KR20170111192A - 무인 비행체 - Google Patents

무인 비행체 Download PDF

Info

Publication number
KR20170111192A
KR20170111192A KR1020160036133A KR20160036133A KR20170111192A KR 20170111192 A KR20170111192 A KR 20170111192A KR 1020160036133 A KR1020160036133 A KR 1020160036133A KR 20160036133 A KR20160036133 A KR 20160036133A KR 20170111192 A KR20170111192 A KR 20170111192A
Authority
KR
South Korea
Prior art keywords
main body
airbag
air vehicle
unmanned air
unit
Prior art date
Application number
KR1020160036133A
Other languages
English (en)
Other versions
KR102476233B1 (ko
Inventor
최재훈
김성훈
김세진
홍승권
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to KR1020160036133A priority Critical patent/KR102476233B1/ko
Priority to PCT/KR2017/003128 priority patent/WO2017164666A1/ko
Priority to CN201790000711.6U priority patent/CN209037850U/zh
Publication of KR20170111192A publication Critical patent/KR20170111192A/ko
Application granted granted Critical
Publication of KR102476233B1 publication Critical patent/KR102476233B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/52Skis or runners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/54Floats
    • B64C25/56Floats inflatable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/32Alighting gear characterised by elements which contact the ground or similar surface 
    • B64C25/58Arrangements or adaptations of shock-absorbers or springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/62Deployment
    • B64D17/72Deployment by explosive or inflatable means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/80Parachutes in association with aircraft, e.g. for braking thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/04Landing aids; Safety measures to prevent collision with earth's surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/02Arrangements or adaptations of signal or lighting devices
    • B64C2201/141
    • B64C2201/18
    • B64C2201/185
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D2201/00Airbags mounted in aircraft for any use
    • B64D2700/62184
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/14Flying platforms with four distinct rotor axes, e.g. quadcopters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • B64U30/26Ducted or shrouded rotors

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Remote Sensing (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Toys (AREA)

Abstract

본 실시예는 본체; 상기 본체에 장착되는 촬상 장치; 상기 본체의 현재 상태를 감지하는 감지 유닛; 및 상기 촬상 장치 및 감지 유닛과 통신하는 컨트롤러를 포함하며, 상기 컨트롤러는 상기 본체의 이상 상태 판단시 상기 촬상 장치에서 획득한 지상 이미지를 이용하여 적어도 하나의 안전 위치를 선정하고, 상기 본체를 상기 안전 위치로 이동시키는 무인 비행체에 관한 것이다. 이에 따라, 무인 비행체는 촬상장치에 의한 매핑을 통해 안전하게 착륙할 수 있는 안전 위치를 파악하고 안전 위치에 착륙함으로써, 무인 비행체의 기체 안전과 대인, 대물에 대한 피해를 방지할 수 있다.

Description

무인 비행체{Drone}
실시 예는 무인 비행체인 드론에 관한 것이다.
근래 들어, 무인 비행체(예: 드론)는, 간편성, 신속성, 경제성 등 여러 이점 때문에, 군사용 외에도, 물류 배송, 재난 구조, 방송 레저 등과 같은 다양한 분야에서 활용되고 있다. 그에 따라, 무인 비행체의 수요는 폭발적으로 늘어나고 있다.
무인 비행체는 여러 많은 장점들을 구비하고 있지만, 바람 등 외부 환경의 변화와 운전 조작의 미숙으로 인해 추락의 우려가 높다.
예컨데, 이러한 무인 비행체 추락의 경우 무인 비행체의 조작 미숙이나 운용 미숙이 가장 큰 비중을 차지하고 있다. 다음으로는 무인 비행체의 전자적인 오류로 통제불능 상태인 경우가 발생하여 무인 비행체가 추락한다. 그리고, 풍속이나 기상적 원인에 의하여 무인 비행체가 추락하는 경우가 발생한다.
그에 따라, 무인 비행체 및 무인 비행체에 설치되는 여러 부품들이 워낙 고가이므로, 무인 비행체에 따른 파손으로 인한 경제적 피해는 심각할 수밖에 없다.
더욱이, 무인 비행체가 추락하는 경우, 무인 비행체 자체의 파손으로 인한 엄청난 경제적 피해뿐만 아니라, 대인 및 대물에 대한 2차 피해의 위험성 또한 심각하다.
이처럼 무인 비행체의 추락으로 발생되는 피해를 최소화하고 무인 비행체를 상용화하기 위해서는 비행체의 안정적인 운용방안이 필요하고, 무인 비행체의 통제가 불가능하여 자유낙하시 안정적인 착륙을 도모할 수 있는 안정 장치가 요구되고 있는 실정이다.
통제불능 또는 긴급상황에 따른 무인 비행체의 기체 안전과 대인, 대물에 대한 피해를 방지할 수 있는 무인 비행체를 제공한다.
또한, 촬상장치에 의한 매핑을 통해 긴급 착륙 또는 추락시 안전하게 착륙할 수 있는 안전 위치를 파악하고 안전 위치로 유도되는 무인 비행체를 제공한다.
또한, 대인의 대피 시간을 확보하고, 안전 위치로 무인 비행체가 유도되도록 제어할 수 있는 시간을 확보하기 위해 낙하 속도를 지연시킬 수 있는 무인 비행체를 제공한다.
또한, 무인 비행체 자체의 파손을 방지하고, 대인 또는 대물에 대한 2차 피해를 방지하는 안전 장치를 구비하는 무인 비행체를 제공한다.
실시예가 해결하고자 하는 과제는 이상에서 언급된 과제에 국한되지 않으며 여기서 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제는 본 발명의 일실시예에 따라, 본체; 상기 본체에 장착되는 촬상 장치; 상기 본체의 현재 상태를 감지하는 감지 유닛; 및 상기 촬상 장치 및 감지 유닛과 통신하는 컨트롤러를 포함하며, 상기 컨트롤러는 상기 본체의 이상 상태 판단시 상기 촬상 장치에서 획득한 지상 이미지를 이용하여 적어도 하나의 안전 위치를 선정하고, 상기 본체를 상기 안전 위치로 이동시키는 무인 비행체에 의하여 달성된다.
상기 컨트롤러는 상기 감지 유닛의 정보를 이용하여 이동 가능한 거리를 산출할 수 있다.
그리고, 상기 컨트롤러는 상기 안전 위치가 복수 개인 경우, 상기 이동 가능한 거리 내에서 착륙 안전도가 가장 높은 지점을 착륙 지점으로 선택할 수 있다.
여기서, 상기 착륙 안정도는 상기 촬상 장치에 의한 상기 지상의 물체 존재 여부, 상기 물체의 집중도, 상기 물체의 움직임 여부 및 상기 지상의 평탄도 중 적어도 어느 하나 또는 둘 이상의 조합을 포함할 수 있다.
또한, 상기 감지 유닛은 가속도 센서, 자이로 센서, 방향 센서, 적외선 센서, 초음파 센서, 진동 센서, 충격 센서, 고도 센서, 풍향 센서, 풍속 센서, 전원감지센서 중 적어도 하나 또는 둘 이상의 조합을 포함할 수 있다.
한편, 상기 무인 비행체는 상기 본체의 상부에 탈착 가능하게 배치되는 낙하산 유닛을 더 포함할 수 있다.
상기 낙하산 유닛은, 내부에 기체가 공급되어 전개되는 튜브형 낙하산 본체와, 상기 본체와 상기 튜브형 낙하산 본체 사이에 배치되는 복수 개의 로프를 포함하며, 상기 컨트롤러는 상기 로프의 각각의 길이를 조절하여 상기 본체가 상기 안전 위치로 유도되게 할 수 있다.
상기 기체는 질소보다 질량이 낮은 불활성 가스로 제공될 수 있다.
또한, 상기 본체는, 몸체; 상기 몸체에서 돌출되게 배치되는 복수 개의 아암; 상기 아암의 단부에 배치되는 추진체; 및 상기 몸체의 하부에 배치되는 스키드를 포함할 수 있다.
또한, 상기 무인 비행체는 상기 스키드에 탈착 가능하게 설치되는 복수 개의 에어백 유닛을 더 포함할 수 있다.
여기서, 상기 에어백 유닛은, 에어백; 상기 에어백에 기체를 공급하는 에어백 캡슐; 및 상기 에어백에 배치되는 복수 개의 토출구를 포함할 수 있다.
그리고, 상기 기체는 질소보다 질량이 낮은 불활성 가스로 제공될 수 있다.
또한, 상기 토출구는 전개된 상기 에어백의 측면에 복수 개가 배치될 수 있다.
또한, 상기 토출구는 전개된 상기 에어백의 하면에 복수 개가 배치될 수 있다.
그리고, 상기 토출구는 조리개 타입(diaphragm type)으로 제공될 수 있다.
또한, 상기 컨트롤러는 상기 에어백 유닛 중 적어도 어느 하나에 배치되는 상기 토출구를 통해 상기 에어백 내부의 기체를 토출하여 상기 본체의 자세를 제어할 수 있다.
또한, 상기 몸체와 상기 스키드 사이에는 충격을 완화하는 충격 완화 서스펜션이 배치될 수 있다.
한편, 상기 무인 비행체는 상기 본체의 이상 상태시, 상기 이상 상태를 인지시키는 인지 유닛을 더 포함할 수 있다.
여기서, 상기 인지 유닛은 피코 프로젝터 또는 레이저 포인터로 제공될 수 있다.
또한, 상기 인지 유닛은 방향성 스피커로 제공될 수 있다.
그리고, 주변 소음을 감지하여 상기 지향성 스피커의 소리 크키를 결정하는 마이크를 더 포함할 수 있다.
상기와 같은 구성을 갖는 본 발명의 일실시예에 따른 무인 비행체는 촬상장치에 의한 매핑을 통해 안전하게 착륙할 수 있는 안전 위치를 파악하고 안전 위치에 착륙함으로써, 무인 비행체의 기체 안전과 대인, 대물에 대한 피해를 방지할 수 있다.
또한, 상기 무인 비행체는 감지 유닛과 촬상 장치를 이용하여 복수 개의 안전 위치(S)를 지속적으로 선별하고, 상기 무인 비행체의 이상 상태시 낙하산 본체와 에어백을 전개하고 선별된 안전 위치(S)를 기반으로 착륙하고자 하는 안전 위치(S)를 재선정할 수 있다.
또한, 상기 무인 비행체는 낙하산 유닛을 이용하여 상기 무인 비행체의 이상 상태시 낙하 속도를 지연시키고, 안전 위치로 유도될 수 있다.
또한, 상기 무인 비행체는 에어백 유닛을 이용하여 상기 무인 비행체의 이상 상태시 낙하 속도를 지연시키고 안전 위치로 유도함과 동시에 대인, 대물에 대한 피해 및 기체 손상을 방지할 수 있다.
이때, 상기 무인 비행체는 에어백 유닛의 토출구를 통해 분사되는 기체의 양을 조절하여 착륙하고자 하는 안전 위치(S)로 유도될 수 있다.
특히, 상기 무인 비행체의 에어백 유닛은 상기 무인 비행체의 하부에서 전개되기 때문에, 무인 비행체의 기체 안전과 대인, 대물에 대한 피해를 방지할 수 있다.
이를 위해, 낙하산 본체가 전개된 상태에 의하여 상기 무인 비행체의 본체는 낙하산의 하부측에 위치하게 되며, 그에 따라 전개된 에어백은 본체의 하부에 배치된다. 설사, 상기 무인 비행체의 이동시 자세가 불균형하게 되더라도, 감지 유닛을 통한 정보를 기반으로 하여 컨트롤러는 토출구를 통해 에어백 내부에 공급된 기체를 토출하여 자세를 제어할 수 있다. 이에, 전개된 에어백이 우선적으로 지면 또는 지상에 위치하는 물체와 충돌하게 되어 충돌에 따른 피해를 최소화할 수 있다.
그리고, 상기 무인 비행체의 인지 유닛을 이용하여 대인에게 상기 무인 비행체가 이상 상태임을 인지시키고, 상기 무인 비행체가 착륙하기 위한 이동 경로상 또는 착륙 지점으로 대인이 진입하는 것을 방지할 수 있다.
도 1은 실시예에 따른 무인 비행체를 나타내는 사시도이고,
도 2는 실시예에 따른 무인 비행체를 나타내는 저면도이고,
도 3은 실시예에 따른 무인 비행체를 나타내는 정면도이고,
도 4는 실시예에 따른 무인 비행체의 컨트롤러의 제어 관계를 나타내는 블럭도이고,
도 5는 실시예에 따른 무인 비행체가 착륙하도록 선별된 안전 위치를 나타내는 도면이고,
도 6은 실시예에 따른 무인 비행체의 낙하산 유닛을 나타내는 도면이고,
도 7은 실시예에 따른 무인 비행체의 전개된 에어백 유닛을 나타내는 사시도이고,
도 8은 실시예에 따른 무인 비행체의 전개된 에어백 유닛을 나타내는 저면도이고,
도 9 및 10은 실시예에 따른 에어백 유닛의 토출구의 동작을 나타내는 도면이고,
도 11는 실시예에 따른 무인 비행체의 인지 유닛의 광 조사를 나타내는 도면이고,
도 12은 실시예에 따른 무인 비행체의 낙하산 본체와 에어백이 전개된 상태에서 산출된 이동 거리를 나타내는 도면이고,
도 13는 실시예에 따른 무인 비행체의 착륙 지점 선정을 나타내는 도면이고,
도 14는 실시예에 따른 무인 비행체가 착륙 지점으로 이동하는 도면이고,
도 15는 실시예에 따른 무인 비행체의 동작을 나타내는 블럭도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
제2, 제1 등과 같이 서수를 포함하는 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되지는 않는다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제2 구성요소는 제1 구성요소로 명명될 수 있고, 유사하게 제1 구성요소도 제2 구성요소로 명명될 수 있다. 및/또는 이라는 용어는 복수의 관련된 기재된 항목들의 조합 또는 복수의 관련된 기재된 항목들 중의 어느 항목을 포함한다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 그 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 중간에 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 중간에 다른 구성요소가 존재하지 않는 것으로 이해되어야 할 것이다.
실시 예의 설명에 있어서, 어느 한 구성요소가 다른 구성요소의 " 상(위) 또는 하(아래)(on or under)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)(on or under)는 두 개의 구성요소가 서로 직접(directly)접촉되거나 하나 이상의 다른 구성요소가 상기 두 구성요소 사이에 배치되어(indirectly) 형성되는 것을 모두 포함한다. 또한 '상(위) 또는 하(아래)(on or under)'로 표현되는 경우 하나의 구성요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지게 된다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
이하, 첨부된 도면을 참조하여 실시예를 상세히 설명하되, 도면 부호에 관계없이 동일하거나 대응하는 구성 요소는 동일한 참조 번호를 부여하고 이에 대한 중복되는 설명은 생략하기로 한다.
도 1 내지 도 14를 참조하여 살펴보면, 본 발명의 일실시예에 따른 무인 비행체(1)는 본체(100), 동력공급원(200), 감지 유닛(300), 촬상 장치(400), 낙하산 유닛(500), 에어백 유닛(600), 인지 유닛(700) 및 컨트롤러(800)를 포함할 수 있다.
본체(100)는 상기 무인 비행체(1)의 외형을 형성할 수 있다. 그리고, 감지 유닛(300), 촬상 장치(400), 낙하산 유닛(500), 에어백 유닛(600), 인지 유닛(700) 및 컨트롤러(800) 각각이 본체(100)의 일측 또는 내부에 배치될 수 있다.
본체(100)는 몸체(110), 아암(120), 복수 개의 추진체(130) 및 스키드(140)를 포함할 수 있다. 여기서, 추진체(130)로는, 도 1 내지 3에 도시된 바와 같이, 회전익이 이용될 수 있는바, 이하 회전익(130)으로 설명하기로 한다.
몸체(110)의 일측에서 돌출되게 배치되는 아암(120)의 단부에는 회전익(130)이 설치될 수 있다. 그리고, 몸체(110)에서 돌출되게 배치되는 아암(120)은 복수 개가 구비될 수 있다.
회전익(130)은 구동 모터(미도시)에 의해 회전하여 상기 무인 비행체(1)의 이륙, 착륙 또는 이동(수평 방향: x, 수직 방향: y)을 가능하게 한다. 여기서, 상기 구동 모터는 동력공급원(200)에서 공급되는 전원에 의해 구동된다. 도 1에 도시된 바와 같이, 본체(100)는 4개의 회전익(130)을 구비할 수 있으나 반드시 이에 한정되지 않는다.
회전익(130)은 비행이 가능하도록 다양한 개수로 배치될 수 있고, 다양한 위치에 장착될 수 있다. 또한, 본체(100)를 이동시킬 수 있는 구성이라면 다양한 구조로 변형될 수도 있다.
스키드(140)는 적어도 한 쌍이 몸체(110)의 하부에 배치될 수 있다. 그리고, 스키드(140)는 착륙시 지면에 먼저 닿게 되어 몸체(110)가 지면과의 직접적인 충돌을 방지할 수 있다.
스키드(140)는, 도 1 내지 도 3에 도시된 바와 같이, 외측을 향하여 소정의 각도(θ)로 경사지게 형성된 지지 프레임(141)과 착륙 프레임(142)을 포함할 수 있다.
착륙 프레임(142)은 봉 형상으로 형성되되, 지지 프레임(141)의 단부에서 소정의 곡률(R)을 갖도록 내측을 향하여 만곡되게 형성될 수 있다.
여기서 '외측'이라 함은 몸체(110)를 기준으로 바깥쪽을 의미하며, '내측'이라 함은 몸체(110)를 기준으로 안쪽을 의미한다.
소정의 각도(θ)로 경사지게 형성된 지지 프레임(141)은 상기 무인 비행체(1)의 착륙시 가해지는 충격의 방향을 전환하여 몸체(110)에 직접적으로 가해지는 충격을 완화시킬 수 있다.
또한, 내측으로 만곡되게 형성된 착륙 프레임(140)은 몸체(110)의 하부에 가해질 수 있는 외력 또는 충격으로부터 몸체(110)를 보호할 수 있다.
즉, 지지 프레임(141)과 착륙 프레임(142)으로 이루어지는 스키드(140)는, 상술 된 바와 같이, 몸체(110)가 받는 충격을 완화하면서도 몸체(110)를 보호할 수 있다.
본 실시예는 본체(100)의 착륙시 스키드(140)가 지면에 안착하는 것을 그 예로 하고 있으나 반드시 이에 한정되는 것은 아니고, 스키드(140)의 구성은 필요에 따라 생략되거나 다른 착지 수단으로 대체될 수 있다.
한편, 본체(100)는 몸체(110)와 스키드(140) 사이에 배치되는 충격 완화 서스펜션(150)을 더 포함할 수 있다.
충격 완화 서스펜션(150)은 쇽업소버 또는 댐퍼의 구조를 포함하며, 착륙시 본체(100)에 가해지는 충격을 완화시킬 수 있다.
도 4를 참조하여 살펴보면, 동력공급원(200)은 컨트롤러(800)에 의해 제어되어 상기 구동 모터 이외에 감지 유닛(300), 촬상 장치(400), 낙하산 유닛(500), 에어백 유닛(600), 인지 유닛(700) 및 컨트롤러(800)에 전원을 공급할 수 있도록 전기적으로 연결될 수 있다.
동력공급원(200)은 주 배터리(210)와 보조 배터리(220)를 포함할 수 있다.
주 배터리(210)는 상기 무인 비행체(1)의 일반적인 동작 상태에서 전원을 공급한다.
보조 배터리(220)는 주 배터리(210)가 방전되거나 주 배터리(210)가 전원을 공급할 수 없는 상태일 때 상기 무인 비행체(1)의 각 구성 요소에 전원을 공급한다.
따라서, 컨트롤러(800)는, 감지 유닛(300) 중 전원감지센서에 의해 주 배터리(210)가 전원을 공급할 수 없다고 감지되는 경우, 보조 배터리(220)를 이용하여 주 배터리(210) 대신에 전원을 공급하도록 제어할 수 있다.
도 4를 참조하여 살펴보면, 감지 유닛(300)은 상기 무인 비행체(1)의 현재 상태를 감지하여 컨트롤러(800)에 신호를 송출할 수 있다. 여기서, 감지 유닛(300)은 본체(100)에 설치될 수 있다.
감지 유닛(300)은 상기 무인 비행체(1)의 가속도를 측정하는 가속도 센서, 회전각을 측정하는 자이로 센서, 방향센서, 적외선 센서, 초음파 센서, 진동 센서, 충격 센서, 고도를 측정하는 고도 센서, 바람의 방향을 감지하는 풍향 센서, 바람의 속도를 감지하는 풍속 센서, 전원을 감지하는 전원감지센서 중 적어도 하나 또는 둘 이상의 조합으로 구성될 수 있다.
가속도 센서, 자이로 센서, 방향 센서 및 고도 센서는 측정된 값 및 값의 변화량를 감지한다. 그리고, 적외선 센서와 초음파 센서는 고온부와 그 거리를 측정하고, 진동 센서는 일정 진동수 이상으로 진동하여 운항에 장애가 될 경우를 감지한다.
또한, 충격 센서는 비행 중 어떠한 물체와의 충격을 감지한다.
그에 따라, 컨트롤러(800)는 감지 유닛(300)에서 송출되는 신호를 수신하여 상기 무인 비행체(1)의 현재 상태가 동작할 수 있는 정상 상태인지 아니면 상기 무인 비행체(1)에 문제가 발생한 이상 상태인지를 파악할 수 있다.
촬상 장치(400)는 본체(100)의 하부에 설치되어 지상의 물체(대인, 대물)에 대한 영상 또는 이미지를 촬상할 수 있다.
예컨데, 촬상 장치(400)로 360도 카메라가 제공될 수 있으며, 상기 카메라는 지상의 건물형상, 도로형상, 나무형상, 사람 등을 촬상하고 이를 포함하는 이미지 정보를 컨트롤러(800)로 전송할 수 있다.
상기 이미지 정보를 수신한 컨트롤러(800)는 매핑 소프트웨어를 구비할 수 있는바, 가속도 센서, 자이로 센서, 방향센서, 고도 센서, 초음파 센서 등에서 측정된 값 및 값의 변화량과, 상기 이미지 정보를 이용하여 3차원 지형, 지물에 대한 매핑을 수행할 수 있다.
그에 따라, 컨트롤러(800)는, 도 5에 도시된 바와 같이, 상기 무인 비행체(1)의 상태를 파악하고, 상기 이미지 분석을 통해 상기 무인 비행체(1)가 안전하게 착륙할 수 있는 복수 개의 안전 위치(S)를 선정한다. 그리고, 컨트롤러(800)는 착륙 안전도를 고려하여 안전 위치(S1, S2, S3 ... Sn)를 순위별로 선정한다.
여기서, 상기 안전 위치(S)는 상기 무인 비행체(1)가 이동할 수 있는 범위(이동 거리(d1))를 기반으로 사람이 없는 곳이나 적은 곳 또는 지상의 물체 존재 여부, 상기 물체의 집중도, 촬상된 물체의 움직임 여부, 지상의 평탄도 및 상기 무인 비행체(1)의 상태 등을 고려한 착륙 안정도를 기반으로 지속적으로 업데이트될 수 있다.
따라서, 상기 무인 비행체(1)의 컨트롤러(800)는, 상기 무인 비행체(1)의 이상 상태 발생시, 이상 상태의 상기 무인 비행체(1)의 상태를 파악하고 정상 상태에서 선정된 안전 위치(S)의 순위별로 안전 위치(S1, S2, S3 ... Sn)를 재선별하게 된다.
그리고, 컨트롤러(800)는 재선별되어 선정된 안전 위치(S1, S2, S3 ... Sn) 중 착륙 안전도를 고려하여 착륙 지점(H)을 선정하고, 상기 무인 비행체(1)를 상기 착륙 지점(H)으로 유도하여 상기 무인 비행체(1)의 안전과 대인, 대물에 대한 피해를 방지할 수 있다.
즉, 상기 무인 비행체(1)는 기 설정된 시간마다 지속적으로 안전 위치(S)를 업데이트 하기 때문에, 상기 무인 비행체(1)의 이상 상태 발생시 맵핑(Mapping)에 걸리는 시간을 단축하여 빠르게 대처할 수 있다. 그에 따라, 상기 무인 비행체(1)는 이상 상태시에도 안전 위치(S) 중 선정된 착륙 지점(H)으로 빠르게 유도될 수 있다.
촬상 장치(500)를 이용하여 안전 위치(S)를 선정하는 실시예에 있어서, 정상 상태에서 맵핑으로 안전 위치(S)를 지속적으로 업데이트 하는 것을 그 예로 하고 있으나 반드시 이에 한정되는 것은 아니다. 예컨데, 상기 무인 비행체(1)의 이상 상태를 발견함과 동시에 컨트롤러(800)는 감시 유닛(300)과 촬상 장치(400)를 이용하여 복수 개의 안전 위치(S)를 선정하고 상기 무인 비행체(1)를 안전 위치(S) 중 선정된 착륙 지점(H)으로 빠르게 유도되게 할 수도 있다.
한편, 상기 무인 비행체(1)는 낙하산 유닛(500)을 더 포함할 수 있다.
낙하산 유닛(500)은 본체(100)의 상부에 탈착 가능하게 설치될 수 있다. 그에 따라, 낙하산 유닛(500)의 사용 또는 손상 등에 따른 교체를 용이하게 할 수 있다.
낙하산 유닛(500)은 상기 무인 비행체(1)의 이상 상태시에 상기 무인 비행체(1)의 낙하 속도를 지연시켜 선정된 안전 위치(S)로 상기 무인 비행체(1)가 유도되도록 제어할 수 있는 시간을 확보케 한다.
낙하산 유닛(500)은 본체(100)의 상부에 배치될 수 있다.
상기 무인 비행체(1)의 이상 상태시, 컨트롤러(800)는 낙하산 유닛(500)을 작동시켜 낙하산을 펼친다.
낙하산 유닛(500)은 튜브형 낙하산 본체(510), 복수 개의 로프(520) 및 로프(520) 각각의 길이를 조절하는 로프 조절부(미도시)를 포함할 수 있다.
튜브형 낙하산 본체(510)에는 내부에 기체를 공급할 수 있는 캡슐(미도시)이 설치될 수 있다. 따라서, 상기 무인 비행체(1)의 이상 상태시, 상기 캡슐은 튜브형 낙하산 본체(510)에 기체를 공급하여 낙하산으로서의 역할을 수행케 한다.
여기서, 상기 기체로는 질소보다 질량이 낮은 기체가 주입될 수 있다. 예를 들어, 안정성과 낙하 속도 지연을 만족하도록 다른 원소와 화합하지 않는 불활성 가스 중 헬륨이 공급될 수 있다.
따라서, 상기 헬륨이 공급된 튜브형 낙하산 본체(510)는 본체(100)의 낙하 속도를 지연시킨다. 그에 따라, 튜브형 낙하산 본체(510)는 안전 위치(S)로 상기 무인 비행체(1)가 유도되도록 제어할 수 있는 시간을 일반 낙하산보다 더 확보할 수 있다.
복수 개의 로프(520)는 본체(100)의 몸체(110)와 튜브형 낙하산 본체(510) 사이에 설치될 수 있다.
그리고, 복수 개의 로프(520) 각각의 길이는 컨트롤러(800)에 의해 제어되는 상기 로프 조절부에 의해 조절될 수 있다.
그에 따라, 상기 무인 비행체(1)의 비상 착륙시, 컨트롤러(800)는 상기 로프 조절부를 이용하여 로프(520) 각각의 길이를 개별적으로 제어함으로써 상기 무인 비행체(1)가 선정된 안전 위치(S)로 유도될 수 있게 한다.
실시예에 있어서, 낙하산 유닛(500)이 방향을 조절할 수 있는 글라이딩 방식으로 제공되는 것을 그 예로 하고 있으나 반드시 이에 한정되는 것은 아니며, 낙하 속도를 지연시킬 수 있는 일반적인 낙하산이 이용될 수 있음은 물론이다.
상기 무인 비행체(1)는 본체(100) 자체의 파손을 방지하고, 대인 또는 대물에 대한 2차 피해를 방지하는 안전 장치를 더 포함할 수 있다.
상기 안전 장치로 에어백 유닛(600)이 제공될 수 있다.
도 2 및 도 7을 참조하여 살펴보면, 에어백 유닛(600)은 스키드(140)에 탈착 가능하게 설치될 수 있다. 즉, 에어백 유닛(600)은 착륙 프레임(142) 각각의 양 단부에 각각 탈착 가능하게 배치될 수 있다.
에어백 유닛(600)은 에어백(610), 에어백(610)의 일측에 배치되는 복수 개의 토출구(620) 및 내부에 기체를 공급할 수 있는 에어백 캡슐(630)을 포함할 수 있다.
따라서, 상기 무인 비행체(1)의 이상 상태시, 에어백 캡슐(630)은 에어백(610)에 기체를 공급하여 본체(100) 자체의 파손을 방지하고, 대인 또는 대물에 대한 2차 피해를 방지할 수 있다.
여기서, 상기 기체로는 질소보다 질량이 낮은 기체가 주입될 수 있다. 예를 들어, 안정성과 낙하 속도 지연을 만족하도록 다른 원소와 화합하지 않는 불활성 가스 중 헬륨이 공급될 수 있다.
따라서, 상기 헬륨이 공급된 튜브형 에어백(610)은 본체(100)의 낙하 속도를 지연시킨다. 그에 따라, 상기 에어백(610)은 안전 위치(S)로 상기 무인 비행체(1)가 유도되도록 제어할 수 있는 시간을 더 확보할 수 있다.
또한, 전개된 에어백(610)은 긴급 착륙 또는 추락시에도 본체(100) 자체의 파손을 방지하고, 대인 또는 대물에 대한 2차 피해를 방지할 수 있다.
도 7에 도시된 바와 같이, 에어백(610)의 전개시, 본체(100)의 하부에는 도넛 형상의 에어백이 형성될 수 있다. 여기서, 상기 에어백(610)은 네 개로 분할된 형태로 구현될 수 있다.
네 개로 분할된 에어백(610) 각각에는 토출구(620)가 마련되기 때문에, 컨트롤러(800)는 에어백(610) 각각에 마련된 토출구(620)를 개폐하여 에어백(610) 각각의 기체량을 조절할 수 있다. 따라서, 컨트롤러(800)는 에어백(610) 각각의 내부에 기체량을 조절하여 상기 무인 비행체(1)의 비행 균형(자세 제어)을 조절할 수 있다. 그에 따라, 상기 무인 비행체(1)는 촬상 장치(400)의 촬상 이미지를 이용하여 대인 또는 대물에 대한 충돌을 방지할 수도 있으며, 충돌시에도 에어백(610) 내부의 기체량을 조절하여 충돌에 따른 피해를 최소화할 수 있다.
예컨데, 물체와의 충돌시, 완전히 팽창된 에어백(610) 보다 불완전 팽창된 에어백(610)은 충격을 감소시킬 수 있다.
에어백(610)의 실시예에 있어서, 네 개로 분할된 형상을 그 예로 하고 있으나, 반드시 이에 한정되는 것은 아니며 도넛 형상을 유지하되 세 개 또는 다수 개의 에어백(610)이 사용될 수 있음은 물론이다.
토출구(620)는 에어백(610)의 하면과 측면에 각각 배치될 수 있다. 여기서, 토출구(620)의 개폐 및 개폐 정도는 컨트롤러(800)에 의해 제어된다.
하면에 배치된 토출구(620)를 통해 에어백(610) 내부의 기체를 토출함으로써, 상기 무인 비행체(1)는 상승하거나 또는 낙하 속도를 더욱 지연시킬 수 있다.
또한, 상기 무인 비행체(1)는 하면에 배치된 토출구(620)를 통해 배출되는 기체량을 조절하여 상기 무인 비행체(1)의 균형을 조절할 수 있다.
측면에 배치된 토출구(620)를 통해 에어백(610) 내부의 기체를 토출함으로써, 상기 무인 비행체(1)는 이동 방향 및 이동 거리를 조절할 수 있다. 또한, 상기 무인 비행체(1)는 측면에 배치된 토출구(620)를 통해 배출되는 기체량을 조절하여 상기 무인 비행체(1)의 비행 균형을 조절할 수 있다.
토출구(620)의 실시예에 있어서, 에어백(610)의 측면과 하면에 각각 토출구(620)가 배치된 것을 그 예로 하고 있으나 반드시 이에 한정되는 것은 아니며, 이동 방향 및 이동 거리와 균형 및 낙하 속도 지연을 고려하여 에어백(610)의 다양한 위치에 토출구(620)가 배치될 수 있음은 물론이다.
다만, 상기 무인 비행체(1)는 에어백(610)의 측면과 하면에 각각 별도의 토출구(620)를 배치하여 이동 방향 및 이동 거리를 조절과 낙하 속도 지연을 각각 개별적 제어함으로써, 컨트롤러(800)는 정밀하게 상기 무인 비행체(1)의 이동을 제어할 수 있다.
에어백(610) 내부의 기체가 토출되는 토출구(620)는 조리개 타입(diaphragm type)으로 제공될 수 있다.
도 9 및 도 10을 참조하여 살펴보면, 토출구(620)는 받침판(621), 복수 개의 날개(622) 및 조절 기어(623)를 포함할 수 있다.
환형의 받침판(621)에는 판상에 다수의 유선형의 날개(622)가 소용돌이 형상으로 회전이 가능하도록 배치될 수 있다.
그리고, 조절 기어(623)는 받침판(621)와 같은 환형으로 형성될 수 있다.
그에 따라, 받침판(621)에 연결된 다수의 날개(622)가 받침판(621)과 조절 기어(623) 사이에 배치되고, 받침판(621)이 에어백(610)에 설치됨으로써 토출구(620)를 형성하게 된다.
여기서, 조절 기어(623)의 외측 둘레에는 기어치가 형성될 수 있으며, 상기 기어치는 조절 기어(623)의 회동 조절을 정확하게 조절되게 한다. 그리고, 상기 기어치는 상기 구동원으로 이용되는 모터의 축에 연결된 기어와 형합할 수 있다.
따라서, 상기 모터에 의해 조절 기어(623)가 회전함에 따라 복수 개의 날개(622)는 소용돌이 형상으로 회전할 수 있다.
이하, 도 9 및 도 10을 참조하여 상기와 같은 구조로 되어 있는 토출구(620)의 작동원리를 설명한다.
조절 기어(623)가 일 방향으로 움직이게 되면, 도 9에 도시된 바와 같이, 에어백(610) 내의 유량을 감소시키기 위해 날개(622)가 원심방향으로 소용돌이처럼 회전하게 되고, 다수의 날개(622)가 원심방향으로 돌출되어 카메라 렌즈의 조리개와 같이 움직임으로써 토출 면적을 줄일 수 있게 된다. 필요에 따라서는 날개(622)의 회전 반경을 최대로 하여 유로를 완전히 차단할 수 있다.
도 10에 도시된 바와 같이, 반대로 유량의 증가하기 위해서는 조절 기어(623)를 타 방향으로 움직여 날개(622)를 원심방향의 반대로 회전시킴으로써, 토출구(620)를 개방할 수 있게 된다.
상기와 같이 받침판(621)에 연결된 다수의 날개(622)는 조리개 타입으로 동작을 하기 때문에 기체와 날개(622)가 접촉하는 부분이 전체적으로 균일하게 되어 기체의 양은 균일하게 토출이 된다.
상기와 같은 작동원리에 따라, 토출부(620)는 카메라 렌즈의 조리개처럼 작동하기 때문에 기체의 토출량을 조절하면서도 기체가 균일하게 토출되게 한다.
한편, 본체(100)의 상부에서 전개된 낙하산 본체(510)와 함께 본체(100)의 하부에서 전개된 에어백 유닛(600)은 상기 무인 비행체(1)의 비행 균형(자세 제어)을 유지케 한다.
예컨데, 낙하산 본체(510)가 전개된 상태에 의하여 본체(100)는 낙하산 본체(510)의 하부측에 위치하게 되며, 그에 따라, 에어백(610)은 본체(100)의 하부에서 전개되기 때문에, 무인 비행체의 기체 안전과 대인, 대물에 대한 피해를 방지할 수 있다.
즉, 낙하산 본체(510)가 전개된 상태에 의하여 상기 무인 비행체(1)의 본체(100)는 낙하산의 하부측에 위치하게 되며, 그에 따라 전개된 에어백(610)은 본체(100)의 하부에 배치된다. 설사, 상기 무인 비행체(1)의 이동시 자세가 불균형하게 되더라도, 감지 유닛(300)을 통한 정보를 기반으로 하여 컨트롤러(800)는 토출구(620)를 통해 에어백(610) 내부에 공급된 기체를 토출하여 자세를 제어할 수 있다. 이에, 전개된 에어백(610)이 우선적으로 지면 또는 지상에 위치하는 물체와 충돌하게 되어 충돌에 따른 피해를 최소화할 수 있다.
도 2 및 도 11를 참조하여 살펴보면, 상기 무인 비행체(1)는 상기 무인 비행체(1)가 이상 상태에 따라 비상 착륙, 추락 등임을 인지시키는 인지 유닛(700)을 포함할 수 있다.
상기 무인 비행체(1)는 정상 상태에서 선별된 복수 개의 안전 위치(S)를 기반으로, 상기 무인 비행체(1)의 이상 상태시 낙하산 본체(510)와 에어백(610)의 전개 후 착륙 안전도를 고려하여 안전 위치(S)를 재선정할 수 있다.
물론, 정상 상태에서 선별된 복수 개의 안전 위치(S) 없이 낙하산 본체(510)와 에어백(610)의 전개 후 착륙 안전도를 고려하여 안전 위치(S)를 선정할 수도 있다.
그에 따라, 상기 무인 비행체(1)의 인지 유닛(700)은 안전 위치(S) 중 착륙하고자 하는 착륙 지점(H)의 주변에 위치하는 대인에게 상기 무인 비행체(1)가 이상 상태임을 인지시킨다.
상기 무인 비행체(1)의 인지 유닛(700)은 선정된 착륙 지점(H)을 대인이 인지할 수 있도록 광을 조사하는 피코 프로젝터 또는 레이저 포인터로 제공될 수 있다.
상기 레이저 포인터의 경우 지면에 착륙 지점(H)을 표시하여 대인에게 인지시킴으써, 대인이 상기 무인 비행체(1)가 착륙하고자 하는 착륙 지점(H)으로 이동하는 것을 방지한다.
또한, 상기 피코 프로젝터의 경우 지면에 착륙 지점(H)을 표시함과 동시에 상기 무인 비행체(S)가 이동부터 착륙까지의 이동 경로를 대인에게 인지시킴으로써 대인이 상기 무인 비행체(S)의 이동 경로 또는 착륙 지점(H)으로 진입하는 것을 방지할 수 있다.
한편, 인지 유닛(700)은 지향성 스피커로 제공될 수 있다.
상기 지향성 스피커는 상기 무인 비행체(1)의 하방에 위치하는 대인에게 소리를 이용하여 상기 무인 비행체(1)의 이상 상태를 인지시킴으로써, 대인이 상기 무인 비행체(1)의 하방에서 대피할 수 있게 한다.
이때, 상기 무인 비행체(1)는 주변 소음을 감지하는 마이크를 더 포함할 수 있다.
따라서, 컨트롤러(800)는 상기 마이크를 통해 감지된 소음을 분석하여 상기 지향성 스피커의 소리 크기를 결정할 수 있다.
인지 유닛(700)을 설명함에 있어서, 피코 프로젝터, 레이저 포인터 또는 지향성 스피커로 제공되는 것을 그 예로 하고 있으나 반드시 이에 한정되는 것은 아니며, 이들 중 적어도 하나 또는 이들의 조합으로 제공될 수도 있다.
이하, 도 12 내지 도 14를 참조하여, 상기 무인 비행체(1)의 동작에 대하여 살펴보기로 한다.
도 12에 도시된 바와 같이, 낙하산 본체(510)와 에어백(610)이 전개된 상태에서, 상기 무인 비행체(1)의 컨트롤러(800)는 감지 유닛(300)과 촬상 장치(400)에서 획득한 지상 이미지를 이용하여 상기 무인 비행체(1)가 이동할 수 있는 거리(d2)를 산출한다.
예컨데, 상기 무인 비행체(1)의 낙하 속도, 풍향, 풍속, 토출구(620)를 통해 토출되는 토출 가능량 등을 이용하여 컨트롤러(800)는 상기 무인 비행체(1)가 이동할 수 있는 거리(d2)를 산출한다.
도 13에 도시된 바와 같이, 컨트롤러(800)는 이동할 수 있는 거리(d2) 내에서 복수 개의 안전 위치(S)를 선정하고, 착륙 안정도를 고려하여 선정된 안전 위치(S)를 순위별로 선별하여 착륙 지점(H)을 선정한다.
이때, 안전 위치(S)는 지상의 물체 존재 여부, 지상의 평탄도 등을 고려하여 복수 개가 선정될 수 있다. 그리고, 컨트롤러(800)는 대인의 집중도와 대인의 이동 경로 등을 고려하여 순위별로 안전 위치(S1, S2, S3 ...)를 선별하고 착륙 지점(H)을 선정할 수 있다.
이때, 정상 상태에서 선정된 복수 개의 안전 위치(S)를 이용하여 안전 위치(S)를 재선정함으로써 착륙 지점(H)을 빠르게 선정할 수도 있다.
여기서, 대인의 이동 경로는 촬상 장치(400)를 통해 기 설정된 시간 간격으로 획득되는 이미지를 비교하여 예측될 수 있다.
도 14를 참조하여 살펴보면, 상기 무인 비행체(1)는 인지 유닛(700)을 이용하여 상기 무인 비행체(1)가 이상 상태임을 인지시킬 수 있다.
특히, 레이저 포인터 또는 피코 프로젝터를 이용하여 착륙 지점(H)으로 대인이 진입하는 것을 방지할 수 있다.
그리고, 상기 무인 비행체(1)는 착륙 지점(H)으로 이동하여 기체 안전과 대인, 대물에 대한 피해를 방지할 수 있다.
도 15를 참조하여 종합해보면, 상기 무인 비행체(1)는 무인 비행체(1)의 동작을 인지하는 단계(S10), 무인 비행체(1)의 상태를 확인하는 단계(S20), 촬상 장치를 이용하여 촬상하는 단계(S30), 착륙 지점을 선정하는 단계(S40), 무인 비행체(1)의 이상 상태를 감지하는 단계(S50), 안전 시스템을 가동하는 단계(S60) 및 착륙(S70)를 포함할 수 있다.
무인 비행체(1)의 동작을 인지하는 단계(S10)에서는 감지 유닛(300)을 이용하여 무인 비행체(1)의 동작하는지 여부를 인지할 수 있다.
무인 비행체(1)의 상태를 확인하는 단계(S20)에서는 감지 유닛(300)을 이용하여 무인 비행체(1)의 상태를 확인할 수 있다. 예를 들어, 감지 유닛(300)을 이용하여 무인 비행체(1)의 고도, 기울기, 속도, 가속도 등을 지속적으로 확인함으로써, 무인 비행체(1)의 현재 상태를 확인할 수 있다.
촬상 장치를 이용하여 촬상하는 단계(S30)에서는 촬상 장치(400)를 이용하여, 지상의 물체(대인, 대물)에 대한 영상 또는 이미지를 촬상할 수 있다.
착륙 지점을 선정하는 단계(S40)에서는 감지 유닛(300)과 촬상 장치(400)를 통해 얻은 이미지를 이용하여 복수 개의 안전 위치(S)를 선별한다. 그리고, 선정된 안전 위치(S)를 기반으로 착륙 안전도를 고려하여 착륙하고자 하는 착륙 지점(H)을 선정할 수 있다.
무인 비행체(1)의 이상 상태를 감지하는 단계(S50)에서는 감지 유닛(300)을 이용하여 무인 비행체(1)가 정상 상태 인지 이상 상태인지를 확인할 수 있다.
무인 비행체(1)가 정상 상태라면 S20 단계부터 S50 단계를 반복하여 수행하게 된다.
만일, 상기 무인 비행체(1)가 이상 상태라고 확인되면, 안전 시스템을 가동(S60)하는 단계를 수행한 후 정상 상태에서 선별된 복수 개의 안전 위치(S)를 기반으로 착륙 안전도를 고려하여 안전 위치(S)를 재선정할 수 있다. 여기서, 이상 상태로는 배터리 방전, 회전익(130) 고장, 자유낙하감지, 통신 에러, 충돌 등과 같은 이상 상황이 감지된 상태를 의미할 수 있다.
안전 시스템을 가동하는 단계(S60)에서는 낙하산 본체(510)와 에어백(610)을 전개하여 무인 비행체(1)의 낙하 속도를 지연시킬 수 있다.
이때, 상기 무인 비행체(1)는 에어백 유닛(600)의 토출구(620)를 통해 분사되는 기체의 양을 조절하여 착륙하고자 하는 착륙 지점(H)으로 유도될 수 있다.
또한, 상기 무인 비행체(1)는 로프(520) 각각의 길이를 개별적으로 제어하여 착륙하고자 하는 착륙 지점(H)으로 유도될 수 있다.
또한, 인지 유닛(700)을 이용하여 대인에게 상기 무인 비행체(1)가 이상 상태임을 인지시키고, 상기 무인 비행체(1)가 착륙하기 위한 이동 경로상 또는 착륙 지점(H)으로 대인이 진입하는 것을 방지할 수 있다.
만일, 상기 무인 비행체(1)의 회전익(130) 중 일부가 구동 가능한 상태라면 상기 무인 비행체(1)는 구동 가능한 회전익(130)을 파악하고, 구동 가능한 회전익(130)을 구동하여 낙하 속도 지연시키면서, 착륙 지점(H)에 착륙할 수 있다.
그에 따라, 상기 무인 비행체(1)는 안전하게 착륙 지점(H)으로 착륙할 수 있다(S70).
한편, 상기 무인 비행체(1)는 회전익(130)이 구동될 수 없을 때, 낙하산 유닛(500) 또는 에어백 유닛(600)을 이용하여 상기 무인 비행체(1)를 구동하는 것을 그 예로 하고 있으나 반드시 이에 한정되지 않는다. 즉, 별도의 보조 추진체를 구비하여 상기 무인 비행체(1)를 착륙 지점(H)으로 안전하게 착륙시킬 수도 있다.
상기에서는 본 발명의 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 그리고, 이러한 수정과 변경에 관계된 차이점들을 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.
1 : 무인 비행체
100 : 본체 200 : 동력공급원
300 : 감지 유닛 400 : 촬상 장치
500 : 낙하산 유닛 600 : 에어백 유닛
700 : 인지 유닛 800 : 컨트롤러
S : 안전 위치 H : 착륙 지점

Claims (21)

  1. 본체;
    상기 본체에 장착되는 촬상 장치;
    상기 본체의 현재 상태를 감지하는 감지 유닛; 및
    상기 촬상 장치 및 감지 유닛과 통신하는 컨트롤러를 포함하며,
    상기 컨트롤러는 상기 본체의 이상 상태 판단시 상기 촬상 장치에서 획득한 지상 이미지를 이용하여 적어도 하나의 안전 위치를 선정하고, 상기 본체를 상기 안전 위치로 이동시키는 무인 비행체.
  2. 제1항에 있어서,
    상기 컨트롤러는 상기 감지 유닛의 정보를 이용하여 이동 가능한 거리를 산출하는 무인 비행체.
  3. 제2항에 있어서,
    상기 컨트롤러는 상기 안전 위치가 복수 개인 경우, 상기 이동 가능한 거리 내에서 착륙 안전도가 가장 높은 지점을 착륙 지점으로 선택하는 무인 비행체.
  4. 제4항에 있어서,
    상기 착륙 안정도는
    상기 촬상 장치에 의한 상기 지상의 물체 존재 여부, 상기 물체의 집중도, 상기 물체의 움직임 여부 및 상기 지상의 평탄도 중 적어도 어느 하나 또는 둘 이상의 조합을 포함하는 무인 비행체.
  5. 제1항에 있어서,
    상기 감지 유닛은
    가속도 센서, 자이로 센서, 방향 센서, 적외선 센서, 초음파 센서, 진동 센서, 충격 센서, 고도 센서, 풍향 센서, 풍속 센서, 전원감지센서 중 적어도 하나 또는 둘 이상의 조합을 포함하는 무인 비행체.
  6. 제1항에 있어서,
    상기 본체의 상부에 탈착 가능하게 배치되는 낙하산 유닛을 더 포함하는 무인 비행체.
  7. 제6항에 있어서,
    상기 낙하산 유닛은,
    내부에 기체가 공급되어 전개되는 튜브형 낙하산 본체와,
    상기 본체와 상기 튜브형 낙하산 본체 사이에 배치되는 복수 개의 로프를 포함하며,
    상기 컨트롤러는 상기 로프의 각각의 길이를 조절하여 상기 본체가 상기 안전 위치로 유도되게 하는 무인 비행체.
  8. 제7항에 있어서,
    상기 기체는 질소보다 질량이 낮은 불활성 가스로 제공되는 무인 비행체.
  9. 제1항에 있어서,
    상기 본체는,
    몸체;
    상기 몸체에서 돌출되게 배치되는 복수 개의 아암;
    상기 아암의 단부에 배치되는 추진체; 및
    상기 몸체의 하부에 배치되는 스키드를 포함하는 무인 비행체.
  10. 제9항에 있어서,
    상기 스키드에 탈착 가능하게 설치되는 복수 개의 에어백 유닛을 더 포함하는 무인 비행체.
  11. 제10항에 있어서,
    상기 에어백 유닛은,
    에어백;
    상기 에어백에 기체를 공급하는 에어백 캡슐; 및
    상기 에어백에 배치되는 복수 개의 토출구를 포함하는 무인 비행체.
  12. 제11항에 있어서,
    상기 기체는 질소보다 질량이 낮은 불활성 가스로 제공되는 무인 비행체.
  13. 제11항에 있어서,
    상기 토출구는 전개된 상기 에어백의 측면에 복수 개가 배치되는 무인 비행체.
  14. 제11항에 있어서,
    상기 토출구는 전개된 상기 에어백의 하면에 복수 개가 배치되는 무인 비행체.
  15. 제11항에 있어서,
    상기 토출구는 조리개 타입(diaphragm type)으로 제공되는 무인 비행체.
  16. 제11항에 있어서,
    상기 컨트롤러는 상기 에어백 유닛 중 적어도 어느 하나에 배치되는 상기 토출구를 통해 상기 에어백 내부의 기체를 토출하여 상기 본체의 자세를 제어하는 무인 비행체.
  17. 제9항에 있어서,
    상기 몸체와 상기 스키드 사이에는 충격을 완화하는 충격 완화 서스펜션이 배치되는 무인 비행체.
  18. 제1항에 있어서,
    상기 본체의 이상 상태시, 상기 이상 상태를 인지시키는 인지 유닛을 더 포함하는 무인 비행체.
  19. 제18항에 있어서,
    상기 인지 유닛은 피코 프로젝터 또는 레이저 포인터로 제공되는 무인 비행체.
  20. 제18항에 있어서,
    상기 인지 유닛은 방향성 스피커로 제공되는 무인 비행체.
  21. 제20항에 있어서,
    주변 소음을 감지하여 상기 지향성 스피커의 소리 크기를 결정하는 마이크를 더 포함하는 무인 비행체.
KR1020160036133A 2016-03-25 2016-03-25 무인 비행체 KR102476233B1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020160036133A KR102476233B1 (ko) 2016-03-25 2016-03-25 무인 비행체
PCT/KR2017/003128 WO2017164666A1 (ko) 2016-03-25 2017-03-23 무인 비행체
CN201790000711.6U CN209037850U (zh) 2016-03-25 2017-03-23 无人驾驶飞行器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020160036133A KR102476233B1 (ko) 2016-03-25 2016-03-25 무인 비행체

Publications (2)

Publication Number Publication Date
KR20170111192A true KR20170111192A (ko) 2017-10-12
KR102476233B1 KR102476233B1 (ko) 2022-12-09

Family

ID=59899673

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160036133A KR102476233B1 (ko) 2016-03-25 2016-03-25 무인 비행체

Country Status (3)

Country Link
KR (1) KR102476233B1 (ko)
CN (1) CN209037850U (ko)
WO (1) WO2017164666A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111252255A (zh) * 2018-12-01 2020-06-09 哈尔滨火萤科技有限公司 一种小型无人机伞降装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6905445B2 (ja) * 2017-10-16 2021-07-21 日本化薬株式会社 墜落検知装置、飛行体の墜落を検知する方法、パラシュートまたはパラグライダーの展開装置、およびエアバッグ装置
GB2569789A (en) * 2017-12-21 2019-07-03 Av8Or Ip Ltd Autonomous unmanned aerial vehicle and method of control thereof
JP6385604B1 (ja) * 2018-01-22 2018-09-05 株式会社松屋アールアンドディ エアバッグ付きドローンの制御方法及びエアバッグ付きドローン
CN111655581B (zh) * 2018-03-27 2024-03-19 株式会社尼罗沃克 无人飞行器及其控制系统以及计算机可读取记录介质
JP7102958B2 (ja) * 2018-06-08 2022-07-20 カシオ計算機株式会社 飛行装置、飛行方法及びプログラム
JP7226629B2 (ja) * 2018-06-08 2023-02-21 カシオ計算機株式会社 飛行装置、飛行方法及びプログラム
KR101977304B1 (ko) * 2018-07-17 2019-05-10 주식회사 다인에스엔티 태양광 패널 관리 드론 및 이를 이용한 태양광 패널 관리방법
CN109164827B (zh) * 2018-08-23 2021-08-03 杭州华耕土地规划设计咨询有限公司 一种基于无人机的数据采集系统
CN112638773B (zh) * 2018-09-28 2024-04-16 日本化药株式会社 具备被展开体的飞行器
CN109250135B (zh) * 2018-09-29 2023-05-26 长光卫星技术股份有限公司 一种无人机及载荷的防护系统
TW202014346A (zh) * 2018-10-12 2020-04-16 邱南昌 多軸飛行器用安全氣囊
CN110001932A (zh) * 2019-04-06 2019-07-12 胡永星 一种基于气动减速防止坠落损毁的航拍无人机
US20210094692A1 (en) * 2019-09-30 2021-04-01 Honeywell International Inc. Ballistically-deployed controllable parasail
CN110979647A (zh) * 2019-12-24 2020-04-10 广东电网有限责任公司 一种适用于多旋翼无人机的空中故障保护装置及方法
CN111414008A (zh) * 2020-04-08 2020-07-14 中国地质大学(武汉) 一种基于视觉传达设计的无人机引导系统
CN114537687B (zh) * 2022-04-27 2022-06-24 济南市勘察测绘研究院 一种地理信息测绘无人机设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005178696A (ja) * 2003-12-24 2005-07-07 Fuji Heavy Ind Ltd エアバッグ装置
KR20100044130A (ko) * 2008-10-21 2010-04-29 박희진 우산형 낙하산
KR20120084433A (ko) * 2011-01-20 2012-07-30 건국대학교 산학협력단 회전익 비행체 로봇 보호용 복합 구조
EP2778067A1 (en) * 2013-03-15 2014-09-17 Bell Helicopter Textron Inc. Crash load attenuator for water ditching and floatation
KR101496892B1 (ko) * 2014-06-19 2015-03-03 충남대학교산학협력단 멀티콥터 드론

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100842104B1 (ko) * 2007-06-15 2008-06-30 주식회사 대한항공 Ads―b와 영상정보를 이용한 무인항공기의 자동 착륙유도 제어 방법
KR100985195B1 (ko) * 2010-01-21 2010-10-05 한국항공우주산업 주식회사 영상기반 자동 이착륙 시스템
JP5775354B2 (ja) * 2011-04-28 2015-09-09 株式会社トプコン 離着陸ターゲット装置及び自動離着陸システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005178696A (ja) * 2003-12-24 2005-07-07 Fuji Heavy Ind Ltd エアバッグ装置
KR20100044130A (ko) * 2008-10-21 2010-04-29 박희진 우산형 낙하산
KR20120084433A (ko) * 2011-01-20 2012-07-30 건국대학교 산학협력단 회전익 비행체 로봇 보호용 복합 구조
EP2778067A1 (en) * 2013-03-15 2014-09-17 Bell Helicopter Textron Inc. Crash load attenuator for water ditching and floatation
KR101496892B1 (ko) * 2014-06-19 2015-03-03 충남대학교산학협력단 멀티콥터 드론

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A study on the emergency landing site selection model for unmanned aerial vehicles (2015.12.31.)* *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111252255A (zh) * 2018-12-01 2020-06-09 哈尔滨火萤科技有限公司 一种小型无人机伞降装置

Also Published As

Publication number Publication date
WO2017164666A1 (ko) 2017-09-28
CN209037850U (zh) 2019-06-28
KR102476233B1 (ko) 2022-12-09

Similar Documents

Publication Publication Date Title
KR20170111192A (ko) 무인 비행체
US11338923B2 (en) Parachute control system for an unmanned aerial vehicle
US20180022310A1 (en) Airbag system for use with unmanned aerial vehicles
EP3740427B1 (en) Multi mode safety system for vtol aircraft
WO2018190319A1 (ja) 飛行体および飛行体の制御方法
KR101496892B1 (ko) 멀티콥터 드론
KR101723743B1 (ko) 드론용 낙하산 모듈
KR101880073B1 (ko) 드론 추락방지를 위한 비행제어 전환 장치
KR20180017411A (ko) 충격완화 유닛 및 이를 포함하는 무인 비행체
KR102164295B1 (ko) 드론의 추락 방지 장치 및 방법
KR20170129528A (ko) 에어백 유닛 및 이를 포함하는 무인 비행체
KR20170114353A (ko) 다중 회전익 드론
CN114423681A (zh) 针对具有可展开降落伞的飞行器的损害减轻
KR20170123763A (ko) 에어백 유닛 및 이를 포함하는 무인 비행체
KR102048798B1 (ko) 안전 장치가 구비된 무인 비행체
KR20170129522A (ko) 에어백 유닛 및 이를 포함하는 무인 비행체
KR20180038756A (ko) 무인 비행체
EP3805099B1 (en) Emergency landing device
KR20180001118A (ko) 낙하산이 구비된 무인 비행체
KR101533026B1 (ko) 에어백을 갖는 멀티콥터
JP6800538B2 (ja) 無人航空機、無人飛行機の落下判定装置及び落下判定方法
JP2019209927A (ja) 飛行装置、飛行方法及びプログラム

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant