상일 수 있다.
전술한 누적 로내 유지시간 및 분위기 온도 외에도 소재의 두께 역시 영향을 미칠 수 있다. 그러나, 후술하는 B 구간과 C 구간에서의 가열에서 두께에 따른 영향을 반영하였고, 또한 A 구간에서의 영향은 다소 적으므로, 실용적인 관점에서 A 구간에서는 소재의 두께와 무관하게 설정할 수 있다(도 5(a) 참조).
이어서, 상기 B 구간에서의 가열은 약 f(
Figure PCTKR2020011662-appb-img-000009
분, 930℃), g(
Figure PCTKR2020011662-appb-img-000010
분, 930℃), h(
Figure PCTKR2020011662-appb-img-000011
분, 960℃), i(
Figure PCTKR2020011662-appb-img-000012
분, 960℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 fghi에 의해 규정되는 조건을 충족할 수 있다. 이 때, 상기 fghi의 좌표의 단위는 f(1.3[분]+{(t[mm]-1.2[mm])/0.6[mm]}×0.5[분], 930[℃]), g(3.8[분]+{(t[mm]-1.2[mm])/0.6[mm]}×0.5[분], 930[℃]), h(3.3[분]+{(t[mm]-1.2[mm])/0.6[mm]}×0.5[분], 960[℃]), i(0.8[분]+{(t[mm]-1.2[mm])/0.6[mm]}×0.5[분], 960[℃])이다.
B 구간에서의 가열은 가열로 내에서 가장 분위기 온도가 높은 영역으로서, 고온 영역에서의 소재의 승온 속도 및 최고 온도에 영향을 미친다. 상기 B 구간의 분위기 온도가 낮을 경우 최고 온도는 낮아지고 승온 속도도 낮아지는 반면, 상기 B 구간의 분위기 온도가 높을 경우 최고 온도도 높아지고 승온 속도도 높아진다. 따라서, B 구간의 분위기 온도는 가급적 높게 설정하는 것이 좋다. 다만, B 구간의 분위기 온도가 너무 높은 경우 소재가 너무 높은 온도까지 가열되어, 용접성이 불량해질 수 있으므로 바람직한 범위의 설정이 필요하다.
한편, 본 명세서에 있어서, 약 930℃ 이상의 분위기 온도를 갖는 구간에서부터 최고 분위기 온도(즉, 최고 분위기 유지 온도)를 갖는 구간까지를 B 구간으로 본다. 또한, 상기 최고 분위기 온도를 갖는 구간 이후에 후속되는 상기 최고 분위기 온도보다 낮은 분위기 온도를 갖는 구간부터를 상기 B 구간과는 구별되는 구간으로 본다. 예를 들어, 상기 B 구간이 약 930℃의 분위기 온도를 갖는 제1의 B 구간과, 약 950℃의 분위기 온도를 갖는 제2 B 구간으로 이루어지고, 이후 후속하여 약 935℃의 분위기 온도를 갖는 구간을 포함하는 경우, 상기 최고 분위기 온도인 약 950℃보다 낮은 분위기 온도 조건인 약 935℃의 분위기 온도를 갖는 구간부터를 C 구간으로 볼 수 있다.
이에, 본 발명에서는 상기 B 구간의 분위기 온도는 약 930~960℃의 범위로 설정할 수 있다. 상기 B 구간의 분위기 온도가 약 960℃를 초과하면, 가열로 장비의 한계도 있지만, 도금층 합금화 측면에서 너무 높은 온도로 설정이 되어 용접성이 열위해지는 문제가 있다. 또한, 상기 B 구간의 분위기 온도가 약 930℃ 미만이면, 승온 속도가 너무 낮아짐에 따라 목적하는 온도까지 도달하는 데 시간이 길어지고 사이클 타임의 증가에 따른 생산성이 나빠지는 문제가 있다.
상기 B구간에 있어서, 전술한 분위기 온도뿐만 아니라, B 구간의 유지 시간 역시 소재의 승온 속도 및 소재의 최고 가열 온도에 영향을 미친다. 즉, B 단계의 유지 시간이 너무 짧으면 충분한 승온 효과를 얻을 수 없고, B 단계의 유지 시간이 너무 길면 소재가 높은 온도에서 너무 장시간 유지가 되어 합금화가 과도하게 진행이 되고, 이에 따라 확산층의 두께가 증가되어 용접성이 불량해지는 문제가 있을 수 있다.
따라서, 특별히 한정하는 것은 아니나, 상기 B 구간에서 유지 시간의 하한은 빠른 승온에 의한 생산성 향상의 효과를 발휘하기 위해 약 0.5분 이상일 수 있다. 혹은, 합금화가 과도하게 진행되어 용접성이 불량해지는 것을 방지하기 위해, 유지 시간의 상한은 약 4.8분일 수 있다. 이 때, 상기 B 구간의 유지시간은 B 구간에서만 소재가 유지되는 시간을 의미하는 것으로서, 후술하는 로내 누적 로내 유지시간과는 구별되는 개념임을 유의할 필요가 있다.
한편, 상기 B 구간까지의 로 내 누적 유지 시간도 고온 영역에서 소재의 승온 속도 및 소재의 최고 가열 온도에 영향을 미친다. 충분한 온도까지 승온이 되기 위해서는 B 구간의 분위기 온도가 낮을 경우는 B 구간이 끝날 때까지의 로내 누적 유지 시간을 길게 잡아야 하고, B 구간의 분위기 온도가 높을 경우는 B 구간이 끝날 때까지의 로내 누적 유지 시간을 짧게 잡아도 무방하다.
여기서, 상기 로내 누적 유지 시간은 B 구간 자체의 유지 시간이 아니라, B 구간이 끝날 때까지의 로내 누적 유지 시간을 의미한다. 즉, B 구간 전에 선행하는 모든 로내 가열 유지 시간까지 포함하여 상기 B 구간이 끝날 때까지의 로내에서 가열된 누적 유지 시간을 말한다(예를 들어, B 구간 전에 A 구간만 있는 경우에는 A 구간 및 B 구간에서의 로내 유지 시간을 의미하고, A 구간과 B 구간 사이에 추가의 구간이 존재하는 경우에는 A 구간, B 구간 및 추가의 구간까지 모두 포함하는 로내 누적 시간을 의미한다). 이와 같이 누적 유지 시간이 중요한 것은 다음과 같은 이유 때문이다. 예를 들어, A 구간의 유지 시간이 짧을 경우에는 충분한 온도까지 승온이 되기 위해서는 B 구간 자체의 유지 시간이 다소 길어져야 하고, 반대로 A 구간의 유지 시간이 길 경우에는 B 구간의 유지 시간은 다소 짧아져도 된다는 점을 고려할 필요가 있다. 즉, 본 발명에서 목적으로 하는 가열 시간 단축을 통한 생산성 향상을 위해서는 B 구간 자체의 유지 시간뿐만 아니라 B 구간 이전의 시간까지도 함께 고려하는 것이 필요하다.
한편, 상기 B 구간의 목적은 빠른 승온을 목적으로 하는 것으로서, 불필요하게 B 구간의 유지 시간을 길게 하여 높은 온도인 B 단계의 온도에서 장시간 머무르는 것을 피하는 것이 동일한 승온 효과를 얻으면서도, 용접성 측면에서 바람직하다. 따라서, 이와 같은 결과를 바탕으로 소재의 두께 영향을 고려하지 않았을 때(즉, 소재 두께 1.2㎜일 때를 기준), B 구간까지의 누적 로내 유지 시간은 B 구간의 온도가 약 930℃일 때 최대 약 3.8분 이하로 유지할 수 있다.
그런데, 추가적으로 소재의 승온 패턴은 소재의 두께에도 의존한다. 이에, 본 발명자는 다양한 두께에 대한 승온 분석을 통하여 도 5(b)와 같이 두께에 따라 B 구간까지의 누적 로내 유지 시간의 조정이 필요함을 알게 되었다. 즉, B 구간까지의 누적 로내 유지 시간은 도 3의 1.2㎜ 소재의 도형 fghi으로 규정되는 범위에서 소재 두께가 0.6㎜ 증가함에 따라 약 0.5분씩 비례적으로 증가하는 범위 안에서 실시하면 된다. 반대로, 소재 두께가 얇아지는 경우는 0.6㎜ 감소함에 따라 약 0.5분씩 비례적으로 감소하는 범위 안에서 실시하면 된다.
혹은, 본 발명자들은 생산성과 용접성을 보다 향상시키고자 하는 견지에서 추가적으로 예의 검토한 결과, 소재의 두께에 의한 영향을 고려하여, 소재의 두께 t가 1.5㎜일 때를 기준으로 B 구간에서의 가열 분위기 온도를 최적화된 조건으로 설정할 수 있음을 추가로 발견하였다.
구체적으로, 본 발명의 일 측면에 따르면, 상기 t가 1.5㎜ 이하인 경우, 상기 B 구간의 분위기 온도는 약 930℃ 초과 940℃ 미만일 수 있다. 상기 B 구간은 소재의 빠른 승온을 얻기 위하여 높은 분위기 온도로 하여야 하지만, 실조업에서 작업 이상 조치 등으로 가열로 내 유지 시간은 다소 변동이 있을 수 있다는 점을 고려하면, 너무 높지 않는 분위기 온도로 가열하는 것이 좋다. 따라서, 소재의 두께가 1.5mm 이하인 경우에는 상기 B 구간의 분위기 온도가 전술한 범위로 제어하는 것이 용접성 불량 가능성 최소화 측면에서 가장 유리하다. 한편, 상기 t가 1.5㎜ 이하인 경우, 보다 바람직하게 상기 B 구간의 분위기 온도는 약 930℃ 초과 935℃ 미만일 수 있고, 가장 바람직하게 약 931~934℃일 수 있고, 이를 통해 용접성 불량 최소화의 효과를 보다 향상시킬 수 있다.
혹은, 본 발명의 일 측면에 따르면, 상기 t가 1.5㎜ 초과인 경우, 상기 B 구간의 분위기 온도는 약 930℃ 초과 950℃ 미만일 수 있다. 상기 B구간은 소재의 빠른 승온을 얻기 위하여 높은 분위기 온도로 하여야 하지만, 실조업에서 작업 이상 조치 등으로 가열로 내 유지 시간은 다소 변동이 있을 수 있다는 점을 고려하면, 너무 높지 않는 분위기 온도로 가열하는 것이 좋다. 따라서, 소재 두께가 1.5mm 초과인 경우에는 상기 B 구간의 분위기 온도를 전술한 범위로 제어하는 것이 용접성 불량 가능성 최소화 측면에서 가장 유리하다. 이는, 소재 두께가 두꺼워지는 경우 B 구간의 온도는 얇은 두께 소재에 비해 조금 더 높아져야 하는 점이 고려된 것이다. 혹은, 상기 t가 1.5㎜ 초과인 경우, 상기 B 구간의 분위기 온도는 보다 바람직하게는 약 930℃ 초과 945℃ 미만일 수 있고, 가장 바람직하게는 약 931~940℃일 수 있고, 이를 통해 용접성을 보다 향상시킬 수 있다.
한편, 본 발명의 또 다른 일 측면에 따르면, 상기 t가 1.5㎜ 초과인 경우, 상기 B 구간의 분위기 온도는 빠른 승온에 의한 생산성 향상 및 굽힘성 향상의 견지에서 약 940℃ 초과 960℃ 이하로 제어될 수 있다. 안정적인 굽힘성 확보를 위해서는 전체 로내 누적 유지시간을 너무 짧지 않도록, 즉 가능하면 길게 확보하는 것이 바람직하다. 하지만, 생산성의 관점에서는 전체 로내 유지시간을 짧게 하는 쪽이 바람직하므로, 생산성과 굽힘성을 동시에 만족시키기 위해서는 상기 B 구간의 온도를 높게 하여 빠른 승온을 확보함으로써, 전체 로내 누적 유지시간을 증가시키지 않으면서, 가열 공정에서 보다 안정적인 오스테나이트 조직을 확보하여, 그 결과 보다 우수한 굽힘성을 확보할 수 있다.
혹은, 본 발명의 일 측면에 따르면, 상기 B 구간의 최고 분위기 온도(Tb)(즉, 최고 분위기 유지 온도)는 약 938℃ 이하일 수 있고, 보다 바람직하게는 약 935℃ 이하, 가장 바람직하게는 약 934℃ 이하일 수 있다. 이를 통해, 우수한 생산성 및 용접성의 양립을 도모할 수 있다.
상기 C 구간에서의 가열은 약 j(
Figure PCTKR2020011662-appb-img-000013
분, 870℃), k(
Figure PCTKR2020011662-appb-img-000014
분, 870℃), l(
Figure PCTKR2020011662-appb-img-000015
분, 940℃), m(
Figure PCTKR2020011662-appb-img-000016
분, 940℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 도형 jklm에 의해 규정되는 조건을 충족하되, C 구간의 최고 분위기 온도(즉, C 구간의 최고 분위기 유지 온도)는 상기 B 구간의 최고 분위기 온도(즉, B 구간의 최고 분위기 유지 온도)보다 낮을 수 있다. 즉, 전술한 B 구간에 후속하여, 소재의 두께 영향까지 반영하여 상기 C 구간에서의 가열 시 분위기 온도 및 누적 로내 유지시간을 도형 jklm에 의해 규정되는 조건을 충족하도록 함으로써, 우수한 생산성 및 용접성의 양립이 가능해진다. 이 때, 상기 jklm의 좌표의 단위는 j(3.7[분]+{(t[mm]-1.2[mm])/0.6[mm]}[분], 870[℃]), k(11.7[분]+{(t[mm]-1.2[mm])/0.6[mm]}×2[분], 870[℃]), l(7.03[분]+{(t[mm]-1.2[mm])/0.6[mm]}×2[분], 940[℃]), m(2.53[분]+{(t[mm]-1.2[mm])/0.6[mm]}[분], 940[℃])이다.
상기 C 구간에서의 가열은 소재의 최종 유지 온도에 영향을 미친다. 상기 C 구간에서의 최고 분위기 온도를 상기 B 구간에서의 최고 분위기 온도보다 낮게 설정하는 이유는, C 구간에서의 분위기 온도가 B 구간만큼 높을 경우, 소재가 높은 온도에서 장시간 가열되어 용접성이 불량해지는 문제가 있기 때문이다. 즉, B 구간에서의 가열은 소재의 가열 속도를 증대시키기 위한 목적이 크기 때문에 높은 온도로 설정하는 것이고, C 구간에서의 가열은 소재의 최종 유지 온도를 제어하기 위한 목적이기 때문에 너무 높거나 너무 낮은 온도로 설정하지 않는 것이 바람직하기 때문이다.
한편, 상기 C 구간에서의 분위기 온도를 약 870℃ 미만으로 설정하면, 소재의 취출 온도가 너무 낮아서 이후 이송 단계 및 성형 전 냉각 단계에서 너무 낮은 온도로 냉각되어 성형 시 온도가 너무 낮아지는 문제가 발생하고, 이에 따라 성형성이 불량해질 수 있다.
혹은, 본 발명의 일 측면에 따르면, 상기 C 구간의 분위기 온도는 용접성의 향상 측면에서 상기 B 구간의 분위기 온도보다 낮을 수도 있고, 혹은 상기 C 구간의 분위기 온도는 상기 B 구간의 최저 분위기 온도(즉, 최저 분위기 유지 온도)보다 낮도록 설정될 수 있다. 예를 들어, 상기 B 구간으로서, 약 930℃에서의 제1의 B 구간 및 960℃에서의 제2 B 구간을 포함하는 경우, 상기 C 구간은 약 870℃ 이상이면서, 상기 제1의 B 구간인 약 930℃보다 낮도록(즉, 930℃ 미만) 분위기 온도가 설정될 수도 있다.
본 발명의 일 측면에 따르면, 상기 C 구간의 최고 분위기 온도는, 상기 B 구간의 최고 분위기 온도(Tb)를 기준으로, 약 Tb-20℃ 이하로 설정할 수 있고, 혹은 약 Tb-30℃ 이하의 범위로 설정할 수도 있다(이 때, 상기 최고 분위기 온도는 전술한 바와 마찬가지로, 최고 분위기 유지 온도를 의미한다). B 구간과 C 구간의 온도 차이가 클수록, 빠른 승온과 확산층 두께 증가 억제에 따른 용접성 향상의 효과가 크다. 그러나, 이러한 차이를 크게 하기 위해서는 B 구간의 온도는 높아져야 하고 C 구간의 온도는 낮아져야 하는 관계로 작업 조건 설정 측면에서 범위가 너무 축소되는 문제와 더불어, C 구간까지의 온도에 도달하는데 시간이 너무 많이 소요되는 문제가 있다. 이에, 본 발명자들은 상기 B 구간과 C 구간의 온도 차이가 약 20℃ 수준일 경우, 빠른 시간 내(예를 들어, 약 30초 이하) 소재가 C 구간의 온도에 도달한다는 것을 확인하였다. 따라서, 상기 B 구간과 C 구간의 온도 차이는 약 20℃ 이상으로 하되, 상기 C 구간은 약 870℃ 이상으로 하는 것이 가장 바람직하다.
한편, C 구간이 끝날 때까지의 로내 누적 유지 시간도 최종 유지 온도에 영향을 미친다. C 구간에서의 분위기 온도가 낮을 경우 C 구간이 끝날 때까지의 로내 누적 유지 시간을 길게 잡아야 하고, C 구간에서의 분위기 온도가 높을 경우는 C 구간이 끝날 때까지의 로내 누적 유지 시간을 짧게 잡아도 무방하다. 여기서, 상기 C 구간이 끝날 때까지의 로내 누적 유지 시간 역시 C 구간 자체의 유지시간이 아니라, C 구간까지의 로내 누적 유지 시간을 의미한다. 이 때, 상기 로내 누적 유지 시간은 전술한 설명을 동일하게 적용할 수 있다.
이와 같이 누적 유지 시간이 중요한 것은 다음과 같은 이유 때문이다. 예를 들어, C 구간 바로 직전까지의 로내 유지 시간이 짧을 경우에는 충분한 합금화를 위해서는 C 구간 자체의 유지 시간이 다소 길어져야 하고, 반대로 C 구간 바로 직전까지의 로내 유지 시간이 길 경우에는 C 구간의 유지 시간은 다소 짧아져도 된다는 점을 고려할 필요가 있다. 즉, 본 발명에서 목적으로 하는 가열 시간 단축을 통한 생산성의 향상은 도모하되, 충분한 합금화를 위해서는 C 구간 자체의 유지 시간뿐만 아니라 C 구간 이전의 시간까지도 함께 고려하는 것이 필요하다. C 구간이 끝날 때까지의 로내 누적 유지 시간은 이후 자세히 설명할 다양한 실시예들에 대한 분석을 통하여 도출이 되었다.
따라서, 본 발명의 일 측면에 따르면, 소재의 두께 영향을 고려하지 않고, 소재 두께 1.2㎜를 기준으로 할 때, C 구간이 끝날 때까지의 로내 누적 유지 시간은 분위기 온도가 약 870℃일 때 약 3.7~11.7분일 수 있고, 분위기 온도가 약 940℃일 때 약 2.53~7.03분일 수 있다. 구체적으로, 상기 C 구간에서의 분위기 온도가 높을 경우, C 구간이 끝날 때까지의 누적 로내 유지 시간이 너무 길어지면, 가열 시간이 너무 길게 되어 생산성이 나빠지고, 용접성도 불량해진다. 반면, C 구간의 분위기 온도가 낮을 경우에는 이를 보완하기 위해서 C 단계까지의 총 누적 로내 유지 시간이 커져야 한다.
추가적으로, 상기 B 구간과 마찬가지로, 상기 C 구간에서의 소재의 승온 패턴은 소재의 두께에도 의존한다. 따라서, 다양한 두께에 대한 승온 분석을 통하여 도 5(c)와 같이 두께에 따라 C구간이 끝날 때까지의 누적 로내 유지 시간의 조정이 필요함을 확인하였다.
즉, C 구간이 끝날 때까지의 누적 로내 유지 시간은 도 3의 1.2㎜ 소재의 도형 jklm으로 규정되는 범위에서, 소재 두께가 0.6㎜ 증가함에 따라, 최소 유지 시간은 1분씩 비례적으로 증가하고, 최대 유지 시간은 2분씩 비례적으로 증가하는 범위 안에서 실시할 수 있다. 반대로, 소재 두께가 얇아지는 경우는 0.6㎜ 감소함에 따라, 최소 유지 시간은 1분씩 비례적으로 감소하고 최대 유지 시간은 2분씩 감소하는 범위 안에서 실시할 수 있다.
따라서, 본 발명에서는 전술한 두께의 영향까지 반영한 도형 jklm에 의해 규정되는 누적 로내 유지시간 및 분위기 온도를 충족하도록 설정할 수 있다.
본 발명의 일 측면에 따르면, 상기 C 구간에서의 가열은 약 935℃ 이하의 분위기 온도에서 수행되거나, 보다 바람직하게는 약 930℃ 이하의 분위기 온도에서 수행될 수 있다. 혹은, 상기 C 구간의 최고 분위기 온도(즉, 최고 분위기 유지 온도)는 약 935℃ 이하이거나, 보다 바람직하게는 약 930℃ 이하일 수 있고, 이를 통해 생산성 및 용접성을 보다 개선할 수 있다.
본 발명의 일 측면에 따르면, 상기 C 구간에서의 유지 시간은 약 0.5분 이상일 수 있고, 상기 C 구간에서의 유지 시간이 약 0.5분 미만이면, 최종 유지 온도에 도달하지 못할 수 있으나, 특별히 이를 한정하는 것은 아니다.
한편, 발명의 일 측면에 따르면, 상기 t는 1.5㎜ 이하인 경우, 상기 C 구간의 분위기 온도는 약 870℃ 이상 880℃ 미만일 수 있다. 이는 가열 시 고온에서 유지하면 도금층 합금화가 훨씬 빨리 진행되기 때문에, 소재 두께가 1.5㎜ 이하일 경우 최종 유지 온도인 C 구간 온도는 약 870℃ 이상 880℃ 미만으로 낮게 유지하는 것이 용접성 측면에서 가장 유리하기 때문이다.
혹은, 발명의 일 측면에 따르면, 상기 t는 상기 t가 1.5㎜ 초과인 경우, 상기 C 구간의 분위기 온도가 약 870℃ 이상 900℃ 미만일 수 있다. 이는 가열 시 고온에서 유지하면 도금층 합금화가 훨씬 빨리 진행되기 때문에, 소재 두께가 1.5㎜ 초과일 경우 최종 유지 온도인 C 구간 온도는 약 870℃ 이상 900℃ 미만으로 낮게 유지하는 것이 용접성 측면에서 가장 유리하기 때문이다. 이는 소재 두께가 두꺼워지는 경우 C 구간의 온도는 얇은 두께 소재에 비해 조금 더 높아져야 하는 점을 고려한 것이다.
즉, 본 발명의 일 측면에 따르면, 본 발명의 목적하는 효과를 발휘하기 위하여, 각 B 및 C 구간에서의 유지 시간은 각각 약 0.5분 이상인 것이 바람직하다. 이 때, 각 B 및 C 구간에서의 유지 시간이라 함은, 누적 시간을 의미하는 것이 아니고, 각 B 구간 자체의 유지시간 및 C 구간 자체의 유지시간을 의미한다. 상기 B 구간 및 C 구간 중 적어도 하나의 구간에서 유지 시간이 약 0.5분 미만이면, B 구간에서의 빠른 승온과 C 구간에서의 낮은 최종 유지 온도 도달의 효과를 기대하기 어려울 수 있으나, 특별히 이를 한정하는 것은 아니다.
한편, 본 발명의 일 측면에 따르면, 상기 가열하는 단계는 하기 관계식 2의 값이 2 이상을 충족하도록 수행될 수 있다. 이 때, 상기 관계식 2의 값은 경험적인 수치이므로, 특별히 단위를 정하지 않는다.
[관계식 2]
Figure PCTKR2020011662-appb-img-000017
(상기 관계식 2에 있어서, 상기 T n은 블랭크의 이송방향으로 n번째 구간에서의 가열로 분위기 온도를 나타내고, 단위는 ℃이다. 상기 t n은 블랭크의 이송방향으로 n번째 구간에서의 가열로 유지 시간을 나타내고, 단위는 분이다. 상기 t total은 가열로에서의 총 유지 시간을 나타내고, 단위는 분이다. x는 가열로에서 특정 분위기 온도로 유지되는 구간의 개수를 나타낸다. 상기 k는 B 구간 중 최종 구간인 경우에 3의 정수이고, B 구간 이후의 구간인 경우에 -1의 정수이고, 이외의 경우에 1의 정수이다. 상기 t는 블랭크의 두께를 나타내고, 단위는 mm 이다.)
한편, 가열로에 있어서, n번째 구간이라 함은, 특정 분위기 온도로 유지되는 구간으로서, 블랭크의 이송방향으로 n번째에 존재하는 구간을 말하고, 블랭크의 이송방향으로 존재하는 각 구간은 분위기 온도로 구분될 수 있다. 이 때, 상기 n번째 구간에서의 가열로 유지 시간은 가열로에서의 누적 유지 시간이 아니라, 각 구간 자체의 유지 시간을 의미한다.
이 때, 가열로 및 각 구간에 대한 설명은, 후술하는 각 구간에서의 유지 시간을 제외하고, 전술한 설명을 동일하게 적용할 수 있다.
또한, 각 구간에서의 유지 시간은, 전술한 다수의 가열존을 포함하고 각 가열존에서 서로 구별되게 분위기 온도의 제어가 가능한 가열로에 있어서, 각 구간에 대응되는 각 가열존에서의 유지시간을 의미할 수 있다. 예를 들어, 하나의 구간에 하나의 가열존이 대응되는 경우로서, 상기 하나의 가열존에서 소재가 유지되는 시간은, 소재인 블랭크가 투입되는 시점에서부터 상기 하나의 가열존에서 블랭크가 취출되는 시점까지를 의미할 수 있다.
또한, 전술한 바에 의하면, 상기 B 구간은 약 930℃ 이상의 분위기 온도를 갖는 구간에서부터 최고 분위기 온도를 갖는 구간까지를 의미하므로, 상기 B 구간 중 최종 구간은 최고 분위기 온도(즉, 최고 분위기 유지 온도)를 갖는 구간을 의미한다. 이 때, 상기 B 구간 이후라 함은, B 구간을 제외하고 블랭크의 이송방향으로 B 구간 이후부터 가열로분위기 온도로 구분되어 존재하는 구간을 의미한다.
일례로, A 구간(분위기 온도: T1, 유지 시간: t1), B 구간(분위기 온도: T2, 유지 시간: t2), 제1 C 구간(분위기 온도: T3, 유지 시간: t3), 제2 C 구간(분위기 온도: T4, 유지 시간: t4)이 존재하는 경우를 설명한다. 이 경우, 상기 관계식 2는, [{(T1-870)×t1/t total×0.1334×1} + {(T2-870)×t2/t total×0.1334×3} + {(T3-870)×t3/t total×0.1334×(-1)} + {(T4-870)×t4/t total×0.1334×(-1)}]/t일 수 있다.
본 발명자들은 가열 단계에 있어서, 가열로의 온도 및 시간에 대한 패턴에 대해 예의 검토한 결과, 생산성, 용접성, 성형성에 추가하여, 제품의 형상 정밀도까지 보다 향상시킬 수 있는 방법을 추가적으로 연구하였다.
즉, 가열하는 단계에서 각 구간에서의 870℃를 기준으로 한 가열 분위기 온도의 차를 전체 공정 중에 각 구간이 차지하는 시간 비율과, 0.1334를 곱한 값(V cal)을 기준으로 성형 부재에 미치는 영향을 연구하였다. 구체적으로, 최고 분위기 온도로 유지되는 구간 이전에는 생산성의 측면에서 값이 큰 것이 바람직하므로 상기 V cal값이 (+)부호를 가지고(즉, k가 (+1)에 해당), 이들 중 최고 분위기 온도로 유지되는 구간의 영향이 가장 크므로 상기 V cal값이 (+3)배의 영향을 받는다(즉, k가 3의 정수에 해당). 또한, B 구간 이후의 구간에서는 상기 V cal값이 작은 것이 확산층의 두께를 감소시켜 용접성 측면에서 바람직하므로 (-)부호의 값을 가진다. 이러한 각 구간에서의 V cal값들의 합을 두께의 영향을 고려하여 t로 나눈 값이 2 이상을 충족함으로써, 전술한 생산성, 용접성, 성형성에 더하여, 적정 조건의 가열로 구간의 조합으로부터 제품의 취출 후 공기 중에서 냉각될 때 뒤틀림 현상이 줄어들어, 제품의 형상 정밀도를 보다 향상시킬 수 있음을 발견하였다.
또한, 본 발명자는 열간 프레스 성형 공정에서 냉각 공정에 대한 자세한 공정 분석을 통하여 다음과 같은 사항을 알게 되었다. 가열된 블랭크는 가열로에서 추출된 후 프레스에 설치된 금형으로 이송된다. 이러한 이송 과정 중에서는 공냉으로 냉각된다. 이어서, 하형 금형에 블랭크를 안착시킨 후, 블랭크 공급 지그가 프레스 작동 범위 내에서 회피를 하고 나면 프레스 슬라이드가 하강되기 시작하고 일정 시간이 지나서 상형 금형이 블랭크에 접촉되기 시작한다. 성형은 이러한 상형 금형이 블랭크에 접촉하고 난 후 실질적으로 시작이 된다. 이와 같이, 상기 블랭크의 안착 후 성형이 수행되기 전까지 일정 시간이 소요된다. 그런데, 이러한 시간 중에는 블랭크 전체적으로 공냉이 될 뿐만 아니라, 하형 금형 혹은 하형 금형의 블랭크를 지지해주는 리프터 같은 구조물과 접촉하여 이 부분에서 급냉이 발생하게 된다. 따라서, 전체적으로 안전한 성형성의 확보를 위해서는 공냉이 주로 일어나는 이송 과정의 소요 시간뿐만 아니라, 상기 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간의 최소화도 필요함을 알게 되었다. 물론 일반적으로 잘 알려진 바와 같이, 성형이 완료된 후 금형이 완전히 밀착된 상태에서의 급냉은 물성 확보 측면에서 중요하다는 것은 당연하여 본 발명에서 추가적으로 설명하지는 않고자 한다. 본 발명에서는 이송 과정 중 공냉 시간과 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간의 관리가 물성 확보 및 성형성 확보 측면에서 중요하다는 것을 알고 다음과 같은 분석을 실시하였다.
한편, 도 6은 소재 두께 0.9 및 1.8㎜인 알루미늄 도금 강판에 대해 900℃로 가열한 후 가열로에서 추출 후 공기 중에서 냉각되는 시간에 따른 온도 변화에 대한 실험치와 공냉 과정에 대한 해석치의 비교 그래프이다. 도 6에서 보는 바와 같이 해석치는 실험치를 잘 예측하고 있음을 알 수 있다.
본 발명에서는 이러한 해석 기술을 활용하여, 다양한 소재 두께, 가열로 취출 온도, 및 이송하여 안착시키는 단계의 소요시간과 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간의 합 간의 상관관계에 대하여 예의 검토한 결과, 하기 관계식 1을 충족해야 함을 발견하였다.
[관계식 1]
T ≤ 8.2×t+(temp-900)/30
(상기 T는 이송하여 안착시키는 단계의 소요시간과 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간의 합을 나타내고, 단위는 s(초)이다. 상기 t는 소재의 두께를 나타내고, 단위는 ㎜이다. 상기 temp는 가열로 추출온도를 나타내고, 단위는 ℃이다.)
이 때, 상기 관계식 1은 경험적으로 얻어지는 값이므로 특별히 단위를 정하지 않을 수 있고, T의 단위는 s(초)이고, t는 mm이고, temp의 단위는 ℃을 충족하면 충분하다.
본 발명의 일 측면에 따르면, 상기 T는 약 10초 초과일 수 있고, 보다 바람직하게는 약 11초 이상일 수 있다. 즉, 본 발명에 있어서, 상기 T가 약 10초를 초과하더라도 우수한 성형성의 확보가 가능하고, 이를 통해 이송장치 속도가 다소 느린 설비에서도 적용 가능하여 불필요한 설비 투자가 요구되지 않아 경제성의 확보가 가능해진다.
한편, 본 발명의 일 측면에 따르면, 특별히 한정하는 것은 아니나, 본 발명에서 상기 소재의 두께(t)는 약 0.6~2.6mm 범위일 수 있다. 상기 소재의 두께가 약 0.6mm 미만이면 소재가 너무 얇아져서 연속 가열로 안에서 이송 시 처짐의 문제 등이 발생할 수 있고, 약 2.6mm 초과이면 소재가 너무 두꺼워져서 알루미늄 도금재의 생산이 용이하지 않을 수 있다.
앞서 언급한 바와 같이 냉각은 이송 과정 중의 공냉과, 블랭크의 안착 후 성형이 수행되기 전까지의 하형 금형에 의한 냉각의 단계로 실시된다. 블랭크의 안착 후 성형이 수행되기 전의 단계에서는 하형 금형 혹은 하형 금형의 블랭크를 지지해주는 리프터 같은 구조물과 접촉하는 부위는 접촉이 되지 않고 공냉되는 부위에 비해서 보다 빠른 냉각이 실시된다. 따라서, 블랭크 전체적 공냉 측면에서는 상기 관계식 1-1[T ≤ 8.2×t]만을 만족하면 되지만, 하형 금형에 블랭크의 안착된 후 상형 금형이 접촉하여 성형이 수행되기 전까지의 소요 시간도 크지 않도록 하는 것이 중요하다는 점을 알게 되었다.
따라서, 상기 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간은 2초 이하일 수 있다. 본 발명자들은 1.2mm 두께 소재를 가열하여 900℃로 추출한 후, 8초 동안 이송하고 1초 동안 하형 리프터에 접촉한 조건과, 7초 동안 이송하고 2초 동안 하형 리프터에 접촉한 조건과, 6초 동안 이송하고 3초 동안 하형 리프터에 접촉한 조건에서, 각각 리프터에 접촉한 부위의 온도를 관찰하였다. 그 결과, 하형 리프터에 2초 초과로 접촉한 경우, 해당 부위는 미접촉한 부위에 비해 50℃ 이상 더 냉각되는 것을 확인하였다. 따라서, 성형 단계 전 금형의 상형이 접촉하기 전까지 금형의 하형만으로 냉각되는 시간(즉, 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간)이 2초를 초과하는 경우, 금형의 하형에 접촉되지 않은 블랭크 부위는 700℃ 수준이 된다. 다만, 금형의 하형과 접촉하는 부위는 650℃ 수준까지 냉각이 되어, 통상의 열간 프레스 성형 공정 관리에서 작업 불가 판단 온도 수준으로 냉각이 될 수 있다. 이에 따라, 성형 작업이 실시되지 않고 스크랩이 되는 문제가 발생할 여지가 있다.
따라서, 가장 바람직하게는 가열된 블랭크가 상형 금형이 접촉하여 성형이 시작되기까지 상기 관계식 1을 충족하도록 공정이 수행되면서, 전술한 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간이 2초 이하로 제어될 수 있다.
또한, 본 발명의 일 측면에 따르면, 상기 블랭크의 도금층 두께는 20㎛ 이상일 수 있다. 상기 블랭크의 도금층 두께가 20㎛ 미만이면, 블랭크의 도금층 두께가 얇은 상태에서 가열이 수행되고, 합금화가 빨리 진행되어 확산층의 증가도 더욱 빨라지게 된다. 즉, 도금량이 적어지면 확산층의 두께 증가 속도가 증가하여 본 발명의 목적하는 물성을 기대하기 어려울 수 있으므로, 블랭크의 도금층 두께는 20㎛ 이상으로 제어하는 것이 바람직하다. 혹은, 상기 블랭크의 도금층 두께는 보다 바람직하게는 25㎛ 이상일 수 있고, 이를 통해 확산층 두께 증가의 속도를 억제하여 용접성이 보다 개선될 수 있다. 한편, 상기 블랭크 도금층 두께의 상한을 특별히 한정하는 것은 아니나, 도금층 두께가 불필요하게 증가될 경우, 도금층 합금화 속도가 느려지는 문제가 생길 수 있으므로, 산업적으로 많이 적용되고 있는 33㎛ 이하 수준이면 충분하다.
본 발명의 일 측면에 따르면, 상기 성형 부재의 확산층 두께는 15㎛ 이하일 수 있다. 상기 확산층은 전도성이 좋지 않아 저항이 크므로, 확산층의 두께가 너무 두꺼우면, 용접 시 국부적인 발열이 크게 일어남으로 인해 스패터 발생의 문제를 초래할 수 있다. 따라서, 상기 확산층의 두께를 15㎛ 이하로 제어하는 것이 바람직하다. 한편, 상기 성형 부재의 확산층은, Fe와 Al의 금속간 화합물을 포함하는 층을 의미할 수 있고, Fe와 Al의 금속간 화합물로는 FeAl, Fe 3Al 등을 들 수 있다. 그 밖에도 도금층에서 유래되는 성분들의 일부를 더 포함할 수 있다.
본 발명의 일 측면에 따르면, 상기 성형 부재의 합금층 두께는 27~50㎛일 수 있다. 성형 부재의 합금층 두께가 27㎛ 미만이면, 내식성이 부족한 문제가 있을 수 있고, 합금층 두께가 50㎛ 초과이면, 성형 시 금형에 도금층의 소착 문제가 심화될 여지가 있다. 전술한 효과를 보다 향상시키고자 하는 견지에서, 상기 성형 부재의 합금층 두께는 있고, 보다 바람직하게는 35~50㎛일 수 있다. 한편, 상기 성형 부재의 합금층 두께는 확산층을 포함하는 코팅의 총 두께를 의미한다.
본 발명의 일 측면에 따르면, 상기 성형 부재의 합금층 두께에 대한 상기 성형 부재의 확산층의 두께의 비(확산층 두께/합금층 두께)는 0.5 이하일 수 있고, 보다 바람직하게는 0.33 이하일 수 있다. 전술한 조건을 충족함으로써, 성형 부재의 합금층 두께 대비 확산층의 두께가 너무 두꺼워짐으로 인한 스패터 발생에 의한 용접성이 불량해지는 문제를 방지할 수 있다.
(실시예)
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명한다. 다만, 하기의 실시예는 예시를 통하여 본 발명을 설명하기 위한 것일 뿐, 본 발명의 권리범위를 제한하기 위한 것이 아니라는 점에서 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실험예 1)
중량%로, C: 0.22%, Si: 0.3%, Mn: 1.2%, Cr: 0.2%, Al: 0.03%, P: 0.01%, S: 0.001%, N: 0.003%, B: 0.003%, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 조성을 갖는 소지강판에 대해 도금욕 Al-Si9%-Fe3%에 침지하여 도금 강판을 얻었다. 이렇게 얻어진 두께 1.2mm의 알루미늄 도금 강판에 대하여, 하기 표 1, 2에 기재된 조건을 충족하도록 블랭크를 가열로에서 가열하고, 금형의 상형 및 하형 사이로 이송한 후 하형 금형 안착에 의한 냉각, 성형 및 취출의 단계를 거쳐 열간 프레스 성형 부재를 제조하였다. 이 때, 다수의 가열존을 포함하고 각 가열존에서 서로 구별되게 분위기 온도가 제어되는 가열로에 대하여, 각 가열존에서의 분위기 유지 온도를 써모커플(thermocouple)로 측정하여 하기 표 1의 각 구간에서의 분위기 유지 온도로 나타내었다. 또한, 각 구간에서의 유지 시간은, 상기 각 구간에 대응하는 각 가열존을 기준으로 소재인 블랭크의 투입 시점에서부터 취출 시점까지를 측정하여 하기 표 1에 나타내었다. 또한, 각 구간에서의 누적 유지 시간은, 가열로에 소재인 블랭크가 투입되는 시점에서부터 각 가열로에 대응하는 각 가열존에서 소재인 블랭크가 취출되는 시점까지의 시간을 측정하여 하기 표 1에 나타내었다.
한편, 하기 표 1, 2에 기재된 각 발명예 및 비교예에 대하여, 하기의 기준으로 특성을 평가하였다.
<900℃에 도달하는 시간>
가열로에 투입된 소재의 온도를 앞서 언급한 해석적 방법으로 계산한 결과를 활용하여, 900℃에 최초로 도달하는 시간에 따라 하기와 같이 분류하였고, 이를 통해 생산성을 판단하였다.
○: 900℃에 도달하는 시간이 180초 이하인 경우
×: 900℃에 도달하는 시간이 180초 초과인 경우
<용접성>
용접성은 저항용접 시 용접전류범위 값(최소 너겟경을 확보할 수 있는 최소 전류값에서 스패터가 발생하는 최대 전류값 사이 범위값)에 따라 하기와 같이 분류하였다. 이 때, 용접전류 범위는 확산층 두께와 용접전류 범위와의 상관 관계식을 활용하였다.
AA: 용접전류범위가 2.3KA 이상인 경우
A: 용접전류범위가 2.0KA 이상 2.3KA 미만인 경우
A-: 용접전류범위가 1.5KA 이상 2.0KA 미만인 경우
B: 용접전류범위가 1.0KA 이상 1.5KA 미만인 경우
C: 용접전류범위가 1.0KA 미만인 경우
<성형성>
성형성은 제품의 불량률 발생을 억제하기 위한 관리의 기준이 되는 성형 전 블랭크 온도 650℃를 기준으로, 하기와 같이 분류하였다.
○: 성형 직전 블랭크 온도가 650℃ 이상인 경우
×: 성형 직전 블랭크 온도가 650℃ 미만인 경우
[표 1]
Figure PCTKR2020011662-appb-img-000018
[표 2]
Figure PCTKR2020011662-appb-img-000019
S1*: 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간 [초]
S2*: 이송하여 안착시키는 단계의 소요시간과 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간의 합 [초]
상기 표 1, 2에서 볼 수 있듯이, 가열로 전체를 900℃의 단일한 분위기 온도로 설정한 비교예 1에 비해, 발명예 1 및 발명예 2의 경우, 최종 유지 온도에 도달하는 시간을 보다 단축할 수 있었고, 이로 인해 전체적인 사이클 타임의 단축이 가능함을 확인하였다. 이를 통해, 생산성이 보다 개선됨을 확인하였다.
또한, 본원 발명에 의한 가열로에서의 가열 조건, 하형 금형 안착 냉각 조건, 관계식 1을 모두 충족하는 발명예 3~6의 경우, 생산성, 용접성 및 성형성이 모두 우수함을 확인하였다.
또한, B 구간의 분위기 온도가 930℃ 초과 940℃ 미만을 충족하는 발명예 6의 경우, 다른 발명예들에 비해 용접성이 보다 향상됨을 확인하였다.
반면, 가열로 전체를 940℃의 단일한 온도로 설정한 비교예 2의 경우는 더 빠른 승온 효과를 얻을 수 있기는 하지만, 최종 유지 온도가 940℃로 높은 온도로 유지가 되어 용접성이 열위하였다.
또한, 다른 방법으로 가장 높은 온도인 940℃를 가장 뒷부분에 배치를 하는 방법의 비교예 3의 경우, 최종 유지 온도에 도달하는 시간이 많이 걸려 생산성이 열위할 뿐만 아니라, 최종 온도도 940℃로 되어 용접성이 열위하였다.
또한, A 구간의 분위기 온도만 700℃로 변경한 비교예 4의 경우, 900℃에 도달하는 시간이 200초가 되어, B 단계가 끝날때까지도 승온이 완료되지 않아, 생산성이 열위한 문제가 있었다.
반면, 가열로에서의 가열 조건, 하형 금형 안착 냉각 조건, 관계식 1 중 하나 이상의 조건을 충족하지 않는 비교예 5~8의 경우, 생산성, 용접성 및 성형성 중 하나 이상의 조건이 열위함을 확인하였다.
(실험예 2)
하기 표 3, 4의 조건으로 변경한 것 외에는, 전술한 실험예 1과 동일한 방법으로 열간 프레스 성형 부재를 제조하였다. 또한, 생산성과 관련하여 하기 방법으로 평가한 것 외에는, 전술한 실험예 1과 동일한 기준으로 특성을 평가하였다.
<추가 가열 과정이 필요한 지 여부>
가열로에 투입된 소재의 온도를 앞서 언급한 해석적 방법으로 계산한 결과를 활용하여, 하기와 같이 분류하여 생산성을 판단하였다.
○: 소재의 취출 시 소재의 온도가 설정된 C 구간의 분위기 온도까지 도달한 경우
×: 소재의 취출 시 소재의 온도가 설정된 C 구간의 분위기 온도까지 도달하지 못한 경우로서, 목표하는 물성 확보를 위해 추가 가열 과정이 필요한 경우
[표 3]
Figure PCTKR2020011662-appb-img-000020
[표 4]
Figure PCTKR2020011662-appb-img-000021
상기 표 3, 4에서 볼 수 있듯이, 본원 발명의 가열로에서의 가열 조건, 하형 금형 안착 냉각 조건, 관계식 1을 모두 충족하는 발명예 7~13의 경우, 생산성, 용접성 및 성형성이 모두 우수함을 확인하였다.
특히, C 구간의 최고 분위기 온도가 B 구간의 최고 분위기 온도(Tb)를 기준으로 Tb-20℃ 이하를 충족하는 발명예 8~13의 경우, 이를 충족하지 못하는 발명예 7에 비해 용접성이 보다 향상됨을 확인하였다.
또한, C 구간의 분위기 온도가 870℃ 이상 880℃ 미만을 충족하는 발명예 10의 경우, 다른 발명예들에 비하여 용접성이 보다 향상됨을 확인하였다.
반면, 전술한 가열로에서의 가열 조건, 하형 금형 안착 냉각 조건, 관계식 1 중 하나 이상의 조건을 충족하지 못하는 비교예 9~17의 경우, 생산성, 용접성 및 성형성 중 하나 이상의 조건이 열위함을 확인하였다.
특히, 비교예 18~20의 경우, 전술한 관계식 1의 조건을 충족하지 못함으로써, 발명예들에 비해 성형성이 열위함을 확인하였다.
(실험예 3)
하기 표 5, 6의 조건으로 변경한 것 외에는, 전술한 실험예 1과 동일한 방법으로 열간 프레스 성형 부재를 제조하였다. 또한, 생산성과 관련하여 하기 방법으로 평가한 것 외에는, 전술한 실험예 1과 동일한 기준으로 특성을 평가하였다.
<B 구간에서 소재의 온도가 유지되는 구간이 존재하는 지 여부>
블랭크 소재가 B 구간의 설정된 최고 분위기 온도까지 가열된 후, 그 온도에서 유지되는 시간이 B 구간에 존재하는 지 여부에 따라 하기와 같이 분류하였고, 이를 통해 생산성을 평가하였다. 이는 B 구간에서는 승온 속도를 높이는 측면의 효과만 달성하면 되므로 불필요하게 높은 온도 영역에서 장시간 유지하지 않는 것이 바람직하기 때문이다.
○: 추가적으로 유지하는 시간이 존재하지 않는 경우
×: 추가적으로 유지하는 시간이 존재하는 경우
[표 5]
Figure PCTKR2020011662-appb-img-000022
[표 6]
Figure PCTKR2020011662-appb-img-000023
상기 표 5, 6에서 볼 수 있듯이, 본원 발명의 가열로에서의 가열 조건, 하형 금형 안착 냉각 조건, 관계식 1을 모두 충족하는 발명예 14 및 15의 경우, 생산성, 용접성 및 성형성이 모두 우수함을 확인하였다.
반면, 전술한 가열로에서의 가열 조건을 충족하지 못하는 비교예 21 및 22의 경우, 생산성이 열위함을 확인하였다.
(실험예 4)
하기 표 7, 8의 조건으로 변경한 것 외에는, 전술한 실험예 1과 동일한 방법으로 열간 프레스 성형 부재를 제조하였다. 또한, 생산성과 관련하여 하기 방법으로 평가한 것 외에는, 전술한 실험예 1과 동일한 기준으로 특성을 평가하였다.
<확산층 두께가 15㎛가 되는 시간에 도달하는 지 여부>
통상 자동차사가 물성 확보를 위해 규제하는 확산층 두께가 15㎛가 되는 지점의 시간을 기준으로, 하기와 같이 분류하여 생산성을 평가하였다.
○: 가열로에서 소재가 취출될 때까지의 총 누적 유지 시간이 상기 확산층 두께가 15㎛가 되는 시간 이하인 경우
×: 가열로에서 소재가 취출될 때까지의 총 누적 유지 시간이 상기 확산층 두께가 15㎛가 되는 시간을 초과하는 경우
[표 7]
Figure PCTKR2020011662-appb-img-000024
[표 8]
Figure PCTKR2020011662-appb-img-000025
상기 표 7, 8에서 볼 수 있듯이, 본원 발명의 가열로에서의 가열 조건, 하형 금형 안착 냉각 조건, 관계식 1을 모두 충족하는 발명예 16 및 17의 경우, 생산성, 용접성 및 성형성이 모두 우수함을 확인하였다.
반면, 전술한 가열로에서의 가열 조건을 충족하지 못하는 비교예 23의 경우, 생산성 및 용접성이 열위함을 확인하였다.
또한, 전술한 가열로에서의 가열 조건 및 하형 금형 안착 냉각 조건을 충족하지 못하는 비교예 24의 경우, 생산성, 용접성 및 성형성이 모두 열위하였다.
한편, 전술한 실험예들에 대하여 그 도금층의 주사전자현미경(SEM) 사진을 도 4에 나타내었다.
(실험예 5)
하기 표 9, 10의 조건으로 변경한 것 외에는, 전술한 실험예 4과 동일한 방법으로 열간 프레스 성형 부재를 제조하였고, 실험예 4과 동일한 기준으로 특성을 평가하였다.
[표 9]
Figure PCTKR2020011662-appb-img-000026
[표 10]
Figure PCTKR2020011662-appb-img-000027
상기 표 9, 10에서 볼 수 있듯이, 블랭크의 도금층 두께 20㎛ 이상, 성형 부재의 확산층 두께 15㎛ 이하, 성형 부재의 합금층 두께는 27~50㎛, 및 부재의 도금층 두께에 대한 상기 성형 부재의 확산층의 두께의 비(확산층 두께/합금층 두께)는 0.33 이하를 모두 충족하는 본원 발명예 18의 경우, 전술한 조건 중 하나 이상을 충족하지 않는 발명예 19에 비해, 용접성이 보다 개선됨을 확인하였다.
(실험예 6)
하기 표 11~13의 조건을 충족하도록 열간 프레스 성형 부재를 제조한 것 외에는, 전술한 실험예 1과 동일한 방법을 이용하여 도금강판의 블랭크를 성형하였다. 또한, 용접성 및 성형성의 효과는 전술한 실험예 1과 평가방법을 동일하게 적용하였고, 추가적으로 성형 부재의 형상 정밀도를 측정하였다.
<가열로에서 취출 시, 소재의 온도가 가열로 취출 온도에 도달했는 지 여부>
또한, 가열로에서 취출 시, 소재의 온도가 가열로 취출 온도에 도달했는 지 여부에 따라, 하기 기준으로 생산성을 평가하였다.
○: 가열로 취출 시, 소재의 온도가 가열로 취출 온도에 도달한 경우
×: 가열로 취출 시, 소재의 온도가 가열로 취출 온도에 도달하지 못한 경우
[표 11]
Figure PCTKR2020011662-appb-img-000028
[표 12]
Figure PCTKR2020011662-appb-img-000029
[표 13]
Figure PCTKR2020011662-appb-img-000030
상기 표 11~13에서 볼 수 있듯이, 본원 발명예 20~23의 경우, 본원의 관계식 2를 충족하지 못하는 비교예 25 및 26과 비교하여, 생산성 및 용접성 중 하나 이상의 특성이 보다 우수하였다.
뿐만 아니라, 각 발명예 및 비교예들로부터 얻어지는 성형 부재에 대한 동일한 측정 부위 10개 지점에서 checking fixture를 이용하여 형상 정밀도를 측정하였고, 통상적인 형상정밀도 요구 범위인 +/-0.5mm보다 더 가혹한 조건인 +/-0.4mm 내를 만족하는 측정 지점의 개수를 측정하였다. 그 결과, 비교예 25를 기준으로 하여, 상대적인 형상 정밀도 개선 효과를 평가하였을 때, 발명예 20~22의 경우, 비교예 25에 비해 25% 형상 정밀도가 개선됨을 확인하였다. 반면, 비교예 26의 경우에는 비교예 25를 기준으로 동일한 수준임을 확인하였다.
(실험예 7)
하기 표 14의 조건으로 변경한 것 외에는, 전술한 실험예 3과 동일한 방법으로 열간 프레스 성형 부재를 제조하였다. 또한, 굽힘성과 관련하여, 하기 방법으로 평가한 것 외에는, 전술한 실험예 3과 동일한 기준으로 특성을 평가하였다.
<굽힘성>
굽힘성은 3점 굽힘 시험으로 실시하였고, 최대하중 발생 시 굽힘각을 측정하여 아래와 같은 기준으로 분류하였다.
AA: 최대하중 굽힘각도 50도 초과인 경우
A: 최대하중 굽힘각도가 45~50도인 경우
[표 14]
Figure PCTKR2020011662-appb-img-000031
[표 15]
Figure PCTKR2020011662-appb-img-000032
상기 표 14 및 15에서 볼 수 있듯이, 본 발명에 따른 열간 프레스 성형 부재의 제조 조건을 충족하는 발명예 24, 25는 생산성, 용접성 및 성형성이 모두 우수하였다. 특히, 블랭크의 두께가 1.5㎜ 초과인 경우로서, 상기 B 구간의 온도가 940℃ 초과 960℃ 이하를 충족하는 발명예 24는, 이를 충족하지 못하는 발명예 25에 비해서, 전술한 생산성, 용접성 및 성형성에 부가하여, 굽힘성이 보다 우수함을 확인하였다.

Claims (12)

  1. 열간 프레스 성형 부재의 제조 방법으로서,
    알루미늄계 도금 강판의 블랭크를 가열로에서 가열하는 단계;
    가열된 블랭크를 가열로에서 취출하여 프레스에 장착된 금형의 상형 및 하형 사이로 이송하여 안착시키는 단계; 및
    상기 금형의 상형이 상기 안착된 블랭크에 접촉한 후 성형이 수행되는 성형 단계;
    를 포함하고,
    상기 가열로는 블랭크의 이송방향으로 순차로 구비되는 A 구간, B 구간 및 C 구간을 포함하는 연속식 가열로이고,
    상기 A 구간에서의 가열은 약 a(0.2분, 750℃), b(1.0분, 750℃), c(1.0분, 800℃), d(1.5분, 900℃), e(0.2분, 900℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 도형 abcde에 의해 규정되는 조건을 충족하고,
    상기 B 구간에서의 가열은 약 f(
    Figure PCTKR2020011662-appb-img-000033
    분, 930℃), g(
    Figure PCTKR2020011662-appb-img-000034
    분, 930℃), h(
    Figure PCTKR2020011662-appb-img-000035
    분, 960℃), i(
    Figure PCTKR2020011662-appb-img-000036
    분, 960℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 fghi에 의해 규정되는 조건을 충족하고,
    상기 C 구간에서의 가열은 약 j(
    Figure PCTKR2020011662-appb-img-000037
    분, 870℃), k(
    Figure PCTKR2020011662-appb-img-000038
    분, 870℃), l(
    Figure PCTKR2020011662-appb-img-000039
    분, 940℃), m(
    Figure PCTKR2020011662-appb-img-000040
    분, 940℃)의 누적 로내 유지시간 및 분위기 온도 좌표를 가지는 도형 jklm에 의해 규정되는 조건을 충족하되, 최고 분위기 온도는 상기 B 구간의 최고 분위기 온도보다 낮고,
    하기 관계식 1을 충족하고,
    상기 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간은 2초 이하인, 열간 프레스 성형 부재의 제조 방법.
    [관계식 1]
    T ≤ 8.2×t+(temp-900)/30
    (상기 T는 이송하여 안착시키는 단계의 소요시간과 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간의 합을 나타내고, 단위는 s(초)이다. 상기 t는 블랭크의 두께를 나타내고, 단위는 mm 이다. 상기 temp는 가열로 추출온도를 나타내고, 단위는 ℃이다.)
  2. 청구항 1에 있어서,
    상기 C 구간에서의 가열은 930℃ 이하의 분위기 온도에서 수행되는, 열간 프레스 성형 부재의 제조 방법.
  3. 청구항 1에 있어서,
    상기 C 구간의 최고 분위기 온도는 상기 B 구간의 최고 분위기 온도(Tb)를 기준으로 Tb-20℃ 이하인, 열간 프레스 성형 부재의 제조 방법.
  4. 청구항 1에 있어서,
    상기 t가 1.5㎜ 이하이고, 상기 B 구간의 분위기 온도는 930℃ 초과 940℃ 미만인, 열간 프레스 성형 부재의 제조 방법.
  5. 청구항 1에 있어서,
    상기 t는 1.5㎜ 이하이고, 상기 C 구간의 분위기 온도는 870℃ 이상 880℃ 미만인, 열간 프레스 성형 부재의 제조 방법.
  6. 청구항 1에 있어서,
    상기 t가 1.5㎜ 초과이고, 상기 C 구간의 분위기 온도가 870℃ 이상 900℃ 미만인, 열간 프레스 성형 부재의 제조 방법.
  7. 청구항 1에 있어서,
    상기 t가 1.5㎜ 초과이고, 상기 B 구간의 분위기 온도가 940℃ 초과 960℃ 이하인, 열간 프레스 성형 부재의 제조방법.
  8. 청구항 1에 있어서,
    상기 이송하여 안착시키는 단계의 소요시간과 블랭크의 안착 후 성형이 수행되기 전까지의 소요 시간의 합은 10초 초과인, 열간 프레스 성형 부재의 제조 방법.
  9. 청구항 1에 있어서,
    상기 블랭크의 도금층 두께는 25㎛ 이상인, 열간 프레스 성형 부재의 제조 방법.
  10. 청구항 1에 있어서,
    상기 성형 단계에 후속하여, 상기 금형의 상형이 프레스 하사점에 도달한 후 유지함으로써 성형된 소재를 급냉하는 금형 내 냉각 단계; 및
    냉각된 성형 부재를 취출하는 성형 부재의 취출 단계;
    를 더 포함하고,
    상기 성형 부재의 확산층 두께는 15㎛ 이하이고,
    상기 성형 부재의 합금층 두께는 35~50㎛인, 열간 프레스 성형 부재의 제조 방법.
  11. 청구항 1에 있어서,
    상기 성형 단계에 후속하여, 상기 금형의 상형이 프레스 하사점에 도달한 후 유지함으로써 성형된 소재를 급냉하는 금형 내 냉각 단계; 및
    냉각된 성형 부재를 취출하는 성형 부재의 취출 단계;
    를 더 포함하고,
    상기 성형 부재의 합금층 두께에 대한 상기 성형 부재의 확산층의 두께의 비(확산층 두께/합금층 두께)는 0.33 이하인, 열간 프레스 성형 부재의 제조방법.
  12. 청구항 1에 있어서,
    상기 가열하는 단계는 하기 관계식 2의 값이 2 이상을 충족하도록 수행되는, 열간 프레스 성형 부재의 제조방법.
    [관계식 2]
    Figure PCTKR2020011662-appb-img-000041
    (상기 관계식 2에 있어서, 상기 T n은 블랭크의 이송방향으로 n번째 구간에서의 가열로 분위기 온도를 나타내고, 단위는 ℃이다. 상기 t n은 블랭크의 이송방향으로 n번째 구간에서의 가열로 유지 시간을 나타내고, 단위는 분이다. 상기 t total은 가열로에서의 총 유지 시간을 나타내고, 단위는 분이다. x는 가열로에서 특정 분위기 온도로 유지되는 구간의 개수를 나타낸다. 상기 k는 B 구간 중 최종 구간인 경우에 3의 정수이고, B 구간 이후의 구간인 경우에 -1의 정수이고, 이외의 경우에 1의 정수이다. 상기 t는 블랭크의 두께를 나타내고, 단위는 mm 이다.)
PCT/KR2020/011662 2020-07-10 2020-08-31 생산성, 용접성 및 성형성이 우수한 열간 프레스 성형 부재의 제조 방법 WO2022010030A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20944436.3A EP4180146A4 (en) 2020-07-10 2020-08-31 PROCESS FOR MAKING A HOT PRESS FORMED ITEM WITH EXCELLENT MANUFACTURING, WELDING AND FORMABILITY
JP2023501479A JP2023534207A (ja) 2020-07-10 2020-08-31 生産性、溶接性、及び成形性に優れた熱間プレス成形部材の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20200085533 2020-07-10
KR10-2020-0085533 2020-07-10
KR10-2020-0101357 2020-08-12
KR1020200101357A KR102240850B1 (ko) 2020-07-10 2020-08-12 생산성, 용접성 및 성형성이 우수한 열간 프레스 성형 부재의 제조 방법

Publications (1)

Publication Number Publication Date
WO2022010030A1 true WO2022010030A1 (ko) 2022-01-13

Family

ID=75743518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011662 WO2022010030A1 (ko) 2020-07-10 2020-08-31 생산성, 용접성 및 성형성이 우수한 열간 프레스 성형 부재의 제조 방법

Country Status (7)

Country Link
US (2) US11590549B2 (ko)
EP (1) EP4180146A4 (ko)
JP (1) JP2023534207A (ko)
KR (2) KR102240850B1 (ko)
CN (1) CN113909322B (ko)
MX (1) MX2021000379A (ko)
WO (1) WO2022010030A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102584563B1 (ko) * 2021-10-29 2023-10-04 현대제철 주식회사 핫 스탬핑 부품 및 이의 제조 방법

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060054479A (ko) 2003-10-02 2006-05-22 신닛뽄세이테쯔 카부시키카이샤 금속 판재의 열간 프레스 성형 장치 및 열간 프레스 성형방법
US20120090741A1 (en) * 2010-10-15 2012-04-19 Benteler Automobiltechnik Gmbh Method for producing a hot-formed and press-hardened metal component
KR20140125562A (ko) * 2013-04-19 2014-10-29 주식회사 포스코 도금 강재의 열간 프레스 성형 장치 및 이를 이용한 성형 방법
JP2020509179A (ja) * 2016-12-19 2020-03-26 アルセロールミタル ホットプレス成形されたアルミニウムメッキ鋼部品の製造方法
KR20200076071A (ko) * 2018-12-19 2020-06-29 주식회사 포스코 열간 성형용 알루미늄 도금강재의 가열 방법
KR20200080721A (ko) * 2018-12-27 2020-07-07 현대제철 주식회사 핫 스탬핑 부품 제조장치 및 이를 이용한 핫 스탬핑 부품 제조방법

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
HUE036195T2 (hu) * 2006-10-30 2018-06-28 Arcelormittal Bevonatolt acélszalagok, eljárások azok elõállítására, eljárások azok alkalmazására, azokból készített nyersdarabok, azokból készített sajtolt termékek, továbbá ilyen sajtolt terméket tartalmazó késztermékek
WO2009090443A1 (en) * 2008-01-15 2009-07-23 Arcelormittal France Process for manufacturing stamped products, and stamped products prepared from the same
EP2312005B1 (en) * 2008-07-11 2020-01-15 Nippon Steel Corporation Aluminum plated steel sheet for rapid heating hot-stamping, production method of the same and rapid heating hot-stamping method by using this steel sheet
KR101033361B1 (ko) * 2010-06-30 2011-05-09 현대하이스코 주식회사 생산성을 향상시킨 열간 프레스 성형체 제조방법
JP5825413B1 (ja) 2014-04-23 2015-12-02 Jfeスチール株式会社 熱間プレス成形品の製造方法
PL3156506T3 (pl) 2015-10-15 2019-06-28 Automation, Press And Tooling, A.P. & T Ab Sposób częściowego ogrzewania promieniowaniem do wytwarzania części hartowanych w procesie tłoczenia i układ do takiego wytwarzania
KR101819345B1 (ko) * 2016-07-07 2018-01-17 주식회사 포스코 균열전파 저항성 및 연성이 우수한 열간성형 부재 및 이의 제조방법
CN108588612B (zh) * 2018-04-28 2019-09-20 育材堂(苏州)材料科技有限公司 热冲压成形构件、热冲压成形用预涂镀钢板及热冲压成形工艺
CN109518114A (zh) * 2018-08-08 2019-03-26 宝山钢铁股份有限公司 带铝硅合金镀层的热冲压部件的制造方法及热冲压部件
CN110180957B (zh) * 2018-06-28 2020-11-03 镕凝精工新材料科技(上海)有限公司 一种镀锌钢板的热处理方法及热冲压工艺

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060054479A (ko) 2003-10-02 2006-05-22 신닛뽄세이테쯔 카부시키카이샤 금속 판재의 열간 프레스 성형 장치 및 열간 프레스 성형방법
US20120090741A1 (en) * 2010-10-15 2012-04-19 Benteler Automobiltechnik Gmbh Method for producing a hot-formed and press-hardened metal component
KR20140125562A (ko) * 2013-04-19 2014-10-29 주식회사 포스코 도금 강재의 열간 프레스 성형 장치 및 이를 이용한 성형 방법
JP2020509179A (ja) * 2016-12-19 2020-03-26 アルセロールミタル ホットプレス成形されたアルミニウムメッキ鋼部品の製造方法
KR20200076071A (ko) * 2018-12-19 2020-06-29 주식회사 포스코 열간 성형용 알루미늄 도금강재의 가열 방법
KR20200080721A (ko) * 2018-12-27 2020-07-07 현대제철 주식회사 핫 스탬핑 부품 제조장치 및 이를 이용한 핫 스탬핑 부품 제조방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4180146A4

Also Published As

Publication number Publication date
JP2023534207A (ja) 2023-08-08
EP4180146A4 (en) 2023-05-31
CN113909322B (zh) 2023-11-24
US20220008978A1 (en) 2022-01-13
US11590549B2 (en) 2023-02-28
KR20220007503A (ko) 2022-01-18
KR102240850B1 (ko) 2021-04-16
CN113909322A (zh) 2022-01-11
EP4180146A1 (en) 2023-05-17
US20230158559A1 (en) 2023-05-25
MX2021000379A (es) 2022-01-11

Similar Documents

Publication Publication Date Title
WO2017111525A1 (ko) 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
WO2016104879A1 (ko) 프레스성형시 내파우더링성이 우수한 hpf 성형부재 및 이의 제조방법
WO2018117552A1 (ko) 굽힘가공성이 우수한 초고강도 열연강판 및 그 제조방법
WO2018117543A1 (ko) 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 그들의 제조방법
WO2016104880A1 (ko) 내박리성이 우수한 hpf 성형부재 및 그 제조방법
WO2017111456A1 (ko) 고강도 및 우수한 내구성을 가지는 자동차용 부품 및 그 제조방법
WO2019231023A1 (ko) Twb 용접 특성이 우수한 열간성형용 al-fe 합금화 도금강판, 열간성형 부재 및 그들의 제조방법
WO2015099382A1 (ko) 우수한 굽힘성 및 초고강도를 갖는 열간 프레스 성형품용 강판, 이를 이용한 열간 프레스 성형품 및 이들의 제조방법
WO2020111640A1 (ko) 낮은 철손 및 우수한 표면품질을 갖는 무방향성 전기강판 및 그 제조방법
WO2018038499A1 (ko) 내골링성, 성형성 및 실러 접착성이 우수한 용융 아연도금 강판 및 그 제조방법
WO2016105059A1 (ko) 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법
WO2019009675A1 (ko) 재질편차가 적고 표면품질이 우수한 초고강도 열연강판 및 그 제조방법
WO2017105025A1 (ko) 화성처리성 및 굽힘가공성이 우수한 초고강도 강판 및 이의 제조방법
WO2018117724A1 (ko) 연속 생산성이 우수한 고강도 열연강판 및 냉연강판 그리고 표면 품질 및 도금 밀착성이 우수한 고강도 용융아연도금강판 및 이들의 제조방법
WO2018056792A1 (ko) 내식성 및 점용접성이 우수한 열간성형용 냉연강판, 열간성형부재 및 그들의 제조방법
WO2022010030A1 (ko) 생산성, 용접성 및 성형성이 우수한 열간 프레스 성형 부재의 제조 방법
WO2016105062A1 (ko) 취성균열전파 저항성이 우수한 고강도 강재 및 그 제조방법
WO2018117523A1 (ko) 고온연신 특성이 우수한 고강도 강판, 온간프레스 성형부재 및 이들의 제조방법
WO2015099459A1 (ko) 성형성 및 내리징성이 향상된 페라이트계 스테인리스강 및 그 제조방법
WO2018117675A1 (ko) 가공성이 우수한 냉연강판 및 그 제조방법
WO2011071196A1 (ko) 타이타늄합금 볼트 제조설비 및 이를 이용한 타이타늄 합금볼트의 제조방법
WO2020130675A1 (ko) 굽힘 가공성이 우수한 고강도 냉연강판 및 그 제조방법
WO2019132408A1 (ko) 등방성이 우수한 초극박 열연강판 및 그 제조방법
WO2019132400A1 (ko) 재질편차가 적고, 신장플랜지성 및 실수율이 우수한 고강도 냉연강판 및 그 제조방법
WO2022097965A1 (ko) 내수소취성 및 내충돌성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944436

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501479

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020944436

Country of ref document: EP

Effective date: 20230210