KR20170007687A - 회장 표적화 점막 점착성 티올화 hpmcp 백신 단백질 전달 제제 - Google Patents

회장 표적화 점막 점착성 티올화 hpmcp 백신 단백질 전달 제제 Download PDF

Info

Publication number
KR20170007687A
KR20170007687A KR1020160058819A KR20160058819A KR20170007687A KR 20170007687 A KR20170007687 A KR 20170007687A KR 1020160058819 A KR1020160058819 A KR 1020160058819A KR 20160058819 A KR20160058819 A KR 20160058819A KR 20170007687 A KR20170007687 A KR 20170007687A
Authority
KR
South Korea
Prior art keywords
hpmcp
antigen
drug delivery
bmpb
protein
Prior art date
Application number
KR1020160058819A
Other languages
English (en)
Other versions
KR101781295B1 (ko
Inventor
조종수
최윤재
강상기
비제이 싱
마하르잔 수실라
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of KR20170007687A publication Critical patent/KR20170007687A/ko
Application granted granted Critical
Publication of KR101781295B1 publication Critical patent/KR101781295B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • A61K9/1652Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/36Polysaccharides; Derivatives thereof, e.g. gums, starch, alginate, dextrin, hyaluronic acid, chitosan, inulin, agar or pectin
    • A61K47/38Cellulose; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/02Bacterial antigens
    • A61K39/0225Spirochetes, e.g. Treponema, Leptospira, Borrelia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • A61K9/5042Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/54Medicinal preparations containing antigens or antibodies characterised by the route of administration
    • A61K2039/541Mucosal route
    • A61K2039/542Mucosal route oral/gastrointestinal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55583Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6093Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Mycology (AREA)
  • Inorganic Chemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Nutrition Science (AREA)
  • Physiology (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 pH 감응성을 가지고, 단백질 약물 또는 항원을 담지한 티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트(thiolated hydroxypropyl methylcellulose phthalate, T-HPMCP) 약물 전달체, T-HPMCP 미립자 및 상기 T-HPMCP 미립자에 단백질 약물 또는 항원을 담지하는 단계를 포함하는 회장 특이적 pH 감응성을 가지는 T-HPMCP 약물 전달체를 제조하는 방법에 관한 것이다. 본 발명의 T-HPMCP 미립자는 티올기가 도입됨으로써 염화메탄에 대해 용해성을 가지고, 상기 미립자로부터 제조된 T-HPMCP 약물 전달체는 pH 감응성을 가짐으로써, 체내 잔류 시간이 연장되고 회장 특이적으로 작용할 수 있어서, 담지된 단백질 약물 또는 항원의 체내 전달을 효율적으로 수행할 수 있다.

Description

회장 표적화 점막 점착성 티올화 HPMCP 백신 단백질 전달 제제{Attuning hydroxypropyl methylcellulose phthalate to oral delivery vehicle for effective and selective delivery of protein vaccine in ileum}
본 발명은 회장 특이적 pH 감응성을 가지고, 단백질 약물 또는 항원을 담지한 티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트(thiolated hydroxypropyl methylcellulose phthalate, T-HPMCP) 약물 전달체에 관한 발명이다. 또한, 티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트를 유기 용매 존재 하에서 균질화하는 단계를 포함하는 T-HPMCP 미립자를 제조하는 방법에 관한 발명이다. 더 나아가, 상기 T-HPMCP 미립자에 단백질 약물 또는 항원을 담지하는 단계를 포함하는 회장 특이적 pH 감응성을 가지는 T-HPMCP 약물 전달체를 제조하는 방법에 관한 발명이다.
경구 투여된 단백질의 체내 효율적인 전달을 위해서는 위의 낮은 pH, 효소에 의한 분해, 짧은 전달 시간, 제어되지 않은 방출, 및 microfold 세포(M 세포)에 의한 낮은 섭취와 같은 여러 생리학적 장애를 극복해야 한다. 특히, 위, 공장, 십이지장 및 회장과 같은 위장관 내 부위 마다 다른 pH 때문에 발생하는 단백질 전달의 어려움은 널리 알려져 있다.
그 중에서도, 십이지장 및 공장에 이어지는 소장의 마지막 부분을 말하는 회장(ileum)은 그 위치상 경구 투여되는 약물의 전달에 어려움이 있으며, 다른 위장관에 비해 높은 pH 환경을 가지는 것으로 알려져 있다.
따라서, 낮은 pH에서 용해되지 않고, 담지된 약물을 선택적으로 전달할 수 있는, pH 감응성을 가지는 전달 제제의 개발은 회장에서의 효율적인 단백질 전달을 위해 중요하지만, 상기와 같은 중요성에도 불구하고, 상업적으로 이용되는 이와 같은 전달 제제는 개발되지 않은 실정이다.
장용성 제제 중에서 캡슐과 정제를 특수 코팅을 하여 위에는 그대로 남아있고, 소장에서 함유성분을 노출하도록 하는 것을 '장용 코팅 (enteric coating)'이라고 하는데, 정제 및 캡슐의 장용 코팅에 쓰는 물질들로는 지방, 지방산, 왁스, 쉘락, 초산 프탈산셀룰로오스 등이 있다. 다양한 장용성 코팅소재 중에서 하이드록시프로필 메틸 셀룰로스 프탈레이트 (hydroxypropyl methylcellulose phthalate, HPMCP) 정제 및 캡슐의 장용 코팅제로 사용되며 천연펄프를 원료로 하여 화학적 합성방법에 의해 제조된다 (KOREAN J. FOOD SCI. TECHNOL. Vol. 44, No. 2, pp. 168~172, 2012).
상기 HPMCP는 경구 투여를 위한 제제로 널리 사용되고 있으나, 십이지장의 pH와 근접한 pH 5.5에서 용해되는 HPMCP의 용해성 때문에 HPMCP를 이용한 단백질의 전달 효율은 저하된다.
한편, 통상적으로, 경구 투여되는 전달 제제의 대부분은 위장관을 직접 통해 약물을 전달할 뿐, 위장 점막에 부착되거나 위장 점막을 통해 수송하지 않는다. 이에 따른 짧은 전달 시간은 캡슐화된 약물을 충분히 전달할 수 없고, 이는 담지된 약물의 약효가 감소되는 결과로 이어진다. 따라서, 점막 점착성이 높은 약물 전달 제제의 제조는 단백질의 전달을 개선시킬 수 있는 중요한 과제가 된다.
이러한 배경 하에서, 본 발명자들은 회장 특이적 pH 감응성을 가지고 점막 점착성을 가지는 약물 전달체를 제작하기 위해 노력한 결과, 티올화된 HPMCP를 이용한, 회장-특이적 단백질 전달 제제를 제작하여 본 발명을 완성하였다.
본 발명의 목적은 회장 특이적 pH 감응성을 가지고, 단백질 약물 또는 항원을 담지한 티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트(thiolated hydroxypropyl methylcellulose phthalate, T-HPMCP) 약물 전달체를 제공하는 것이다. 또한, 본 발명의 목적은 티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트를 유기 용매 존재 하에서 균질화하는 단계를 포함하는 T-HPMCP 미립자를 제조하는 방법, 및 상기 T-HPMCP 미립자에 단백질 약물 또는 항원을 담지하는 단계를 포함하는 회장 특이적 pH 감응성을 가지는 T-HPMCP 약물 전달체를 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여, 본 발명의 일 양태는 회장 특이적 pH 감응성을 가지고, 단백질 약물 또는 항원을 담지한 티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트(thiolated hydroxypropyl methylcellulose phthalate, T-HPMCP) 약물 전달체를 제공한다.
구체적으로, 상기 하이드록시프로필 메틸 셀룰로스 프탈레이트 약물 전달체는 L-시스테인, 글루타티온(glutathione), 또는 시스테아민(cysteamine)으로부터 티올기가 도입되어 티올화된 것인, 약물 전달체일 수 있으나, 이에 제한되지 않는다.
또한, 본 발명의 상기 약물 전달체는 pH 7.4 이상에서 용해되는 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 용어, "티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트(T-HPMCP)"는, 티올화된 HPMCP로서, 당업자가 실시할 수 있는 방법으로 제조할 수 있다. 본 발명의 일 실시예에서는 N, N'-디시클로 헥실 카르보디이미드(dicyclohexylcarbodiimide, DCC)/N-하이드록시 숙신 이미드(hydroxysuccinimide, NHS) 활성화된 커플링 반응으로 합성하였고, 다른 실시예에 의하면 글루타티온 또는 시스테아민과의 반응을 통해 티올화된 HPMCP를 제조하였으나, HPMCP에 티올기를 도입할 수 있는 한, 그 방법은 이에 제한되지 않는다.
본 발명의 용어, "약물 전달체"는 생물체를 자극하지 않으면서 투여되는 화합물의 생물학적 활성 및 특성을 저해하지 않는 담체 또는 희석제를 의미하며, 필요한 경우 항산화제, 완충액 및/또는 정균제 등 다른 통상의 첨가제를 첨가하여 사용할 수 있다. 상기 약물 전달체는 회장 특이적으로 작용할 수 있는 pH 감응성을 가지며, 점막 점착성이 증가된 것을 특징으로 한다.
본 발명의 약물 전달체는 상기 티올화된 HPMCP를 유기 용매에서 균질화하여 제조한 미립자일 수 있으나, 이에 제한되는 것은 아니다. 상기 약물 전달체는 높은 pH에서 용해되는 성질을 가지며, 특히 점막 점착성이 우수하여 회장에서 담지된 물질을 높은 효율로 전달할 수 있다.
본 발명의 "T-HPMCP 미립자"는 T-HPMCP를 유기 용매 존재 하에서 균질화하여 생성된 미립자일 수 있으며, 본 발명의 T-HPMCP 미립자의 평균 지름은 0.01 내지 1000 um일 수 있고, 구체적으로 1 내지 100 um, 더욱 구체적으로는 1 내지 10 um 일 수 있으나, 이에 제한되지 않는다. 상기 T-HPMCP 미립자는 점막 점착성이 우수하여 약물을 효율적으로 전달 할 수 있다.
본 발명의 일 실시예에서는 T-HPMCP를 디클로로메탄에 용해시킨 유기 용액을 이용하여 T-HPMCP 미립자를 제조하였으며, 다른 실시예에서는 T-HPMCP의 미립자의 평균 지름이 3.7 ± 0.4 um인 것을 확인하였다(실시예 9 및 실험예 4).
본 발명의 용어, "pH 감응성"은, pH 의존적으로 용해되는 T-HPMCP의 성질을 의미한다. 구체적으로, 회장의 pH에 근접한 pH 7.4 이상에서 용해될 수 있다. 본 발명의 약물 전달체는 pH 감응성을 가짐으로써, 소화관을 통과하는 과정에서 산성의 위, 십이지장, 공장에서 용해되지 않고 회장에 도달하여 회장에서 용해되는, 회장 특이적으로 작용하는 것을 특징으로 한다.
본 발명의 일 실시예에서는 체내 위장관 마다 다른 pH를 고려하여, 각기 다른 pH 조건(pH 2.0 내지 8.0) 하에서 T-HPMCP의 용해성을 평가한 결과, pH 7.0 이하의 산성 용액에서는 용해되지 않은 반면, pH 7.4 이상에서만 용해되는 것을 확인하였다(실험예 2).
본 발명의 다른 실시예에서는 pH 5.5 이상에서 즉각적인 항원 방출을 보인 HPMCP 미립자와는 달리, 상기 T-HPMCP에 담지된 M-BmpB는 pH 2.0에서는 소량 방출되는 반면, pH7.4에서는 대부분 형태가 온전한 상태로 방출되는 것을 확인하였다(실험예 5).
이에, 본 발명자들은 본 발명의 T-HPMCP 약물 전달체가 pH 감응성을 가짐으로써, 회장에 도달하기 전에 해리되지 않고 약물을 담지한 상태로 회장에 전달될 수 있음을 확인하였다.
한편, 본 발명자들은 본 발명의 약물 전달체가 상기와 같은 pH 감응성 외에도 점막 점착성이 향상되는 효과를 가지며, 이로 인하여 전달하고자 하는 약물을 보다 효율적으로 전달할 수 있는 것을 확인하였다.
본 발명의 용어, "점막 점착성"은, 약물 전달체가 소화 장관에 잔류하여 담지한 약물을 체내로 전달할 수 있는 성질을 의미하며, 증가된 점막 점착성은 장내 체류 시간을 증가시키고 담지된 단백질 약물 또는 항원의 체내 흡수율을 증가시킬 수 있다.
본 발명자들은 티올기의 도입 방법과는 무관하게 티올기가 도입된 HPMCP는 향상된 점막 점착성을 나타내는 것을 확인하였으며, 이에 티올화된 HPMCP가 향상된 점막 점착성을 통해 효율적으로 약물을 전달 할 수 있음을 확인하였다.
본 발명의 티올기가 도입된 HPMCP는 점만 단백질의 뮤신의 시스테인과 티올기가 이황결합을 형성함으로써, 약물 전달체의 점막 점착성을 증가시키고 담지된 단백질 약물 또는 항원의 전달 효율을 증대 시킬 수 있다.
구체적으로, 상기 항원은 M-BmpB인 것일 수 있으나, 이에 제한되지 않는다.
본 발명의 용어, "단백질 약물"은, 단백질 또는 펩타이드 또는 이를 주요성분으로 함유하는 약물을 포괄하며, 본 발명의 약물 전달체에 담지될 수 있는 것이다. 본 발명의 단백질 약물 제형에 포함될 수 있는 "단백질"은 단백질 또는 펩타이드 또는 이들의 유사체, 돌연변이체 등을 포함하며, 천연 발생의 것이거나 재조합적으로 조작되거나 합성적으로 제조될 수 있으며, 또한 아미노산 또는 도메인의 첨가, 치환 또는 결실 또는 글리코실화와 같은 다양한 변형을 지닐 수 있는 것으로서 특정한 것에 한정되지 않는다.
본 발명의 용어, "항원"은, 면역 응답을 유도할 수 있는 모든 물질을 의미하고, 예를 들어 단백질, 펩티드 등을 들 수 있다. 구체적으로, 본 발명의 약물 전달체에 담지되는 항원은 M-BmpB (basic membrane protein B; 병원성 소장 스피로헤타(spirochaete) 부라키스피라 하이오디센테리에(Brachyspira hyodysenteriae)의 29.7kDa 외부 막 리포단백질) 일 수 있고, 더욱 구체적으로는 서열번호 1의 펩티드 일 수 있으나, T-HPMCP에 담지될 수 있는 항원인 한, 이에 제한되지 않는다.
구체적으로, 본 발명의 약물 전달체는 티올화 되지 않은 HPMCP에 비해 1.5배 이상 높은 점막 점착성을 가지는 것일 수 있다.
또한, 본 발명의 약물 전달체는 투여 2시간 후에도 50% 이상 점막에 남아 있는 것일 수 있다.
본 발명의 일 실시예에서는 갓 절단한 돼지의 장 점막에 부착된 T-HPMCP의 양을 확인한 결과, 티올화 되지 않은 HPMCP에 비해 1.72배 점막 점착성이 높은 것을 확인하였다(실험예 6 및 도 8).
본 발명의 다른 실시예에서는 T-HPMCP 약물 전달체가 경구 투여된 경우, 티올화 되지 않은 HPMCP 약물 전달체에 비해 회장의 파이어 판에 전달되는 항원의 양이 평균 2.7 배 높은 것을 확인하였다(실험예 7 및 도 9).
또한, 본 발명의 상기 약물 전달체는 CD4+ T세포를 자극하여 적응 면역을 유도하는 것일 수 있고, 더욱 구체적으로는 상기 CD4+ T세포는 인터페론(Interferon, IFN)-γ을 생산하는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명자들은 상기 M-BmpB를 약물 전달체에 담지하여 마우스의 면역 반응을 유도하여, 상기 항원의 전달 효율성을 확인한 결과, 티올화되지 않은 경우에 비해, 우수한 면역 반응을 나타내는 것을 확인하였다.
구체적으로, 본 발명의 실시예에서는 T-HPMCP로 면역화한 경우, HPMCP에 비해 상기 항원 특이적 항체 수준이 향상된 것을 확인하였으며, IFN-γ을 생산하는 CD4+ T 세포의 급격한 증가를 유도하는 것을 확인하였다 (실험예 9 및 실험예 11).
본 발명의 다른 하나의 양태는, 티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트(thiolated hydroxypropyl methylcellulose phthalate, T-HPMCP)를 유기 용매 존재 하에서 균질화하는 단계를 포함하는 T-HPMCP 미립자를 제조하는 방법을 제공한다.
구체적으로, 상기 유기 용매는 염화 메탄일 수 있고, 또는 디클로로메탄, 디클로로메탄 및 에탄올의 혼합 용매, 또는 디클로로메탄 및 메탄올의 혼합 용매일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 용어, "티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트(thiolated hydroxypropyl methylcellulose phthalate, T-HPMCP)"는 상기에서 설명한 바와 같다.
본 발명의 T-HPMCP는, 기존의 HPMCP와 비교하여 티올화에 의해 유기 용매에 대한 용해성이 달라진 것일 수 있다. 구체적으로, 본 발명의 T-HPMCP는 염화메탄에 용해될 수 있다. 상기 염화메탄은 미립자 제조시 가장 적합한 용매로서, 기존의 HPMCP는 염화메탄에 대한 용해성이 낮았으나, 본 발명의 티올화된 HPMCP는 염화메탄에 용해성을 가진다.
본 발명의 또 다른 하나의 양태는, 상기 T-HPMCP 미립자에 단백질 약물 또는 항원을 담지하는 단계를 포함하는 회장 특이적 pH 감응성을 가지는 T-HPMCP 약물 전달체를 제조하는 방법을 제공한다.
본 발명의 용어, "T-HPMCP 미립자", "단백질 약물", "항원", "pH 감응성", 및 "약물 전달체"는 상기에서 설명한 바와 같다.
상기 미립자에 단백질 약물 또는 항원을 담지하는 방법은 당업자에게 알려진 방법으로 수행할 수 있다.
본 발명의 방법으로 제조한 T-HPMCP 약물 전달체는 점막 점착성이 높고 회장 특이적 pH 감응성을 가져, 회장에 약물을 효율적으로 전달할 수 있는 특징을 가진다.
본 발명의 T-HPMCP 미립자는 티올기가 도입됨으로써, 염화메탄에 대한 용해성을 가지며, 상기 미립자로부터 제조한 T-HPMCP 약물 전달체는 pH 감응성을 가짐으로써, 체내 잔류 시간이 연장되고 회장 특이적으로 작용할 수 있어서, 담지된 단백질 약물 또는 항원의 체내 전달을 효율적으로 수행할 수 있다.
도 1은 회장 내 M 세포를 타겟으로 하는 백신의 경구 전달 제제의 모식도이다. 내강(intraluminal) pH 및 GI (gastrointestinal) 수송 시간을 표시하였다(거리는 축척에 맞게 나타내지 않음). 미립자(microparticle, MP)는 M 세포를 통해 방출된 항원의 섭취를 위해 회장에서 용해되기 시작되길 기대하였다.
도 2는 경구 면역화 일정의 개략도이다. 마우스의 각 그룹에게 6차례(2회의 priming 및 4회의 boosting) 항원을 투여하였다. 면역 반응을 관찰하고자, 개략도에 표시된 대로 혈청 및 배설물 샘플을 채취하였다.
도 3은 T-HPMCP의 합성을 위한 반응을 나타낸 도이다.
도 4a는 1H NMR(DMSO-d6, 600 MHz)을 이용하여 T-HPMCP의 합성을 확인한 도이다. NMR 스펙트럼 내에서 HPMCP 내 티올 그룹의 결합이 시스테인의 -N(H) 및 -S(H)의 양성자에 의해 나타났다.
도 4b는 FT-IR에 의해 T-HPMCP의 합성을 확인한 도이다. T-HPMCP의 스펙트럼 내에 대응되는 N-H 벤딩(bending) 및 스트레칭(stretching)이 나타났다.
도 5는 MP의 형태 및 크기를 분석한 도이다. MP의 형태는 SEM(스케일 바는 2 um)에 의해 분석하였다. FITC-표지된 항원/MP는 CLSM에 의해 관찰되었다. A. M-BmpB/T-HPMCP MP 및 FITC-M-BmpB/T-HPMCP MP(삽입도); C는 M-BmpB/HPMCP MP 및 FITC-M-BmpB/HPMCP MP(삽입도). 입자의 크기 분포는 DLS을 이용하여 측정하였다. B. M-BmpB/T-HPMCP MP; D. M-BmpB/HPMCP MP
도 6은 시험관 내에서 M-BmpB/T-HPMCP 및 M-BmpB/HPMCP MP로부터 pH-의존적으로 방출되는 M-BmpB의 방출 형태를 나타낸 도이다. 단백질을 담지한 MP(5 mg/ml)를 서로 다른 pH 버퍼 조건에 현탁하였다. 상기 현탁한 MP를 디클로로메탄과 혼합하고, 37℃에서 100 rpm으로 교반하였다. 주어진 시간 간격이 지난 후, 상층액에 있는 방출된 단백질의 양을 280 nm에서 흡수량을 측정함으로써 계산하였다. 실험은 세 번 수행하였다.
도 7은 항원의 MP에 담지하기 전후의 원거리 자외선 원형 이색성 분광을 나타낸 도이다. T-HPMCP 및 HPMCP MP로부터 방출된 M-BmpB의 고차구조를 천연 M-BmpB와 비교하였다.
도 8은 소장 내 MP의 점막점착성 분석을 나타낸 도이다. 10mg의 각각 FITC-표지된 MP는 각 절단한 돼지의 소장 점막 상에 분산시키고 37℃에서 2시간 동안 100 rpm으로 교반하면서 배양하였다. 점막에 부착된 MP를 제거하고, NaOH로 가수분해 시킨 후, 495 nm에서 FITC의 흡광도를 측정하였다. 실험은 세 번 수행하였다.
도 9는 마우스의 소장의 파이어 판에서 FITC-표지된 M-BmpB의 localization을 나타낸 도이다. A. FITC-표지된 M-BmpB/T-HPMCP 또는 M-BmpB/HPMCP MP는 마우스에 경구로 투여되었고 상기 MP의 위치(localization)는 형광 현미경 기술을 이용하여 관찰하였다. FITC-표지된 M-BmpB의 녹색 형광 신호는 T-HPMCP MP에 의해 투여되었을 때 FAE 지역 아래 파이어 판에서 더 높았다. B. FITC-M-BmpB의 섭취는 이미지 분석에 의해 정량화 하였고, M-BmpB 대조군을 1.0으로 한 값에 대해 표준화하였다.
도 10은 수상세포에서 항원이 담지된 MP를 8시간 배양한 후, 세포의 FITC-표지된 항원 섭취를 공초점 형광 현미경 이미지로 나타낸 도이다.
도 11은 MP를 이용한 경구 면역화 후 항원 특이적 면역 반응을 나타낸 도이다. 면역 반응을 결정하고자, 혈청 및 배설물 샘플을 실험 디자인에 따라 0, 2, 5주차에 마우스로부터 채취하였다. ELISA를 이용하여 항체 수준을 분석하였다. A. 배설물 내 항-M-BmpB IgA 수준. B. 혈청 내 항-M-BmpB IgG 수준, C. 혈청 내 항-M-BmpB IgG1 수준, D. 혈청 내 항-M-BmpB IgG2a 수준을 나타낸다. 통계적 유의성은 M-BmpB 단독을 대조군으로 하여 비교하였다(*P<0.05, **P<0.01, 및 ***P<0.001).
도 12는 면역화된 마우스로부터 유래한 파이어 판 내 특이적 면역 세포에 대한 유동 세포 계측(flow cytometric detection)을 나타낸 도이다. 파이어 판은 M-BmpB/T-HPMCP 또는 M-BmpB/HPMCP MP로 면역화된 마우스로부터 채취하였다. 면역 세포를 분리하여 FACS에 의한 탐지 전에 CD11c 및 MHC II 마커로 염색하였다. 양성 세포의 비율을 표시하였다.
도 13은 CD4+ T 세포 내 IFN-γ 및 IL-4 유동 세포 계측 결과를 나타낸 도이다. 최종 샘플 채취 후, 항원으로 면역화된 마우스에서 무균성으로 비장을 채취하였다. 비장세포를 다시 자극하고 특정 면역 세포의 IFN-γ 및 IL-4 생산을 FACS로 분석하였다. A. CD4+IFN-γ+ 세포; B. CD4+IL-4+ 세포; C. IFN-γ+ 및 IL-4를 분비하는 CD4+ 세포의 비교.
도 14는 글루타티온을 이용하여 HPMCP에 티올기를 도입하는 과정을 나타낸 모식도이다.
도 15는 시스테아민을 이용하여 HPMCP에 티올기를 도입하는 과정을 나타낸 모식도이다.
도 16은 HPMCP FTIR 결과를 나타낸 도이다.
도 17은 HPMCP-Glutathione FTIR 결과를 나타낸 도이다.
도 18은 HPMCP-Cysteamine FTIR 결과를 나타낸 도이다.
도 19는 HPMCP-Glutathione 및 HPMCP-Cysteamine의 점막 점착성을 확인한 결과를 나타낸 도이다.
이하, 하기 실시예에 의하여 본 발명을 보다 상세하게 설명한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐 본 발명의 범위가 이들로 한정되는 것은 아니다.
실시예 1. 재료의 준비
하이드록시 프로필 메틸 셀룰로스 프탈레이트-55(HPMCP)는 Shin-Etsu Chemical Co., Ltd. (Tokyo, Japan)으로부터 얻었다. N, N'-디시클로 헥실 카르보디이미드(dicyclohexylcarbodiimide, DCC), N-하이드록시 숙신 이미드(hydroxysuccinimide, NHS), L-시스테인(cysteine) 하이드로 클로라이드 모노 하이드레이트(hydrochloride monohydrate), 디메틸 술폭시드(dimethyl sulfoxide, DMSO), 폴리비닐 알코올(poly vinyl alcohol) (PVA), Pluronic® F-127, 디클로로메탄(dichloromethane), 4',6-디아미노-2-페닐 인돌 디락테이트(diamidino-2-phenylindole dilactate, DAPI), 카보네이트-바이카보네이트(carbonate-bicarbonate) 완충 캡슐, 플루오레세인 아이소싸이오사이아네이트(fluorescein isothiocyanate, FITC), 8 타입 콜라게나아제(Type Ⅷ collagenase)는 Sigma-Aldrich(St. Louis, MO, USA)에서 구입하였다.
재조합 마우스 과립구 대식세포 콜로니 자극 인자(GM-CSF)는 Peprotech(New Jersey, USA)로부터 구입하였다. Ellman's 시약은 Thermo Scientific(Rockford, USA)로부터 구입하였다. 히시티딘-결합 레신(His-Bind Resin)은 Novagen(California, USA)으로부터, 트리스-글리신-PAG 프리캐스트 SDS 겔(Tris-glycine-PAG pre-cast SDS gel)은 Komabiotech(Seoul, Korea)으로부터 구입하였다. α-modified minimum essential medium(α-MEM), RPMI 배지 및 태아 소 혈청(FBS)은 Thermo Scientific HyClone(Waltham, MA, USA)으로부터 구입하였다. BD Difco™ LB(Luria-Bertani) 브로스는 Becton, Dickinson and Company(New Jersey, USA)로부터 얻었다. His-Bind® Resin은 Novagen Inc.(California, USA)으로부터 구입하였고 Detoxi-Gel™ endotoxin removing column 및 bicinchobicincho acid(BCA) 단백질 어세이 시약(A 및 B)은 Thermo Scientific Pierce(Illinois, USA)로부터 구입하였다.
Horseradish peroxidase(HRP)-conjugated 고트 항-마우스 IgA, IgG, IgG1 및 IgG2a 항체는 Santa Cruz Biotechnology(Dallas, TX, USA)로부터 구입하였다. BD OptEIA 시약 및 cytofix/cytoperm 용액은 BD Biosciences(California, USA)에서 구입하였다. Ca2+/MG2+-free (CMF) HBSS 완충액은 Life Technologies(MD, USA)로부터 구입하였다.
항-마우스 CD11cAPC, 항-마우스 MHC class Ⅱ-Alexa Fluor 700 및 cell stimulation cocktail(단백질 전달 억제제 포함)은 Ebioscience(CA, USA)로부터 구입한 반면, 랫트 항-마우스(2.4G2) FcγRIII/II, PE 랫트 항-마우스 IFN-γ, Alexa 플루오르 488 랫트 항-마우스 IL-4, 및 APC 랫트 항-마우스 CD4은 BD Pharmingen(CA, USA)로부터 구입하였다.
실시예 2. 티올화 HPMCP의 합성
본 발명의 티올화 HPMCP(T-HPMCP)는 기존 문헌(Quan JS, Jiang HL, Kim EM, Jeong HJ, Choi YJ, Guo DD, et al. pH-sensitive and mucoadhesive thiolated Eudragit-coated chitosan microspheres. International Journal of Pharmaceutics. 2008; 359:205-10)에 나타난 대로, L-시스테인 염화수소산염(L-cysteine hydrochloride)을 이용한 HPMCP의 화학적 변형을 통해 합성되었다.
간략히 말하면, 4g의 HPMCP를 100ml DMSO에 용해시키고, 질소 조건(nitrogenous condition)하에서 24시간 동안 실온에서 일정하게 교반(stirring)시킴으로써 중합체의 카르복시산 부분(moiety)을 N, N'-디시클로 헥실 카르보디이미드(dicyclohexylcarbodiimide, DCC, 9g) 및 N-하이드록시 숙신 이미드(hydroxysuccinimide, NHS, 5g)에 의해 활성화 시켰다. 부산물을 여과에 의해 제거하고 여과액은 비슷한 조건하에서 48시간 동안 L-시스테인 염화수소산염(0.4g)과 반응시켰다. 반응 혼합물을 부산물을 제거하기 위해 여과시켰으며, 여과액은 처음에는 DMSO에 대해, 그 다음에는 증류수에 대해 투석시켜 결합하지 않은 L-시스테인을 제거하였다. 최종적으로 생성물은 사용시까지 -20℃에서 동결건조하여 보관하였다. L-시스테인의 결합체(conjugation)는 H NMR 분광학(Avance 600, Bruker, Germany) 및 푸리에 변환 적외 분광계(FT-IR; Nicolet 6700 ThermoFisher Scientific Inc., Waltham, MA, USA)을 이용해 확인하였다.
실시예 3. Ellman 방법에 의한 T-HPMCP의 티올 그룹의 결정
Ellman 방법을 제작자의 지시대로 수행하여 상기 실시예 2에서 제조한 T-HPMCP 내 티올 그룹 치환의 정도를 확인하였다. 간략히 말하면, T-HPMCP 10mg/ml 수용액을 준비하고, 1mM EDTA를 포함한 0.1M 인산나트륨 완충액(pH 8)으로 희석하여 개별적인 희석액을 준비하였다. 각 희석액 50ul 분취액(aliquot)에 0.5M 인산염 완충액 500ul(pH 8) 및 Ellman 시약(인산염 완충액 0.5 mol/l의 DTNB 0.4mg/ml, pH 8.0) 10ul를 추가하였다. 대조군 반응은 변형되지 않은 HPMCP로 수행하였다. 샘플은 빛으로부터 차단시키고 15분간 실온에서 배양하였다. 15분이 지난 후, 100ul의 상층액을 미세 적정 플레이트로 옮기고 Infinite 200 PRO 멀티모드 리더(Tecan, Switzerland)를 이용해 412nm 파장에서 빛의 흡광도를 측정하였다. 자유 티올 그룹의 양은 L-시스테인 염화수소염 일수화물 수용액의 빛의 흡광도를 측정하여 얻은 표준 플랏으로부터 계산되었다.
실시예 4. pH 민감성의 평가
HPMCP와 대비되는 본 발명의 T-HPMCP의 pH 민감성을 pH 2.0 내지 8.0의 다양한 완충 용액에서 시험하였다. 5mg/ml 농도의 중합체를 각 pH 완충액에 담그고, 특히 T-HPMCP 또는 HPMCP 1mg을 칼륨 수소 프탈레이트 완충액(pH 2.0, 3.0 및 4.0) 200ul, 나트륨 아세테이트 완충액(pH 4.5 및 5.5) 또는 나트륨 포스페이트 완충액(pH 6.0, 7.0, 7.2, 7.4 및 8.0)에 현탁하였다.
실시예 5. 팽창 연구
팽창 연구는 유사(simulated) 위액(pH 1.2) 및 유사 장액(pH 7.4)의 다른 pH 시스템을 가진 두 완충액으로 수행하였다. 처음에는 각 30mg 무게인 평면 4mm T-HPMCP 또는 HPMCP 디스크를 준비하였다. 각 디스크를 6시간 동안 37℃의 각각의 완충액 1.0mL에 담근 후, 정해진 시간 간격으로 수화시킨 테스트 디스크를 배양 완충액으로부터 꺼내어 표면의 물기를 제거한 즉시 미량천칭으로 무게를 달았다. 따라서, 팽창도는 하기와 같이 중량 측정에 의해 결정되었다.
팽창도(Swelling degree, %) = (Wt-Wo)/Wo*100%
상기 Wt는 시간 t에 팽창한 디스크의 무게이며, Wo는 건조한 디스크의 최초 무게이다.
실시예 6. 중합체의 FITC-표지
T-HPMCP 또는 HPMCP와 FITC의 공유 결합은 하기 설명한대로 수행하였다. DMSO 1mL에 용해된 FITC 5mg을 2mL의 DMSO : 에탄올(2:1)에 용해된 HPMCP 100mg 또는 DMSO 2mL에 용해된 100mg의 T-HPMCP에 점진적으로 첨가되었다. 상기 반응은 4시간 동안 실온의 어두운 곳에서 수행되었고 Rotating Shaker(FINEPCR Cp., Ltd., Korea)를 이용해 일정하게 진탕하였다. 반응 혼합물을 세 차례 물을 교체(three water changes)한 증류수에 투석하였고, 진공에서 동결건조하였으며, 사용시까지 -20℃에서 저장하였다. 표준 곡선을 기초로 455nm에서의 FITC-중합체 결합체의 빛의 흡광도를 측정함으로써 공유 결합한 FITC의 양을 결정하였다.
실시예 7. 모델 단백질 항원의 분리 및 정제
M-BmpB 단백질을 발현하는 유전자, 즉 BmpB(병원성 소장 스피로헤타(spirochaete) 부라키스피라 하이오디센테리에(Brachyspira hyodysenteriae)의 29.7kDa 외부 막 리포단백질)에 결합한 M 세포 회귀(M cell-homing) 펩티드(서열번호 1: CKSTHPLSC)를 함유한 단일 E.coli 콜로니를 100ug/ml의 앰피실린으로 보충한, 밤새 37℃에서 진탕 배양한 4ml의 LB 배지에 시드(seed)하였다. 시드 배지 500 ul는 100 ug/ml 앰피실린으로 보충하고 200rpm으로 37℃에서 진탕배양한 동일한 배지 800ml에 접종하기 위해 사용하였다. 배양조직이 0.5 내지 0.7의 OD600에 도달하였을 때, 1mM IPTG를 이용하여 단백질의 발현을 유도하였고 12시간 동안 배양을 계속하였다. 10분간 6,000×g으로 원심분리하여 세포를 회수하여 냉각(ice-cold) 인산 완충 식염수(PBS)로 두 차례 세척하였고, 25ml 히스티딘 결합 완충액에 재현탁하였다. 이후, 얼음에서 10분간 배양하였다. 세포는 얼음 배쓰(bath)에서 9초 펄스 및 4초 대기의 주기로 총 8분간 초음파 처리하였다(Vibra Cell; Sonics & Materials, Newtown, USA). 가용성 용해물 일부는 4℃에서 12,000×g로 30분간 원심분리로 제거하였다. 단백질의 발현 정도는 나트륨 도데실 설페이트 폴리아크릴아마이드 겔 전기영동(SDS-PAGE)를 이용하여 4 내지 20% SDS 겔에서 확인하였다.
히스티딘-표지된 가용성 단백질 일부는 His-Band® Resin을 이용하여 제작자의 지시에 따라 정제하였다. 간략히 말하면, 가용성 단백질 추출물을 His-Bind® Resin(5ml)에 로드하였고 히스티딘-결합 버퍼(5 mM 이미다졸, 0.5 M 염화나트륨, 20 mM tris-Cl, pH 7.9)의 12 칼럼 볼륨에 평형시켰으며 차징 버퍼(charging buffer, 50 mM 황산니켈)로 충전하였다. 이어서 히스티딘-결합 버퍼로 세척하였고 다시 워싱 버퍼(10 mM 이미다졸, 1 M 염화나트륨, 20mM tris-Cl, 8.7% 글리세롤, pH 7.9)로 세척하였다. 단백질은 용출 버퍼(200mM 이미다졸, 20 mM tris-Cl, pH 7.9)를 이용하여 용출하였다. 용출 부분은 4-20% SDS-PAGE로 분석하였고 이어서 Coomassie Brilliant Blue R-250으로 염색하였다. 정제된 히스티딘-표지된 단백질은 24시간 동안 4℃에서 세 차례 교체한 물(pH 7.9)에 투석하였다. 내독소(endotoxin)는 칼럼을 제거하는 Detoxi-Gel™ Endotoxin을 제작자의 지시대로 이용하여 제거되었다. 단백질의 순도는 SDS-PAGE로 측정하였다. 단백질 농도는 Nanophotometer(Implen GmbH, Germany)를 이용하여 280nm에서의 흡광도를 측정하여 결정하였다. 정제된 단백질은 동결건조하여 사용시까지 -20℃에서 보관하였다.
실시예 8. 단백질 항원의 FITC-표지
200ul DMSO에 용해된 1 mg FITC를 2 mL 카보네이트-바이카보네이트(carbonate-bicarbonate) 버퍼에 용해된 20 mg의 M-BmpB 단백질에 점진적으로 추가하였고 반응 혼합물은 Rotating Shaker를 이용하여 실온의 어두운 곳에서 4시간 동안 일정하게 진탕 배양하였다. 반응 혼합물은 세 차례 물을 교체한 증류수(pH 8)에 투석하였고 진공에서 동결건조하여 사용시까지 -20℃에서 보관하였다. FITC-M-BmpB에서 공유결합한 플루오레세인의 양은 상기에서 설명한 바에 따라 결정하였다.
실시예 9. 미립자(microparticle, MP)의 준비
실시예 9-1. T-HPMCP 미립자 및 HPMCP 미립자의 준비
미립자(microparticle, MP)는 한번의 유/수 에멀전(oil/water emulsion) 용액 증발 기술로 준비하였다. 유기 용액을 준비하기 위해 각 100mg의 T-HPMCP 및 HPMCP 를 각각 5 ml의 디클로로메탄 및 디클로로메탄: 에탄올(25:1)에 용해시켰다. 중합체 용액을 50 ml의 1%(w/v) PVA에 적가하였고 혼합물은 Ultra Turrax(T25, IKA, Germany)를 이용해 4분간 11,000rpm으로 균질화하여 수중유(O/W) 에멀전을 생성하였다. 상기 에멀전을 6 내지 8시간동안 실온의 통기월(fume cupboard)에서 교반하여 유기 용매를 증발시켰다. 상기 미립자(MP)는 원심분리로 수집하여 증류수로 세척하였으며 진공에서 동결건조하였다. 상기 MP를 하얀 가루 형태로 얻어 사용시까지 -20℃에서 보관하였다. 비슷한 절차로 FITC-T-HPMCP 미립자 및 FITC-HPMCP 미립자를 준비하여 사용시까지 -20℃에서 보관하였다.
실시예 9-2. 항원을 담지한 MP의 준비
M-BmpB/T-HPMCP 또는 M-BmpB/HPMCP MP는 기존 문헌(Singh B, Jiang T, Kim Y-K, Kang S-K, Choi Y-J, Cho C-S. Release and Cytokine Production of BmpB from BmpB-Loaded pH-Sensitive and Mucoadhesive Thiolated Eudragit Microspheres. Journal of Nanoscience and Nanotechnology. 2015;15:606-10)에 설명되어 있는 바대로 water-in-oil-in-water(W/O/W) 이중 에멀전 용매 증발 방법으로 준비하였다.
간략히 말하면, T-HPMCP 및 HPMCP의 유기 용액은 5 ml의 디클로로메탄 및 디클로로메탄: 에탄올(25:1) 각각에 T-HPMCP 및 HPMCP 100 mg을 각각 용해시켜 준비하였다. 이어서 상기 용액에 5 mg의 M-BmpB 단백질이 포함된 200 ul의 물과 혼합된 10% Pluronic F-127 용액을 포함한 수상을 첨가하여 초유제(primary emulsion)을 제조하였다. 중합체/단백질 혼합물은 초음파 균질기(Sonics, Vibra cells™)을 이용해 유화하여 유중수(water in oil) 에멀전을 제조하였다. 혼합 에멀전은 50 ml 1 %(w/v) PVA에 첨가하였고 혼합물은 Ultra Turrax(T25, IKA, Germany)를 이용해 11,000rpm으로 4분간 균질화하여 W/O/W 에멀전을 제조하였다. 상기 에멀전은 통기월에서 6 내지 8시간 동안 실온에서 교반하여 유기 용매를 증발시켰다. 이로부터 제조된 항원을 담지한 MP를 원심분리에 의해 수집하여 증류수로 헹군 다음 진공에서 동결건조 하였다. 항원을 담지한 MP는 흰색 가루 형태로 얻었고 사용시까지 -20℃에서 보관하였다. 유사하게, FITC-M-BmpB/T-HPMCP MP 및 FITC-M-BmpB/HPMCP MP를 준비하였으며, 사용시까지 -20℃에서 보관하였다.
실시예 10. 미립자의 형태 및 입자 크기 분포
미립자의 표면 형태 및 평균 크기는 필드 방사 주사형 전자 현미경(field-emission scanning electron microscope, FE-SEM) Supra 55VP-SEM(Carl Zeiss, Oberkochen, Germany)으로 분석하였다. 실험에 앞서, 미립자는 금속 스터브(stub)에 얇은 접착성 테이프로 마운트(mount)시키고 진공에서 코팅 챔버(CT 1500 HF, Oxford Instrument Osfordshire, UK)를 이용해 금으로 코팅하였다. 평균 지름 및 입자-크기 분포는 DLS-7000(Otsuka Electronics, Japan)을 이용해 동적광산란법(dynamic light scattering)으로 측정되었다.
실시예 11. 담지 항원(loading content) 및 캡슐화 효율
미립자(MP)의 단위 무게당 캡슐화되는 항원의 양은 기존 문헌(Carino GP, Jacob JS, Mathiowitz E. Nanosphere based oral insulin delivery. Journal of Controlled Release : official journal of the Controlled Release Society. 2000;65:261-9)에 소개된 방법을 약간 변형한 추출방법으로 결정하였다.
간략히 말하면, 5 mg의 건조한 미립자를 250 ul의 히스티딘 결합 버퍼(pH 7.9)에 현탁하고 1.5 ml의 디클로로메탄을 첨가하였다. 유기 용액으로부터 버퍼로 단백질을 추출하기 위해 혼합물을 실온에서 2시간 동안 회전하는 진탕기(rotating shaker)를 이용해 일정하게 진탕하여 배양하였다. 10분간 6000×g으로 원심분리 후, 200 ul의 수용액을 빼내고 M-Bmp 양을 BCA 단백질 어세이를 이용해 계산하였다.
캡슐화 효율은 MP 준비에 이용된 항원의 총량에 대한 실제로 담지된 항원의 양의 비율로 나타내었다. 실험에 이용된 각 제제를 세 번씩 분석하였다. 캡슐화 효율 및 항원의 담지율은 하기와 같은 식으로 계산되었다.
Figure pat00001
Figure pat00002
실시예 12. 시험관 내 항원의 미립자로부터의 방출
시험관 내 M-BmpB/T-HPMCP 또는 M-BmpB/HPMCP MP로부터 M-BmpB의 방출은 10 mg/mL 농도의 세 가지 생리학적 버퍼 조건(유사 위액(pH 2.0), 유사 장액(pH 6.0 및 7.4))에서 마이크로스페어를 37℃에서 100rpm으로 일정하게 진탕 배양함으로써 세 번 측정하였다. 미리 정한 시간 간격(0, 2, 4, 6, 8, 10, 12 및 24시간)에 따라 10분간 6000×g으로 원심분리 후 상층액을 수거하였다. M-BmpB 방출양은 BCA 단백질 어세이를 이용해 정량화하였다.
실시예 13. 미립자로부터 방출된 항원의 구조적 온전성
MP에 담지되기 전후의 단백질 항원의 구조적 온전성(structural integrity)은 원편광 이색성(CD)로 평가하였다. CD 측정은 Chirascan™-plus CD Spectrometer(Applied Photophysics Ltd, Leatherhead, UK)를 이용해 이루어졌다. Far-UV CD 스펙트럼은 Quartz cuvettes(0.1cm 경로 길이)를 이용해 260 내지 200 nm의 범위에서 1 nm 파장 마다 0.5초 샘플링 타임으로 측정하였다.
실시예 14. 체외 미립자의 점막 점착성
상기 실시예 9에서 제조한 MP의 점막점착성을 평가하고자 1 ml 나트륨 인산 버퍼(pH 7.0) 및 나트륨 아세테이트 버퍼(pH 5.0) 각각에 현탁된 FITC-T-HPMCP MP 및 FITC-HPMCP MP 각 10mg을 microscopic 슬라이드에 고정된, 갓 절단된 돼지의 소장 점막에 도포하였다. 그 후, 상기 슬라이드는 상술한 각각의 40ml pH 버퍼를 포함한 팔콘 튜브 내에 수직으로 세워 2시간 동안 37℃에서 100 rpm으로 진탕 배양하였다. 점막에 부착된 미립자를 제거하고 수산화나트륨(1M)으로 30분간 37℃에서 가수분해시켰다. 샘플을 5분간 10,000×g으로 원심분리하였고 200 ul의 상층액을 마이크로플레이트 리더로 옮겼다. FITC의 흡광도는 495 nm에서 측정하였고 표준 곡선으로부터 내삽법으로 농도를 측정하였다. 실험은 세 번 반복하였다.
실시예 15. 체내 미립자의 항원 전달 효율
T-HPMCP MP에 의한 항원 전달의 효율은 파이어 판(Peyer's patch)의 FAE 내 M 세포에 의한 단백질 항원 섭취율로 평가하였다. 200 ug의 캡슐화된 단백질과 동등한 FITC-M-BmpB/HPMCP MP 및 FITC-M-BmpB/T-HPMCP MP가 마우스(7주령 Balb/c, 20g)에 주입되었다. 경구 투여 후 8시간 뒤에 상기 마우스를 안락사시키고 파이어 판을 포함한 장의 일부(~2cm)를 절단하여 차가운 PBS로 광범위하게 세척하여 포르말린으로 고정하였다.
동결-절단(cryo-sectioning)을 위해 조직 샘플은 최적의 절단 온도 배지에 넣고 동결 조직 섹션(10 um 두께)을 Leica CM1850 크리오마이크로톰(cryomicrotome, Leica Microsystems Inc., USA) 상에서 절단하였다. 조직 섹션은 공기 건조시킨 뒤 -20℃ 아세톤에 담가 DAPI로 대비 염색한 후 공초점 레이저 주사 현미경(CLSM) 하에서 시각화하였다. 기존 문헌(Knoop KA, Kumar N, Butler BR, Sakthivel SK, Taylor RT, Nochi T, et al. RANKL Is Necessary and Sufficient to Initiate Development of Antigen-Sampling M Cells in the Intestinal Epithelium. J Immunol. 2009;183:5738-47)에 나타난 바대로 파이어 판 내 M 세포에 의한 단백질 항원의 섭취율의 정량적 분석은 ImageJ v1.36b 소프트웨어(http://rsb.info.nih.gov/ij/)를 이용하여 수행하였다.
실시예 16. 수상세포의 미립자에서 방출된 항원의 섭취
뮤린(murine) 수상 세포주(dendritic cell line)인 JAWS II는 리보뉴클레오시드 및 디옥시리보뉴클레오시드를 함유한 α-MEM에서 20% FBS, 5ng/mL GM-CSF, 100 U/ml 페니실린 G 및 100 ug/ml 스트렙토마이신으로 보충하여 37℃에서 5% CO2의 대기에서 보존하였다. 세포는 35mm 유리 바닥 디쉬(glass-bottomed dishes, 2×105 세포/dish)에서 48시간 동안 종배양하였다. 상기 세포는 FITC-표지 M-BmpB/T-HPMCP MP 또는 FITC-표지 M-BmpB/HPMCP MP 200 ug/well으로 처리하여 8시간 동안 37℃에서 배양하였다. 배지를 흡입시키고 세포는 PBS로 세척하였다. MP로부터 방출된 FITC-표지 M-BmpB의 세포 섭취는 공초점 레이저 주사 현미경(CLSM) LSM 510(Carl Zeiss, Germany)로 분석하였다.
실시예 17. 마우스의 구강 면역화
6주령의 5 마리 BALB/c 암컷 마우스 그룹을 실험을 위해 사용하였다. 마우스는 Samtako, Co. Ltd. (Osan, Korea)에서 구입하였으며, 실험 동물의 이용을 위한 가이드라인(Seoul National University)을 따라 표준 무균 조건의 케이지에 들여놓았다. 마우스에게 임의로 먹이와 물을 제공하였다. 1주의 순응을 거친 후, 경구 섭취 니들에 적합한 1 ml 주사기를 이용한 경구 위관 영양법(oral gavage)을 이용하여, 마우스를 200ul의 적절한 버퍼에 현탁된 200g 단백질과 동등한 MP로 면역화하였다. 마우스의 각 그룹은 총 6회(2회 프라이밍 및 4회 부스터)의 백신이 투여되었다. 프라이밍 투여는 0일차 및 1일차에 투여하였고, 부스터 면역화(booster immunization)는 7, 8, 14 및 15일차에 이루어??다. PBS로 접종하고 M-BmpB 용액으로 세척한(naked) 마우스 그룹이 대조군으로 사용되었다. 동일한 복용량이 프라이밍 및 부스터 면역화에 사용되었다.
실시예 18. 혈액 및 배설물의 샘플링
꼬리 정맥으로부터 면역화된 동물의 혈액 샘플을 면역화 전, 1차 면역화로부터 2주 후 및 마지막 부스터 면역화로부터 2주 후에 세 차례 수집하였다. 혈액 응고 샘플로부터 혈청을 10분간 3,000×g으로 원심분리하고, ELISA에 의한 항원-특이적 항체의 검출에 사용하였다. 유사하게, 면역화된 동물의 배설물도 혈액 샘플과 같은 시점에 세 번 수집하였다 (도 2). 분립을 4℃에서 5 볼륨의 PBS 내에서 균질화하여, 10분간 6,000×g으로 원심분리하였고, 상층액을 회수하여 ELISA로 항원-특이적 IgA의 존재를 분석하였다. 마지막 샘플링 후, 형광-활성 세포 분류(FACS) 분석으로 특정 면역 세포를 검출하기 위해 마우스를 안락사시키고 해부하여 회장 및 비장에서 파이어 판을 분리하였다.
실시예 19. ELISA에 의한 항원-특이적 항체 검출
혈청 M-BmpB 특이적 면역 글로불린 항체 G(전체 IgG) 및 선별된 IgG 아이소타입(isotype, IgG1 및 IgG2a)의 수준, 배설물 샘플에서 M-BmpB 특이적인 IgA의 수준은 제작자의 지시에 따라 BD OptEIA 키트(BD Biosciences, California, USA)를 이용한 ELISA에 의해 결정하였다. 간략히 말해서, M-BmpB 단백질 항원(25 ug/ml)을 카보네이트 버퍼(pH 9.6)로 희석시키고, 희석된 항원은 폴리스티렌 마이크로티터 플레이트의 웰(100 ul/well)을 코팅하는 데 사용하였다. 상기 플레이트는 밤새도록 4℃에서 배양하였다. 그 후, 상기 플레이트는 워시 버퍼로 세척하였고 어세이 희석액(200 ul/well)으로 1시간동안 37℃에서 블락(block)하였다. 37℃ 블라킹에 이어, 어세이 희석액에서 1:3000 희석한 마우스의 혈청을 웰(100 ul/well)에 첨가하였다. 배설물 샘플은 1:100으로 희석하였다. 모든 샘플은 세 번 반복하여 시험하였다.
특정 항체 검출을 위해, 플레이트는 IgG, IgG1 및 IgG2a(1:5000 희석) 또는 IgA(1:2000 희석)에 특이적인, 적절히 희석된 HRP-표지된 고트 항-마우스 면역 글로불린항체 결합체와 함께 1시간 동안 실온에서 배양하였다. 상기 플레이트는 워시 버퍼로 세 차례 세척한 후 30분 동안 어두운 곳에서 100 ul/well의 기질 용액으로 처리하였다. 이어서 100 ul/well의 정지액을 첨가하여 효소 반응을 멈추게 하였다. 최종적으로 흡광도는 450 nm에서 Infinite 200 PRO 멀티모드 마이크로플레이트 리더로 측정하였다.
실시예 20. 회장 파이어 판으로부터 면역 세포의 분리
면역화된 마우스로부터 최종 샘플링 한 후, 회장으로부터 파이어 판을 얻기 위해 마우스를 해부하였다. 더 나아가 면역 세포는 기존 문헌(Geem D, Medina-Contreras O, Kim W, Huang CS, Denning TL. Isolation and characterization of dendritic cells and macrophages from the mouse intestine. Journal of visualized experiments : JoVE. 2012:e4040)에 기재된 대로 분리하였다.
간략히 말하면, 파이어 판을 포함한 짧은 소장 일부를 세로로 절단하고 37℃ CMF HBSS 버퍼의 EDTA 2 mM에서 세 차례의 연속적인 15분 배양으로 상피층을 제거하였다. CMF HBSS/FBS 내 1.5mg/ml Type VIII 콜라게나제에 의해 조직을 소화시켰다. 100 um 세포 여과기에 통과시킨 후, 세포의 현탁액을 4℃에서 5분간 1500 rpm으로 원심분리하였다. 상기 세포는 냉각한(ice-cold) CMF PBS에서 두 차례 세척하였고 냉각시킨 착색(staining) 버퍼(CMF PBS +5% FBS) 내 2.4G2 항-FcγRIII/II 항체로 얼음에서(on ice) 10분간 블라킹하였다. 냉각 착색 버퍼로 세척한 후, 세포는 어두운 곳에서 20분간 얼음에서 항체 착색 혼합체(staining cocktail, CD11c 및 MHC class II)로 염색하였다. 최종적으로 세포는 냉각 착색 버퍼로 두 차례 세척하고 FACS 분석을 위해 아주 찬 착색 버퍼 400 ul으로 재현탁하였다.
실시예 21. CD4 + T 세포의 IFN-γ 및 IL-4의 유동 세포 계수 검출
MP로 면역화된 마우스를 면역화 시킨 후, 비장을 무균상태로 얻었으며 비장세포의 단일 세포 현탁액을 10%의 가열 불활성화된 FBS로 보충된 RPMI에 준비하였다. ACK 용해(lysis) 버퍼는 RBC를 용해시키는 데 사용하였고, 비장세포(well 당 2×106 세포)는 96 well 둥근-바닥의 플레이트에 시딩(seed)하였다. 세포 자극 혼합체(단백질 수송 억제제 포함)로 자극한지 16시간이 지난 후, 세포를 5분간 2000 rpm으로 원심분리하여 회수하였고 PBS로 두 차례 세척하였다. 세포를 고정시키고, 4℃의 어두운 곳에서 20분간 cytofix/cytoperm 용액으로 투과시키고, 세포-특이적(CD4+)이면서 세포 내 사이토카인-특이적(IFN-γ 및 IL-4)인 항체로 염색하였다. 최종적으로 염색된 세포는 FACSCalibur(Becton Dickenson, USA)로 분석하였다.
실시예 22. 통계적 분석
모든 결과는 평균 ± 표준편차로 표현하였다. 평균 간 차이는 한-방향 분산(ANOVA)을 이용하여 통계적 중요도를 시험하였고 이후 최소 유의차검정(least significance test)을 수행하였다. 통계적 유의성은 *P<0.05, **P<0.01, 및 ***P<0.001으로 나타내었다.
상기 실시예 실험에 따른 결과는 하기 실험예와 같이 분석하였다.
실험예 1. T-HPMCP의 합성 및 특징화
T-HPMCP는 도 3에 나타난 것처럼 DCC/NHS 활성화된 커플링 반응으로 합성하였다. 시스테인과 HPMCP의 커플링은 양성자 핵 자성 공명(proton nuclear magnetic resonance, 1H-NMR) 및 푸리에 변환 적외선 분광법(FT-IR)에 의해 확인하였다. 아미드 및 티올 양성자의 피크(peak)가 T-HPMCP의 1H-NMR 스펙트럼에 나타났다. 좀 더 약한 피크는 7.4 ppm에 나타났고, 이는 아미드 양성자의 기여와 일치한다. 또한 티올 양성자 공명은 1.6 ppm에 강한 피크로 나타났다(도 4a). T-HPMCP의 시스테인 결합체는 FT-IR 스펙트럼의 1649 cm-1 및 1201 cm-1에 새롭게 나타난 피크에 의해 확인하였고, 각 피크는 N-H bending 진동 및 C-N 신장 모드에 대응된다(도 4b). T-HPMCP 스펙트럼의 FT-IR 스펙트럼은 1737 cm-1 C=O stretching 진동, 1059 cm-1 C=O bending 진동 및 3466 cm-1 N-H 신장 진동을 포함한 아미드 결합의 특징적인 피크를 부가적으로 보여주었다. T-HPMCP의 티올 함량은 15.5 mol-%였다.
실험예 2. T-HPMCP의 pH-민감성
위(pH 2.0 - 4.0), 십이지장(pH 5.5), 공장(pH 6.0) 및 회장(pH 7.2 - 8.0)과 같은 위장관(GI tract)의 각 부위마다 다른 pH를 고려하여 T-HPMCP의 용해도는 pH 2.0 내지 8.0의 범위에서 평가하였다. pH 5.5 이상에서 완전히 용해되는 HPMCP와 다르게, T-HPMCP는 7.0 이하의 산성 용액에서는 용해되지 않고 7.4 이상에서만 용해되었다.
유사하게, T-HPMCP 디스크의 팽창을 pH 2 및 4에서 수식되지(unmodified) 않은 HPMCP 디스크와 대비하였다. pH 7.4에서 1시간 동안 90.42 ± 6.5%의 팽창율, 및 pH 2.0에서 1시간 동안 50.64 ± 1.5%의 팽창율을 보인 T-HPMCP 디스크가 두 pH에서 모두 수분 흡수 용량이 더 높았다.
HPMCP 디스크가 1시간 이내에 pH 2.0에서 완전히 분해되고 pH 7.4에서 완전 용해되는 반면, T-HPMCP 디스크는 pH 2 및 7.4 모두에서 배양 2시간이 지난 후 느리고 일정한 속도로 분해되었다.
실험예 3. T-HPMCP의 단백질 담지 효율
모델 단백질 항원(M-BmpB)을 T-HPMCP의 단백질 경구 투여 효율을 평가하기 위해 사용하였다. 미립자(MP)의 형태로 M-BmpB를 T-HPMCP 및 HPMCP로 캡슐화하는 데 이중-에멀전 방법을 사용하였다.
그 결과, T-HPMCP MP는 7.54 ± 1.71 % 항원을 담지한 83.20 ± 1.43 % 캡슐화 효율을 보인 반면, HPMCP MP는 2.86 ± 1.32 % 항원을 담지한 80.97 ± 1.55 % 캡슐화 효율을 보였다.
실험예 4. T-HPMCP 미립자의 형태 및 크기
MP의 형태학을 연구하기 위해 SEM을 사용하였다. 두 MP 모두 매끄러운 표면을 가진(도 5A 및 5C) 구형의 입자로 잘 형성되었다. 유사하게, FITC-표지된 M-BmpB를 T-HPMCP 및 HPMCP MP에 캡슐화하여 CLSM로 관찰하였을 때 MP내에 존재하는 초록색 형광으로 확인하였다(도 5의 삽도).
수용액에서 MP의 크기 분포는 DLS에 의해 측정하였다. 보이는 것처럼, T-HPMCP 및 HPMCP의 입자의 평균 지름(± SD)은 각각 3.7 ± 0.4 um 및 3.771 ± 0.4 um였으며, 좁은 크기 분포를 가졌다 (도 5B 및 5D).
실험예 5. T-HPMCP 미립자의 단백질 방출 및 온전성
M-BmpB/T-HPMCP 및 M-BmpB/HPMCP MP로부터 방출되는 M-BmpB의 행동은 위(pH 2.0), 장(pH 6.0) 및 회장(pH 7.4)과 유사(simulated)한 환경의 시험관 내에서 연구하였다(도 6). M-BmpB의 방출 형태는 캡슐화된 M-BmpB의 양에 대한 방출된 M-BmpB의 퍼센티지로 표현하였다.
그 결과, T-HPMCP 및 HPMCP MP의 단백질 항원 방출은 pH-의존적이었다. pH 2.0에서는 HPMCP MP로부터 아주 소량의 항원만이 방출되었으나, pH 5.5 이상에서는 HPMCP의 용해가 일어나므로, pH 6.0 및 7.4에서는 MP로부터 대부분의 항원이 즉각적으로 방출되었다.
반면, pH 2.0에서 T-HPMCP MP로부터 유의미한 항원의 방출은 일어나지 않았으며, pH 7.4에서 배양 2시간 후 느리고 제어된 방출을 관찰할 수 있었다. 10시간 이내 T-HPMCP MP로부터 약 85%의 M-BmpB가 방출되었다.
한편, T-HPMCP 및 HPMCP MP에 담지하기 전후의 M-BmpB 구조적 온전성은 CD에 의해 평가하였다. 천연 M-BmpB 및 MP로부터 방출된 M-BmpB의 CD 스펙트럼은 도 7에 도시하였다. 원자외선 원형 색성(far UV-CD) 스펙트럼은 223 nm 및 210 nm에서 몰타원율(molar ellipticity) 최소값과 일치하였으며, 이는 MP로부터 방출된 M-BmpB의 α-나선형 골격이 유지됨을 의미한다.
실험예 6. T-HPMCP 미립자의 점막점착성
T-HPMCP MP의 점막점착성은 갓 절단한 돼지의 장 점막을 이용한 체외 실험에 FITC-표지된 MP를 형광 마커로서 사용함으로써 평가하였다. 37℃에서 갓 절단한 돼지의 장에 부착된 FITC로 표지된 MP의 양을 도 8에 나타내었다.
상기 결과로부터 2시간의 배양 후, 처음에 로딩한 T-HPMCP MP의 69%가 평균적으로 점막에 접착한 반면, HPMCP MP의 40%만이 점막 표면에 남아있다는 사실을 확인하였다. T-HPMCP MP의 점막 점착성이 HPMCP MP 보다 1.72 배 더 높았다.
실험예 7. T-HPMCP MP의 회장-특이적 단백질 전달 효율
T-HPMCP의 회장에서 단백질의 선택적인 전달에 관한 예비적인 증거를 준비하기 위해, 경구 위관 영양법(oral gavage)으로 마우스에게 FITC-M-BmpB/T-HPMCP 또는 FITC-M-BmpB/HPMCP MP를 투여하는 개념증명(a proof-of-concept) 실험을 수행하였다. 경구 투여 8시간 후, 회장의 파이어 판을 절단하고 동결하였다. 상기 파이어 판의 섹션은 CLSM에 의해 시각화하였다(도 9).
그 결과, FAE 하에서 선명하게 보이는 항원의 무리는 M 세포를 통한 항원의 효율적인 섭취를 나타내었다. HPMCP MP의 형태로는 적은 양의 항원이 GALT 지역을 통과하는 반면, T-HPMCP MP의 형태로 전달되는 경우에 GALT 지역에 전달되는 항원의 양이 더 많았다. 더 나아가, 상기 항원은 T-HPMCP MP로 전달되는 경우 GALT 지역 도처에 분포되었다. ImageJ 분석으로 정량화한 경우, T-HPMCP MP에 의한 항원의 전달은 HPMCP MP에 의한 전달에 비해 평균적으로 2.7배 더 높았다.
실험예 8. 수상세포에 의한 T-HPMCP로부터 방출된 항원의 세포 섭취
면역 세포의 면역 반응 시작 여부로 단백질 항원의 효율적인 전달을 확인하기 위해 MP에서 방출된 항원에 대한 수상세포의 세포 섭취(cellular internalization)를 시험관 내 실험으로 확인하였다. JAWS II 세포를 FITC-표지된 M-BmpB/T-HPMCP 또는 FITC-표지된 M-BmpB/HPMCP MP와 함께 4시간 동안 표준 세포 배양 조건에서 배양하였다.
CLSM 이미지는 JAWS II 세포가 T-HPMCP 및 HPMCP MP에서 방출된 FITC-표지 M-BmpB를 효율적으로 섭취하였음을 보여주었다(도 10). 상기 MP들로부터 방출된 항원의 세포 섭취는 서로 비교 가능하였다.
실험예 9. T-HPMCP 미립자를 이용한 단백질 항원의 경구 투여
캡슐화된 항원에 대한 면역 반응을 유도하여 T-HPMCP MP에 의한 효율적인 단백질 전달을 확인하고자, 마우스를 경구 위관 영양법을 통해 M-BmpB/T-HPMCP MP, M-BmpB/HPMCP MP, M-BmpB 또는 PBS 단독으로 면역화하였다. 혈청 및 배설물 샘플은 실험 디자인에 따라 수집하였고, 혈청 및 배설물 샘플의 항원 특이적 항체는 ELISA에 의해 확인하였다.
그 결과, T-HPMCP에 의한 항원 전달은 HPMCP MP에 의한 경우보다 상당히 강화된 수준의 항원-특이적 항체를 유도하였다. M-BmpB 또는 PBS 단독의 면역화는 무시할 수 있을 정도의 면역 반응을 유도하였다. HPMCP MP에 의한 경우보다 T-HPMCP MP에 의한 면역화가 약 1.56 ± 0.20 배 높은 배설물 항체 레벨(도 11A)을, 약 1.63 ± 0.21배 높은 혈청 항체 레벨(도 11B)을 유도하였다.
M-BmpB 단독으로 면역화한 경우에 비하여, T-HPMCP MP로 면역화한 경우에 4.66 ± 0.18배 높은 배설물 항체 레벨을, 4.78 ± 0.12배 높은 배설물 항체 레벨을 유도하였다.
유사하게, 생성된 항체의 아이소타입을 결정하고자 혈청 샘플은 IgG1(도 11C) 및 IgG2a(도 11D)으로 분석하였다. 사용된 전달 시스템에 상관없이 IgG2a 수준이 IgG1에 비해 압도적이었으며, 이는 Th1 타입의 항체가 반응을 지배함을 의미한다.
실험예 10. 회장의 파이어 판으로부터 면역
장 고유판(intestinal lamina propria), 특히 파이어 판에 광범위하게 위치한 수상세포는 T 세포에 전광 항원(luminal antigen)을 제시하기 위한 샘플링 및 처리(processing)에 있어 중요한 역할을 한다. 생체 내에서 상기 항원과 상호작용하는 특정 면역세포를 결정하기 위해, 본 발명자들은 회장의 파이어 판으로부터 수상세포를 분리하였다. 마커(CD11c 및 MHC-II)의 조합을 이용한 다색 유동세포계측(multicolor flow cytometry)의 방법으로 수상세포 군집(population)을 분석하였다. 게이팅(gating) 후, CD11c 및 융화 합성물(compatibility complex, MHC) class II를 발현하는 주요 수상세포 군집을 특정하였다.
M-BmpB/THPMCP MP가 투여된 마우스는 증가된 양성의 CD11c(36.0%) 및 MHC-II(27.7%) 수상세포 군집을 나타내었다. 반면, M-BmpB/HPMCP MP가 투여된 마우스는 33.8%의 CD11c 및 25.6%의 MHC-II가 증가된 수상세포 군집을 나타내었다(도 12).
실험예 11. 면역화된 마우스의 비장에서 상향 조절(up-regulation)된 CD4 + T 세포
효과적인 항원 전달의 최종 반응은 기억 세포로서 비장에서 면역 세포의 축적을 발생시킨다. 이는 적응 면역으로서 미래의 방어를 위한 것이다. 특정 T-세포 반응을 유도하기 위한 단백질 항원의 효율을 확인하기 위해, 항원으로 면역화하고 세포 자극 혼합체(cell stimulation cocktail)로 시험관에서 자극한 마우스로부터 비장세포(splenocyte)를 분리하였다.
CD4+, IFN-γ 및 IL-4의 세포 내 사이토카인을 염색하고, 유동 혈구 계산 분석을 행함으로써 세포를 분석하였다. 이와 같은 비장 T 림프구의 IFN-γ 및 IL-4의 세포 내 검출로 각 사이토카인을 생산하는 세포의 빈도를 알 수 있고, 따라서 세포성 또는 체액성 면역 반응의 지속성을 평가할 수 있다.
그 결과, 대조군이나 HPMCP MP에 의한 항원 투여의 경우보다 M-BmpB/T-HPMCP MP의 투여는 IFN-γ 을 생산하는 항원-특이적 CD4+ T 세포의 급격한 증가를 가져오는 것을 확인하였다. 특히, 서로 다른 면역화된 그룹 또는 대조군 간에 IL-4를 분비하는 CD4+ T 세포의 비율은 큰 차이가 없다는 사실을 확인하였다(도 13).
실험예 12. 글루타티온(glutathione) 및 시스테아민(cysteamine)을 이용한 티올화 HPMCP의 제조
본 발명자들은 상기 실험예에서 확인한 티올화 HPMCP의 향상된 점막 점착성이 다른 방법으로 제조된 티올화 HPMCP에서도 유지되는지 확인하고자 하였다.
구체적으로, 하기와 같이 글루타티온(glutathione) 및 시스테아민(cysteamine)을 이용하여 티올화 HPMCP를 제작하였다.
실험예 12-1. HPMCP-glutathione 고분자 전달체의 합성
HPMCP-Glutathione는 HPMCP 55 (4g)를 유기용매인 디메틸설폭사이드 (dimethyl sulfoxide, DMSO) 60 ml에 녹인 뒤 활성화제인 DCC (N,N’-dicyclohexylcarbodiimide)(4.87g)/ NHS (N-hydroxyl succinimide)(2.71g)를 각각 DMSO 30ml과 DMSO 15ml에 녹인 후 HPMCP와 실온에서 24시간 반응시키며 HPMCP의 카르복실그룹을 활성화 시켰다.
그 다음, DMSO에 용해된 glutathione (0.725g)을 첨가하여 48시간 동안 반응시켜 HPMCP와 L-glutathione 간의 아마이드 결합을 유도하였다(도 14). 산소에 의한 불필요한 반응 배제를 위해 각 과정은 질소가스 공급 하에 진행하였다.
미반응 glutathione의 제거를 위해 먼저 DMSO 4L에 투석하고, 잔존 DMSO는 D.W.(distilled water) 4L에 3일간 수 차례 투석하여 제거하였다. 투석 완료 후 합성 된 HPMCP-Glutathione은 동결건조를 통해 분말상태로 수득하였다.
합성 된 HPMCP-glutathione 고분자를 FTIR (Fourier transform infrared spectroscopy)을 통하여 검증하였다(도 16 및 도 17).
실험예 12-2. HPMCP-cysteamine 고분자 전달체의 합성
HPMCP-cysteamine은 HPMCP 55 (4g)를 유기용매인 DMSO 60ml에 녹인 뒤 활성화제인 DCC (N,N’-dicyclohexylcarbodiimide)(4.87g)/ NHS (N-hydroxyl succinimide)(2.71g)를 각각 DMSO 30ml과 DMSO 15ml에 녹인 후 HPMCP와 실온에서 24시간 반응시키며 HPMCP의 카르복실그룹을 활성화 시켰다.
이후, DMSO에 용해된 cysteamine(0.268g)을 첨가하여 48시간 반응시켜 HPMCP와 cysteamine 간의 아마이드 결합을 유도하였다(도 15). 산소에 의한 불필요한 반응 배제를 위해 각 과정은 질소가스 공급 하에 진행하였다.
미반응 cysteamine의 제거를 위해 먼저 DMSO 4L에 투석하고, 잔존 DMSO는 D.W. (distilled water) 4L에 3일간 수 차례 투석하여 제거하였다. 투석 완료 후 합성 된 HPMCP-cysteamine는 동결건조를 통해 분말상태로 수득하였다.
합성 된 HPMCP-cysteamine고분자는 FTIR(Fourier transform infrared spectroscopy)을 통하여 검증하였다(도 16 및 도 18).
실험예 13. 글루타티온(glutathione) 및 시스테아민(cysteamine)을 이용한 티올화 HPMCP의 점막 점착성의 확인
본 발명자들은 상기 실험예 12에서 제조한 티올화 HPMCP의 향상된 점막 점착성을 확인하고자 하였다.
실험예 13-1. HPMCP, HPMCP-glutathione, HPMCP-cysteamine 고분자 전달체와 FITC (Fluorescein isothiocyanate)의 결합
HPMCP 및 상기 실험예 12에서 제조한 HPMCP-glutathione 및 HPMCP-cysteamine 각각 100 mg을 DMSO 3ml에 용해시키고 암실 환경에서 stiring 시켰다. 5 mg의 FITC를 0.1ml의 DMSO에 용해 시킨 후 HPMCP, HPMCP-glutathione, HPMCP-cysteamine 고분자 전달체와 함께 실온 에서 4시간 동안 stiring 하면서 반응시켰다. 이 후 반응산물을 DW에 24시간 동안 투석 후 동결건조 시켰다.
실험예 13-2. HPMCP, HPMCP-glutathione, HPMCP-cysteamine 고분자 전달체의 점막점착성 측정
FITC가 결합 된 HPMCP, HPMCP-glutathione, HPMCP-cysteamine을 10mg을 각각 취하여 0.1N NaOH용액에 용해 시킨다. BmpB 단백질 2mg을 0.2ml의 PBS에 용해 시킨 후 NaOH 용액에 용해 시킨 고분자 전달체와 혼합시켰다.
0.1N의 HCl을 혼합액에 천천히 떨어뜨려 나노파티클이 침전 되게끔 한다. 수득 한 나노파티클 을 40ml의 PBS에 현탁 시켜 50ml 팔콘 튜브 (falcon tube)에 옮겨 닮는다. 옮겨 담기 전 495 nm에서 흡광도를 측정하고 돼지소장절편이 부착 된 글래스 슬라이드를 팔콘 튜브 내에 넣고 37℃에서 50 rpm으로 1시간 동안 배양한 후 다시 495nm에서 흡광도를 측정하였다 (도 19의 A).
소장에 나노파티클이 부착 되면 용액상의 FITC의 흡광도의 차이가 나기 때문에 그 차이를 이용하여 소장점막에 부착된 나노파티클 을 환산하여 각 고분자의 점막점착성 능력을 평가하였다.
그 결과, HPMCP-glutathione, HPMCP-cysteamine, HPMCP 순으로 점막점착성 능력이 높은 것을 확인하였고 HPMCP-glutathione의 경우 티올화되지 않은 HPMCP에 비해 점막점착성 능력이 약 1.5배 정도 높게 나타나는 것을 확인 하였다(도 19의 B).
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.
<110> Seoul National University R&DB Foundation <120> Attuning hydroxypropyl methylcellulose phthalate to oral delivery vehicle for effective and selective delivery of protein vaccine in ileum <130> KPA150346-KR-P1 <150> KR10-2015-0097285 <151> 2015-07-08 <160> 1 <170> KopatentIn 2.0 <210> 1 <211> 9 <212> PRT <213> Brachyspira hyodysenteriae <400> 1 Cys Lys Ser Thr His Pro Leu Ser Cys 1 5

Claims (12)

  1. 회장 특이적 pH 감응성을 가지고, 단백질 약물 또는 항원을 담지한 티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트(thiolated hydroxypropyl methylcellulose phthalate, T-HPMCP) 약물 전달체.
  2. 제1항에 있어서, 상기 하이드록시프로필 메틸 셀룰로스 프탈레이트 약물 전달체는 L-시스테인, 글루타티온(glutathione), 또는 시스테아민(cysteamine)으로부터 티올기가 도입되어 티올화된 것인, 약물 전달체.
  3. 제1항에 있어서, 상기 약물 전달체는 pH 7.4 이상에서 용해되는 것인, 약물 전달체.
  4. 제1항에 있어서, 상기 항원은 M-BmpB인 것인, 약물 전달체.
  5. 제 1항에 있어서, 상기 약물 전달체는 티올화되지 않은 HPMCP에 비해 점막 점착성이 1.5배 이상 높은 것인, 약물 전달체.
  6. 제 1항에 있어서, 상기 약물 전달체는 투여 2시간 후 50% 이상 점막에 남아 있는 것인, 약물 전달체.
  7. 제1항에 있어서, 상기 약물 전달체는 CD4+ T 세포를 자극하여 적응 면역을 유도하는 것인, 약물 전달체.
  8. 제7항에 있어서, 상기 CD4+ T 세포는 인터페론(IFN)-γ을 생산하는 것인, 약물 전달체.
  9. 티올화된 하이드록시프로필 메틸 셀룰로스 프탈레이트 (thiolated hydroxypropyl methylcellulose phthalate, T-HPMCP)를 유기 용매 존재 하에서 균질화하는 단계를 포함하는, T-HPMCP 미립자를 제조하는 방법.
  10. 제9항에 있어서, 상기 유기 용매는 염화메탄인 것인, T-HPMCP 미립자를 제조하는 방법.
  11. 제9항에 있어서, 상기 유기 용매는 디클로로메탄, 디클로로메탄 및 에탄올의 혼합 용매, 또는 디클로로메탄 및 메탄올의 혼합 용매인 것인, T-HPMCP 미립자를 제조하는 방법.
  12. 제9항 내지 제11항 중 어느 한 항의 방법으로 제조된 T-HPMCP 미립자에 단백질 약물 또는 항원을 담지하는 단계를 포함하는, 회장 특이적 pH 감응성을 가지는 T-HPMCP 약물 전달체를 제조하는 방법.
KR1020160058819A 2015-07-08 2016-05-13 회장 표적화 점막 점착성 티올화 hpmcp 백신 단백질 전달 제제 KR101781295B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150097285 2015-07-08
KR20150097285 2015-07-08

Publications (2)

Publication Number Publication Date
KR20170007687A true KR20170007687A (ko) 2017-01-19
KR101781295B1 KR101781295B1 (ko) 2017-09-27

Family

ID=57685140

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160058819A KR101781295B1 (ko) 2015-07-08 2016-05-13 회장 표적화 점막 점착성 티올화 hpmcp 백신 단백질 전달 제제

Country Status (3)

Country Link
US (1) US20180200373A1 (ko)
KR (1) KR101781295B1 (ko)
WO (1) WO2017007121A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102140379B1 (ko) * 2018-11-14 2020-07-31 우진 비앤지 주식회사 돼지 적리 치료 또는 예방용 백신 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090088184A (ko) * 2008-02-14 2009-08-19 재단법인서울대학교산학협력재단 경구 투여용 티올화 유드라지트 미립자 약물 전달체
KR101174183B1 (ko) * 2008-11-28 2012-08-16 주식회사 삼양바이오팜 생체이용률이 향상된 타크로리무스 제제 및 상기 제제의 제조방법
CN109172816A (zh) * 2012-03-29 2019-01-11 塞拉拜姆有限责任公司 在回肠和阑尾上有活性的胃肠位点特异性口服接种疫苗制剂

Also Published As

Publication number Publication date
WO2017007121A1 (ko) 2017-01-12
KR101781295B1 (ko) 2017-09-27
US20180200373A1 (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6953478B2 (ja) 回腸及び虫垂に対して活性の胃腸部位特異的経口ワクチン接種製剤
CN102202653B (zh) 用于免疫疗法的纳米颗粒
CA2493478C (en) Cell transport compositions and uses thereof
Boks et al. MPLA incorporation into DC-targeting glycoliposomes favours anti-tumour T cell responses
AU2020267191B2 (en) Polymeric bile acid nanocompositions targeting the pancreas and colon
Appavu et al. Enhancing the magnitude of antibody responses through biomaterial stereochemistry
JP5050144B2 (ja) アジュバントとしてのポリアミノ酸
US20040038865A1 (en) Cell transport compositions and uses thereof
Singh et al. Attuning hydroxypropyl methylcellulose phthalate to oral delivery vehicle for effective and selective delivery of protein vaccine in ileum
Lavelle Targeted delivery of drugs to the gastrointestinal tract
CN111249453B (zh) 一种纳米疫苗及其制备方法
Liu et al. Engineering biomaterial-associated complement activation to improve vaccine efficacy
Snook et al. Peptide nanofiber–CaCO 3 composite microparticles as adjuvant-free oral vaccine delivery vehicles
Yang et al. Single dose of protein vaccine with peptide nanofibers as adjuvants elicits long-lasting antibody titer
Cheng et al. Recombination monophosphoryl lipid A-derived vacosome for the development of preventive cancer vaccines
Brito Baleeiro et al. Nanoparticle-based mucosal vaccines targeting tumor-associated antigens to human dendritic cells
Garlapati et al. Strategies to link innate and adaptive immunity when designing vaccine adjuvants
JP2018529684A (ja) 抗マラリア組成物および方法
Cao et al. Enhanced Mucosal Transport of Polysaccharide–Calcium Phosphate Nanocomposites for Oral Vaccination
KR101781295B1 (ko) 회장 표적화 점막 점착성 티올화 hpmcp 백신 단백질 전달 제제
Tallapaka et al. Surface conjugation of EP67 to biodegradable nanoparticles increases the generation of long-lived mucosal and systemic memory T-cells by encapsulated protein vaccine after respiratory immunization and subsequent T-cell-mediated protection against respiratory infection
KR101849831B1 (ko) M 세포 표적 펩타이드-항원 결합체 및 점막점착제를 포함하는 백신 조성물
US20150306213A1 (en) Hmgb1-derived peptides enhance immune response to antigens
Liu et al. Bacteria-like tumor vaccines progressively initiate cascade reaction for precise antigen delivery and induction of anti-tumor cellular immune response
US20230250172A1 (en) Implantable scaffolds and uses thereof for immunotherapy and other uses

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant