KR20170007146A - 반도체 장치, 제어 시스템 및 관측 방법 - Google Patents

반도체 장치, 제어 시스템 및 관측 방법 Download PDF

Info

Publication number
KR20170007146A
KR20170007146A KR1020160085318A KR20160085318A KR20170007146A KR 20170007146 A KR20170007146 A KR 20170007146A KR 1020160085318 A KR1020160085318 A KR 1020160085318A KR 20160085318 A KR20160085318 A KR 20160085318A KR 20170007146 A KR20170007146 A KR 20170007146A
Authority
KR
South Korea
Prior art keywords
data
conversion
polar coordinate
unit
coordinate data
Prior art date
Application number
KR1020160085318A
Other languages
English (en)
Inventor
유끼 카지와라
Original Assignee
르네사스 일렉트로닉스 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 르네사스 일렉트로닉스 가부시키가이샤 filed Critical 르네사스 일렉트로닉스 가부시키가이샤
Publication of KR20170007146A publication Critical patent/KR20170007146A/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/20Conjoint control of vehicle sub-units of different type or different function including control of steering systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/18Conjoint control of vehicle sub-units of different type or different function including control of braking systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/04Traffic conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/522Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves
    • G01S13/524Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi
    • G01S13/5246Discriminating between fixed and moving objects or between objects moving at different speeds using transmissions of interrupted pulse modulated waves based upon the phase or frequency shift resulting from movement of objects, with reference to the transmitted signals, e.g. coherent MTi post processors for coherent MTI discriminators, e.g. residue cancellers, CFAR after Doppler filters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/87Combinations of radar systems, e.g. primary radar and secondary radar
    • G01S13/878Combination of several spaced transmitters or receivers of known location for determining the position of a transponder or a reflector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0294Trajectory determination or predictive filtering, e.g. target tracking or Kalman filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/04Display arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • G01S7/2955Means for determining the position of the radar coordinate system for evaluating the position data of the target in another coordinate system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/285Receivers
    • G01S7/295Means for transforming co-ordinates or for evaluating data, e.g. using computers
    • G01S7/298Scan converters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4021Means for monitoring or calibrating of parts of a radar system of receivers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W2050/0001Details of the control system
    • B60W2050/0043Signal treatments, identification of variables or parameters, parameter estimation or state estimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/143Alarm means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/08Interaction between the driver and the control system
    • B60W50/14Means for informing the driver, warning the driver or prompting a driver intervention
    • B60W2050/146Display means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/18Braking system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/20Steering systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9318Controlling the steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/93185Controlling the brakes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93272Sensor installation details in the back of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93274Sensor installation details on the side of the vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93275Sensor installation details in the bumper area

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mathematical Physics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Traffic Control Systems (AREA)

Abstract

필요로 되는 기억 용량을 저감하는 것이다. 본 발명에 따른 반도체 장치는, 주변을 관측하는 복수의 레이더의 각각으로부터, 관측 결과를 나타내는 복수의 데이터를 취득하고, 극좌표 형식으로 변환하여 기억부에 저장하는 데이터 취득부(211)와, 기억부에 저장된 극좌표 형식의 복수의 데이터의 각각을, 축 위치가 동일해지도록 변환을 실시하여 복수의 축 위치 변환 후 데이터의 각각을 생성하고, 기억부에 저장하는 축 위치 변환부(212)와, 복수의 축 위치 변환 후 데이터를 중첩하여 중첩 데이터를 생성하는 데이터 중첩부(213)와, 중첩 데이터를, 직교 좌표 형식으로 변환하는 좌표 변환부(214)를 구비한다.

Description

반도체 장치, 제어 시스템 및 관측 방법{SEMICONDUCTOR DEVICE, CONTROL SYSTEM AND OBSERVATION METHOD}
본 발명은 반도체 장치, 제어 시스템 및 관측 방법에 관한 것으로, 예를 들어 복수의 레이더에 의해 주변을 관측하는 기술에 관한 것이다.
특허문헌 1에는, 복수의 레이더 안테나로부터 얻어지는 탐지 데이터를 단일의 표시기 상에서 정확하게 합성하여 표시하는 것을 목적으로 한 레이더 장치가 개시되어 있다. 이 레이더 장치에서는, 탐지 데이터 생성 수단이, 복수의 레이더 안테나가 생성한 탐지 신호의 각각으로부터 극좌표계의 탐지 데이터를 생성한다. 상관 처리 수단이, 탐지 데이터의 각각을 상관 처리하고, 직교 좌표계의 상관 처리 데이터로서 기억한다. 표시 화상 데이터 선택 수단이, 특정한 안테나에 대응하는 영역에서는 특정한 안테나에 대응하는 상관 처리 데이터를 선택하여 표시 화상 데이터 기억 수단에 출력하고, 다른 영역에서는 특정한 안테나 이외의 안테나에 대응하는 상관 처리 데이터를 선택하여 표시 화상 데이터 기억 수단에 출력한다.
그러나, 특허문헌 1에 개시된 기술에서는, 레이더 안테나마다 직교 좌표계의 상관 처리 데이터가 생성되기 때문에, 필요로 되는 메모리의 기억 용량이 많아져 버린다고 하는 문제가 있다. 일반적으로, 직교 좌표계의 데이터는, 극좌표계의 데이터보다도 데이터양이 많기 때문이다.
또한, 특허문헌 2에는, 레이더 안테나의 설치 장소가 상이하고, 또한 레이더 안테나간에 있어서 전파의 송신 및 레이더 안테나의 회전이 비동기이어도, 합성 레이더 비디오 신호를 생성하는 것을 목적으로 한 레이더 비디오 합성 장치가 개시되어 있다. 이 레이더 비디오 합성 장치에서는, Rθ-XY 변환 회로가, 레이더 A 및 레이더 B의 각각으로부터의 비디오 신호를 직교 좌표 데이터로 변환하고, 화상 데이터로서 메모리에 기억시킨다. XY-Rθ 변환 회로가, 레이더 A 및 레이더 B의 화상 데이터의 각각을 레이더 A에 맞춘 중심 위치로 조정하고, 극좌표 데이터로 변환한다. 그리고, 출력 버퍼 제어 회로(19)가 레이더 A 및 레이더 B의 각각의 극좌표 데이터를 합성하여 출력한다.
그러나, 특허문헌 2에 개시된 기술에서도, 레이더 안테나마다 직교 좌표 데이터가 생성되기 때문에, 특허문헌 1에 개시된 기술과 마찬가지로, 필요로 되는 메모리의 기억 용량이 많아져 버린다고 하는 문제가 있다. 또한, 특허문헌 2에 개시된 기술은, 데이터를 직교 좌표 데이터로 변환한 후에, 다시, 극좌표 데이터로 재변환할 필요가 있기 때문에, 처리에 시간이 걸려 버린다고 하는 문제도 있다.
일본 특허 제4917270호 공보 일본 특허 공개 제3990830호 공보
상술한 바와 같이, 특허문헌 1 및 특허문헌 2에 개시된 기술에서는, 필요로 되는 기억 용량이 많아져 버린다고 하는 문제가 있다.
그 밖의 과제와 신규 특징은, 본 명세서의 기술 및 첨부 도면으로부터 명백하게 될 것이다.
일 실시 형태에 의하면, 반도체 장치는, 복수의 레이더의 각각의 관측 결과를 나타내는 극좌표 형식의 데이터를, 축 위치가 동일해지도록 변환을 실시하고 나서 중첩하고, 중첩 후의 데이터를 직교 좌표 형식으로 변환하는 것이다.
상기 일 실시 형태에 의하면, 필요로 되는 기억 용량을 저감할 수 있다.
도 1은 실시 형태 1에 따른 차량 탑재 제어 시스템의 구성을 도시하는 블록도.
도 2는 실시 형태 1에 따른 ECU의 구성을 도시하는 블록도.
도 3은 실시 형태 1에 따른 인식용 MCU의 구성을 도시하는 블록도.
도 4는 실시 형태 1에 따른 인식용 MCU의 기능 블록도.
도 5는 극좌표 형식의 데이터와 직교 좌표 형식의 데이터를 도시하는 도면.
도 6은 실시 형태 1에 따른 인식용 MCU에서 생성되는 극좌표 데이터와 직교 좌표 데이터의 관계를 도시하는 도면.
도 7은 실시 형태 1에 따른 차량 탑재 제어 시스템의 동작을 설명하는 플로우차트.
도 8은 실시 형태 1에 따른 인식용 MCU에 의한 주변 환경 인식의 동작을 설명하는 플로우차트.
도 9는 실시 형태 1에 따른 축 위치 변환 전후의 극좌표 데이터를 도시하는 도면.
도 10은 실시 형태 2에 따른 인식용 MCU의 구성을 도시하는 블록도.
도 11은 실시 형태 2에 따른 인식용 MCU에 의한 주변 환경 인식의 동작을 설명하는 플로우차트.
도 12는 실시 형태 2에 따른 축 위치 변환 전후의 극좌표 데이터를 도시하는 도면.
도 13은 실시 형태 2에 따른 축 위치 변환 전후의 극좌표 데이터를 도시하는 도면.
도 14는 실시 형태 3에 따른 인식용 MCU의 기능 블록도.
도 15는 실시 형태 3에 따른 인식용 MCU에 의한 주변 환경 인식의 동작을 설명하는 플로우차트.
이하, 도면을 참조하면서, 바람직한 실시 형태에 대하여 설명한다. 이하의 실시 형태에 나타내는 구체적인 수치 등은, 실시 형태의 이해를 용이하게 하기 위한 예시에 지나지 않고, 특별히 언급하는 경우를 제외하고, 그것에 한정되는 것은 아니다. 또한, 이하의 기재 및 도면에서는, 설명의 명확화를 위해, 당업자에게 있어서 자명한 사항 등에 대해서서는, 적절히, 생략 및 간략화가 이루어져 있다.
<실시 형태 1>
먼저, 실시 형태 1에 대하여 설명한다. 도 1을 참조하여, 본 실시 형태 1에 따른 차량 탑재 제어 시스템(1)의 구성에 대하여 설명한다. 도 1에 도시한 바와 같이, 차량 탑재 제어 시스템(1)은 ECU(Electronic Control Unit)(10)와, 복수의 레이더(11a∼11f)와, 경고 표시 장치(12)와, 스티어링(13)과, 브레이크(14)를 갖는다. 차량 탑재 제어 시스템(1)은 자동차(이하, 「차량」이라고도 부름)에 탑재되는 시스템이다.
레이더(11a∼11f)는 차량의 외부에 배치되어 있고, 그 이외의 부품(12∼14)은 차량의 내부에 배치되어 있다. 도 1에서는, 레이더(11a∼11f)의 수가 6개인 예에 대하여 나타내고 있지만, 레이더의 수는 이것에 한정되지 않는다.
ECU(10)는, 차량의 각 부(스티어링(13) 및 브레이크(14) 등)를 제어한다. ECU(10)는, 레이더(11a∼11f)의 각각으로부터 얻어지는 데이터에 기초하여, 차량의 주변 환경의 인식, 인식한 주변 환경에 따른 차량의 제어 내용의 결정, 및, 결정한 제어 내용에 의한 차량의 제어 등을 실시한다. 여기서, ECU(10)는, 자신의 제어 모드로서, 운전자의 조작에 기초하여 차량을 제어하는 수동 제어 모드와, 운전자의 조작에 의하지 않고, 차량을 자동으로 제어하는 자동 제어 모드를 갖고 있다.
예를 들어, ECU(10)는, 수동 제어 모드에서는, 인식한 주변 환경에 기초하여, 이대로 운전을 계속한 경우에 차량이 물체(장해물)와 접촉할 가능성이 있다고 판정한 경우에는, 자신의 제어 모드를 자동 제어 모드로 전환한다. ECU(10)는, 자동 제어 모드에서는, 차량이 물체를 회피(예를 들어 차량을 정지 또는 차량이 물체를 우회하여 주행)하도록, 차량의 제어 내용을 결정한다. 또한, 예를 들어 차량의 운전자가 수동으로 ECU(10)의 제어 모드를 수동 제어 모드로부터 자동 제어 모드로 전환함으로써, ECU(10)는, 자동 제어 모드에 있어서, 운전자에 의해 설정된 목적지까지 자동으로 주행하도록, 인식한 주변 환경에 기초하여 차량의 제어 내용을 결정하도록 해도 된다.
ECU(10)는, 단독의 부품을 포함하고 있어도 되고, 기능마다 분할된 복수의 부품을 포함하고 있어도 된다. 복수의 부품을 포함하고 있는 경우, 각각의 부품은, 서로 정보의 교환을 할 수 있는 형태로 접속되어 있다. 이 부품은, 예를 들어 후술하는 MCU(Micro Control Unit)이다.
레이더(11a∼11f)의 각각은, 차량의 주변을 관측하는 관측 장치이다. 레이더(11a∼11f)의 각각은, 예를 들어 광파(예를 들어 적외선을 포함함) 및 전파(예를 들어 밀리미터파를 포함함) 등의 전자파에 의해, 차량의 주변에 존재하는 물체를 관측한다. 센서(12)는 관측 결과를 나타내는 레이더 데이터를 생성하고, ECU(10)에 송신한다.
레이더(11a∼11f)의 각각은, 도 1에 도시한 바와 같이, 차량에 설치되어 있다. 보다 상세하게는, 레이더(11a)는 차량의 좌측 경사 전방을 관측하도록 차량에 설치되어 있다. 레이더(11b)는 차량의 전방을 관측하도록 차량에 설치되어 있다. 레이더(11c)는 차량의 우측 경사 전방을 관측하도록 차량에 설치되어 있다. 레이더(11d)는 차량의 우측 경사 후방을 관측하도록 차량에 설치되어 있다. 레이더(11e)는 차량의 후방을 관측하도록 차량에 설치되어 있다. 레이더(11f)는 차량의 좌측 경사 후방을 관측하도록 차량에 설치되어 있다. 이하, 레이더(11a∼11f)를 특별히 구별하지 않고 언급하는 경우에는, 간단히 「레이더(11)」라고도 부른다.
경고 표시 장치(12)는 차량의 탑승자에 대하여 경고를 출력하는 출력 장치이다. 출력 장치는, 예를 들어 경고 화상을 표시하는 표시 장치이다. 표시 장치는, 예를 들어 액정 패널, 유기 EL 패널, 또는, 플라즈마 디스플레이 패널 등이다. 또한, 출력 장치는, 화상을 표시(출력)하는 장치에 한하지 않고, 차량의 탑승자에 대하여 경고할 때에 점등하여 광을 출력하는 발광 장치이어도 되고, 차량의 탑승자에 대하여 경고하는 음성을 출력하는 스피커이어도 된다. 발광 장치는, 예를 들어 LED 라이트이다. 예를 들어, ECU(10)는, 전술한 바와 같이, 인식한 주변 환경에 기초하여, 이대로 운전을 계속한 경우에 차량이 물체와 접촉할 가능성이 있다고 판정한 경우에, 경고 표시 장치(12)에 의해 경고를 출력하고, 자신의 제어 모드를 자동 제어 모드로 전환한다.
스티어링(13)은 ECU(10)로부터의 지시에 따라서, 차량의 타이어의 스티어링각을 변경하는 제어 장치이다. 브레이크(14)는 ECU(10)로부터의 지시에 따라서, 그 가감이 변경되는 제어 장치이다.
이와 같이, 차량 탑재 제어 시스템(1)은 복수의 레이더(11a∼11f)에 의해 차량의 주변의 상황을 관측하고, 차량의 진행해야 할 방향을 판단하는 센서 퓨전 시스템으로서 기능한다.
계속해서, 도 2를 참조하여, 본 실시 형태 1에 따른 ECU(10)의 구성에 대하여 설명한다. 도 2에 도시한 바와 같이, ECU(10)는 인식용 MCU(20)와, 판단용 MCU(21)와, 제어용 MCU(22, 23)를 갖는다.
인식용 MCU(20)는, 복수의 레이더(11a∼11f)와 전용의 버스를 통해 접속되어 있다. 판단용 MCU(21)는, 경고 표시 장치(12)와 전용의 버스를 통해 접속되어 있다. 제어용 MCU(22)는, 스티어링(13)과 전용의 버스를 통해 접속되어 있다. 제어용 MCU(23)는, 브레이크(14)와 전용의 버스를 통해 접속되어 있다. 또한, 도 2에서는, 제어용 MCU(22, 23)가 2개인 예에 대하여 도시하고 있지만, 제어용 MCU의 수는 이것에 한정되지 않는다. 예를 들어, 스티어링(13) 및 브레이크(14)의 양쪽을 제어하는 제어용 MCU를, ECU(10)가 1개만 갖도록 해도 된다. 이 경우, 그 제어용 MCU와, 스티어링(13) 및 브레이크(14)의 각각이 전용의 버스를 통해 접속된다.
인식용 MCU(20)는, 레이더(11a∼11f)의 각각으로부터 수신한 레이더 데이터에 기초하여, 차량의 주변 환경을 인식한다. 보다 구체적으로는, 인식용 MCU(20)는, 예를 들어 자차의 주변 환경으로서, 자차의 주변에 존재하는 물체를 인식한다. 이때, 인식용 MCU(20)는, 후술하는 바와 같이, 자차의 주변의 각 위치에 있어서 물체의 존재 확률을 나타내는 데이터를, 인식한 주변 환경을 나타내는 데이터로서 생성한다. 그리고, 인식용 MCU(20)는, 생성한 주변 환경을 나타내는 데이터를 판단용 MCU(21)에 송신한다.
판단용 MCU(21)는, 인식용 MCU(20)로부터 수신한 데이터가 나타내는 주변 환경에 기초하여, 차량의 제어 내용을 결정한다. 예를 들어, 판단용 MCU(21)는, 전술한 바와 같이, 차량이 물체를 회피하도록 차량의 제어 내용을 결정한다. 판단용 MCU(21)는, 결정한 제어 내용을 나타내는 제어 정보를 생성하고, 제어용 MCU(22, 23)의 각각에 송신한다.
제어용 MCU(22, 23)는, 판단용 MCU(21)로부터 수신한 제어 정보에 기초하여, 그 제어 정보가 나타내는 제어 내용으로 차량을 제어한다. 보다 구체적으로는, 제어용 MCU(22)는, 제어 정보가 나타내는 제어 내용으로 스티어링(13)을 제어한다. 또한, 제어용 MCU(23)는, 제어 정보가 나타내는 제어 내용으로 브레이크(14)를 제어한다.
계속해서, 도 3을 참조하여, 본 실시 형태 1에 따른 인식용 MCU(20)의 구성에 대하여 설명한다. 도 3에 도시한 바와 같이, 인식용 MCU(20)는, CPU(Central Processing Unit)(200)와, 내부 메모리(201)와, 센서 I/F(202)와, 외부 메모리 I/F(203)와, MCU간 I/F(204)를 갖는다. 또한, 차량 탑재 제어 시스템(1)은 외부 메모리(30)를 갖는다.
CPU(200)는, 내부 메모리(201) 및 외부 메모리(30)에 저장된 정보에 기초하여, 인식용 MCU(20)로서의 기능을 실현하기 위한 각종 처리를 실행하는 연산 장치이다.
내부 메모리(201)는 CPU(200)와 접속된다. 내부 메모리(201)는 CPU(200)에 의한 처리의 실행에 필요한 각종 정보가 저장되는 기억 장치이다. 내부 메모리(201)는 예를 들어, SRAM(Static Random Access Memory) 등의 고속으로 액세스 가능한 메모리이다.
센서 I/F(202)는, 복수의 레이더(11a∼11f)와, CPU(200)를 접속하는 버스이다. 외부 메모리 I/F(203)는, 외부 메모리(30)와, CPU(200)를 접속하는 버스이다. MCU간 I/F(204)는, 다른 MCU(21∼23)와, CPU(200)를 접속하는 버스이다. 또한, 이들 I/F(202∼204)는 전용의 버스이어도 되고, CAN(Controller Area Network) 또는 Ethernet(등록 상표) 등의 규격에 준한 범용의 버스이어도 된다. 또한, I/F(202∼204)의 각각은, 물리적으로 각각의 버스가 아니어도 되고, 동일한 버스를 시분할로 전환하여 사용해도 된다.
외부 메모리(30)는 CPU(200)에 의한 처리의 실행에 필요한 각종 정보가 저장되는 기억 장치이다. 외부 메모리(30)는, 예를 들어 DRAM(Dynamic Random Access Memory) 등의 대용량의 메모리, 혹은 플래시 메모리 등의 불휘발성의 메모리이다.
계속해서, 도 4를 참조하여, 실시 형태 1에 따른 인식용 MCU(20)의 기능 블록에 대하여 설명한다. 도 4에 도시한 바와 같이, 인식용 MCU(20)는, 시스템 제어부(210)와, 데이터 취득부(211)와, 복수의 축 위치 변환부(212)와, 데이터 중첩부(213)와, 좌표 변환부(214)와, 결과 출력부(215)를 갖는다. 각 부(210∼215)는 CPU(200)에 포함된다.
시스템 제어부(210)는 데이터 취득부(211), 복수의 축 위치 변환부(212), 데이터 중첩부(213), 좌표 변환부(214) 및 결과 출력부(215)의 각각을 제어한다. 예를 들어, 시스템 제어부(210)는 데이터 취득부(211), 복수의 축 위치 변환부(212), 데이터 중첩부(213), 좌표 변환부(214), 결과 출력부(215)의 순서로, 순서성을 지켜 데이터가 처리되도록 각 부(211∼215)를 동작시킨다.
데이터 취득부(211)는 레이더(11a∼11f)의 각각으로부터 송신된 레이더 데이터를, 센서 I/F(202)를 통해 취득한다. 데이터 취득부(211)는 취득한 레이더 데이터에 대하여 처리를 실시하여, 도 5에 도시한 바와 같이, 레이더(11)의 회전축을 기준으로 하여, 거리 방향을 r축으로 하고, 반시계 방향의 각도 방향을 θ축으로 한 이차원의 데이터인 극좌표 형식의 데이터로 된다. 이하, 이 데이터를 「극좌표 데이터」라고도 부른다. 극좌표 데이터는, 레이더(11)에 대한 거리 방향 및 각도 방향의 각각을 각 축으로 한 이차원 공간 상에 있어서, 각 좌표에 있어서의 물체의 존재 확률을 나타내는 데이터이다. 데이터 취득부(211)는, 생성한 극좌표 데이터를, 외부 메모리 I/F(203)를 통해 외부 메모리(30)에 저장한다. 또한, 레이더(11a∼11f)의 각각으로부터 송신된 레이더 데이터로부터 생성된 극좌표 데이터의 각각이 외부 메모리(30)에 저장된다. 바꾸어 말하면, 레이더(11a∼11f)와 동수의 극좌표 데이터가 외부 메모리(30)에 저장된다.
복수의 축 위치 변환부(212)의 각각은, 레이더(11a∼11f)의 각각에 대응하는 변환 테이블을 사용하여, 레이더(11a∼11f)의 각각에 대응하는 극좌표 데이터에 대하여 축 위치 변환을 실시한다. 즉, 복수의 축 위치 변환부(212)는 레이더(11a∼11f)와 동수이다. 복수의 축 위치 변환부(212)의 각각은, 레이더(11a∼11f)의 각각에 대응하고, 자신에 대응하는 레이더(11)로부터의 레이더 데이터에 기초하여 생성된 극좌표 데이터를 처리한다. 또한, 축 위치 변환은, 레이더(11)의 회전축을 원점으로 한 극좌표 데이터를, 차량의 중심을 원점으로 한 극좌표 데이터로 변환하는 것이다. 복수의 축 위치 변환부(212)의 각각은, 변환 후의 극좌표 데이터의 각각을, 외부 메모리 I/F(203)를 통해 외부 메모리(30)에 저장한다.
여기서, 복수의 변환 테이블의 각각은, 미리 외부 메모리(30)에 저장되어 있다. 복수의 축 위치 변환부(212)의 각각은, 외부 메모리 I/F(203)를 통해 외부 메모리(30)로부터 복수의 변환 테이블의 각각을 취득하고, 내부 메모리(201)에 저장한다. 이 내부 메모리(201)에의 변환 테이블의 저장은, 차량 탑재 제어 시스템(1)의 기동 완료 시에 실시해도 되고, 복수의 축 위치 변환부(212)의 각각이 축 위치 변환을 실행하기 직전에 실시해도 된다. 복수의 축 위치 변환부(212)의 각각은, 내부 메모리(201)에 저장된 복수의 변환 테이블의 각각을 사용하여 축 위치 변환을 실시한다.
이 변환 테이블은, 극좌표계에 있어서 변환 전의 극좌표 데이터가 물체의 존재 확률을 나타내는 각 좌표에 대하여, 변환 전의 거리 r 및 각도 θ와, 변환 후의 거리 r 및 각도 θ를 대응지은 테이블이다. 바꾸어 말하면, 변환 테이블은, 레이더(11)의 회전축을 원점으로 한 경우에 있어서의 각 좌표와, 그들의 각 좌표를 차량의 중심을 원점으로 한 경우에 있어서의 각 좌표가 대응지어져 있다. 축 위치 변환부(212)는 이 변환 테이블에 기초하여, 변환 전의 극좌표 데이터가 나타내는 좌표의 값이, 그 좌표의 거리 r 및 각도 θ에 대응하는 변환 후의 거리 r 및 각도 θ의 좌표의 값으로서 나타내어지도록, 변환 후의 극좌표 데이터를 생성한다.
여기서, 이 변환 테이블은, 변환 전의 거리 r 및 각도 θ와 변환 후의 거리 r 및 각도 θ를 나타내는 정보이어도 되고, 변환 전의 거리 r 및 각도 θ를 입력하면, 변환 후의 거리 r 및 각도 θ를 출력하는 함수의 정보이어도 된다.
데이터 중첩부(213)는 외부 메모리(30)에 저장된 극좌표 데이터 모두를 중첩함으로써 중첩 후 데이터를 생성한다. 데이터 중첩부(213)는 생성한 중첩 후 데이터를, 외부 메모리 I/F(203)를 통해 외부 메모리(30)에 저장한다.
좌표 변환부(214)는 극좌표 형식의 중첩 후 데이터를, 도 5에 도시한 바와 같이, 차량의 중심을 기준으로 하여, 좌우 방향을 X축으로 하고, 전후 방향을 Y축으로 한 이차원의 데이터인 직교 좌표 형식의 데이터로 된다. 이하, 이 데이터를 「직교 좌표 데이터」라고도 부른다. 극좌표 데이터는, 차량의 좌우 방향 및 전후 방향의 각각을 각 축으로 한 이차원 공간 상에 있어서, 각 좌표에 있어서의 물체의 존재 확률을 나타내는 데이터로 된다. 좌표 변환부(214)는 생성한 직교 좌표 데이터를, 외부 메모리 I/F(203)를 통해 외부 메모리(30)에 저장한다.
결과 출력부(215)는 외부 메모리(30)에 저장된 직교 좌표 데이터를 취득하고, MCU간 I/F(204)를 통해 판단용 MCU(21)에 출력한다. 판단용 MCU(21)는, 결과 출력부(215)로부터 출력된 직교 좌표 데이터에 기초하여, 차량의 주변에 있어서의 물체의 존재 확률의 인식, 차량이 주행하는 경로의 탐색 및 차량의 제어 내용의 결정 등을 행한다.
계속해서, 도 6을 참조하여, 실시 형태 1에 따른 인식용 MCU(20)에서 생성되는 극좌표 데이터와 직교 좌표 데이터의 관계에 대하여 설명한다.
본 실시 형태 1에서는, 인식용 MCU(20)는, 전술한 바와 같이, 레이더(11a∼11f)의 각각에 대응하는 복수의 극좌표 데이터의 축 위치를 조정하고 나서 중첩하고, 중첩 후의 극좌표 데이터를 직교 좌표 데이터로 변환하도록 하고 있다. 그 때문에, 이 직교 좌표 데이터는, 도 6에 도시한 바와 같이, 레이더(11a∼11f)의 각각으로부터의 레이더 데이터로부터 복수의 직교 좌표 데이터를 생성하고, 그들의 축 위치를 조정하고 나서 중첩한 데이터와 동등한 직교 좌표 데이터가 얻어진다.
또한, 도 6에서는, 레이더(11a∼11f)의 각각이 각도 방향 θ에 있어서 관측 가능한 범위가 0도∼180도인 예에 대하여 도시하고 있다(전술한 레이더(11a∼11f)의 관측 방향의 중심이 90도인 것으로 한다). 그 때문에, 레이더(11a∼11f)의 각각의 관측 범위는, 반경이 거리 r의 최댓값으로 되는 반원 형상의 관측 범위로 된다. 그리고, 직교 좌표 데이터로서, 그들의 관측 범위가 중첩된 데이터가 생성된다.
계속해서, 도 7을 참조하여, 본 실시 형태 1에 따른 차량 탑재 제어 시스템(1)의 동작에 대하여 설명한다. 도 7은 본 실시 형태 1에 따른 차량 탑재 제어 시스템(1)의 동작을 설명하는 플로우차트이다.
인식용 MCU(20)는, 복수의 레이더(11a∼11f)의 각각으로부터 수신한 레이더 데이터로부터, 주변 환경 인식 처리에 의해, 차량의 주변의 각 위치에 있어서 장해물(물체)의 존재 확률을 수치화한 지도(이하, 「주변 환경 지도」라고도 부름)를 작성한다(S1). 이 주변 환경 지도는, 전술한 직교 좌표 데이터에 상당한다. 인식용 MCU(20)는, 생성한 주변 환경 지도를, MCU간 I/F(204)를 통해 판단용 MCU(21)에 송신한다.
판단용 MCU(21)는, 인식용 MCU(20)로부터 수신한 주변 환경 지도에 있어서, 장해물 검출 처리에 의해, 존재 확률이 역치보다 높고, 또한 일정 이상의 크기를 갖는 영역을 장해물로서 검출한다(S2). 판단용 MCU(21)는, 경로 탐색 처리에 의해, 장해물에 접촉하지 않는 차량의 경로를, 차량이 취할 수 있는 복수의 경로 후보 중에서 선택한다(S3). 판단용 MCU(21)는, 선택한 경로로 차량이 주행하도록 제어 정보를 생성하고, MCU간 I/F(204)를 통해 제어용 MCU(22, 23)의 각각에 송신한다. 이 제어 정보는, 차량의 움직임을 수치화한 정보로 된다.
제어용 MCU(22, 23)의 각각은, 차량 제어 처리에 의해, 판단용 MCU(21)로부터 수신한 제어 정보에 기초하여 차량을 제어한다(S4).
계속해서, 도 8을 참조하여, 본 실시 형태 1에 따른 인식용 MCU(20)에 의한 주변 환경 인식(S1)의 동작에 대하여 설명한다. 도 8은 본 실시 형태 1에 따른 인식용 MCU(20)에 의한 주변 환경 인식(S1)의 동작을 설명하는 플로우차트이다. 또한, 그 이후의 장해물 검출(S2), 경로 탐색(S3), 차량 제어(S4)의 각 동작에 대해서는 임의의 알고리즘을 사용할 수 있기 때문에, 이들 동작에 대한 상세한 설명은 생략한다.
인식용 MCU(20)의 데이터 취득부(211)는 레이더(11a∼11f)의 각각으로부터 송신되는 레이더 데이터를 취득한다(S11). 레이더 데이터는, 어떤 각도 θj에 대하여 거리 r이 차량에 가까운 쪽부터 먼 쪽으로 순서대로 데이터 취득부(211)에 입력된다. 어떤 각도 θj에 대한 입력이 끝나면, 레이더 데이터는, 다음 각도 θj +1에 대하여 마찬가지로 데이터 취득부(211)에 입력된다. 이것을 각도가 0도부터 180도까지 1도씩, 거리가 0부터 400까지 1씩 전환하여 입력하면, 극좌표 데이터는, 180×400의 사이즈의 이차원 데이터로 된다. 거리에 대해서는, 일정한 단위 거리(예를 들어 10㎝)마다 양자화하는 경우, 전술한 바와 같이 최대 거리가 400이면 40m 앞의 정보까지 취득할 수 있게 된다.
극좌표 데이터가 나타내는 각 좌표의 값은, 레이더(11)에 의해 취득한 물체의 존재 확률을 나타낸다. 존재 확률은, 예를 들어 0.0(0%)∼1.0(100%)까지의 확률을 256단계로 양자화한 값으로 된다. 이 극좌표 데이터가 나타내는 각 좌표의 값은, 예를 들어 정규 분포의 확률 밀도 함수인 다음 수학식 1에 의해 산출된다. r은 전술한 바와 같이 레이더(11)로부터의 거리이고, μ는 레이더(11)가 조사한 전자파가 반사된 위치(레이더(11)에 의해 물체가 검출된 위치)까지의 거리이다. σ는, r이 μ의 근방으로부터 이격됨에 따라서, f(r)이 극대값보다도 작아지는 변화의 정도를 조정하는 파라미터로서 정해진다. σ의 값이 작을수록 변화는 급준해지고, 극대값도 큰 값으로 된다. 반대로 값이 클수록 변화는 완만해지고, 극대값은 작은 값으로 된다. 실용상, 극대값은 0.4∼0.8의 범위의 값이 사용된다.
Figure pat00001
이것에 의하면, 레이더(11)에 의해 물체가 검출된 거리 μ의 좌표에서는, 물체의 존재 확률이 극대값으로 되고, 그 거리 μ의 좌표로부터 멀어짐에 따라서 물체의 존재 확률이 서서히 저하되는 극좌표 데이터가 얻어진다.
데이터 취득부(211)는 레이더(11a∼11f)의 각각에 대응하는 극좌표 데이터를 외부 메모리(30)에 저장한다(S12).
다음에, 인식용 MCU(20)의 복수의 축 위치 변환부(212)의 각각은, 자신에 대응하는 변환 테이블을 외부 메모리(30)로부터 판독하고, 내부 메모리(201)에 저장한다(S13). 복수의 축 위치 변환부(212)의 각각은, 자신이 내부 메모리(201)에 저장한 변환 테이블의 각각에 기초하여, 극좌표 데이터의 각각의 중첩을 가능하게 하기 위해, 극좌표 데이터의 기준 위치(r=0, θ=90)를, 레이더(11a∼11f)의 각각의 회전축으로부터 차량의 중심으로 이동시키는 축 위치 변환을 행한다(S14).
일반적으로, 직교 좌표 공간의 어떤 점 X, Y를 극좌표 공간의 r과 θ로 표현하면, 삼각 함수를 사용하여, X=rcosθ, Y=rsinθ로 표현된다. 반대로, 극좌표 공간의 어떤 점 r과 θ는, 직교 좌표 공간의 X, Y를 사용하여, r=√(X2+Y2), θ=atan(Y/X)로 표현할 수 있다. 변환 전후의 각 좌표에 있어서의 데이터는, 각각 1대1로 대응한다. 직교 좌표 공간에 있어서 각 좌표점을 이동시키는 변환식은, X'=X+a, Y'=Y+b로 된다. 즉, 직교 좌표 공간에 있어서 축 위치 변환을 하는 경우에는, 각 좌표점이 평행 이동하게 된다.
그러나, 동일한 변환을, 전술한 변환식에 기초하여 극좌표 공간에서 나타내면, 비선형의 변환으로 된다. 이에 대하여, 본 실시 형태 1에서는, 변환 전의 극좌표계에 있어서의 각 좌표와, 변환 후의 극좌표계에 있어서의 각 좌표를 대응지은 변환 테이블을 사용함으로써, 극좌표 공간에 있어서도, 변환 전의 좌표로부터 변환 후의 좌표를 도출하는 것을 가능하게 하고 있다.
여기서, 도 9는 변환 전후의 극좌표 데이터의 대응 관계를 도시하고 있다. 레이더(11a∼11f)의 각각에 대응하는 극좌표 데이터는, 도 9에 「변환 전」으로서 나타내는 바와 같이, 0도부터 180도까지의 각도의 각각에 있어서, 0부터 400까지의 거리의 각각에서 물체의 존재 확률을 나타내는 180×400의 데이터이다.
또한, 변환 후의 극좌표 데이터에 필요한 메모리 공간은, 레이더(11)의 차량의 중심으로부터의 위치에 따라서 일의로 정해진다. 예를 들어, 전술한 180×400의 극좌표 공간에 대하여, 모든 레이더(11a∼11f)의 회전축이 차량의 중심으로부터 거리 50 이격된 범위 내에 들어가는 경우에는, 레이더(11a∼11f)에 대응하는 변환 후의 극좌표 데이터 모두를, 각도 방향으로 360(도) 또한 거리 방향으로 450의 길이를 갖는 360×450의 메모리 공간에서 표현할 수 있다.
도 9에서는, 예로서, 레이더(11c)에 대응하는 변환 후의 극좌표 데이터가 극좌표계에 있어서 물체의 존재 확률을 나타내는 범위(도 9에 도시한 「변환 후(레이더(11c))」)와, 레이더(11b)에 대응하는 변환 후의 극좌표 데이터가 극좌표계에 있어서 물체의 존재 확률을 나타내는 범위(도 9에 도시한 「변환 후(레이더(11b))」)를 나타내고 있다. 도 6에 있어서, 차량의 후방을 0도(=360도)로 한 경우, 도 9에 도시한 바와 같이, 레이더(11c)에 대응하는 변환 후의 극좌표 데이터와, 레이더(11b)에 대응하는 변환 후의 극좌표 데이터가 생성된다. 변환 후의 극좌표 데이터에 있어서의 사선 부분은, 변환 전의 극좌표 데이터에 대응하는 부분이다. 변환 후의 극좌표 데이터에서는, 변환 전의 극좌표 데이터가 극좌표계에 있어서 물체의 존재 확률을 나타내는 범위에 있어서의 r=400의 좌표는, 상측의 굵은 선 부분이 대응한다. 변환 후의 극좌표 데이터에서는, 변환 전의 극좌표 데이터가 극좌표계에 있어서 물체의 존재 확률을 나타내는 범위에 있어서의 r=0의 좌표는 1점에 집약된다.
도 6에 도시한 바와 같이, 레이더(11c)가 관측하는 범위는, 차량의 우측 경사 전방이기 때문에, 각도 방향에 관해서는, 변환 전의 극좌표 데이터에 대응하는 부분은, 중심의 180도보다도 0도 측에 치우진다. 또한, 도 6에 도시한 바와 같이, 레이더(11b)가 관측하는 범위는, 차량의 전방이기 때문에, 각도 방향에 대해서는, 변환 전의 극좌표 데이터에 대응하는 부분은, 중심의 180도에 대하여 선대칭으로 되는 부분으로 된다.
즉, 복수의 레이더(11a∼11f)의 각각에 대응하는 복수의 변환 데이터의 각각은, 복수의 레이더(11a∼11f)의 각각이 차량에 설치된 위치에 따라서, 극좌표 데이터의 축 위치를 동일하게 할 수 있도록, 서로 다른 내용으로 되어 있다. 이것에 의하면, 상이한 위치에 설치된 복수의 레이더(11a∼11f)의 각각으로부터의 레이더 데이터에 기초하여 생성된 극좌표 데이터라도, 축 위치가 동일해지도록 변환할 수 있다.
또한, 축 위치 변환부(212)는 변환 후의 극좌표 데이터에 있어서, 변환 전의 극좌표 데이터에 대응하지 않는 부분에 대해서는, 소정의 존재 확률을 설정한다. 그 부분은, 레이더(11)에 의해 미관측의 영역으로 되기 때문에, 예를 들어 축 위치 변환부(212)는 물체의 존재 확률로서 0.5(50%)(존재와 부존재의 중간값)를 설정한다.
복수의 축 위치 변환부(212)의 각각은, 변환 전의 극좌표 데이터를 외부 메모리(30)로부터 판독하고, 외부 메모리(30)에 있어서 변환 전의 극좌표 데이터가 저장되어 있던 영역과는 다른 영역에, 변환 후의 극좌표 데이터를 저장한다(S15). 이 축 위치 변환에 의해, 어느 극좌표 데이터도 차량의 중심을 원점으로 한 좌표에 정렬시킬 수 있기 때문에, 후술하는 극좌표 데이터의 중첩을 실시하는 것이 가능해진다.
모든 축 위치 변환부(212)가 모든 레이더(11a∼11f)에 대응하는 극좌표 데이터에 대하여 축 위치 변환을 행한 후, 인식용 MCU(20)의 데이터 중첩부(213)는 극좌표 데이터의 각각의 중첩을 행한다(S16). 중첩에 있어서는, 극좌표 데이터의 각각의 동일한 거리 r 및 각도 θ의 좌표의 값을 소정의 비율로 중첩한다. 예를 들어, 값 A, B를 중첩한 결과 S를 계산하는 경우, 베이즈의 정리에 기초하여 일반적으로 알려진 다음 수학식 2, 3을 사용할 수 있다. 데이터 중첩부(213)는 중첩 후 데이터를 외부 메모리(30)에 저장한다(S17).
Figure pat00002
Figure pat00003
이 수학식 2, 3에 의하면, 변환 후의 극좌표 데이터가 나타내는 동일한 좌표의 각각에 있어서의 존재 확률이 50%보다도 낮은 경우에는, 그 동일한 좌표의 각각에 있어서의 존재 확률 중 어느 것보다도, 중첩 후 데이터가 나타내는 그 좌표의 존재 확률이 낮아진다. 또한, 변환 후의 극좌표 데이터가 나타내는 동일한 좌표의 각각에 있어서의 존재 확률이 50%보다도 높은 경우에는, 그 동일한 좌표의 각각에 있어서의 존재 확률 중 어느 것보다도, 중첩 후 데이터가 나타내는 그 좌표의 존재 확률이 높아진다. 이것에 의하면, 중첩 후 데이터가 나타내는 존재 확률을, 중첩되는 극좌표 데이터가 나타내는 값이 종합적으로 고려된, 보다 적절한 존재 확률로 조정할 수 있다. 즉, 극좌표 데이터에 있어서, 물체의 존재와 부존재의 중간값(50%) 부근의 존재 확률이 나타나는 빈도를 감소시켜, 판단용 MCU(21)에 있어서의 주행 경로의 판단을 용이화할 수 있다.
여기서, 상기의 예에서는, 50%를 기준으로 하여, 극좌표 데이터가 나타내는 동일한 좌표의 각각에 있어서의 존재 확률이 낮은 경우에는, 중첩 후 데이터가 나타내는 그 좌표의 존재 확률을 보다 낮게 하고, 극좌표 데이터가 나타내는 동일한 좌표의 각각에 있어서의 존재 확률이 높은 경우에는, 중첩 후 데이터가 나타내는 그 좌표의 존재 확률을 보다 높게 하도록 하고 있지만, 기준으로 되는 값은, 50% 또는 그 이외의 소정의 값으로 해도 된다. 이 경우, 수학식 2, 3 대신에, 소정의 값을 기준으로 하여, 극좌표 데이터가 나타내는 동일한 좌표의 각각에 있어서의 존재 확률이 낮은 경우에는, 중첩 후 데이터가 나타내는 그 좌표의 존재 확률을 보다 낮게 하고, 극좌표 데이터가 나타내는 동일한 좌표의 각각에 있어서의 존재 확률이 높은 경우에는, 중첩 후 데이터가 나타내는 그 좌표의 존재 확률을 보다 높게 하는 식을 이용하도록 하면 된다.
또한, 전술한 수학식 2, 3은 2개의 데이터를 중첩하는 것인 것에 반해, 본 실시 형태 1에서는, 6개의 극좌표 데이터를 중첩할 필요가 있다. 그러나, 상술한 수학식 2, 3에 기초한 2개의 극좌표 데이터(이미 2개 이상의 극좌표 데이터가 중첩된 것의 경우도 있음)의 중첩을 5회 반복하면, 6개의 극좌표 데이터를 중첩한 중첩 후 데이터가 얻어진다.
인식용 MCU(20)의 좌표 변환부(214)는, 중첩 후 데이터를, 극좌표 형식으로부터 직교 좌표 형식으로 변환한다(S18). 이 변환에는, 전술한 거리 r 및 각도 θ로 나타내어진 극좌표 데이터를, 좌우의 거리 X 및 전후의 거리 Y로 나타내는 직교 좌표 데이터로 변환하기 위한 전술한 일반적인 변환식을 이용할 수 있다. 좌표 변환부(214)는 변환 후의 직교 좌표 데이터를 외부 메모리(30)에 저장한다(S19). 이 직교 좌표 데이터는, 각 레이더(11a∼11f)로부터의 데이터 모두를 중첩한 것이기 때문에, 레이더(11a∼11f)의 개수분의 데이터의 메모리 공간을 확보할 필요는 없고, 1개분의 데이터의 메모리 공간을 확보하는 것만으로 된다. 또한, 이 직교 좌표 데이터를 저장하기 위해 외부 메모리(30)에 확보가 필요한 메모리 공간의 사이즈는, 전술한 360×450의 극좌표 데이터에 대하여, 차량의 중심을 기준으로 하여 상하 좌우로 450씩을 취한 900×900으로 된다.
마지막으로, 인식용 MCU(20)의 결과 출력부(215)는 직교 좌표형 데이터를 외부 메모리(30)로부터 판독하고, MCU간 I/F(204)를 통해 판단용 MCU(21)에 출력한다(S20).
여기서, 이들 처리는, CPU(200)가 소프트웨어(프로그램)를 실행함으로써 행한다. 즉, 이 소프트웨어에는, 전술한 CPU(200)가 실행하는 각종 처리를 실행시키기 위한 명령을 포함하고 있다. 이 소프트웨어는, 예를 들어 외부 메모리(30)에 미리 저장되어 있고, CPU(200)가 외부 메모리(30)로부터 내부 메모리(201)에 로드함으로써 실행한다.
또한, 전술한 CPU(200)로서, 싱글 코어 프로세서를 채용해도 되지만, 레이더(11a∼11f)의 개수 이상의 수의 CPU 코어를 탑재한 멀티 코어 프로세서를 채용함으로써, CPU 코어의 각각이, 스텝 S11∼S15의 처리를 동시 병렬로 실행하도록 해도 된다. 이것에 의하면, 싱글 코어 프로세서를 채용한 경우와 비교하여, 단시간에 처리를 실행할 수 있다.
이상에 설명한 바와 같이, 본 실시 형태 1은 주변 환경 인식에 있어서의 동작에 특징이 있다. 본 실시 형태 1에서는, 데이터 취득부(211)가 주변을 관측하는 복수의 레이더(11a∼11f)의 각각으로부터, 관측 결과를 나타내는 복수의 데이터를 취득하고, 극좌표 형식으로 변환하여 기억부(외부 메모리(30))에 저장한다. 축 위치 변환부(212)가 기억부에 저장된 극좌표 형식의 복수의 데이터의 각각을, 축 위치가 동일해지도록 변환을 실시하여 복수의 축 위치 변환 후 데이터의 각각을 생성하고, 기억부에 저장한다. 데이터 중첩부(213)가 복수의 축 위치 변환 후 데이터를 중첩하여 중첩 데이터를 생성한다. 그리고, 좌표 변환부(214)는 중첩 데이터를, 직교 좌표 형식으로 변환하도록 하고 있다. 이것에 의하면, 극좌표 데이터보다도 데이터양이 많은 직교 좌표 데이터를 저장하기 위한 기억 용량을 복수 준비할 필요가 없기 때문에, 이하에 설명하는 바와 같이, 필요로 되는 기억 용량을 저감할 수 있다.
물체의 존재 확률을 0∼1.0으로 하여, 각 좌표의 값을 0∼255까지의 256단계의 값으로 나타내도록 양자화한 경우, 1바이트로 표현할 수 있다. 이때에 필요한 외부 메모리(30)의 기억 용량은, 각 레이더(11a∼11c)의 각각에 대응하는 변환 전의 극좌표 데이터를 저장하는 180×400바이트의 영역이 6개와, 변환 후의 극좌표 데이터를 저장하는 360×450바이트의 영역이 6개(이들 영역 중, 1개는 중첩 후 데이터를 저장하는 영역도 겸함)와, 직교 좌표 데이터를 저장하는 900×900바이트의 영역이 1개로, 합계 2,214,000바이트로 된다.
한편, 특허문헌 1에 기초하여 처리를 한 경우에 필요한 용량은, 각 레이더(11a∼11f)에 대응하는 변환 전의 극좌표 데이터를 저장하는 180×400바이트의 영역이 6개와, 변환 후의 직교 좌표를 저장하기 위한 900×900의 영역이 6개(이들 영역 중, 1개는 중첩 후의 데이터를 저장하는 영역도 겸함)로, 합계 5,292,000바이트로 된다. 즉, 본 실시 형태 1에 의하면, 필요한 메모리의 기억 용량을, 이 예보다도, 58%나 삭감할 수 있다.
<실시 형태 2>
계속해서, 실시 형태 2에 대하여 설명한다. 이하의 실시 형태 2의 설명에서는, 상술한 실시 형태 1과 마찬가지의 내용에 대해서는, 동일한 부호를 부여하거나 하여, 적절히, 그 설명을 생략한다. 본 실시 형태 2에 따른 차량 탑재 제어 시스템(1) 및 ECU(10)의 구성은, 도 1 및 도 2에 도시한 실시 형태 1에 따른 차량 탑재 제어 시스템(1) 및 ECU(10)의 구성과 마찬가지이기 때문에, 그 설명을 생략한다.
계속해서, 도 10을 참조하여, 본 실시 형태 1에 따른 인식용 MCU(20)의 구성에 대하여 설명한다. 도 10에 도시한 바와 같이, 인식용 MCU(20)는, 실시 형태 1에 따른 인식용 MCU(20)와 비교하여, 왜곡 보정 프로세서(205)와, 화상 처리 엔진(206)과, 제어 버스(207)를 더 갖는다.
왜곡 보정 프로세서(205)는 왜곡 보정을 행하는 전용의 하드웨어가 탑재된 회로이다. 본 실시 형태 2에서는, 왜곡 보정 프로세서(205)는 이 왜곡 보정을 행하는 전용의 하드웨어를 사용하여, 전술한 축 위치 변환 및 좌표 변환을 실시한다. 왜곡 보정 프로세서(205)는 본 실시 형태 2에서는, 내부 메모리(201)는 왜곡 보정 프로세서(205)와 접속되어 있다.
화상 처리 엔진(206)은 화상의 중첩 등의 화상 처리를 행하는 전용의 하드웨어가 탑재된 회로이다. 본 실시 형태 2에서는, 화상 처리 엔진(206)은 이 화상 처리를 행하는 전용의 하드웨어를 사용하여, 전술한 데이터 중첩을 실시한다.
CPU(200)로부터 왜곡 보정 프로세서(205) 및 화상 처리 엔진(206)을 제어하기 위해서, CPU(200)는, 왜곡 보정 프로세서(205) 및 화상 처리 엔진(206)과 제어 버스(207)를 통해 접속되어 있다. 또한, 복수의 레이더(11a∼11f), CPU(200), 센서 I/F(202), 외부 메모리 I/F(203) 및 MCU간 I/F(204)에 대해서는, 실시 형태 1과 마찬가지이기 때문에, 그 설명을 생략한다.
실시 형태 2에 따른 인식용 MCU(20)의 기능 블록에 대해서는, 도 4에 도시한 실시 형태 1에 따른 인식용 MCU(20)의 기능 블록과 마찬가지이기 때문에, 그 설명을 생략한다. 단, 본 실시 형태 2에서는, 실시 형태 1과 달리, 후술하는 바와 같이, 축 위치 변환부(212) 및 좌표 변환부(214)는 왜곡 보정 프로세서(205)에 포함되고, 데이터 중첩부(213)는 화상 처리 엔진(206)에 포함된다.
본 실시 형태 2에 따른 차량 탑재 제어 시스템(1)의 동작에 대해서는, 도 7에 도시한 본 실시 형태 1에 따른 차량 탑재 제어 시스템(1)의 동작과 마찬가지이기 때문에, 그 설명을 생략한다. 계속해서, 도 11을 참조하여, 본 실시 형태 2에 따른 인식용 MCU(20)에 의한 주변 환경 인식(S1)의 동작에 대하여 설명한다. 도 11은 본 실시 형태 2에 따른 인식용 MCU(20)에 의한 주변 환경 인식(S1)의 동작을 설명하는 플로우차트이다.
본 실시 형태 2에 따른 차량 탑재 제어 시스템(1)의 동작의 흐름에 대해서는, 스텝 S13을 갖지 않은 것을 제외하고, 도 8에 도시한 실시 형태 1에 따른 차량 탑재 제어 시스템(1)의 동작의 흐름과 마찬가지이다. 즉, 본 실시 형태 2에서는, 왜곡 보정 프로세서(205)는 차량 탑재 제어 시스템(1)의 기동 완료 시에, 외부 메모리(30)로부터 변환 테이블을 취득하고, 내부 메모리(201)에 미리 저장하고 있다. 또한, 실시 형태 1과 마찬가지로, 내부 메모리(201)에의 변환 테이블의 저장은, 복수의 축 위치 변환부(212)의 각각이 축 위치 변환을 실행하기 직전에 실시해도 된다. 또한, 실시 형태 1에서는, 모든 동작을 CPU(200)에서 실행하고 있었던 것에 반해, 본 실시 형태 2에서는, 전술한 바와 같이, 축 위치 변환(S14∼S15) 및 좌표 변환(S18∼S19)에 대해서는 왜곡 보정 프로세서(205)가 실행하고, 데이터 중첩(S16∼S17)에 대해서는 화상 처리 엔진(206)이 실행한다.
스텝 S14의 축 위치 변환에서는, 왜곡 보정 프로세서(205)는 극좌표계에 있어서, 변환 전의 극좌표 데이터가 물체의 존재 확률을 나타내는 범위에서, 도 12의 「변환 전」으로서 나타내는 바와 같이, 연속하는 작은 삼각형의 영역을 정의한다. 이 삼각형의 영역은, 변환 전의 극좌표 데이터를, 극좌표계에 있어서 거리 방향의 소정 단위마다 및 각도 방향의 소정 단위마다, r축 및 θ축의 각각과 평행하는 직선으로 격자 형상으로 분할하고, 또한 그 분할에 의해 얻어진 복수의 사각형의 각각을 2개의 삼각형으로 분할함으로써 얻어지는 영역이다.
여기서, 실시 형태 1에서는, 변환 테이블은, 극좌표 데이터가 존재 확률을 나타내는 모든 좌표에 대하여 변환 전후의 좌표를 대응지은 정보를 갖고 있지만, 실시 형태 2에서는, 변환 테이블은, 변환 전의 극좌표 데이터에 있어서 정의한 각 삼각형의 정점의 좌표에 대해서만 변환 전후의 좌표를 대응지은 정보를 갖고 있다. 따라서, 왜곡 보정 프로세서(205)는, 변환 전의 극좌표 데이터를 외부 메모리(30)로부터 판독한 후, 변환 테이블을 사용하여 변환 전의 극좌표 데이터에 있어서의 각 삼각형의 정점의 좌표를 변환하고, 변환 후의 극좌표 데이터를 외부 메모리(30)에 저장한다. 이 변환도, 도 12에 도시한 바와 같이, 실시 형태 1과 마찬가지로 비선형의 변환으로 된다.
왜곡 보정 프로세서(205)는 변환 후의 극좌표 데이터에 있어서의 각 삼각형의 변의 값을, 변환 전의 극좌표 데이터에 있어서의 각 삼각형의 변의 값으로 한다. 왜곡 보정 프로세서(205)는 변환 전후에서 삼각형의 크기 또는 형상이 상이한 경우에는, 확대 축소 또는 보간을 함으로써, 변환 후의 극좌표 데이터에 있어서의 삼각형의 변의 값으로부터, 변환 후의 극좌표 데이터에 있어서의 삼각형의 변의 값을 생성한다. 또한, 왜곡 보정 프로세서(205)는 삼각형의 내부의 값을, 그 삼각형의 각 정점 및 각 변의 값에 기초하여 보간함으로써 생성한다. 이 축 위치 변환에 의해, 어느 극좌표 데이터도 차량의 중심을 원점으로 한 좌표에 정렬시킬 수 있기 때문에, 후술하는 극좌표 데이터의 중첩을 실시하는 것이 가능해진다.
여기서, 전술한 바와 같이, 변환 후의 극좌표 데이터에서는, 변환 전의 극좌표 데이터에 있어서의 r=0의 좌표는, 1점에 집약된다. 따라서, 본 실시 형태 2에서는, 도 13에 도시한 바와 같이, 변환 전의 극좌표 데이터에 있어서 거리 r이 0으로 되는 각 좌표가, 변환 후의 극좌표 데이터에 있어서 1점에 집약되는 경우, 거리가 0으로 되는 좌표를 갖는 사각형을 분할한 2개의 삼각형 중, 거리가 0인 정점을 1점만 갖는 삼각형(도 13의 사선 부분)을, 변환 후의 극좌표 데이터에 있어서 집약된 1점을 정점에 갖는 삼각형으로 변환한다. 이것에 의하면, 변환 전의 극좌표 데이터에 있어서 거리 r이 0으로 되는 각 좌표가, 변환 후의 극좌표 데이터에 있어서 1점에 집약되는 경우라도, 삼각형 메쉬의 정점 처리 전용의 하드웨어를 탑재한 왜곡 보정 프로세서(205)의 기능을 활용하여 변환을 실시할 수 있다.
스텝 S16의 데이터 중첩에서는, 왜곡 보정 프로세서(205)가 모든 레이더(11a∼11f)에 대응하는 극좌표 데이터에 대하여 축 위치 변환을 행한 후, 화상 처리 엔진(206)은 극좌표 데이터의 각각의 중첩을 행한다. 이 중첩에 대해서는, 실시 형태 1과 마찬가지로, 극좌표 데이터의 각각의 동일 좌표에 있어서의 값을 소정의 비율로 중첩하면 되고, 전술한 베이즈의 정리에 기초하는 수학식 2, 3을 이용해도 된다.
예를 들어, 전술한 수학식 2에 있어서의 값 A, B를 입력으로 하고, 전술한 수학식 3에 있어서의 결과 S를 출력으로 하는 함수의 정보를, 테이블로서, 화상 처리 엔진(206)이 갖는 메모리(예를 들어 RAM, 도시하지 않음)에 미리 저장해 두도록 해도 된다. 그리고, 이 테이블을 이용하여, 극좌표 데이터의 중첩을 행하도록 해도 된다. 예를 들어, 이 테이블은, 미리 외부 메모리(30)에 저장된다. 화상 처리 엔진(206)은 차량 탑재 제어 시스템(1)의 기동 완료 시에, 이 테이블을 외부 메모리(30)로부터 취득하여, 자신이 갖는 메모리에 저장한다.
스텝 S18의 좌표 변환에서는, 왜곡 보정 프로세서(205)는 중첩 후 데이터를, 극좌표 형식으로부터 직교 좌표 형식으로 변환한다. 이 변환에는, 실시 형태 1과 마찬가지로, 전술한 거리 r 및 각도 θ로 나타내어진 극좌표 데이터를, 좌우의 거리 X 및 전후의 거리 Y로 나타내는 직교 좌표 데이터로 변환하기 위한 일반적인 변환식을 이용할 수 있다. 단, 본 실시 형태 2에서는, 실시 형태 1과 달리, 전술한 축 위치 변환의 경우와 마찬가지로, 왜곡 보정 프로세서(205)는 중첩 후 데이터를 극좌표계에 있어서 연속한 삼각형으로 분할하고, 각각의 정점의 변환 전후의 좌표를, 변환식을 이용함으로써 변환한다. 또한, 변환 후의 직교 좌표 데이터에 있어서의 각 삼각형의 각 변 및 내부의 값은, 전술한 축 위치 변환의 경우와 마찬가지로 생성하면 된다.
또한, 각 데이터를 저장하기 위해 필요한 외부 메모리(30)의 기억 용량은, 실시 형태 1과 마찬가지이다. 따라서, 본 실시 형태 2에 있어서의 필요한 메모리의 기억 용량의 삭감 효과에 대해서는, 실시 형태 1의 경우와 동일하다.
이상에 설명한 바와 같이, 본 실시 형태 2에서는, 차량 탑재 제어 시스템(1)은 시스템 제어부(210), 데이터 취득부(211) 및 결과 출력부(215)를 포함하는 CPU(200)와, 축 위치 변환부(212), 데이터 중첩부(213) 및 좌표 변환부(214)를 포함하는 전용 회로(왜곡 보정 프로세서(205) 및 화상 처리 엔진(206))를 갖고 있다. 즉, 본 실시 형태 2에서는, 실시 형태 1에 있어서 CPU(200)에서 행하고 있던 축 위치 변환, 중첩 및 직교 좌표 변환의 처리를 전용의 왜곡 보정 프로세서(205) 및 화상 처리 엔진(206)에서 행함으로써, CPU(200)의 처리에 필요로 하는 시간을 단축하여, 보다 짧은 처리 시간으로 이 처리를 실현하는 것이 가능해진다.
또한, 본 실시 형태 2에서는, 왜곡 보정 프로세서(205)는 축 위치 변환 전의 극좌표 데이터를 극좌표계에 있어서 분할함으로써 얻어지는 복수의 삼각형의 각 정점의 좌표를 축 위치가 동일해지도록 변환한다. 이때, 왜곡 보정 프로세서(205)는 축 위치 변환 후의 극좌표 데이터에 있어서, 삼각형의 변의 값을, 축 위치 변환 전의 극좌표 데이터에 있어서의 삼각형의 변의 값으로 하고, 삼각형의 내부의 값을, 그 삼각형의 각 정점 및 각 변의 값에 의해 보간하도록 하고 있다. 이와 같이, 축 위치 변환 처리에 있어서, 처리 단위가 전체 화소로부터 삼각형의 정점 화소만으로 됨으로써, CPU(200)에 대하여 40배 정도의 고속화를 기대할 수 있다. 또한, 중첩 처리에서는, 연산식이 계산 완료된 테이블의 참조로 치환됨으로써, 10배 정도의 고속화를 기대할 수 있다.
<실시 형태 3>
계속해서, 실시 형태 3에 대하여 설명한다. 이하의 실시 형태 3의 설명에서는, 상술한 실시 형태 1, 2와 마찬가지의 내용에 대해서는, 동일한 부호를 부여하거나 하여, 적절히, 그 설명을 생략한다. 본 실시 형태 3에 따른 차량 탑재 제어 시스템(1), ECU(10) 및 인식용 MCU(20)의 구성은, 도 1, 도 2 및 도 10에 도시한 실시 형태 2에 따른 차량 탑재 제어 시스템(1), ECU(10) 및 인식용 MCU(20)의 구성과 마찬가지이기 때문에, 그 설명을 생략한다. 또한, 본 실시 형태 3에서는, 실시 형태 2에 따른 차량 탑재 제어 시스템(1)에 대하여 후술하는 필터 처리를 적용한 예에 대하여 설명하지만, 당연히 실시 형태 1에 따른 차량 탑재 제어 시스템(1)에 대하여 후술하는 필터 처리를 적용해도 된다.
계속해서, 도 14를 참조하여, 실시 형태 3에 따른 인식용 MCU(20)의 기능 블록에 대하여 설명한다. 도 14에 도시한 바와 같이, 인식용 MCU(20)는, 도 4에 도시한 실시 형태 1, 2에 따른 인식용 MCU(20)와 비교하여, 복수의 필터 처리부(221)와, 필터 처리부(222)를 더 갖는다. 복수의 필터 처리부(221)는 왜곡 보정 프로세서(205)에 포함되고, 필터 처리부(222)는 화상 처리 엔진(206)에 포함된다. 그러나, 이것에 한정되지 않고, CPU(200)가, 복수의 필터 처리부(221) 및 필터 처리부(222)를 포함하고 있어도 된다.
복수의 필터 처리부(221)의 각각은, 외부 메모리(30)에 저장된 변환 후의 극좌표 데이터에 대하여, 과거의 변환 후의 극좌표 데이터를 사용하여 필터 처리를 실시한다. 여기서, 과거의 변환 후의 극좌표 데이터는, 전형적으로는, 전회의 변환 후의 극좌표 데이터이지만, 이것에 한정되지 않는다. 예를 들어, 과거 수회분의 변환 후의 극좌표 데이터를 이용해도 된다.
복수의 필터 처리부(221)의 각각은, 레이더(11a∼11f)에 대응하는 변환 후의 극좌표 데이터의 각각에 대하여, 레이더(11a∼11f)에 대응하는 과거의 변환 후의 극좌표 데이터의 각각을 이용하여 필터 처리를 실시한다. 즉, 복수의 필터 처리부(221)는 레이더(11a∼11f)와 동수이다. 복수의 필터 처리부(221)의 각각은, 레이더(11a∼11f)의 각각에 대응하고, 자신에 대응하는 레이더(11)로부터의 레이더 데이터에 기초하여 생성된 극좌표 데이터를 처리한다.
필터 처리부(222)는, 외부 메모리(30)에 저장된 직교 좌표 데이터에 대하여, 과거의 직교 좌표 데이터를 사용하여 필터 처리를 실시한다. 여기서, 과거의 직교 좌표 데이터는, 전형적으로는, 전회의 변환 후의 직교 좌표 데이터이지만, 이것에 한정되지 않는다. 예를 들어, 과거 수회분의 변환 후의 극좌표 데이터를 이용해도 된다.
본 실시 형태 3에 따른 차량 탑재 제어 시스템(1)의 동작에 대해서는, 도 7에 도시한 본 실시 형태 1에 따른 차량 탑재 제어 시스템(1, 2)의 동작과 마찬가지이기 때문에, 그 설명을 생략한다. 계속해서, 도 15를 참조하여, 본 실시 형태 3에 따른 인식용 MCU(20)에 의한 주변 환경 인식(S1)의 동작에 대하여 설명한다. 도 15는 본 실시 형태 3에 따른 인식용 MCU(20)에 의한 주변 환경 인식(S1)의 동작을 설명하는 플로우차트이다.
본 실시 형태 3에 따른 주변 환경 인식(S1)의 동작은, 도 11에 도시한 실시 형태 2에 따른 주변 환경 인식(S1)의 동작과 비교하여, 스텝 S21∼S24를 더 갖는다. 스텝 S15의 실시 후 또한 스텝 S16의 실시 전에, 스텝 S21, S22가 실시된다. 스텝 S19의 실시 후 또한 스텝 S20의 실시 전에, 스텝 S23, 24가 실시된다.
스텝 S15의 실시 후, 복수의 필터 처리부(221)의 각각은, 축 위치 변환 후의 극좌표 데이터에 대하여 필터 처리를 행한다(S21). 보다 구체적으로는, 복수의 필터 처리부(221)의 각각은, 현재 처리 중인 변환 후 극좌표 데이터와, 과거의 변환 후 극좌표 데이터의 동일 좌표에 있어서의 값을 소정의 비율로 중첩한다. 복수의 필터 처리부(221)의 각각은, 극좌표 데이터를 중첩함으로써 생성한 새로운 극좌표 데이터를 외부 메모리(30)에 저장한다(S22). 이 극좌표 데이터는, 데이터 중첩부(213)에서 처리(S16)됨과 함께, 다음 회의 주변 환경 인식(S1)에 있어서 과거의 축 위치 변환 후의 극좌표 데이터로서 이용 가능하게 하기 위해 외부 메모리(30)에 계속해서 유지된다.
스텝 S19의 실시 후, 필터 처리부(222)는 좌표 변환 후의 직교 좌표 데이터에 대하여 필터 처리를 행한다(S23). 보다 구체적으로는, 필터 처리부(222)의 각각은, 현재 처리 중인 좌표 변환 후의 직교 좌표 데이터와, 과거의 좌표 변환 후의 직교 좌표 데이터의 동일 좌표 위치에 있어서의 값을 소정의 비율로 중첩한다. 필터 처리부(222)의 각각은, 직교 좌표 데이터를 중첩함으로써 생성한 새로운 직교 좌표 데이터를 외부 메모리(30)에 저장한다(S24). 이 직교 좌표 데이터는, 결과 출력부(215)에서 처리(S20)됨과 함께, 다음 회의 주변 환경 인식(S1)에 있어서 과거의 좌표 변환 후의 극좌표 데이터로서 이용 가능하게 하기 위해 외부 메모리(30)에 계속해서 유지된다.
여기서, 스텝 S21 및 S23에 있어서의 중첩은, 극좌표 데이터를 소정의 비율로 중첩하는 다양한 방법을 채용할 수 있지만, 예를 들어 데이터 중첩(S16)과 마찬가지로, 전술한 베이즈의 정리에 기초하는 수학식 2, 3을 이용해도 된다. 즉, 현재 처리 중인 데이터에 있어서의 각 좌표의 값 A와 과거의 데이터에 있어서의 각 좌표의 값 B로부터 얻어지는 결과 S를, 필터 처리 후의 데이터에 있어서의 각 좌표의 값으로 해도 된다.
이상에 설명한 바와 같이, 본 실시 형태 3에서는, 필터 처리부(221)가 축 위치 변환 후 데이터와, 과거의 축 위치 변환 후 데이터를 중첩하도록 하고 있다. 또한, 데이터 중첩부(213)는 중첩 후의 축 위치 변환 후 데이터를 중첩하여 중첩 데이터를 생성하도록 하고 있다. 그리고, 필터 처리부(221)는 중첩 후의 축 위치 변환 후 데이터를, 다음에 생성된 축 위치 변환 후 데이터에 대하여 과거의 축 위치 변환 후 데이터로서 사용하기 위해 기억부에 저장하도록 하고 있다.
또한, 필터 처리부(222)가 직교 좌표 형식의 데이터와, 기억부(외부 메모리(30))에 저장된 과거의 직교 좌표 형식의 데이터를 중첩하도록 하고 있다. 그리고, 필터 처리부(222)는 중첩 후의 직교 좌표 형식의 데이터를, 다음에 생성된 직교 좌표 형식의 데이터에 대하여 과거의 직교 좌표 형식이 데이터로서 사용하기 위해 기억부에 저장하도록 하고 있다.
이와 같이, 현재의 데이터뿐만 아니라, 과거의 데이터를 사용한 필터 처리를 행함으로써, 물체의 존재 확률을 보다 많은 데이터를 중첩하여 계산하는 것이 가능해진다. 이에 의해, 인식용 MCU(20)에서는, 실시 형태 1 및 실시 형태 2의 경우보다도, 과거부터 현재에 걸쳐 물체의 존재 확률이 높은 좌표 위치에서는 보다 존재 확률을 높이고, 과거부터 현재에 걸쳐 물체의 존재 확률이 낮은 좌표 위치에서는 보다 존재 확률을 낮출 수 있다. 즉, 주변 환경 인식의 정밀도를 보다 향상시켜, 판단용 MCU(21)가 인식용 MCU(20)로부터 출력된 인식 결과를 사용하여, 보다 확실하게 장해물의 인식 및 회피의 판단을 행하는 것이 가능해진다.
또한, 이상의 설명에서는, 필터 처리를, 변환 후의 극좌표 데이터와 직교 좌표 데이터에 대하여 적용한 예에 대하여 설명하였지만, 이것에 한정되지 않는다. 필터 처리를, 변환 전의 극좌표 데이터 및 중첩 후 데이터에 대하여 마찬가지로 적용해도 된다.
이상, 본 발명자에 의해 이루어진 발명을 실시 형태에 기초하여 구체적으로 설명하였지만, 본 발명은 이미 설명한 실시 형태에 한정되는 것은 아니고, 그 요지를 일탈하지 않는 범위에서 다양한 변경이 가능한 것은 물론이다.
전술한 실시 형태에서는, 데이터의 중첩을 베이즈의 정리에 기초하는 수학식 2, 3에 의해 실시하는 예에 대하여 설명하였지만, 데이터를 소정의 비율로 중첩하는 방법이면, 이것에 한정되지 않는다. 예를 들어, 데이터의 각각의 각 좌표의 값의 상가 평균 또는 가중 평균을 산출한 결과를, 중첩 후의 각 좌표의 값으로 해도 된다.
또한, 전술한 실시 형태에서는, 레이더(11a∼11f) 모두에 대하여 상이한 변환 테이블을 준비하도록 하고 있지만, 이것에 한정되지 않는다. 예를 들어, 차량의 중심에 대하여 점대칭으로 배치된 레이더(11) 및 차량의 중심을 통과하는 전후 방향 또는 좌우 방향의 직선에 대하여 선대칭으로 배치된 레이더(11)에 대해서는, 어느 하나의 레이더(11)에 대해서만 변환 테이블을 준비하도록 하고, 다른 레이더(11)에 대해서는, 그 변환 테이블을 레이더(11)끼리의 대칭성을 고려하여 변환함으로써 이용해도 된다.
예를 들어, 레이더(11c)에 대응하는 변환 후의 극좌표 데이터에서는, 도 9에 도시한 바와 같이 변환 전의 극좌표 데이터에 대응하는 부분이 배치된다. 한편, 차량의 중심을 통과하는 전후 방향의 직선에 대하여 레이더(11c)와 선대칭으로 되는 레이더(11a)의 변환 후의 극좌표 데이터에 있어서는, 변환 전의 극좌표 데이터에 대응하는 부분이 배치되는 부분은, 레이더(11c)의 것과 비교하여, 180도의 위치에 있어서의 r축과 평행한 직선에 대하여 선대칭으로 된다. 따라서, 180도의 위치에 있어서의 r축과 평행한 직선에 대하여 선대칭인 결과가 얻어지도록, 레이더(11c)의 변환 테이블을 변환함으로써, 레이더(11a)에 대응하는 변환 테이블을 생성하고, 레이더(11a)에 대응하는 극좌표 데이터의 축 위치 변환에 사용해도 된다.
상술한 CPU(200)가 실행하는 프로그램은, 다양한 타입의 비일시적인 컴퓨터 판독 가능 매체(non-transitory computer readable medium)를 사용하여 저장되고, 컴퓨터(ECU(10))에 공급할 수 있다. 비일시적인 컴퓨터 판독 가능 매체는, 다양한 타입의 실체가 있는 기록 매체(tangible storage medium)를 포함한다. 비일시적인 컴퓨터 판독 가능 매체의 예는, 자기 기록 매체(예를 들어 플렉시블 디스크, 자기 테이프, 하드디스크 드라이브), 광자기 기록 매체(예를 들어 광자기 디스크), CD-ROM(Read Only Memory), CD-R, CD-R/W, 반도체 메모리(예를 들어, 마스크 ROM, PROM(Programmable ROM), EPROM(Erasable PROM), 플래시 ROM, RAM(Random Access Memory))를 포함한다. 또한, 프로그램은, 다양한 타입의 일시적인 컴퓨터 판독 가능 매체(transitory computer readable medium)에 의해 컴퓨터에 공급되어도 된다. 일시적인 컴퓨터 판독 가능 매체의 예는, 전기 신호, 광 신호 및 전자파를 포함한다. 일시적인 컴퓨터 판독 가능 매체는, 전선 및 광 파이버 등의 유선 통신로, 또는 무선 통신로를 통해, 프로그램을 컴퓨터에 공급할 수 있다.
1 : 차량 탑재 제어 시스템
10 : ECU
11 : 레이더
12 : 경고 표시 장치
13 : 스티어링
14 : 브레이크
20 : 인식용 MCU
21 : 판단용 MCU
22, 23 : 제어용 MCU
30 : 외부 메모리
200 : CPU
201 : 내부 메모리
202 : 센서 I/F
203 : 외부 메모리 I/F
204 : MCU간 I/F
205 : 왜곡 보정 프로세서
206 : 화상 처리 엔진
207 : 제어 버스
210 : 시스템 제어부
211 : 데이터 취득부
212 : 축 위치 변환부
213 : 데이터 중첩부
214 : 좌표 변환부
215 : 결과 출력부
221, 222 : 필터 처리부

Claims (11)

  1. 주변을 관측하는 복수의 레이더의 각각으로부터, 관측 결과를 나타내는 복수의 데이터를 취득하고, 극좌표 형식으로 변환하여 기억부에 저장하는 데이터 취득부와,
    상기 기억부에 저장된 극좌표 형식의 복수의 데이터의 각각을, 축 위치가 동일해지도록 변환을 실시하여 복수의 축 위치 변환 후 데이터의 각각을 생성하고, 상기 기억부에 저장하는 축 위치 변환부와,
    상기 복수의 축 위치 변환 후 데이터를 중첩하여 중첩 데이터를 생성하는 데이터 중첩부와,
    상기 중첩 데이터를, 직교 좌표 형식으로 변환하는 좌표 변환부를 구비한 반도체 장치.
  2. 제1항에 있어서,
    상기 기억부는, 상기 축 위치 변환 전의 극좌표계에 있어서의 각 좌표와, 상기 축 위치 변환 후의 극좌표계에 있어서의 각 좌표를 대응지은 대응 정보가 미리 저장되어 있고,
    상기 축 위치 변환부는, 상기 대응 정보에 기초하여, 상기 변환 전의 극좌표 형식의 데이터로부터, 상기 축 위치 변환 후 데이터를 생성하는 반도체 장치.
  3. 제2항에 있어서,
    상기 복수의 레이더의 각각은, 서로 다른 위치에 설치되어 있고,
    상기 기억부는, 상기 복수의 레이더의 각각에 대응하는 복수의 상기 대응 정보가 저장되어 있고,
    상기 복수의 대응 정보의 각각은, 상기 복수의 레이더의 각각이 설치된 위치에 따라서, 극좌표 형식의 복수의 데이터의 축 위치를 동일하게 할 수 있도록, 서로 다른 내용으로 되어 있는 반도체 장치.
  4. 제1항에 있어서,
    상기 축 위치 변환 후 데이터는, 극좌표계에 있어서의 각 좌표에 있어서 물체의 존재 확률을 나타내는 것이고,
    상기 데이터 중첩부는,
    상기 축 위치 변환 후 데이터가 나타내는 동일한 좌표의 각각에 있어서의 존재 확률이 소정의 값보다도 낮은 경우에는, 상기 동일한 좌표의 각각에 있어서의 존재 확률 중 어느 것보다도, 상기 중첩 데이터가 나타내는 그 좌표의 존재 확률을 낮게 하고,
    상기 축 위치 변환 후 데이터가 나타내는 동일한 좌표의 각각에 있어서의 존재 확률이 상기 소정의 값보다도 높은 경우에는, 상기 동일한 좌표의 각각에 있어서의 존재 확률 중 어느 것보다도, 상기 중첩 데이터가 나타내는 그 좌표의 존재 확률을 높게 하는 반도체 장치.
  5. 제1항에 있어서,
    상기 반도체 장치는,
    상기 데이터 취득부를 포함하는 CPU와,
    상기 축 위치 변환부, 상기 데이터 중첩부 및 상기 좌표 변환부를 포함하는 전용 회로를 더 구비한 반도체 장치.
  6. 제5항에 있어서,
    상기 전용 회로는, 상기 축 위치 변환부 및 상기 좌표 변환부를 포함하는 왜곡 보정 프로세서와, 상기 데이터 중첩부를 포함하는 화상 처리 엔진을 갖고,
    상기 왜곡 보정 프로세서는, 상기 축 위치 변환 전의 극좌표 형식의 데이터를 극좌표계에 있어서 분할함으로써 얻어지는 복수의 삼각형의 각 정점의 좌표를 축 위치가 동일해지도록 변환하고, 상기 축 위치 변환 후 데이터에 있어서, 상기 삼각형의 변의 값을, 상기 축 위치 변환 전의 극좌표 형식의 데이터에 있어서의 삼각형의 변의 값으로 하고, 상기 삼각형의 내부의 값을, 당해 삼각형의 각 정점 및 각 변의 값에 의해 보간하는 반도체 장치.
  7. 제6항에 있어서,
    상기 복수의 삼각형은, 상기 변환 전의 극좌표 형식의 데이터를, 극좌표계에 있어서 각 축과 평행하는 직선으로 격자 형상으로 분할함으로써 얻어지는 복수의 사각형의 각각을 2개로 분할함으로써 얻어지는 것이고,
    상기 왜곡 보정 프로세서는, 상기 변환 전의 극좌표 형식의 데이터에 있어서 거리가 0으로 되는 각 좌표가, 상기 축 위치 변환 후 데이터에 있어서 1점에 집약되는 경우, 거리가 0으로 되는 좌표를 갖는 사각형을 분할한 2개의 삼각형 중, 거리가 0인 정점을 1점만 갖는 삼각형을, 상기 축 위치 변환 후 데이터에 있어서 집약된 1점을 정점에 갖는 삼각형으로 변환하는 반도체 장치.
  8. 제1항에 있어서,
    상기 반도체 장치는, 상기 축 위치 변환 후 데이터와, 상기 기억부에 저장된 과거의 상기 축 위치 변환 후 데이터를 중첩하는 필터 처리부를 더 구비하고,
    상기 데이터 중첩부는, 상기 중첩 후의 축 위치 변환 후 데이터를 중첩하여 중첩 데이터를 생성하고,
    상기 필터 처리부는, 상기 중첩 후의 축 위치 변환 후 데이터를, 다음에 생성된 축 위치 변환 후 데이터에 대하여 상기 과거의 축 위치 변환 후 데이터로서 사용하기 위해 상기 기억부에 저장하는 반도체 장치.
  9. 제1항에 있어서,
    상기 반도체 장치는, 상기 직교 좌표 형식의 데이터와, 상기 기억부에 저장된 과거의 상기 직교 좌표 형식의 데이터를 중첩하는 필터 처리부를 더 구비하고,
    상기 필터 처리부는, 상기 중첩 후의 직교 좌표 형식의 데이터를, 다음에 생성된 직교 좌표 형식의 데이터에 대하여 상기 과거의 직교 좌표 형식의 데이터로서 사용하기 위해 상기 기억부에 저장하는 반도체 장치.
  10. 기억부와,
    주변을 관측하는 복수의 레이더의 각각으로부터, 관측 결과를 나타내는 복수의 데이터를 취득하고, 극좌표 형식으로 변환하여 상기 기억부에 저장하는 데이터 취득부와,
    상기 기억부에 저장된 극좌표 형식의 복수의 데이터의 각각을, 축 위치가 동일해지도록 변환을 실시하여 복수의 축 위치 변환 후 데이터의 각각을 생성하고, 상기 기억부에 저장하는 축 위치 변환부와,
    상기 복수의 축 위치 변환 후 데이터를 중첩하여 중첩 데이터를 생성하는 데이터 중첩부와,
    상기 중첩 데이터를, 직교 좌표 형식으로 변환하는 좌표 변환부와,
    상기 직교 좌표 형식의 중첩 데이터에 기초하여, 제어 대상의 제어 내용을 결정하는 판단부와,
    상기 제어 내용에 따라서 상기 제어 대상을 제어하는 제어부를 구비한 제어 시스템.
  11. 주변을 관측하는 복수의 레이더의 각각으로부터, 관측 결과를 나타내는 복수의 데이터를 취득하고, 극좌표 형식으로 변환하여 기억부에 저장하고,
    상기 기억부에 저장된 극좌표 형식의 복수의 데이터의 각각을, 축 위치가 동일해지도록 변환을 실시하여 복수의 축 위치 변환 후 데이터의 각각을 생성하고, 상기 기억부에 저장하고,
    상기 복수의 축 위치 변환 후 데이터를 중첩하여 중첩 데이터를 생성하고,
    상기 중첩 데이터를, 직교 좌표 형식으로 변환하는 관측 방법.
KR1020160085318A 2015-07-10 2016-07-06 반도체 장치, 제어 시스템 및 관측 방법 KR20170007146A (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015138676A JP6692129B2 (ja) 2015-07-10 2015-07-10 半導体装置
JPJP-P-2015-138676 2015-07-10

Publications (1)

Publication Number Publication Date
KR20170007146A true KR20170007146A (ko) 2017-01-18

Family

ID=56893663

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020160085318A KR20170007146A (ko) 2015-07-10 2016-07-06 반도체 장치, 제어 시스템 및 관측 방법

Country Status (6)

Country Link
US (1) US10295663B2 (ko)
EP (1) EP3115803A3 (ko)
JP (1) JP6692129B2 (ko)
KR (1) KR20170007146A (ko)
CN (1) CN106335502B (ko)
TW (1) TW201715252A (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230305141A1 (en) * 2020-11-16 2023-09-28 Oculii Corp. System and method for radar-based localization and/or mapping

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6327994B2 (ja) * 2014-07-28 2018-05-23 ルネサスエレクトロニクス株式会社 制御システムおよび半導体装置
FR3085022B1 (fr) * 2018-08-16 2020-10-16 Psa Automobiles Sa Procede de determination d’un indice de confiance associe a un objet detecte par un capteur dans l’environnement d’un vehicule automobile.
CN109283520A (zh) * 2018-10-19 2019-01-29 芜湖易来达雷达科技有限公司 Adas系统中多雷达协作装置及其协作方法
CN109541625B (zh) * 2018-11-27 2020-10-09 中国农业大学 植保无人机飞行参数测量方法及系统
JP7062138B2 (ja) * 2019-05-16 2022-05-02 三菱電機株式会社 情報処理装置、情報処理方法、及び、情報処理プログラム

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990830B2 (ja) 1998-10-16 2007-10-17 日本無線株式会社 レーダビデオ合成装置
JP4917270B2 (ja) 2005-04-20 2012-04-18 古野電気株式会社 レーダ装置および類似装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3102541A1 (de) 1981-01-27 1982-08-26 Lawrence F. 94577 San Leandro Calif. Anderson System zur kombinierung von vielfachradar zum empfang der ausgangssignale von wenigstens zwei radaranlagen
FR2614994B1 (fr) * 1987-05-07 1989-06-30 Thomson Csf Procede et dispositif de visualisation de plusieurs images radar en une mosaique unique
US4899161A (en) * 1988-07-21 1990-02-06 International Business Machines Corporation High accuracy coordinate conversion method for air traffic control applications
US5519401A (en) * 1993-11-01 1996-05-21 Loral Corporation Programmed radar coordinate scan conversion
US5483567A (en) * 1994-09-22 1996-01-09 Wisconsin Alumni Research Foundation Computerized method for converting polar tomographic data to a cartesian image format
US5742297A (en) * 1994-11-04 1998-04-21 Lockheed Martin Corporation Apparatus and method for constructing a mosaic of data
US5554992A (en) * 1995-06-05 1996-09-10 Lockheed Martin Corporation Radar scan converter for producing an aggregate radial scan pattern that is a function of hyperbolically-based resolution boundaries
US6140955A (en) * 1998-12-28 2000-10-31 Lockheed Martin Corporation Ruler algorithm for PPI rectangular radar scan converter with staircase line drawing
US6225942B1 (en) * 1999-07-30 2001-05-01 Litton Systems, Inc. Registration method for multiple sensor radar
US6400313B1 (en) * 2000-01-12 2002-06-04 Honeywell International Inc. Projection of multi-sensor ray based data histories onto planar grids
US6829536B2 (en) * 2001-09-12 2004-12-07 Weather Central, Inc. System and method for processing weather information
US7050652B2 (en) * 2002-03-08 2006-05-23 Anzus, Inc. Methods and arrangements to enhance correlation
US6836239B2 (en) * 2003-05-15 2004-12-28 Aviation Communication & Surveillance Systems, Llc Method and system for displaying text on a radial display
JP4644197B2 (ja) * 2003-08-14 2011-03-02 センシス コーポレーション Tdoa分散アンテナを使用したターゲットの位置特定方法及び装置
US7471234B1 (en) * 2004-12-16 2008-12-30 Unisys Corporation Producing improved mosaic of multiple field radar data product to enable improved weather display
US7646328B2 (en) * 2005-03-10 2010-01-12 Honeywell International Inc. Versatile constant altitude plan position indicator for radars
US7821448B2 (en) * 2005-03-10 2010-10-26 Honeywell International Inc. Constant altitude plan position indicator display for multiple radars
US7706978B2 (en) * 2005-09-02 2010-04-27 Delphi Technologies, Inc. Method for estimating unknown parameters for a vehicle object detection system
US7327309B2 (en) * 2005-12-23 2008-02-05 Barco Orthogon Gmbh Radar scan converter and method for transforming
GB2453927A (en) * 2007-10-12 2009-04-29 Curtiss Wright Controls Embedded Computing Method for improving the representation of targets within radar images
US9024811B2 (en) * 2009-05-12 2015-05-05 Raytheon Anschutz Gmbh Full fidelity radar receiver digital video distribution and processing
WO2010130286A1 (en) * 2009-05-12 2010-11-18 Raytheon Anschütz Gmbh Combining data from multiple radar signals on a single plan position indicator (ppi) display
JP5570786B2 (ja) * 2009-11-09 2014-08-13 古野電気株式会社 信号処理装置、レーダ装置及び信号処理プログラム
JP5617100B2 (ja) * 2011-02-08 2014-11-05 株式会社日立製作所 センサ統合システム及びセンサ統合方法
JP5503578B2 (ja) * 2011-03-10 2014-05-28 パナソニック株式会社 物体検出装置及び物体検出方法
KR101213043B1 (ko) * 2011-04-19 2012-12-18 국방과학연구소 탐지추적 레이더, 이를 구비한 고속 이동체 방어시스템 및 탐지추적 레이더의 고속 이동체 추적방법
US9575173B2 (en) * 2011-12-09 2017-02-21 Furuno Electric Co., Ltd. Image processing device, radar apparatus, image processing method and image processing program
US9063225B2 (en) * 2012-03-07 2015-06-23 Toyota Motor Engineering & Manufacturing North America, Inc. High resolution Doppler collision avoidance radar
JP6061588B2 (ja) * 2012-09-26 2017-01-18 古野電気株式会社 レーダ受信装置、及びこれを備えたレーダ装置
US10162053B2 (en) * 2015-04-30 2018-12-25 Maxlinear, Inc. Multifunctional automotive radar
US20160363648A1 (en) * 2015-06-15 2016-12-15 Humatics Corporation High precision motion tracking with time of flight measurement systems

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3990830B2 (ja) 1998-10-16 2007-10-17 日本無線株式会社 レーダビデオ合成装置
JP4917270B2 (ja) 2005-04-20 2012-04-18 古野電気株式会社 レーダ装置および類似装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230305141A1 (en) * 2020-11-16 2023-09-28 Oculii Corp. System and method for radar-based localization and/or mapping
US11841420B2 (en) * 2020-11-16 2023-12-12 Oculii Corp. System and method for radar-based localization and/or mapping

Also Published As

Publication number Publication date
TW201715252A (zh) 2017-05-01
US10295663B2 (en) 2019-05-21
EP3115803A3 (en) 2017-01-18
CN106335502A (zh) 2017-01-18
US20170010349A1 (en) 2017-01-12
EP3115803A2 (en) 2017-01-11
JP2017020895A (ja) 2017-01-26
JP6692129B2 (ja) 2020-05-13
CN106335502B (zh) 2021-06-08

Similar Documents

Publication Publication Date Title
KR20170007146A (ko) 반도체 장치, 제어 시스템 및 관측 방법
US9956910B2 (en) Audible notification systems and methods for autonomous vehicles
EP3487172A1 (en) Image generation device, image generation method, and program
JP2019028861A (ja) 信号処理装置、および信号処理方法、プログラム、並びに移動体
EP2437494A1 (en) Device for monitoring area around vehicle
US11518390B2 (en) Road surface detection apparatus, image display apparatus using road surface detection apparatus, obstacle detection apparatus using road surface detection apparatus, road surface detection method, image display method using road surface detection method, and obstacle detection method using road surface detection method
JP2015182604A (ja) 画像処理装置および画像処理プログラム
EP3553752A1 (en) Information processing apparatus, information processing method, and computer-readable medium for generating an obstacle map
US11978261B2 (en) Information processing apparatus and information processing method
US20170263129A1 (en) Object detecting device, object detecting method, and computer program product
US20190189014A1 (en) Display control device configured to control projection device, display control method for controlling projection device, and vehicle
US10771711B2 (en) Imaging apparatus and imaging method for control of exposure amounts of images to calculate a characteristic amount of a subject
US20150296202A1 (en) Disparity value deriving device, equipment control system, movable apparatus, robot, and disparity value deriving method
US11443520B2 (en) Image processing apparatus, image processing method, and image processing system
CN111587572A (zh) 图像处理装置、图像处理方法和程序
JP6678609B2 (ja) 情報処理装置、情報処理方法、情報処理プログラム、および移動体
US20200166346A1 (en) Method and Apparatus for Constructing an Environment Model
JP6080735B2 (ja) 運転支援装置
US10628917B2 (en) Information processing apparatus, information processing method, and computer program product
WO2022024602A1 (ja) 情報処理装置、情報処理方法及びプログラム
JP5731801B2 (ja) 車両用画像処理装置および車両用画像処理方法
CN110979319A (zh) 驾驶辅助方法、装置和系统
CN116563818B (zh) 障碍物信息生成方法、装置、电子设备和计算机可读介质
CN116563817B (zh) 障碍物信息生成方法、装置、电子设备和计算机可读介质
WO2016002418A1 (ja) 情報処理装置