KR20160142392A - 튜부리신 유도체 - Google Patents

튜부리신 유도체 Download PDF

Info

Publication number
KR20160142392A
KR20160142392A KR1020167031176A KR20167031176A KR20160142392A KR 20160142392 A KR20160142392 A KR 20160142392A KR 1020167031176 A KR1020167031176 A KR 1020167031176A KR 20167031176 A KR20167031176 A KR 20167031176A KR 20160142392 A KR20160142392 A KR 20160142392A
Authority
KR
South Korea
Prior art keywords
cancer
compound
antibody
mmol
formula
Prior art date
Application number
KR1020167031176A
Other languages
English (en)
Inventor
락쉬마이아 긴기팔리
도린 토더
펭지앙 왕
Original Assignee
메디뮨 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 메디뮨 엘엘씨 filed Critical 메디뮨 엘엘씨
Publication of KR20160142392A publication Critical patent/KR20160142392A/ko

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/05Dipeptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/07Tetrapeptides
    • A61K47/48384
    • A61K47/48415
    • A61K47/48569
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • A61K47/6817Toxins
    • A61K47/6829Bacterial toxins, e.g. diphteria toxins or Pseudomonas exotoxin A
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6835Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site
    • A61K47/6851Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment the modifying agent being an antibody or an immunoglobulin bearing at least one antigen-binding site the antibody targeting a determinant of a tumour cell
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/30Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/021Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-(X)n-C(=0)-, n being 5 or 6; for n > 6, classification in C07K5/06 - C07K5/10, according to the moiety having normal peptide bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/02Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
    • C07K5/0212Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -N-C-N-C(=0)-, e.g. retro-inverso peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06034Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Toxicology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

다양한 유형의 암의 치료에서 단독으로 또는 항체와의 약물 접합체로서 치료 이익을 제공하기 위한 세포독성제로서 유용할 수 있는 신규 튜부리신 유도체가 제공된다. 튜부리신 유도체는 메틸 및 에틸 치환된 피페리딘을 포함하는 테트라펩티드 스캐폴드로 이루어진다. 튜부리신 접합체는 숙신이미드 링커를 통한 모노클로날 항체를 추가로 포함한다.

Description

튜부리신 유도체 {TUBULYSIN DERIVATIVES}
튜부리신은 믹소박테리아로부터 단리된 한 부류의 세포증식억제성 테트라펩티드이다 (Sasse F et al. J. Antibiotics, 2000, 879). 튜부리신의 공통 특색은 그의 테트라펩티드 구조이며, 그 중 단지 Ile만이 자연 발생 아미노산이고, 다른 3개는 복합 비천연 아미노산이다: Mep (R-N-Me피페콜산), Tuv (튜부발린) 및 Tut (튜부티로신) 또는 Tup (튜부페닐알라닌). 추후에 그러한 부류의 추가의 구성원이 기재되었다 (Steinmettz et al., Angew. Chem. Int. Ed.2004, 4888). 대부분의 자연 발생 튜부리신은 튜불린-중합 억제와 상호연관된 암 세포주에 대한 pM 세포독성 활성을 나타내었다. 튜부리신의 작용 메카니즘은 사세(Sasse) (Khalil MW et al. ChemBioChem, 2006, 678)에 의해 기재되었으며, 이는 튜부리신 A가 베타-튜불린 결합제 (포몹신, 돌라스타틴 및 헤미아스텔린)의 다른 빈카 도메인보다 튜불린 중합을 억제하는데 보다 효과적임을 제시하였다. 자연 발생 튜부리신은 돌라스타틴보다 지속적인 보다 높은 독성을 나타내었다. 게다가 튜부리신 A는 암 세포주에서 아폽토시스를 유도하는 것으로 보고되었고 (Kaur G et al., Biochem. J, 2006, 235), 동물 모델에서 강력한 항종양 활성 이외에도 항혈관신생 활성을 나타내었다. 이들 발견에 따라 자연 발생 튜부리신에 필적하는 효력을 갖는 합성 유사체를 찾는데 상당한 노력을 쏟았다. N,O-아세탈-함유-Tuv의 존재는 튜부리신을 합성하는 것에 대한 도전과제를 제기하고, 그의 안정성에 관한 우려를 일으킨다. 여러 그룹이 세포독성 활성의 유의한 상실 없이 N,O-아세탈을 평범한 메틸 기로 대체한 합성 유사체를 확인하였다 (Patterson, A et al., Chem. Eur. J. 2007, 9534; Wipf P et al. Org. Lett. 2007, 1605).
여러 보고는 튜부리신과 폴레이트의 접합체 (Leamon CP et al., Cancer Res. 2008, 9839), 시클로덱스트린 나노-접합체 (Schluep TS et al. Clin. Cancer Res. 2009, 15:181) 뿐만 아니라 덴드리머 접합체 (Floyd WC, ChemMedChem 2011, 49)를 개시하고 있다. 한 보고는 모노클로날 항체에 대한 튜부리신의 접합을 개시하고 있다 (US2011/0027274).
신규 튜부리신 유도체는 다양한 유형의 암의 치료에서 단독으로, 약물 접합체로서 또는 다른 화학요법과 조합으로 치료 이익을 제공하기 위한 세포독성제로서 유용할 수 있다.
본 개시내용은 화학식 I의 구조를 갖는 화합물 또는 그의 제약상 허용되는 염을 제공한다.
<화학식 I>
Figure pct00001
여기서:
R1은 CH3, 또는 CH2 CH3이고;
R2는 H 또는 CH3이고;
R3은 H 또는 NH2이고;
n은 1 또는 2이다.
일부 측면에서, n은 1이고, R1은 메틸이다.
일부 측면에서, R2는 메틸이다.
일부 측면에서, R3은 NH2이다.
일부 측면에서, n은 1이고, R1은 메틸이고, R2는 메틸이고, R3은 NH2이다.
화학식 I의 화합물은 세포독성이고 암의 치료에 유용할 수 있다.
본 개시내용은 또한 화학식 II의 구조를 갖는 화합물을 제공한다.
<화학식 II>
Figure pct00002
여기서:
R1은 CH3, 또는 CH2 CH3이고;
R2는 H 또는 CH3이고;
R4는 CH3, (CH2)4NH2, 또는 (CH2)3NHC(=O)NH2이고;
R5는 H; C(CH3)(CH3)이고;
R6은 NHC(=O), 또는 CH2이고;
n은 1 또는 2이고;
m은 0, 1, 2 또는 3이다.
일부 측면에서, n은 1이고, R1은 메틸이다.
일부 측면에서, R2는 메틸이다.
일부 측면에서, R3은 NH2이다.
일부 측면에서, n은 1이고, R1은 메틸이고, R2는 메틸이고, R3은 NH2이다.
일부 측면에서, R4는 (CH2)4NH2이다.
일부 측면에서, R5는 H이다.
일부 측면에서, R6은 CH2이다.
일부 측면에서, m은 1이다.
일부 측면에서, n은 1이고, m은 1이고, R1은 메틸이고, R2는 메틸이고, R3은 NH2이고, R4는 (CH2)4NH2이고, R5는 H이고, R6은 CH2이다.
화학식 I의 화합물 및 화학식 II의 화합물은 통상적인 수단을 통해 항체에 접합되어 항체 약물 접합체 (ADC)를 제공할 수 있다. 개시내용의 일부 측면에서 화학식 I 및 II의 화합물은 항체 리신 또는 시스테인을 통해 항체에 접합되어 항체 약물 접합체 (ADC)를 제공할 수 있다. 항체가 모노클로날 항체인 본 개시내용의 일부 항체 약물 접합체가 제공된다. 항체가 암 항원에 특이적인 본 개시내용의 다른 항체 약물 접합체가 제공된다. 항체가 알렘투주맙, 베바시주맙, 브렌툭시맙, 세툭시맙, 겜투주맙, 이필리무맙, 오파투무맙, 파니투무맙, 리툭시맙, 토시투모맙 또는 트라스투주맙인 개시내용의 다른 항체 약물 접합체가 제공된다.
본 개시내용은 또한 화학식 I의 화합물 또는 그의 제약상 허용되는 염 및 제약상 허용되는 담체를 포함하는 제약 조성물을 제공한다. 본 개시내용의 ADC 및 제약상 허용되는 담체를 포함하는 제약 조성물이 제공된다.
유효량의 화학식 I의 화합물 또는 화학식 II의 화합물을 암을 앓고 있는 대상체에게 투여하는 것을 포함하는, 암을 치료하는 방법이 또한 본 개시내용에 의해 제공된다. 항체에 접합된 화학식 I의 화합물 또는 화학식 II의 화합물의 항체-약물 접합체의 유효량을 암을 앓고 있는 대상체에게 투여하는 것을 포함하는, 암을 치료하는 방법이 또한 본 개시내용에 의해 제공된다. 개시내용의 일부 측면에서, 대상체는 편평 세포암, 소세포 폐암, 비소세포 폐암, 위장암, 호지킨 림프종, 비-호지킨 림프종, 췌장암, 교모세포종, 신경교종, 자궁경부암, 난소암, 간암, 방광암, 유방암, 결장암, 결장직장암, 자궁내막 암종, 골수종, 타액선 암종, 신장암, 기저 세포 암종, 흑색종, 전립선암, 외음부암, 갑상선암, 고환암, 식도암, 두경부암, 점액성 난소암, 담관암종 또는 신장 유두상 암종을 앓고 있다.
화학식 I의 화합물을 포함하는 제약 조성물을 암의 치료를 필요로 하는 대상체에게 투여하는 것을 포함하는, 암을 치료하는 방법이 또한 제공된다. 본 개시내용의 ADC를 포함하는 제약 조성물을 암의 치료를 필요로 하는 대상체에게 투여하는 것을 포함하는, 암을 치료하는 방법이 본 개시내용에 의해 또한 제공된다.
일부 측면에서, 방법은 적어도 1종의 추가의 치료제를 투여하는 것을 추가로 포함한다. 일부 측면에서, 적어도 1종의 추가의 치료제는 방사성핵종 또는 화학요법제이다.
본 개시내용은 화학식 I의 구조를 갖는 화합물 또는 그의 제약상 허용되는 염을 제공한다.
<화학식 I>
Figure pct00003
여기서:
R1은 CH3, 또는 CH2 CH3이고;
R2는 H 또는 CH3이고;
R3은 H 또는 NH2이고;
n은 1 또는 2이다.
일부 측면에서, n은 1이고, R1은 메틸이다.
일부 측면에서, R2는 메틸이다.
일부 측면에서, R3은 NH2이다.
일부 측면에서, n은 1이고, R1은 메틸이고, R2는 메틸이고 R3은 NH2이다.
화학식 I에 따른 개시내용의 화합물의 구체적 예는 화합물 (Ii) 내지 (Ivi)을 포함한다.
Figure pct00004
Figure pct00005
본 개시내용은 화학식 II의 구조를 갖는 화합물을 제공한다.
<화학식 II>
Figure pct00006
여기서:
R1은 CH3, 또는 CH2 CH3이고;
R2는 H 또는 CH3이고;
R4는 CH3, (CH2)4NH2, 또는 (CH2)3NHC(=O)NH2이고;
R5는 H; C(CH3)(CH3)이고;
R6은 NHC(=O), 또는 CH2이고;
n은 1 또는 2이고;
m은 0, 1, 2 또는 3이다.
일부 측면에서, n은 1이고, R1은 메틸이다.
일부 측면에서, R2는 메틸이다.
일부 측면에서, R3은 NH2이다.
일부 측면에서, n은 1이고, R1은 메틸이고, R2는 메틸이고, R3은 NH2이다.
일부 측면에서, R4는 (CH2)4NH2이다.
일부 측면에서, R5는 H이다.
일부 측면에서, R6은 CH2이다.
일부 측면에서, m은 1이다.
화학식 II에 따른 개시내용의 화합물의 구체적 예는 화합물 (IIi) 내지 (IIiv)를 포함한다.
Figure pct00007
Figure pct00008
개시내용의 일부 측면에서, n은 1이다. 개시내용의 다른 측면에서, n은 2이다. n이 2 인 경우에, 피페리딘 고리의 상의 R1 치환은 고리 내의 단일 탄소 원자 상에서 발생할 수 있거나, 또는 고리 내의 상이한 탄소 원자 상에 있을 수 있다. 개시내용의 일부 측면에서, n이 1일 때, 고리의 R1 치환은 질소에 대해 파라이다. 개시내용의 다른 측면에서, n이 1일 때, R1 치환은 피페리딘 고리 내의 질소에 대해 메타이다.
화학식 I 및 II의 화합물은 항체에 접합되어 항체 약물 접합체 (ADC)를 형성할 수 있다. ADC 복합체에서, 화학식 I의 화합물 및 화학식 II의 화합물은, 이들이 접합되어 있는 항체에 의해 관심 치료 표적에게 전달되는 치료 모이어티로서의 역할을 한다. 화학식 I 및 화학식 II의 화합물 및 항체의 접합에 의해 형성된 ADC를 포함하는 제약 조성물이 또한 제공된다. 화학식 I의 화합물 및 화학식 II의 화합물을 사용하는 ADC의 제조 방법이 또한 제공된다. 본 개시내용의 ADC를 투여함으로써 암의 치료를 필요로 하는 대상체에서 암을 치료하는 방법이 또한 제공된다. 암을 치료하는 방법은 본 발명의 ADC를 화학요법제와 조합으로 투여하는 것을 추가로 제공한다.
본 발명을 보다 용이하게 이해할 수 있기 위해서는, 먼저 특정 용어가 정의된다. 추가의 정의는 상세한 설명 전반에 걸쳐 제시되어 있다.
상기 기입된 명세서는 관련 기술분야의 통상의 기술자가 실시양태를 실시할 수 있도록 하는데 충분한 것으로 간주된다. 상기 기재 및 실시예는 특정 실시양태를 상술하고 본 발명자들에 의해 고려된 최상의 방식을 기재하고 있다. 그러나, 어떻게 상술하더라도, 상기 기재는 텍스트로 나타날 수 있고, 실시양태는 많은 방식으로 실시될 수 있고, 청구범위는 그의 임의의 등가물을 포함한다는 것이 인지될 것이다.
본 발명을 상세하게 기재하기 전에, 본 발명은 구체적인 조성물 또는 공정 단계로 제한되지 않고, 그럼으로써 변경될 수 있다는 것을 이해해야 한다. 본 명세서 및 첨부된 청구범위에 사용된 단수 형태는 문맥이 달리 명백하게 지시하지 않는 한 복수 지시대상을 포함한다. 단수형 용어, 뿐만 아니라 "하나 이상" 및 "적어도 하나"는 본원에서 상호교환가능하게 사용될 수 있다.
게다가, 본원에 사용된 경우에 "및/또는"은 다른 것과 함께 또는 다른 것 없이 2종의 명시된 특색 또는 성분 각각의 구체적인 개시내용으로 받아들여진다. 따라서, 본원에서 "A 및/또는 B"와 같은 어구에서 사용된 용어 "및/또는"은 "A 및 B", "A 또는 B", "A" (단독), 및 "B" (단독)를 포함하도록 의도된다. 마찬가지로, "A, B, 및/또는 C"와 같은 어구에 사용된 용어 "및/또는"은 하기 측면 각각을 포괄하도록 의도된다: A, B, 및 C; A, B, 또는 C; A 또는 C; A 또는 B; B 또는 C; A 및 C; A 및 B; B 및 C; A (단독); B (단독); 및 C (단독).
달리 정의되지 않는 한, 본원에 사용된 모든 기술 과학 용어는 본 개시내용이 관련된 기술분야의 통상의 기술자에 의해 통상적으로 이해되는 것과 동일한 의미를 갖는다. 예를 들어, 문헌 [the Concise Dictionary of Biomedicine and Molecular Biology, Juo, Pei-Show, 2nd ed., 2002, CRC Press; The Dictionary of Cell and Molecular Biology, 3rd ed., 1999, Academic Press; 및 the Oxford Dictionary Of Biochemistry And Molecular Biology, Revised, 2000, Oxford University Press]은 본 개시내용에 사용된 많은 용어의 일반적 사전을 통상의 기술자에게 제공한다.
단위, 접두어, 및 기호는 시스템 인터내셔날 드 유니테(Systeme International de Unites; SI)에 의해 용인된 형태로 나타낸다. 수치 범위는 범위를 규정하는 숫자를 포함한다. 달리 나타내지 않는 한, 아미노산 서열은 아미노에서 카르복시 배향으로 좌측에서 우측으로 표기된다. 본원에 제공된 표제는 다양한 측면의 제한이 아니며, 이는 전체로서 명세서를 참조할 수 있다. 따라서, 바로 하기에 정의된 용어들은 명세서를 그 전문으로 참조하여 보다 충분히 정의된다.
측면이 표현 "포함하는"을 사용하여 본원에 기재된 어떤 경우라도, "로 이루어진" 및/또는 "로 본질적으로 이루어진"의 용어로 기재된 다른 유사한 측면이 또한 제공되는 것으로 이해된다.
아미노산은 IUPAC-IUB 생화학적 명명 위원회에 의해 권고된 그의 통상적으로 공지된 3문자 기호 또는 1문자 기호에 의해 본원에 지칭된다.
용어 "억제하다", "차단하다", 및 "저지하다"는 본원에서 상호교환가능하게 사용되고, 활성의 완전 차단을 포함하여, 생물학적 활성의 임의의 통계적으로 유의한 감소를 지칭한다. 예를 들어, "억제"는 생물학적 활성에서의 약 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90% 또는 100%의 감소를 지칭할 수 있다.
세포 증식은 세포 분열의 속도, 및/또는 세포 분열 중인 세포 집단 내의 세포의 분율, 및/또는 말단 분화 또는 세포 사멸로 인한 세포 집단으로부터의 세포 손실의 비율을 측정하는 관련 기술분야에 인지된 기술 (예를 들어, 티미딘 혼입)을 사용하여 검정될 수 있다.
본원에 상호교환가능하게 사용된 용어 "항체" 또는 "이뮤노글로불린"은 전체 항체 및 임의의 항원 결합 단편 또는 그의 단일 쇄 및 그의 조합 (예를 들어, 이중특이적 항체)을 포함한다.
전형적인 항체는 디술피드 결합에 의해 상호연결된 적어도 2개의 중쇄 (H) 및 2개의 경쇄 (L)를 포함한다. 각각의 중쇄는 중쇄 가변 영역 (본원에 VH로 약기함) 및 중쇄 불변 영역 (본원에 CH로 약기함)으로 구성된다. 중쇄 불변 영역은 3개의 도메인, CH1, CH2 및 CH3으로 구성된다. 각각의 경쇄는 경쇄 가변 영역 (본원에 VL로 약기함) 및 경쇄 불변 영역으로 구성된다. 경쇄 불변 영역은 1개의 도메인, CL로 구성된다. VH 및 VL 영역은 추가로, 상보성 결정 영역 (CDR)으로 칭해지는 초가변성의 영역으로 세분될 수 있고, 프레임워크 영역 (FW)으로 칭해지는 보다 보존된 영역으로 점재될 수 있다. 각각의 VH 및 VL은 3개의 CDR 및 4개의 FW로 구성되고, 아미노-말단에서 카르복시-말단으로 하기 순서로 배열된다: FW1, CDR1, FW2, CDR2, FW3, CDR3, FW4. 중쇄 및 경쇄의 가변 영역은 항원과 상호작용하는 결합 도메인을 함유한다. 항체의 불변 영역은 면역계의 다양한 세포 (예를 들어, 이펙터 세포) 및 전형적 보체계의 제1 성분 (C1q)을 포함한, 숙주 조직 또는 인자에 대한 이뮤노글로불린의 결합을 매개할 수 있다. 본 개시내용의 예시적인 항체는 전형적인 항체, scFv 및 그의 조합을 포함하며, 여기서, 예를 들어, scFv는 전형적인 항체의 중쇄 및/또는 경쇄의 N-말단에 (예를 들어, 펩티드성 결합을 통해 또는 화학적 링커를 통해) 공유 연결되거나, 또는 전형적인 항체의 중쇄 및/또는 경쇄에 삽입된다.
용어 "항체"는 이뮤노글로불린 분자의 가변 영역 내의 적어도 1개의 항원 인식 부위를 통해 표적, 예컨대 단백질, 폴리펩티드, 펩티드, 탄수화물, 폴리뉴클레오티드, 지질, 또는 상기의 조합을 인식하고 이에 특이적으로 결합하는 이뮤노글로불린 분자를 의미한다. 본원에 사용된 용어 "항체"는 무손상 폴리클로날 항체, 무손상 모노클로날 항체, 항체 단편 (예컨대 Fab, Fab', F(ab')2, 및 Fv 단편), 단일 쇄 가변 단편 (scFv), 디술피드 안정화된 scFv, 다중특이적 항체 예컨대 적어도 2개의 무손상 항체로부터 생성된 이중특이적 항체 및/또는 그의 항원 결합 단편, 키메라 항체, 인간화 항체, 인간 항체, 항체의 항원 결정 부분을 포함하는 융합 단백질, 및 항체가 목적하는 생물학적 활성을 나타내는 한, 항원 인식 부위를 포함하는 임의의 다른 변형된 이뮤노글로불린 분자를 포괄한다.
항체는 그의 중쇄 불변 도메인의 동일성에 기초하여 각각 알파, 델타, 엡실론, 감마, 및 뮤로 지칭되는 이뮤노글로불린의 임의의 5개 주요 부류: IgA, IgD, IgE, IgG, 및 IgM, 또는 그의 하위부류 (이소형) (예를 들어 IgG1, IgG2, IgG3, IgG4, IgA1 및 IgA2)를 가질 수 있다. 상이한 부류의 이뮤노글로불린은 상이하고 널리 공지되어 있는 서브유닛 구조 및 3차원 배위를 갖는다. 항체는 네이키드이거나 또는 다른 분자, 예컨대 독소, 방사성동위원소 등에 접합되어 ADC를 형성할 수 있다.
용어 "항원 결합 단편"은 무손상 항체의 일부를 지칭하고, 무손상 항체의 항원 결정 가변 영역을 지칭한다. 항체의 항원 결합 기능은 전장 항체의 단편에 의해 실행될 수 있는 것이 관련 기술분야에 공지되어 있다. 항체 단편의 예는 Fab, Fab', F(ab')2, 및 Fv 단편, 선형 항체, 단일 쇄 항체, 및 항체 단편으로부터 형성된 다중특이적 항체를 포함하나, 이에 제한되지는 않는다.
"모노클로날 항체"는 단일 항원 결정기 또는 에피토프의 고도로 특이적인 인식 및 결합에 관여하는 동종 항체 집단을 지칭한다. 이는 전형적으로 상이한 항원 결정기에 대해 지시되는 상이한 항체를 포함하는 폴리클로날 항체와 대조적이다.
용어 "모노클로날 항체"는 무손상 및 전장 모노클로날 항체 둘 다 뿐만 아니라 항체 단편 (예컨대 Fab, Fab', F(ab')2, Fv), 단일 쇄 가변 단편 (scFv), 항체 부분을 포함하는 융합 단백질, 및 항원 인식 부위를 포함하는 임의의 다른 변형된 이뮤노글로불린 분자를 포괄한다. 게다가, "모노클로날 항체"는 하이브리도마, 파지 선택, 재조합 발현, 및 트랜스제닉 동물에 의한 것을 포함하나, 이에 제한되지 않는 많은 방식으로 제조된 이러한 항체를 지칭한다 (예를 들어, 트랜스제닉 마우스에서의 인간 항체의 발현).
용어 "인간화 항체"는 최소의 비-인간 (예를 들어, 뮤린) 서열을 함유하도록 조작된 비-인간 (예를 들어, 뮤린) 이뮤노글로불린으로부터 유도된 항체를 지칭한다. 전형적으로, 인간화 항체는 CDR로부터의 잔기가 목적하는 특이성, 친화도, 및 능력을 갖는 비-인간 종 (예를 들어, 마우스, 래트, 토끼, 또는 햄스터)의 CDR로부터의 잔기로 대체된 인간 이뮤노글로불린이다 (Jones et al., 1986, Nature, 321:522-525; Riechmann et al., 1988, Nature, 332:323-327; Verhoeyen et al., 1988, Science, 239:1534-1536). 일부 경우에, 인간 이뮤노글로불린의 FW 잔기는 목적하는 특이성, 및/또는 친화도, 및/또는 능력을 갖는 비-인간 종으로부터의 항체 내의 상응하는 잔기로 대체된다.
용어 "항체-약물 접합체" (ADC)는 적어도 1종의 화학식 I의 화합물 또는 화학식 II의 화합물에 접합된 관심 에피토프에 결합하는 적어도 1종의 항체를 포함하는 접합체를 지칭한다. 화학식 I의 화합물 및 화학식 II의 화합물은 항체에 접합되어 항체 약물 접합체 (ADC)를 형성할 수 있으며, 이에 의해 화학식 I의 화합물 및 화학식 II의 화합물은, 이들이 접합되어 있는 항체에 의해 관심 치료 표적에 전달되는 치료 모이어티로서의 역할을 할 수 있다.
일부 측면에서, ADC는 2, 3, 4, 5, 6, 7, 8, 9 또는 10종의 치료 모이어티를 포함한다. 일부 구체적 측면에서, ADC는 2, 3, 또는 4종의 치료 모이어티를 포함한다. 일부 측면에서, 모든 치료 모이어티는 동일하다. 일부 측면에서, 적어도 1종의 치료 모이어티는 나머지와 상이하다.
치료 모이어티는 화학식 I의 화합물의 단일 분자 또는 화학식 II의 화합물의 단일 분자를 지칭한다.
용어 "대상체"는 특정한 치료의 수용자가 되는, 인간, 비-인간 영장류, 설치류 등을 포함하나 이에 제한되지는 않는 임의의 동물 (예를 들어, 포유동물)을 지칭한다. 전형적으로, 용어 "대상체" 및 "환자"는 인간 대상체와 관련하여 본원에서 상호교환가능하게 사용된다.
용어 "제약 조성물"은 활성 성분의 생물학적 활성을 허용하도록 하는 형태이고, 조성물을 투여할 대상체에게 허용되지 않게 독성인 추가의 성분을 함유하지 않는 제제를 지칭한다. 이러한 조성물은 멸균될 수 있다.
"치료하는" 또는 "치료" 또는 "치료하다" 또는 "완화시키는" 또는 "완화시키다"와 같은 용어는 (1) 진단된 병리학적 상태 또는 장애를 치유하고/하거나, 둔화시키고/거나, 그의 증상을 줄이고/거나 그의 진행을 중단시키는 치료적 조치, 및 (2) 표적화된 병리학적 상태 또는 장애의 발달을 방지하고/거나 둔화시키는 예방적 또는 방지적 조치 둘 다를 지칭한다. 따라서, 치료를 필요로 하는 것은 이미 장애를 갖고 있는 것; 장애를 갖기 쉬운 것; 및 장애를 방지해야 하는 것을 포함한다. 특정 측면에서, 환자가, 예를 들어, 특정 유형의 암의 전체적, 부분적, 또는 일시적 완화를 나타내는 경우에, 대상체는 본 개시내용의 방법에 따라 암이 성공적으로 "치료된다".
용어 "암", "종양", "암성" 및 "악성"은 전형적으로 비조절된 세포 성장을 특징으로 하는 포유동물의 생리학적 상태를 지칭하거나 기재한다. 암의 예는 선암종을 포함한 암종, 림프종, 모세포종, 흑색종, 육종, 및 백혈병을 포함하나, 이에 제한되지는 않는다. 이러한 암의 보다 특정한 예는 편평 세포암, 소세포 폐암, 비소세포 폐암, 위장암, 호지킨 및 비-호지킨 림프종, 췌장암, 교모세포종, 신경교종, 자궁경부암, 난소암, 간암 예컨대 간 암종 및 간세포암, 방광암, 유방암 (호르몬 매개 유방암 포함, 예를 들어, 문헌 [Innes et al. (2006) Br. J. Cancer 94:1057-1065] 참조), 결장암, 결장직장암, 자궁내막 암종, 골수종 (예컨대 다발성 골수종), 타액선 암종, 신장암 예컨대 신세포 암종 및 윌름스 종양, 기저 세포 암종, 흑색종, 전립선암, 외음부암, 갑상선암, 고환암, 식도암, 다양한 유형의 두경부 암 및 점액성 기원의 암, 예컨대, 점액성 난소암, 담관암종 (간) 및 신장 유두상 암종을 포함한다.
본원에 사용된 용어 "세포독성제"는 광범위하게 정의되고, 세포의 기능을 억제 또는 방지하고/거나 세포의 파괴 (세포 사멸)를 유발하고/거나, 항신생물성/항증식 효과를 행사하는 물질을 지칭한다. 예를 들어, 세포독성제는 신생물성 종양 세포의 발달, 성숙 또는 확산을 직접적으로 또는 간접적으로 방지한다. 상기 용어는 단순한 세포독성 효과가 아니라 단지 세포증식억제성 효과만을 유발하는 이러한 작용제를 또한 포함한다. 상기 용어는 하기 명시된 바와 같이 화학요법제, 뿐만 아니라 다른 HER2 길항제, 항혈관신생제, 티로신 키나제 억제제, 단백질 키나제 A 억제제, 시토카인 부류의 구성원, 방사성 동위원소, 및 독소 예컨대 박테리아, 진균, 식물 또는 동물 기원의 효소적 활성 독소를 포함한다.
용어 "화학요법제"는 천연 또는 합성 화학적 화합물을 포함하는 용어 "세포독성제"의 하위세트이다. 화학요법제 또는 작용제의 예는 알킬화제, 예를 들어, 질소 머스타드, 에틸렌이민 화합물, 알킬 술포네이트 및 알킬화 작용을 갖는 다른 화합물 예컨대 니트로소우레아, 시스플라틴 및 다카르바진; 항대사물, 예를 들어, 폴산, 퓨린 또는 피리미딘 길항제; 유사분열 억제제, 예를 들어, 빈카 알칼로이드 및 포도필로톡신의 유도체; 세포독성 항생제 및 캄프토테신 유도체를 포함한다. 다른 화학요법제는 아미포스틴 (에티올(ETHYOL)?), 시스플라틴, 다카르바진 (DTIC), 닥티노마이신, 메클로레타민 (질소 머스타드), 스트렙토조신, 시클로포스파미드, 카르무스틴 (BCNU), 로무스틴 (CCNU), 독소루비신 (아드리아마이신(ADRIAMYCIN)?), 독소루비신 리포 (독실(DOXIL)?), 겜시타빈 (겜자르(GEMZAR)?), 다우노루비신, 다우노루비신 리포 (다우녹솜(DAUNOXOME)?), 프로카르바진, 미토마이신, 시타라빈, 에토포시드, 메토트렉세이트, 5-플루오로우라실 (5-FU), 빈블라스틴, 빈크리스틴, 블레오마이신, 파클리탁셀 (탁솔(TAXOL)?), 도세탁셀 (탁소테레(TAXOTERE)?), 알데스류킨, 아스파라기나제, 부술판, 카르보플라틴, 클라드리빈, 캄프토테신, CPT-11, 10-히드록시-7-에틸-캄프토테신 (SN38), 게피티닙 (이레사(IRESSA)?), 다카르바진, 플록수리딘, 플루다라빈, 히드록시우레아, 이포스파미드, 이다루비신, 메스나, 인터페론 알파, 인터페론 베타, 이리노테칸, 미톡산트론, 토포테칸, 류프롤리드, 메게스트롤, 멜팔란, 메르캅토퓨린, 플리카마이신, 미토탄, 페가스파르가제, 펜토스타틴, 피포브로만, 플리카마이신, 스트렙토조신, 타목시펜, 테니포시드, 테스토락톤, 티오구아닌, 티오테파, 우라실 머스타드, 비노렐빈, 클로람부실 아로마타제 억제제, 및 그의 조합이다.
본 개시내용의 방법에 따라, 본 개시내용의 화합물 및 ADC는 암에 관한 양성 치료 반응을 촉진하기 위해 환자에게 투여될 수 있다. 암 치료에 관한 용어 "양성 치료 반응"은 질환과 연관된 증상의 개선을 지칭한다.
예를 들어, 질환의 개선은 완전 반응을 특징으로 할 수 있다. 용어 "완전 반응"은 임의의 이전 시험 결과의 정규화에 의한 임상적으로 검출가능한 질환의 부재를 지칭한다. 대안적으로, 질환의 개선은 부분 반응인 것으로서 분류될 수 있다. "양성 치료 반응"은 본 개시내용의 화합물의 투여로부터 일어나는 암의 진행 및/또는 지속시간의 감소 또는 억제, 암의 중증도의 감소 또는 호전, 및/또는 그의 1종 이상의 증상의 호전을 포괄한다.
구체적 측면에서, 이러한 용어는 본 개시내용의 화합물의 투여에 따른 1, 2 또는 3종 또는 그 초과의 결과를 지칭한다:
(1) 암 세포 집단의 안정화, 감소 또는 제거;
(2) 암 성장의 안정화 또는 감소;
(3) 암 형성의 감손;
(4) 원발성, 국한성 및/또는 전이성 암의 근절, 제거, 또는 제어;
(5) 사망률의 감소;
(6) 무질환, 무재발, 무진행, 및/또는 전체 생존, 지속시간, 또는 비율의 증가;
(7) 반응률, 반응의 지속성, 또는 반응하거나 완화 중인 환자 수의 증가
(8) 입원율의 감소,
(9) 입원 길이의 감소,
(10) 암의 크기가 유지되고, 증가하지 않거나, 10% 미만, 바람직하게는 5% 미만, 바람직하게는 4% 미만, 바람직하게는 2% 미만만큼 증가함, 및
(11) 완화 중인 환자 수의 증가.
(12) 달리 암을 치료하는데 요구될 것인 보조 요법 (예를 들어, 화학요법 또는 호르몬 요법) 수의 감소.
임상 반응은 스크리닝 기술, 예컨대 PET, 자기 공명 영상화 (MRI) 스캔, x-방사선촬영 영상화, 컴퓨터 단층촬영 (CT) 스캔, 유동 세포측정법 또는 형광-활성화 세포 분류기 (FACS) 분석, 조직학, 육안 병리학, 및 ELISA, RIA, 크로마토그래피 등에 의해 검출가능한 변화를 포함하나, 이에 제한되지는 않는 혈액 화학을 사용하여 평가될 수 있다. 이들 양성 치료 반응 이외에도, 요법을 받는 대상체는 질환과 연관된 증상의 개선의 유익한 효과를 경험할 수 있다.
본 개시내용의 화합물은 암, 예를 들어, 결장암, 폐암, 위암, 두경부 편평 세포 암, 및 유방암의 치료에 유용한 것으로 공지되거나, 또는 사용된 바 있거나 또는 현재 사용 중인 임의의 작용제 또는 작용제의 조합물을 포함한, 암에 대한 임의의 공지된 요법과 조합으로 사용될 수 있다. 항암제는 악성종양, 예컨대 암성 성장을 치료하는데 사용된 약물을 포함한다. 약물 요법은 단독으로, 또는 다른 치료 예컨대 수술 또는 방사선 요법과 조합으로 사용될 수 있다. 관여된 기관의 성질에 따라, 약물의 여러 부류가 암 치료에 사용될 수 있다. 예를 들어, 유방암은 통상적으로 에스트로겐에 의해 자극되고, 성 호르몬을 불활성화시키는 약물로 치료될 수 있다. 유사하게, 전립선암은 남성 호르몬인 안드로겐을 불활성화시키는 약물로 치료될 수 있다.
본 개시내용의 특정 방법에 사용하기 위한 항암제는, 특히, 항체, 항대사물, 알킬화제, 토포이소머라제 억제제, 미세관 표적화제, 키나제 억제제, 단백질 합성 억제제, 면역요법제, 호르몬 요법, 글루코코르티코이드, 아로마타제 억제제, mTOR 억제제, 화학요법제, 단백질 키나제 B 억제제, 포스파티딜이노시톨 3-키나제 (PI3K) 억제제, 시클린 의존성 키나제 (CDK) 억제제, RLr9, CD289, 효소 억제제, 항-TRAIL, MEK 억제제 등을 포함한다.
조합 요법이 본 개시내용의 투여 화합물을 또 다른 치료제의 투여와 조합으로 포함할 경우에, 본 개시내용의 방법은 개별 제제 또는 단일 제약 제제를 사용하는 공-투여, 및 어떤 순서든 연속 투여를 포괄한다. 일부 측면에서, 화학식 I의 화합물, 화학식 II의 화합물, 및/또는 본원에 기재된 ADC는 다른 약물과 조합으로 투여되며, 여기서 항체 또는 항원-결합 단편, 그의 변이체 또는 유도체 및 치료제(들)는 순차적으로, 어떤 순서로도, 또는 동시에 (즉, 병행적으로 또는 동일한 시간 프레임 내에) 투여될 수 있다.
조합 요법은 "상승작용"을 제공하고 "상승작용적"임을 입증할 수 있으며, 즉 활성 성분을 함께 사용할 경우 달성되는 효과는 화합물을 개별적으로 사용하여 일어나는 효과의 합계보다 크다. 상승작용적 효과는 활성 성분들이 하기일 경우에 수득될 수 있다: (1) 공-제제화 및 투여되거나 조합으로 동시에 전달되는 단위 투여 제제; (2) 개별 제제로서 교대로 또는 동시에 전달됨; 또는 (3) 일부 다른 요법에 의함. 교대 요법으로 전달되는 경우에는, 화합물들을 예를 들어 별도의 주사기에서 상이하게 주사함으로써 순차적으로 투여 또는 전달하는 경우에, 상승작용적 효과가 수득될 수 있다. 일반적으로, 교대 요법 동안에는, 유효 투여량의 각각의 활성 성분이 순차적으로, 즉 연속적으로 투여되고, 반면에 조합 요법에서는 유효 투여량의 2종 이상의 활성 성분이 함께 투여된다.
본 개시내용의 화합물 및 ADC (치료제)는 흡입 또는 국소 경로에 의해 환자 경구, 비경구에 투여될 수 있다. 본원에 사용된 용어 비경구는, 예를 들어, 정맥내, 동맥내, 복강내, 근육내, 피하, 직장 또는 질 투여를 포함한다. 그러나, 본원의 교시에 적합한 다른 방법에서는, ADC는 치료제를 유해 세포 집단의 부위에 직접 전달함으로써 이환 조직의 치료제에의 노출을 증가시키도록 본 발명의 화합물을 선택적으로 표적화하는데 사용될 수 있다.
본원에 논의된 바와 같이, 본 개시내용의 치료제는 생체내 암의 치료를 위한 제약상 허용되는 조성물로 투여될 수 있다. 전형적으로, 본 개시내용의 화합물은 정맥내 투여를 위한 용액으로서 또는 (예컨대 염수, 5% 덱스트로스, 또는 유사한 등장성 용액에 의해) 정맥내 용액을 제조하기 위한 재구성용 동결건조된 농축물로서 제제화될 것이다. 제약 조성물은, 예를 들어, 물, 이온 교환체, 단백질, 완충제 물질, 및 염을 포함한, 제약상 허용되는 담체를 포함할 수 있다. 보존제 및 다른 첨가제가 또한 존재할 수 있다. 담체는 용매 또는 분산 매질일 수 있다. 본원에 개시된 치료 방법에 사용하기 위한 적합한 제제는 문헌 [Remington's Pharmaceutical Sciences (Mack Publishing Co.) 16th ed. (1980)]에 기재되어 있다.
임의의 경우에, 멸균 주사가능한 용액은 본 개시내용의 치료제를 요구되는 양으로 적절한 용매 중에 혼입하고, 이어서 여과 멸균하여 제조될 수 있다. 또한, 제제는 키트 형태로 포장 및 판매될 수 있다. 이러한 제조 물품은 연관 조성물이 질환 또는 장애를 앓고 있거나 또는 이에 대한 소인이 있는 대상체를 치료하는데 유용하다는 것을 나타내는 라벨 또는 포장 삽입물을 가질 수 있다.
비경구 제제는 단일 볼루스 용량, 주입 또는 부하 볼루스 용량일 수 있으며, 유지 용량이 그 뒤를 이을 수 있다. 이들 조성물은, 예를 들어, 1일 1회 또는 "필요에 따라" 특정한 고정 또는 가변 간격으로 투여될 수 있다.
조성물은 주입 시 단일 용량, 다중 용량으로서 또는 확립된 시간 주기에 걸쳐 투여될 수 있다. 투여 요법은 또한 최적의 목적하는 반응 (예를 들어, 치료적 또는 예방적 반응)을 제공하기 위해 조정될 수 있다.
예를 들어, 결장암, 폐암, 위암, 두경부 편평 세포 암, 흑색종, 췌장암, 전립선암 및 유방암을 포함한 암의 치료를 위한, 본 개시내용의 조성물의 치료 유효 용량은, 투여 수단, 표적 부위, 환자의 생리학적 상태, 환자가 인간인지 동물인지, 투여된 다른 의약, 및 투여가 예방적인지 치료적인지를 포함한 많은 다양한 인자에 따라 달라진다. 통상적으로, 환자는 인간이지만, 트랜스제닉 포유동물을 포함한 비-인간 포유동물도 또한 치료될 수 있다. 치료 투여량은 관련 기술분야의 통상의 기술자에게 공지된 상용 방법을 사용하여 안정성 및 효능을 최적화되도록 적정될 수 있다.
본 개시내용의 치료제의 투여될 양은 과도한 실험 없이 관련 기술분야의 통상의 기술자에 의해 용이하게 결정될 수 있다. 투여 방식 및 작용제의 각각의 양에 영향을 미치는 인자는 요법을 받는 개체의 질환의 중증도, 질환의 병력, 및 연령, 신장, 체중, 건강, 및 신체 상태를 포함하나, 이에 제한되지는 않는다. 유사하게, 항-HER2 결합 분자, 예를 들어, 항체, 또는 그의 단편, 변이체, 또는 유도체의 투여될 양은 투여 방식 및 대상체가 이러한 작용제의 단일 용량 또는 다중 용량을 받을지에 따라 달라질 것이다.
본 개시내용은 또한 예를 들어 유방암, 결장암, 폐암, 위암, 두경부 편평 세포 암, 흑색종, 췌장암 및 전립선암을 포함한, 한 유형의 암을 치료하기 위한 의약의 제조에서의, 개시내용의 치료제의 용도를 제공한다.
개시내용은 또한 한 유형의 암을 치료하기 위해 대상체를 치료하기 위한 의약의 제조에서의, 개시내용의 치료제의 용도를 제공한다. 특정 측면에서, 의약은 적어도 1종의 다른 요법으로 사전치료된 대상체에서 사용된다.
"사전치료된" 또는 "사전치료"는 대상체가 본 개시내용의 화합물을 포함하는 의약을 받기 전에 1종 이상의 다른 요법을 받은 (적어도 1종의 다른 항암 요법으로 치료된) 바 있는 것을 의도한다. 대상체가 선행 요법 또는 요법들에 의한 사전치료에 대한 반응자일 필요는 없다. 따라서, 의약을 받는 대상체는 선행 요법에 의한 사전치료에, 또는 사전치료가 다중 요법을 포함하는 경우에 선행 요법 중 하나 이상에, 반응한 바 있거나, 또는 반응하지 못하였을 수 있다.
본 개시내용은 또한, 단일 조성물로 함께 또는 개별 조성물로 동시에 또는 중복되는 시간에 함께 공-투여되는, 치료제 및 적어도 1종의 다른 요법의 공-투여를 제공한다.
본 개시내용은 또한 암을 치료하기 위해 대상체를 치료하기 위한 의약의 제조에서의 치료제의 용도를 제공하며, 여기서 치료제가 투여된 후 대상체는 적어도 1종의 다른 요법으로 처리된다.
실시예
본 개시내용의 측면은 본 개시내용의 특정 화합물 및 중간체의 제조 및 본 개시내용의 화합물을 사용하는 방법을 상세히 기재하는 하기 비제한적 실시예를 참조하여 추가로 정의될 수 있다. 물질 및 방법 둘 다에 대해 많은 변형이 본 개시내용의 범주에서 벗어나지 않으면서 실시될 수 있다는 것이 관련 기술분야의 통상의 기술자에게 명백할 것이다.
달리 언급되지 않는 한:
(i) 온도는 섭씨 온도 (℃)로 주어지고; 달리 언급되지 않는 한, 작업은 실온 또는 주위 온도, 즉 18-25℃ 범위에서 수행하였고;
(ii) 용액은 무수 황산나트륨 또는 황산마그네슘 상에서 건조시켰고; 유기 용매의 증발은 최대 30℃의 조 온도로 감압 (4.5 - 30 mmHg) 하에 회전 증발기를 사용하여 수행하였고;
(iii) 크로마토그래피는 실리카 겔 상의 플래쉬 크로마토그래피를 의미하고; 박층 크로마토그래피 (TLC)는 실리카 겔 플레이트 상에서 수행하였고;
(iv) 일반적으로, 반응 과정은 TLC 또는 액체 크로마토그래피/질량 분광분석법 (LC/MS)에 의해 추적하였고, 반응 시간은 단지 예시를 위해 주어졌고;
(v) 최종 생성물은 만족스러운 양성자 핵 자기 공명 (NMR) 스펙트럼 및/또는 질량 스펙트럼 데이터를 갖고;
(vi) 수율은 단지 예시를 위해 주어지고, 공들인 공정 개발에 의해 반드시 수득될 수 있는 것은 아니고; 보다 많은 물질이 요구되는 경우에 제조를 반복하였고;
(vii) 달리 언급되지 않는 한, 주어진 경우에, 핵 자기 공명 (NMR) 데이터는, d6-DMSO 중 300 또는 400 MHz에서 결정되는, 내부 표준으로서의 테트라메틸실란 (TMS)에 대한 백만분율 (ppm)로 주어지는 주요 진단 양성자에 대한 델타 (δ) 값의 형태이고;
(viii) 화학 기호는 그의 통상의 의미를 갖고;
(ix) 용매 비는 부피:부피 (v/v) 조건으로 주어지고;
(x) 화합물의 정제는 하기 방법 중 하나 이상을 사용하여 수행하였고:
a) 정규 실리카 겔 상의 플래쉬 크로마토그래피;
b) 이스코(Isco) 콤비플래쉬(Combiflash)? 분리 시스템: 레디셉(RediSep) 정상 플래쉬 칼럼, 유량, 30-40 ml/분 (이스코 엠피엘씨(ISCO MPLC))을 사용한 실리카 겔 상의 플래쉬 크로마토그래피;
c) 길슨(Gilson) 반정제용 HPLC 분리 시스템: YMC 팩 ODS-AQ 칼럼, 100x20mm, S 5μm 12 nm, 용매로서 물 (0.1% 트리플루오로아세트산) 및 아세토니트릴 (0.1% 트리플루오로아세트산), 20분;
(xi) 하기 약어가 사용되었다:
Boc t-부톡시카르보닐;
DCM 디클로로메탄;
DIAD 디이소프로필 아조디카르복실레이트;
DIC N,N'-디이소프로필카르보디이미드;
DCC N,N'-디시클로헥실카르보디이미드;
DIEA 디에틸이소프로필아민;
DMA N,N-디메틸아세트아미드;
DMF N,N-디메틸포름아미드;
EDCI 1-에틸-3-(3-디메틸아미노프로필)카르보디이미드
EtOAc 에틸 아세테이트;
Et2O 디에틸에테르;
Fmoc-OSu 9-플루오레닐메틸 N-숙신이미딜 카르보네이트
MeOH 메탄올;
Na2CO3 탄산나트륨;
NaHCO3 탄산수소나트륨;
RT 실온;
TEA 트리에틸아민
TFA 트리플루오로아세트산;
THF 테트라히드로푸란.
HATU 1-[비스(디메틸아미노)메틸렌]-1H-1,2,3-트리아졸로[4,5-b]피리디늄 3-옥시드 헥사플루오로포스페이트
DAST 디에틸아미노황 트리플루오라이드
ACN 아세토니트릴
Boc2O 디-tert-부틸 디카르보네이트
멜드럼 산 2,2-디메틸-1,3-디옥산-4,6-디온
화합물 1-5의 합성을 위한 반응식
Figure pct00009
중간체 1
Figure pct00010
MeOH (40 mL) 및 물 (40.0 mL) 중 (2R,4R)-4-메틸피페리딘-2-카르복실산 (2 g, 13.97 mmol)의 용액에 파라포름알데히드 (2.52 g, 27.94 mmol) 및 Pd/C (10%) (0.8 g, 7.52 mmol)를 첨가하였다. 반응 혼합물을 실온에서 수소 분위기 하에 밤새 교반하였다. TLC로부터, 반응은 완결되지 않았다. 추가로 1 당량의 파라포름알데히드 (2.52 g, 27.94 mmol)를 첨가하고, 반응 혼합물을 추가로 24시간 동안 교반하였다. TLC는 반응이 완결되었음을 나타내었고, 반응 혼합물을 여과하고, MeOH (2 x 30 mL)로 촉매를 세척하였다. 여과물을 진공 하에 농축시켜 조 생성물을 백색 고체로서 수득하였으며, 이를 에테르 (3 x 30 mL)로 세척하고, 고진공 하에 밤새 건조시켜 (2R,4R)-1,4-디메틸피페리딘-2-카르복실산 (1) (1.870 g, 85%)을 백색 고체로서 수득하였다.
LC-MS: 158 (M+1); 1H NMR (400 MHz, D2O) δ ppm 0.97 (d, J=5.52 Hz, 3 H), 1.54 (br. s, 1 H), 1.71 - 1.87 (m, 3 H), 1.91 - 2.07 (m, 1 H), 2.84 (s, 3 H), 3.13 (td, J=8.41, 3.76 Hz, 1 H), 3.35 (m, 1 H), 3.65 (m, 1 H).
중간체 2
Figure pct00011
Boc2O (243.0 g, 1.1 mol)를 아세톤 (1 L) 및 물 (1 L) 중 (R)-3-아미노-4-메틸 펜탄산 (상업적으로 입수가능) (133.0 g, 1.0 mol) 및 Na2CO3 (212 g, 2.0 mol)의 현탁액에 실온에서 교반하면서 적가하였다. 반응 혼합물을 밤새 교반하고, 유기 용매를 감압 하에 제거하였다. 잔류물을 물 (1 L)로 희석하고, EtOAc (500 mL x3)로 세척하였다. 수성 상을 2N HCl 용액을 사용하여 pH=3으로 산성화시키고, 생성된 혼합물을 EtOAc (800 mL x3)로 추출하였다. 합한 추출물을 염수 (800 mL x1)로 세척하고, 건조 (Na2SO4)시키고, 농축시켜 화합물 (2) (224.0 g, 97% 수율)를 오일로서 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
중간체 3
Figure pct00012
트리에틸아민 (67 g, 0.61 mol)을 CH2Cl2 (1.4 L) 중 중간체 2 (140.0 g, 0.61 mol) 및 N,O-디메틸히드록실아민 히드로클로라이드 (74.1 g, 0.76 mol)의 현탁액에 0℃에서 교반하면서 첨가하였다. 현탁액을 0.5시간 동안 교반하고, EDCI (74 g, 0.61 mol)를 0℃에서 조금씩 첨가하였다. 반응 혼합물을 0℃에서 2시간 동안 교반하고, 물 (800 mL)을 첨가하였다. 유기 상을 분리하고, 5% KHSO4 용액 (800 mLx3), 포화 NaHCO3 용액 (800 mLx3) 및 염수 (800 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 잔류물을 실리카 겔 상에서 플래쉬 칼럼 크로마토그래피 (EtOAc/헥산=1:5)에 의해 정제하여 화합물 (3) (141.0 g, 84% 수율)을 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 5.26 (m, 1H), 3.75 (m, 1H), 3.70 (s, 3H), 3.15 (s, 3H), 2.60~2.80 (m, 2H), 1.85 (m, 1H), 1.41 (s, 9H), 0.90 (d, J = 6.6 Hz, 3H), 0.88 (d, J = 6.6 Hz, 3H).
중간체 4
Figure pct00013
아이오도에탄 (250.0 g, 1.6 mol)을 DMF (1.1 L) 중 중간체 3 (55.0 g, 0.2 mol)의 용액에 0℃에서 교반하면서 첨가하였다. 이어서, NaH (60% 현탁액, 24.0 g, 0.60 mol)를 0℃에서 조금씩 첨가하고, 반응 혼합물을 실온으로 가온되도록 하고, 12시간 동안 교반하였다. 반응물을 물 (2 L)로 조심스럽게 켄칭하고, EtOAc (2 L)를 첨가하였다. 유기 상을 분리하고, 5% KHSO4 용액 (800 mLx3), 포화 NaHCO3 용액 (800 mLx3) 및 염수 (800 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 잔류물을 실리카 겔 상에서 플래쉬 칼럼 크로마토그래피 (EtOAc/헥산=1:10)에 의해 정제하여 tert-부틸 (R)-에틸(1-(메톡시(메틸)아미노)-4-메틸-1-옥소펜탄-3-일)카르바메이트 (35.1 g, 58% 수율)를 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 3.70 (s, 3H), 3.65 (m, 1H), 3.10~3.30 (m, 5H), 2.50~2.95 (m, 2H), 1.90~2.20 (m, 1H), 1.40~1.55 (m, 9H), 1.10 (t, J = 7.2 Hz, 3H), 0.90 (d, J = 6.6 Hz, 3H), 0.88 (d, J = 6.6 Hz, 3H).
중간체 5
Figure pct00014
n-BuLi의 용액 (106 ml, 헥산 중 2.5N, 0.17 mol)을 건조 THF (500 mL) 중 중간체 50 (74 g, 0.24 mol)의 용액에 -78℃에서 N2 하에 교반하면서 1시간에 걸쳐 적가하였다. 현탁액을 추가로 30분 동안 교반한 다음, 건조 THF (300 mL) 중 중간체 4 (51.0 g, 0.17 mol)의 용액을 -78℃에서 30분에 걸쳐 적가하였다. 반응 혼합물을 -78℃에서 1시간 동안 교반한 다음, 실온으로 가온되도록 하고, 12시간 동안 교반하였다. 반응물을 20% 수성 염화암모늄 용액 (1 L)으로 켄칭하고, 유기 용매를 감압 하에 제거하였다. 생성된 혼합물을 EtOAc (800 mLx3)로 추출하였다. 합한 유기 상을 5% KHSO4 용액 (800 mLx3), 포화 NaHCO3 용액 (800 mLx3) 및 염수 (800 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 실리카 겔 상에서 플래쉬 칼럼 크로마토그래피 (EtOAc/헥산=1:10)에 의해 정제하여 tert-부틸 (R)-(1-(4-(((tert-부틸디메틸실릴)옥시)메틸)티아졸-2-일)-4-메틸-1-옥소펜탄-3-일)(에틸)카르바메이트 (58.1 g, 73% 수율)를 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.53 (m, 1H), 4.90 (s, 2H), 4.04 (m, 1H), 3.35 (m, 2H), 3.15 (m, 2H), 2.00 (m, 1H), 1.40 (s, 9H), 0.80~1.20 (m, 18H), 0.14 (s, 6H).
중간체 6
Figure pct00015
LiBH4 (4.8 g, 0.22 mol)를 메탄올 (500 mL) 중 중간체 5 (47.1 g, 0.1 mol)의 용액에 실온에서 교반하면서 0.5시간의 기간에 걸쳐 조금씩 첨가하였다. 현탁액을 2시간 동안 교반하고, 용매를 감압 하에 제거하였다. 잔류물을 EtOAc (800 mL) 중에 용해시키고, 생성된 용액을 포화 NaHCO3 용액 (500 mLx3) 및 염수 (500 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 플래쉬 칼럼 크로마토그래피 (EtOAc/헥산=1:6)에 의해 정제하여 tert-부틸 ((1R,3R)-1-(4-(((tert-부틸디메틸실릴)옥시)메틸)티아졸-2-일)-1-히드록시-4-메틸펜탄-3-일)(에틸)카르바메이트 (13.5 g, 28% 수율) 및 그의 이성질체 (6') (21.0 g, 45% 수율)를 수득하였다.
1H NMR (300 MHz, CDCl3) δ ppm -0.06 - 0.05 (m, 6 H) 0.76 - 0.89 (m, 15 H) 1.12 (t, J=6.97 Hz, 3 H) 1.39 (s, 9 H) 1.55 - 2.05 (m, 3 H) 2.86 - 3.21 (m, 2 H) 3.76 - 3.96 (m, 1 H) 4.73 (d, J=1.13 Hz, 4 H) 7.01 (s, 1 H).
중간체 7
Figure pct00016
아세틸 클로라이드 (45.2 g, 0.58 mol)를 피리딘 (500 mL) 중 중간체 6 (34.0 g, 72 mmol)의 용액에 0℃에서 교반하면서 10분에 걸쳐 적가하였다. 반응 혼합물을 실온으로 가온되도록 하고, 12시간 동안 교반하였다. 반응물을 물 (200 mL)로 켄칭하고, 용매를 감압 하에 제거하였다. 잔류물을 CH2Cl2 (800 mL)로 처리하고, 생성된 혼합물을 5% KHSO4 용액 (800 mLx3), 포화 NaHCO3 용액 (800 mLx3) 및 염수 (800 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 실리카 겔 상에서 플래쉬 칼럼 크로마토그래피 (EtOAc/ 헥산=1:10)에 의해 정제하여 (1R,3R)-3-((tert-부톡시카르보닐)(에틸)아미노)-1-(4-(((tert-부틸디메틸실릴)옥시)메틸)티아졸-2-일)-4-메틸펜틸 아세테이트 (25.7 g, 69% 수율)를 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.15 (m, 1H), 5.95 (m, 1H), 4.84 (s, 2H), 4.04 (m, 1H), 3.10 (m, 2H), 2.35 (m, 1H), 2.15 (s, 3H), 2.00 (m, 1H), 1.70 (m, 1H), 1.45 (s, 9H), 1.25 (t, J = 7.2 Hz, 3H), 0.80~1.10 (m, 15H), 0.08 (s, 6H).
중간체 8
Figure pct00017
THF (200 mL) 중 테트라부틸암모늄 플루오라이드 (65.3 g, 0.25 mol)의 용액을 THF (300 mL) 중 중간체 7 (25.7 g, 50 mmol)의 용액에 0℃에서 교반하면서 적가하였다. 반응 혼합물을 실온으로 가온되도록 하고, 4시간 동안 교반하였다. 물 (800 mL)을 첨가하고, 유기 용매를 감압 하에 제거하였다. 잔류물을 CH2Cl2 (800 mL)로 처리하고, 생성된 혼합물을 5% KHSO4 용액 (800 mLx3), 포화 NaHCO3 용액 (800 mLx3) 및 염수 (800 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 실리카 겔 상에서 플래쉬 칼럼 크로마토그래피 (EtOAc/ 헥산=1:4)에 의해 정제하여 (1R,3R)-3-((tert-부톡시카르보닐)(에틸)아미노)-1-(4-(히드록시메틸)티아졸-2-일)-4-메틸펜틸 아세테이트 (19.5 g, 98% 수율)를 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 8.26 (m, 1H), 5.95 (m, 1H), 4.83 (m, 2H), 4.10 (m, 1H), 3.17 (m, 2H), 2.40 (m, 1H), 2.20 (s, 3H), 2.18 (m, 1H), 1.75 (m, 1H), 1.56 (s, 9H), 1.10~1.30 (m, 3H), 0.80~1.05 (m, 6H).
중간체 9
Figure pct00018
데스-마르틴 시약 (32.7 g, 75 mmol)을 디클로로메탄 (300 mL) 중 중간체 8 (20.0 g, 50 mmol)의 용액에 첨가하고, 반응 혼합물을 실온에서 12시간 동안 교반하였다. 혼합물을 수산화나트륨 용액 (1N, 300 mLx3), 티오황산나트륨 용액 (1N, 300 mLx3), 포화 NaHCO3 (300 mLx3) 용액 및 염수 (300 mLx1)로 각각 세척하였다. 유기 층을 건조 (Na2SO4)시키고, 농축 건조시켜 상응하는 알데히드를 수득하였다. 이 조 알데히드를 tert-부틸 알콜 (500 mL) 중에 용해시키고, 물 (300 mL) 중 아염소산나트륨 (80%, 36.4 g, 320 mmol) 및 인산이수소나트륨 1수화물 (105 g, 0.77 mol)의 용액을 실온에서 1시간에 걸쳐 적가하였다. 반응 혼합물을 3시간 동안 교반하고, 염산 용액 (0.1N, 500 mL)으로 희석하였다. 생성된 혼합물을 EtOAc (500 mLx1)로 추출하고, 합한 유기 층을 5% KHSO4 용액 (500 mLx3) 및 염수 (500 mLx1)로 세척하고, Na2SO4 상에서 건조시키고, 농축 건조시켰다. 잔류물을 실리카 겔 상에서 플래쉬 칼럼 크로마토그래피 (CH2Cl2/MeOH=100:5)에 의해 정제하여 2-((1R,3R)-1-아세톡시-3-((tert-부톡시카르보닐)(에틸)아미노)-4-메틸펜틸)티아졸-4-카르복실산 (15.4 g, 58% 수율)을 수득하였다.
1H NMR (300 MHz, CDCl3): δ 9.90 (br s, 1H), 8.27 (s, 1H), 5.96 (m, 1H), 4.07 (m, 1H), 3.15 (m, 1H), 2.35 (m, 1H), 2.20 (s, 3H), 2.18 (m, 1H), 1.75 (m, 1H), 1.45 (s, 9H), 1.20 (t, J = 7.2 Hz, 3H), 0.98 (d, J = 6.6 Hz, 3H), 0.88 (d, J = 6.6 Hz, 3H).
중간체 10
Figure pct00019
DCM (60 mL) 중 중간체 9 (6.5g, 15.68 mmol)의 용액에 TFA (30 mL)를 0℃에서 적가하였다. 혼합물을 0℃에서 1시간 동안 교반하였다. 용매를 진공 하에 증발시켜 조 2-((1R,3R)-1-아세톡시-3-(에틸아미노)-4-메틸펜틸)티아졸-4-카르복실산을 수득하였다. 조 생성물을 후속 단계 반응에 추가 정제 없이 사용하였다 (7.2 g). LC-MS: 315 (M + 1),
중간체 11
Figure pct00020
아세톤 (300 mL) 및 물 (150 mL)의 혼합물 중 중간체 10 (5g, 11.67 mmol) 및 중탄산나트륨 (9.80 g, 116.71 mmol)의 용액에 (9H-플루오렌-9-일)메틸 (2,5-디옥소피롤리딘-1-일) 카르보네이트 (3.94 g, 11.67 mmol)를 첨가하였다. 혼합물을 실온에서 밤새 교반하였다. LCMS는 반응이 완결되었음을 나타내었다. 혼합물을 염산을 사용하여 (pH 2)로 산성화시키고, 아세톤을 진공 하에 증발시켰다. 생성물을 DCM (3 X 300 mL)으로 추출하였다. 합한 유기 추출물을 0.1% HCl 용액 (200 mL), 염수 (200 mL)로 세척하고, Na2SO4 상에서 건조시키고, 진공 하에 증발시켰다. 잔류물을 플래쉬 크로마토그래피 (실리카 겔, MeOH/DCM, MeOH 0%에서 5%)에 의해 정제하여 2-((1R,3R)-3-((((9H-플루오렌-9-일)메톡시)카르보닐)(에틸)아미노)-1-아세톡시-4-메틸펜틸)티아졸-4-카르복실산 (3.53 g, 54.6%)을 백색 고체로서 수득하였다.
LC-MS: 537.2 (M+1); 1H NMR (400 MHz, 클로로포름-d) δ ppm 0.84 (d, J=6.78 Hz, 3 H), 0.92 - 1.05 (m, 5 H), 1.14 (d, J=3.01 Hz, 1 H), 1.73 (dt, J=10.23, 6.43 Hz, 1 H), 1.92 - 2.05 (m, 1 H), 2.12 - 2.27 (m, 4 H), 2.28 - 2.44 (m, 1 H), 2.90 - 3.33 (m, 2 H), 3.98 (t, J=9.29 Hz, 1 H), 4.12 - 4.32 (m, 1 H), 4.47 - 4.82 (m, 2 H), 5.95 (dd, J=10.92, 2.89 Hz, 1 H), 7.29 - 7.45 (m, 4 H), 7.55 - 7.69 (m, 2 H), 7.72 - 7.81 (m, 2 H), 8.22 - 8.29 (m, 1 H).
중간체 12
Figure pct00021
DMAP (106 g, 0.86 mol)를 디클로로메탄 (1.5 L) 중 Boc-L-4-니트로-페닐알라닌 (1800 g, 0.58 mol) 및 멜드럼 산 (92 g, 0.64 mol)의 용액에 첨가하였다. 생성된 용액을 -5℃에서 N2 분위기 하에 냉각시키고, 이어서 디클로로메탄 (1 L) 중 DCC (240 g, 1.16 mol)를 1시간에 걸쳐 첨가하였다. 혼합물을 0~5℃에서 밤새 교반하였다. 이어서, 침전된 N, N'-디시클로헥실우레아를 여과에 의해 제거하고, 여과물을 5% 수성 HCl (1 L x 3), 및 염수 (1 L x 1)로 세척하고, MgSO4 상에서 건조시켰다. 여과에 의해 MgSO4를 제거한 후, 유기 상을 농축 건조시켰다. 잔류물을 EtOAc/헥산 (1:1, 500 mL)으로 연화처리하고, 건조시켜 tert-부틸 (S)-(1-(2,2-디메틸-4,6-디옥소-1,3-디옥산-5-일)-3-(4-니트로페닐)-1-옥소프로판-2-일)카르바메이트 (130.0 g, 51% 수율)를 황색 고체로서 수득하였다.
중간체 13
Figure pct00022
AcOH (400 mL)를 디클로로메탄 (1.5 L) 중 중간체 12 (130.0 g, 0.298 mol)의 용액에 -5℃에서 N2 하에 첨가하였다. 고체 NaBH4 (22.7 g, 0.597 mol)를 2시간에 걸쳐 조금씩 첨가하였다 (기체 발생 및 발열). -5℃에서 추가로 3시간 동안 교반한 후, TLC는 반응이 완결되었음을 나타내었다. 혼합물을 염수 (1 L)로 켄칭하였다. 유기 층을 분리하고, 물 (1 Lx2), 수성 포화 NaHCO3 (1 Lx3) 및 염수 (1 Lx3)로 순차적으로 세척하고, MgSO4 상에서 건조시켰다. 여과물을 농축 건조시켜 tert-부틸 (R)-(1-(2,2-디메틸-4,6-디옥소-1,3-디옥산-5-일)-3-(4-니트로페닐)프로판-2-일)카르바메이트 (70.3 g, 55% 수율)를 황색 고체로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 8.18 (d, J=8.7 Hz, 2H), 7.41 (d, J=8.7 Hz, 2H), 4.58 (m, 1H), 4.29 (m, 1H), 3.85 (m,1H), 2.97 (d, J=6.6 Hz, 2H), 2.27 (m ,2H), 1.80 (s, 3H), 1.76 (s, 3H), 1.35 (s, 9H).
중간체 14
Figure pct00023
K2CO3 (35 g, 0.25 mol) 및 MeI (36 g, 0.25 mol)를 아세톤 (400 mL) 및 DMF (400 mL) 중 중간체 13 (70.3 g, 0.167 mol)의 용액에 첨가하였다. 혼합물을 실온에서 밤새 교반하였다. TLC는 출발 물질이 소모되었음을 나타내었다. 물 (2 L)을 첨가하고, 혼합물을 추가 1시간 동안 교반하였다. 침전된 고체를 여과에 의해 수집하고, 물로 세척하고, 건조시켜 tert-부틸 (S)-(1-(4-니트로페닐)-3-(2,2,5-트리메틸-4,6-디옥소-1,3-디옥산-5-일)프로판-2-일)카르바메이트 (34.5 g, 47% 수율)를 연황색 고체로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 8.17 (d, J=8.7 Hz, 2H), 7.34 (d, J=8.7 Hz, 2H), 4.22 (m, 1H), 3.85 (m,1H), 2.85 (m, 2H), 2.22 (m ,2H), 1.73 (s, 3H), 1.73 (s, 3H), 1.52 (s, 3H), 1.31 (s, 9H).
중간체 15
Figure pct00024
중간체 14 (34.5 g, 79.1 mmol)를 톨루엔 (500 mL) 중에 용해시켰다. 용액을 환류 하에 40시간 동안 가열하였다. TLC는 반응이 완결되었음을 나타내었다. 용매를 제거하여 tert-부틸 (5R)-3-메틸-5-(4-니트로벤질)-2-옥소피롤리딘-1-카르복실레이트 (30g)를 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
중간체 16
Figure pct00025
K2CO3 (22 g, 0.16 mol)을 MeOH (300 mL) 중 중간체 15 (30 g, 79 mmol)의 용액에 첨가하였다. 혼합물을 실온에서 3시간 동안 교반하였다. TLC는 완전한 전환을 나타내었다. 용매를 제거하고, 잔류물을 디클로로메탄 (500 mL) 중에 용해시키고, 염수 (500 mLx3)로 세척하고, MgSO4 상에서 건조시켰다. 여과에 의해 MgSO4를 제거한 후, 유기 상을 농축 건조시켰다. 잔류물을 실리카 겔 크로마토그래피 (EtOAc/헥산=1:10)에 의해 추가로 정제하고 메틸 (4R)-4-((tert-부톡시카르보닐)아미노)-2-메틸-5-(4-니트로페닐)펜타노에이트 (23.5 g, 81% 수율, 두 단계에 대해)를 1:1 부분입체이성질체 혼합물로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 8.13 (d, J=8.7 Hz, 2H), 7.34 (d, J=8.7 Hz, 2H), 4.43 (m, 1H), 3.85 (m,1H), 3.65 (s ,3H), 2.85 (m, 2H), 2.65 (m ,1H), 1.85 (m, 1H), 1.50 (m, 1H), 1.30 (s, 9H), 1.15 (t, J=6.6 Hz, 3H).
중간체 17
Figure pct00026
화합물 (16) 50 g을 SFC (초임계 유체 크로마토그래피)를 사용하여 키랄팩(Chiralpak) ID 21x250 mm, 5 μ 칼럼 상에서 이동상 A 90% 이산화탄소 및 이동상 B 이소프로판올 10%를 60 ml/분 유량으로 사용하여 키랄 크로마토그래피로 처리하였다. 분리를 40℃에서 실행하고, 270 nM에서 검출하였다. 기준선 분리를 달성하고, 2종의 분획을 단리시켰다. 피크 B는 목적 메틸 (2S,4R)-4-((tert-부톡시카르보닐)아미노)-2-메틸-5-(4-니트로페닐)펜타노에이트였고, 고체 27.4 g (55%)으로서 수득하였다. >99:1 부분입체이성질체 과잉률, 키랄팩 IA 칼럼 4.6×250 mm, 5μ, 헥산 중 10% 1:1 메탄올:이소프로판올, 0.1% 디에틸아민 개질제 함유.
LC/MS (2분, 산_CV10.olp 방법 367 (M + 1), 1.16분. 1H NMR (400 MHz, 메탄올-d4) δ ppm 8.16 (d, J=8.53 Hz, 2 H) 7.46 (d, J=8.53 Hz, 2 H) 3.79 - 3.93 (m, 1 H) 3.68 (s, 3 H) 2.90 - 2.99 (m, 1H) 2.71 - 2.81 (m, 1 H) 2.47 - 2.59 (m, 1 H) 1.81 - 1.95 (m, 1 H) 1.55 - 1.66 (m, 1 H) 1.32 (s, 9 H) 1.21 - 1.25 (m, 2 H) 1.16 (d, J=7.03 Hz, 3 H)
중간체 18
Figure pct00027
6N HCl 수용액 (8.0 mL, 263.30 mmol) 중 중간체 17의 용액을 마이크로웨이브 중에서 130℃에서 30분 동안 가열하였다. 반응 혼합물을 동결건조시켜 (2S,4R)-4-아미노-2-메틸-5-(4-니트로페닐)펜탄산을 고체로서 수득하였다. 생성물을 후속 단계 반응에 추가 정제 없이 사용하였다 (3.2 g).
LC-MS: 253 (M + 1); 1H NMR (400 MHz, D2O) δ ppm 1.12 (d, J=7.28 Hz, 3 H), 1.62 - 1.76 (m, 1 H), 1.90 - 2.02 (m, 1 H), 2.56 - 2.68 (m, 1 H), 3.02 - 3.11 (m, 2 H), 3.58 - 3.69 (m, 1 H), 7.47 (d, J=8.53 Hz, 2 H), 8.18 (d, J=8.78 Hz, 2 H).
중간체 19
Figure pct00028
아세톤 (30 mL) 및 물 (15 mL)의 혼합물 중 중간체 18 (0.43 g, 1.49 mmol) 및 NaHCO3 (1.251 g, 14.89 mmol)의 용액에 (9H-플루오렌-9-일)메틸 2,5-디옥소피롤리딘-1-일 카르보네이트 (0.502 g, 1.49 mmol)를 첨가하였다. 혼합물을 실온에서 밤새 교반하였다. LC/MS는 반응이 완결되었음을 나타내었다. 혼합물을 염산을 사용하여 pH 2로 산성화시키고, 아세톤을 진공 하에 증발시켰다. 생성물을 DCM (3 x 60 mL)으로 추출하였다. 합한 유기 추출물을 1N HCl 용액 (40 mL), 염수 (40 mL)로 세척하고, Na2SO4 상에서 건조시키고, 진공 하에 증발시켰다. 잔류물을 실리카 겔 플래시 크로마토그래피 (DCM 중 EtOAc 0%에서 100%)에 의해 정제하여 (2S,4R)-4-(((9H-플루오렌-9-일)메톡시)카르보닐아미노)-2-메틸-5-(4-니트로페닐)펜탄산 (0.630 g, 89%)을 백색 고체로서 수득하였다.
LC-MS: 475.5 (M+H); 1H NMR (400 MHz, 클로로포름-d) δ ppm 0.81 - 1.06 (m, 1 H), 1.08 - 1.28 (m, 2 H), 1.33 - 1.75 (m, 1 H), 1.77 - 2.11 (m, 1 H), 2.36 - 2.69 (m, 2 H), 2.76 - 3.18 (m, 1 H), 3.43 - 4.08 (m, 1 H), 4.09 - 4.19 (m, 1 H), 4.21 - 4.53 (m, 2 H), 4.54 - 4.80 (m, 1 H), 7.18 - 7.58 (m, 8 H), 7.66 - 7.82 (m, 2 H), 7.95 - 8.17 (m, 2 H), 8.67 (br. s., 1 H).
중간체 20
Figure pct00029
DIEA (0.419 mL, 2.40 mmol)를 DCM (4.5 mL) 중 중간체 19 (0.380 g, 0.80 mmol)의 용액에 첨가하고, 혼합물을 실온에서 5분 동안 교반한 다음, 2-클로로트리틸 클로라이드 수지 (0.4 mmol/g 로딩, 0.5 g, 0.80 mmol)를 혼합물에 첨가하였다. 혼합물을 실온에서 밤새 진탕시키고, 생성된 수지를 DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x 6 mL)으로 세척한 다음, 실온에서 30분 동안 DIEA (0.419 mL, 2.40 mmol) 및 MeOH/DCM (1:1, 5 mL)로 처리하였다. 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x 6 mL)으로 세척하고, 고진공 하에 밤새 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였다. 생성된 수지를 후속 단계 반응에 사용하였다. LC/MS: 475 (M + 1).
중간체 21
Figure pct00030
수지 중간체 20 (0.5 g, 0.80 mmol)에 DMF 중 20% 피페리딘 (5 mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC/MS: 253 (M + H).
중간체 22
Figure pct00031
중간체 21 수지 (0.5 g, 1.88 mmol)에 DMF (5 mL) 중 중간체 11 (1.108 g, 2.07 mmol), HATU (1.428 g, 3.76 mmol), 2,4,6-트리메틸피리딘 (0.500 mL, 3.76 mmol), 및 DIEA (0.656 mL, 3.76 mmol)의 용액을 실온에서 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계에 사용하였다. LC/MS: 771 (M + H).
중간체 23
Figure pct00032
중간체 22 수지 (0.5 g, 0.80 mmol)에 DMF 중 20% 피페리딘 (5 mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC-MS: 549 (M + 1).
중간체 24
Figure pct00033
DCM (120 mL) 중 (2S,3S)-2-(((9H-플루오렌-9-일)메톡시)카르보닐아미노)-3-메틸펜탄산 (Fmoc-이소류신) (7 g, 19.81 mmol) 및 피리딘 (1.602 mL, 19.81 mmol)의 용액에 DCM (20 mL) 중 DAST (3.11 mL, 23.77 mmol)의 용액을 캐뉼라를 통해 10분에 걸쳐 첨가하였다. 반응 혼합물을 실온에서 1시간 동안 교반하고, DCM (80 mL)으로 희석하고, 빙냉수 (2 x 200 mL)로 세척하고, 유기 층을 MgSO4 상에서 건조시키고, 여과하고, 진공 하에 증발시켜 (9H-플루오렌-9-일)메틸 (2S,3S)-1-플루오로-3-메틸-1-옥소펜탄-2-일카르바메이트 (6.65 g, 94%)를 백색 고체로서 수득하였다. 에스테르화 시험을 무수 MeOH (0.3 mL) 및 DIEA (0.030 mL) 중에 Fmoc-Ile-F (5 mg)를 용해시키고, 실온에서 15분 동안 반응하도록 함으로써 정량적 산 플루오라이드 형성을 보장하도록 실행하였다. 이어서, 혼합물을 진공 하에 증발시키고, LCMS에 의해 분석하고, 1% 미만의 Fmoc-Ile-OH 존재가 나타났다.
1H NMR (400 MHz, CDCl3) δ ppm 0.83 - 1.12 (m, 6 H) 1.18 - 1.37 (m, 1 H) 1.42 - 1.59 (m, 1 H) 2.01 (br. s., 1 H) 4.26 (t, J=6.78 Hz, 1 H) 4.44 - 4.63 (m, 3 H) 5.20 (d, J=8.53 Hz, 1 H) 7.31 - 7.39 (m, 2 H) 7.40 - 7.47 (m, 2 H) 7.61 (d, J=7.28 Hz, 2 H) 7.80 (d, J=7.53 Hz, 2 H)
중간체 25
Figure pct00034
중간체 23 수지 (0.5 g, 0.80 mmol)에 DCM (5 mL) 중 중간체 24 (0.569 g, 1.60 mmol), DMAP (4.89 mg, 0.04 mmol), 및 DIEA (0.419 mL, 2.40 mmol)의 용액을 실온에서 첨가하였다. 혼합물을 실온에서 밤새 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), DCM (3 x 6 mL)으로 세척하고, 고진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였다. LC/MS는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC-MS: 884 (M + H).
중간체 26
Figure pct00035
중간체 25 수지 (0.5 g, 0.80 mmol)에 DMF 중 20% 피페리딘 (5 mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC/MS: 662 (M + 1).
중간체 27
Figure pct00036
수지 중간체 26 (0.5 g, 0.80 mmol)에 DMF (5 mL) 중 중간체 1 (0.252 g, 1.60 mmol), HATU (0.608 g, 1.60 mmol), 2,4,6-트리메틸피리딘 (0.320 mL, 2.40 mmol), 및 DIEA (0.419 mL, 2.40 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC-MS: 801 (M + 1).
중간체 28
Figure pct00037
수지 중간체 27에 DMF (5 mL) 중 염화주석(II) 탈수화물 (1.805 g, 8.00 mmol), 및 아세트산나트륨 (0.197 g, 2.40 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 4시간 동안 진탕시켰다. 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계에 사용하였다. LC-MS: 771 (M + H).
화합물 1
Figure pct00038
수지 중간체 28 (0.1 g, 0.16 mmol)에 실온에서 DCM (1 mL), 물 (0.200 mL) 및 TFA (1 mL)를 첨가하였다. 혼합물을 실온에서 20분 동안 진탕시킨 다음, 여과하고, 수지를 물/TFA (1:1, 3 x 2 mL)로 세척하고, 여과물을 진공 하에 증발시켰다. 잔류물을 역상 HPLC (ACN/H2O, 0.1% TFA, ACN 5%에서 50%, 14분 내)에 의해 정제하였다. 순수한 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((2R,4R)-1,4-디메틸피페리딘-2-카르복스아미도)-N-에틸-3-메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-5-(4-아미노페닐)-2-메틸펜탄산 (0.050 g, 35.3%)을 고체로서 수득하였다.
LC/MS: 771.8 [M+1]; 1H NMR (400 MHz, 메탄올-d4) δ ppm 7.8 (s, 1 H), 7.30 (d, J=8.53 Hz, 2 H), 7.08 - 7.18 (m, 2 H), 5.66 (d, J=13.05 Hz, 1 H), 4.57 (d, J=8.53 Hz, 1 H), 4.29 (ddd, J=9.98, 6.71, 2.89 Hz, 1 H), 3.90 (br. s., 1 H), 3.73 (d, J=6.27 Hz, 1 H), 3.24 - 3.33 (m, 1 H), 2.84 (d, J=7.28 Hz, 2 H), 2.68 (br. s., 3 H), 2.40 - 2.53 (m, 2 H), 2.20 - 2.36 (m, 1 H), 2.03 - 2.12 (m, 4 H), 1.75 - 2.00 (m, 7 H), 1.64 (ddd, J=14.12, 10.23, 4.02 Hz, 2 H), 1.42 - 1.57 (m, 2 H), 1.30 (t, J=7.15 Hz, 3 H), 1.01 - 1.17 (m, 7 H), 0.88 - 0.98 (m, 7 H), 0.84 (t, J=7.40 Hz, 3 H), 0.77 d, J=6.53 Hz, 3 H).
중간체 29
Figure pct00039
MeOH (4.0 mL) 및 물 (4.0 mL) 중 2-에틸피페리딘-2-카르복실산 (320mg, 1.65 mmol)의 용액에 파라포름알데히드 (372 mg, 4.13 mmol) 및 Pd/C (10%) (88 mg, 0.83 mmol)를 첨가하였다. 1 당량의 탄산나트륨 (175 mg, 1.65 mmol)을 첨가하고, 반응 혼합물을 실온에서 수소 분위기 하에 밤새 교반하였다. LC/MS는 출발 물질의 완전한 전환을 나타내었다. 반응 혼합물을 규조토를 통해 여과하였다. 필터 케이크를 MeOH (2 x 30 mL)로 세척하였다. 여과물을 진공 하에 농축시켜 조 생성물을 수득하였다. 조 고체를 메탄올 (50 mL) 중에 현탁시키고, 생성된 현탁액을 여과하고, 여과물을 농축시켜 2-에틸-1-메틸피페리딘-2-카르복실산 (202 mg, 71.4%)을 고체로서 수득하였다.
LC/MS: 172 (M + 1); 1H NMR (400 MHz, CD3OD) δ ppm 3.58 (td, J=12.80, 3.51 Hz, 1 H), 3.09 - 3.20 (m, 1 H), 2.81 (s, 3 H), 2.17 - 2.29 (m, 1 H), 1.54 - 1.84 (m, 7 H), 0.98 (t, J=7.40 Hz, 3 H).
중간체 30
Figure pct00040
수지 중간체 26 (0.2 g, 0.32 mmol)에 DMF (5 mL) 중 중간체 29 (0.082 g, 0.48 mmol), HATU (0.243 g, 0.64 mmol), 2, 4, 6-트리메틸피리딘 (0.127 mL, 0.96 mmol) 및 DIPEA (0.168 mL, 0.96 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 4 mL), MeOH (3 x 4 mL), 및 DCM (3 x 4 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC/MS: 815 (M + H).
중간체 31
Figure pct00041
수지 중간체 30에 DMF (5 mL) 중 염화주석(II) 2수화물 (0.544 g, 2.41 mmol) 및 아세트산나트륨 (0.059 g, 0.72 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 4시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC-MS: 785 (M + H).
화합물 2
Figure pct00042
수지 중간체 31에 DCM (2 mL) 및 TFA (0.493 mL, 6.40 mmol)를 실온에서 첨가하였다. 혼합물을 실온에서 20분 동안 진탕시켰다. 수지를 DCM/TFA (1:1, 3 x 2 mL)로 세척하고, 여과물을 진공 하에 증발시켰다. 잔류물을 역상 HPLC (ACN/H2O 0.1% 포름산, ACN 10%에서 50%, 14분 내)에 의해 정제하였다. 순수한 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-N-에틸-2-(2-에틸-1-메틸피페리딘-2-카르복스아미도)-3-메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-5-(4-아미노페닐)-2-메틸펜탄산 (0.057 g, 20.31%)을 백색 고체로서 수득하였다.
LC-MS: 785 (M + H).; 1H NMR (400 MHz, CD3OD) δ ppm 7.98 (s, 1 H), 6.87 (m, J=8.28 Hz, 2 H), 6.54 (m, J=8.03 Hz, 2 H), 5.63 - 5.73 (m, 1 H), 4.60 - 4.71 (m, 3H), 4.17 (br. s., 2 H), 3.76 (dd, J=14.93, 7.15 Hz, 1 H), 2.69 (d, J=6.53 Hz, 2 H), 2.42 (br. s., 1 H), 2.36 (s, 3 H), 2.29 (br. s., 2 H), 2.03 - 2.12 (m, 3 H), 1.88 (d, J=9.79 Hz, 3 H), 1.79 (br. s., 2 H), 1.49 - 1.64 (m, 5 H), 1.43 (br. s., 2 H), 1.23-1.35 (m, 4 H), 1.11 (d, J=7.78 Hz, 1 H), 1.06 (d, J=7.03 Hz, 4 H), 0.93 (d, J=15.81 Hz, 3 H), 0.94 (d, J=15.56 Hz, 3 H), 0.70 - 0.87 (m, 9 H).
중간체 32
Figure pct00043
ACN (20 mL) 중 1-(tert-부톡시카르보닐)-2-메틸피페리딘-2-카르복실산 (1g, 4.11 mmol) 및 탄산칼륨 (0.852 g, 6.17 mmol)의 현탁액에 벤질 브로마이드 (0.733 mL, 6.17 mmol)를 적가하였다. 생성된 반응 혼합물을 실온에서 밤새 교반하였다. LC/MS는 목적 생성물의 형성을 나타내었다. 반응 혼합물을 물 (2 mL)로 희석하고, 에틸 아세테이트 (2 x 30 mL)로 추출하였다. 합한 추출물을 황산나트륨 상에서 건조시키고, 여과하고, 농축시켰다. 조 물질을 플래쉬 크로마토그래피 (실리카 겔, 헥산/에틸 아세테이트, 80/20 용리액)에 의해 정제하여 2-벤질 1-(tert-부틸) 2-메틸피페리딘-1,2-디카르복실레이트 (1.27 g, 92%)를 오일로서 수득하였다.
LC-MS: 356 (M + Na); 1H NMR (400 MHz, CD2Cl2) δ ppm 7.33 - 7.45 (m, 5 H), 5.13 - 5.27 (m, 2 H), 3.91 - 4.09 (m, 1 H), 2.83 - 3.09 (m, 1 H), 2.10 -2.32 (m, 1 H), 1.56 - 1.72 (m, 1 H), 1.30 - 1.51 (m, 12 H), 1.09 (qd, J=12.42, 4.64 Hz, 1 H), 0.90 - 0.98 (m, 3 H).
중간체 33
Figure pct00044
DCM (10 mL) 중 중간체 32 (1.2 g, 3.60 mmol)의 용액에 TFA (4.16 mL, 53.99 mmol)를 적가하였다. 생성된 반응 혼합물을 실온에서 2시간 동안 교반하였다. LC/MS는 Boc의 완전한 탈보호를 나타내었다. 용매를 감압 하에 제거하였다. 조 물질을 수성 포화 중탄산나트륨으로 염기성화시키고, 수성 층을 에틸 아세테이트 (2 x 50 mL)로 추출하였다. 합한 추출물을 황산나트륨 상에서 건조시키고, 여과하고, 농축시켜 벤질 2-메틸피페리딘-2-카르복실레이트 (810 mg)를 오일로서 수득하였다. 조 생성물을 후속 단계에 정제 없이 사용하였다. LC/MS: 234 (M + 1).
중간체 34
Figure pct00045
DCM (25 mL) 중 중간체 33 (1.45g, 6.22 mmol) 및 DIEA (2.388 mL, 13.67 mmol)의 용액에 벤질 클로로포르메이트 (0.875 mL, 6.22 mmol)를 0℃에서 적가하였다. 생성된 용액을 실온에서 2시간 동안 교반하였다. 반응 혼합물을 DCM 30 mL 및 수성 포화 중탄산나트륨 용액 4 mL로 희석하고, 5분 동안 교반하였다. 유기 층을 분리하고, 수성 층을 (2 x 30 mL) DCM으로 추출하였다. 합한 유기 추출물을 황산나트륨 상에서 건조시키고, 여과하고, 농축시켰다. 조 물질을 플래쉬 크로마토그래피 (실리카 겔, 헥산/에틸 아세테이트, 90/10)에 의해 정제하여 디벤질 2-메틸피페리딘-1,2-디카르복실레이트 (1.32 g, 58%)를 오일로서 수득하였다.
LC-MS: 268 (M + 1); 1H NMR (400 MHz, 메탄올-d4) δ ppm 7.21 - 7.42 (m, 10 H), 5.04 - 5.18 (m, 2 H), 5.00 (br. s., 2 H), 4.91 (br. s., 1 H), 3.88 (d, J=12.80 Hz, 1 H), 3.17 (t, J=9.54 Hz, 1 H), 1.83 - 1.97 (m, 1 H), 1.55 - 1.78 (m, 4 H), 1.51 (s, 3 H).
중간체 35
Figure pct00046
중간체 34를 2종의 거울상이성질체의 SFC 키랄 칼럼 분해 (키랄팩 AD, 이산화탄소/메탄올 90%-10%)로 처리하여 목적 생성물 디벤질 (R)-2-메틸피페리딘-1,2-디카르복실레이트로 단리시켰다.
LC-MS: 368 (M + 1); 1H NMR (400 MHz, CD3OD) δ ppm 7.19 - 7.44 (m, 10 H), 5.04 - 5.15 (m, 2 H), 5.00 (br. s., 2 H), 3.88 (d, J=13.05 Hz, 1 H), 3.17 (t, J=9.54 Hz, 1 H), 1.84 - 1.97 (m, 1 H), 1.55 - 1.78 (m, 5 H), 1.51 (s, 3 H); % ee:> 98: 광회전: [α]D: +2° (메탄올)
중간체 36
Figure pct00047
메탄올 (10 mL) 중 중간체 35 (600mg, 1.63 mmol)의 용액에 파라포름알데히드 (49.0 mg, 1.63 mmol) 및 탄소 상 팔라듐 (174 mg, 1.63 mmol)을 첨가하였다. 반응 혼합물을 실온에서 수소 분위기 하에 밤새 교반하였다. LC/MS는 출발 물질의 완결을 나타내었다. 반응 혼합물을 여과하고, 촉매를 MeOH (2 x 30 mL)로 세척하였다. 여과물을 진공 하에 농축시켜 조 생성물을 백색 고체로서 수득하였으며, 이를 에테르 (3 x 30 mL)로 세척하고, 고진공 하에 밤새 건조시켜 1,2-디메틸피페리딘-2-카르복실산 (230 mg, 90%)을 백색 고체로서 수득하였다.
LC-MS: 158 (M + 1); 1H NMR (400 MHz, 메탄올-d4) δ ppm 3.03 - 3.18 (m, 1 H), 2.76 (br. s., 3 H), 2.01 (br. s., 1 H), 1.83 (br. s., 2 H), 1.72 - 1.81 (m, 1 H), 1.62 - 1.71 (m, 2 H), 1.48 (s, 3 H).; 광회전: αD +24° (메탄올).
중간체 37
Figure pct00048
중간체 수지 26 (0.5 g, 0.80 mmol)에 DMF (5 mL) 중 중간체 36 (0.189 g, 1.20 mmol), HATU (0.608 g, 1.60 mmol), 2,4,6-트리메틸피리딘 (0.318 mL, 2.40 mmol) 및 DIEA (0.419 mL, 2.40 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x 6 mL)으로 세척하고, 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC-MS: 801 (M + 1).
중간체 38
Figure pct00049
수지 중간체 37 (0.5 g, 0.80 mmol)에 DMF (5 mL) 중 염화주석(II) 2수화물 (1.384 g, 6.13 mmol) 및 아세트산나트륨 (0.151 g, 1.84 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 4시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC-MS: 771 (M + H).
화합물 3
Figure pct00050
수지 중간체 38 (0.15g, 0.24 mmol)에 DCM (5 mL), 및 TFA (0.370 mL, 4.80 mmol)를 실온에서 첨가하였다. 혼합물을 실온에서 10분에 동안 진탕시킨 다음, 여과하고, DCM (2 x 50 mL)으로 세척하였다. 여과물을 진공 하에 증발시켰다. 잔류물을 역상 HPLC (ACN/H2O 0.1% 포름산, ACN 10%에서 50%, 14분 내)에 의해 정제하였다. 순수한 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((R)-1,2-디메틸피페리딘-2-카르복스아미도)-N-에틸-3-메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-5-(4-아미노페닐)-2-메틸펜탄산 (0.037 g, 17.86%)을 고체로서 수득하였다.
LC/MS: 771 (M + 1); 1H NMR (400 MHz, CD3OD) δ ppm 7.97 (s, 1 H), 6.87 (d, J=8.03 Hz, 2 H), 6.53 (d J=8.03 Hz, 2 H), 5.67 (d, J=12.80 Hz, 1 H), 4.59 (d, J=8.28 Hz, 1 H), 4.17 (br. s., 2 H), 3.72 (d, J=7.28 Hz, 1 H), 2.69 (d, J=6.27 Hz, 3 H), 2.42 (br. s., 2 H), 2.28 (br. s., 2 H), 2.17 (s, 3 H), 2.07 (s, 3 H),1.74 - 1.94 (m, 3 H), 1.45 - 1.62 (m, 4 H), 1.36 (br. s., 3 H), 1.27 (t, J=7.03 Hz, 3 H), 1.10 (s, 3 H), 1.06 (d, J=7.03 Hz, 4 H), 0.95 (d, J=6.53 Hz, 3 H), 0.90 (d, J=6.78 Hz, 4 H), 0.83 (t, J=7.40 Hz, 4 H), 0.74 (d, J=6.27 Hz, 3 H).
Figure pct00051
중간체 39
Figure pct00052
트리에틸 아민 (40 g, 0.4 mol)을 DCM (500 mL) 중 Boc-L-페닐알라닌 (90 g, 0.34 mol) 및 N,O-디메틸히드록실아민 히드로클로라이드 (36.5 g, 0.37 mol)의 현탁액에 0℃에서 교반하면서 첨가하였다. 현탁액을 10분 동안 교반하고, EDCI (HCl 염, 72 g, 0.37 mol)를 첨가하였다. 현탁액을 0℃에서 추가로 3시간 동안 교반하였다. 혼합물을 포화 수성 NaHCO3 (1 L)으로 켄칭하였다. 층을 분리하고, 수성 상을 DCM (500 mL x 3)으로 재추출하였다. 합한 유기 상을 물 (1 L x 3), 5% KHSO4 수성 (1 L x 3), 포화 수성 NaHCO3 (1 L x 3), 및 염수 (1 L x 1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=1:1)에 의해 추가로 정제하여 (S)-tert-부틸 1-(메톡시(메틸)아미노)-1-옥소-3-페닐프로판-2-일카르바메이트 (85.1 g, 81% 수율)를 백색 고체로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.15~7.26 (m, 5H), 5.25 (bs, 1H), 4.95 (m, 1H), 3.63 (s, 3H), 3.14 (s, 3H), 2.83~3.07 (m, 2H), 1.37 (s, 9H).
중간체 40
Figure pct00053
건조 THF (500 mL) 중 중간체 39 (97.1 g, 0.315 mol)의 용액을 건조 THF (200 mL) 중 LiAlH4 (12.0 g, 0.316 mol)의 현탁액에 -10℃에서 교반하면서 1시간에 걸쳐 적가하였다. 현탁액을 0℃에서 추가로 3시간 동안 교반한 다음, -10℃에서 물 (12 mL), 15% NaOH 수성 (12 mL) 및 물 (12 mL x 3)로 켄칭하였다. 0.5시간 동안 교반한 후, 혼합물을 여과하고, 여과물을 농축 건조시켜 (S)-tert-부틸 1-옥소-3-페닐프로판-2-일카르바메이트 (45.2 g, 조 물질)를 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
1H NMR (300 MHz, CDCl3): δ 9.65 (s, 1H), 7.17~7.33 (m, 5H), 4.80 (m, 1H), 2.80~3.15 (m, 2H), 1.45 (s, 9H).
중간체 41
Figure pct00054
에틸 아세테이트 (400 mL) 중 트리페닐포스핀 (173.7 g, 0.66 mol) 및 에틸 2-브로모-프로피오네이트 (100 g, 0.55 mol)의 용액을 환류 하에 밤새 가열하였다. 냉각시킨 후, 혼합물을 여과하였다. 케이크를 에틸 아세테이트로 세척하고, 건조시켜 포스포늄 염을 수득하였다. 포스포늄 염을 DCM (400 mL) 중에 용해시켰다. 분자체 (4A, 50 g)를 첨가하고, 이어서 트리에틸 아민 (111g, 1.1 mol)을 실온에서 교반하면서 적가하였다. 혼합물을 추가로 1시간 동안 교반한 다음, 여과하였다. 여과물을 물 (300 mL x 3), 5% KHSO4 수성 (300 mL x 3), 및 염수 (300 mL x 1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=1:10)에 의해 추가로 정제하여 에틸 (트리페닐포스포라닐리덴)프로피오네이트 (105 g, 52% 수율)를 고체로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.34~8.10 (m, 15H), 4.02 (q, J=7.2 Hz, 2H), 1.68 (m, 3H), 1.01 (t, J=7.2 Hz, 3H).
중간체 42
Figure pct00055
DCM (500 mL) 중 중간체 40 (52 g, 0.21 mol) 및 중간체 41 (76 g, 0.21 mol)의 용액을 실온에서 14시간 동안 교반하였다. 용매를 감압 하에 제거하였다. 잔류물을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=1:10)에 의해 추가로 정제하여 (S)-에틸 4-(tert-부톡시카르보닐아미노)-2-메틸-5-페닐펜트-2-에노에이트 (45.3 g, 64% 수율)를 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.17~7.32 (m, 5H), 6.53 (dd, J=1.2 및 9 Hz, 1H), 4.63 (m, 2H), 4.18 (q, J=7.2 Hz, 2H), 2.76~2.95 (m, 2H), 1.72 (s, 3H), 1.42 (s, 9H), 1.28 (t, J=7.2 Hz, 3H).
중간체 43
Figure pct00056
중간체 42 (45 g, 0.135 mol)를 10% Pd/C (10 g)를 함유하는 MeOH (600 mL) 중에 용해시켰다. 반응 혼합물을 수소 분위기 하에 실온에서 16시간 동안 교반하였다. 반응 혼합물을 규조토를 통해 여과하고, 여과물을 감압 하에 농축시켰다. 잔류물을 아세톤 (200 mL) 중에 용해시키고, 수성 NaOH (2M, 135 mL)를 0℃에서 첨가하였다. 혼합물을 실온에서 10시간 동안 교반하였다. 반응 혼합물을 수성 HCl (2M, 135 mL)에 붓고, DCM (300 mL x 3)으로 추출하였다. 합한 유기 추출물을 건조 (MgSO4)시키고, 여과하고, 감압 하에 농축시켜 (R)-4-(tert-부톡시카르보닐아미노)-2-메틸-5-페닐펜탄산 (41.0 g, ~100% 수율)을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다. LC-MS에 의해 그의 구조를 확인하였다.
중간체 44
Figure pct00057
중간체 43 (28 g, 0.091 mol)을 무수 THF (200 mL) 중에 용해시키고, - 40℃로 냉각시켰다. 이 용액에 트리에틸 아민 (10.1 g, 0.099 mol)을 첨가하고, 이어서 에틸 클로로포르메이트 (11 g, 0.10 mol)를 15분에 걸쳐 적가하였다. 반응 혼합물을 -40℃에서 추가로 1시간 동안 교반한 다음, 여과하여 침전된 물질을 제거하였다. 여과물을 0℃로 냉각시키고, 물 (20 mL) 중 수소화붕소나트륨 (7.5 g, 0.197 mol)을 함유하는 수현탁액으로 30분에 걸쳐 처리하였다. 반응 혼합물을 0℃에서 30분 동안 교반하고, 실온에서 추가로 30분 동안 교반하였다. 혼합물을 EtOAc (500 mL)로 희석하고, 염수 (500 mL)로 세척하였다. 수성 층을 EtOAc (200 mL x 3)로 추출하였다. 합한 유기 추출물을 포화 수성 NaHCO3 (500 mL x 2), 및 염수 (500 mL)로 세척하고, 건조 (MgSO4)시키고, 여과하고, 감압 하에 농축시켜 유성 잔류물을 수득하였다. 잔류물을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=10:1)에 의해 정제하여 tert-부틸 (2R,4S)-5-히드록시-4-메틸-1-페닐펜탄-2-일카르바메이트 (17.5 g, 65% 수율)를 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.15~7.29 (m, 5H), 4.60 (m, 1H), 4.00 (m, 1H), 3.45 (d, J=5.7 Hz, 2H), 2.71~2.11 (m, 4H), 1.78 (m, 1H), 1.55 (m, 1H), 1.38 (s, 9H), 1.25 (m, 1H).
중간체 45
Figure pct00058
데스-마르틴 퍼아이오디난 (39 g, 89.4 mmol)을 DCM (300 mL) 중 중간체 44 (17.5 g, 59.7 mmol)의 용액에 첨가하고, 현탁액을 실온에서 15시간 동안 교반하였다. 혼합물을 수성 NaOH (1N, 300 mLx3), 및 염수 (300 mLx3)로 세척하고, 건조 (MgSO4)시키고, 여과하고, 감압 하에 농축시켰다. 잔류물을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=1:6)에 의해 정제하여 tert-부틸 (3S,5R)-5-벤질-3-메틸-2-옥소피롤리딘-1-카르복실레이트 (9.1 g, 53% 수율)를 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.16~7.35 (m, 5H), 4.30 (m, 1H), 3.15 (dd, J=3.3 및 13.2 Hz, 1H), 2.73 (dd, J=9.6 및 13.2 Hz), 2.42 (m, 1H), 2.00~2.10 (m, 2H), 1.58 (s, 9H), 1.15 (d, J=6.9 Hz, 3H).
중간체 46
Figure pct00059
중간체 45 (9.0 g, 31.1 mmol) 및 수성 HCl (4N, 150 mL)을 환류 하에 4시간 동안 가열하였다. 냉각시킨 후, 용매를 감압 하에 제거하였다. 잔류물을 아세톤 (100 mL) 및 물 (100 mL) 중에 용해시켰다. 용액의 pH을 2 M 수성 NaOH를 사용하여 8.5로 조정하고, 아세톤 (20 mL) 중 Fmoc-OSu (12 g, 35 mmol)의 용액을 적가하고, 이 과정 동안 이 용액의 pH를 2 M 수성 NaOH로 8~9에서 유지하였다. 현탁액을 4시간 동안 교반한 다음, 2 M 수성 HCl로 pH 3으로 산성화시키고, EtOAc (200 mL x 3)로 추출하였다. 합한 유기 상을 물 (100 mL x3), 5% KHSO4 수성 (100 mLx3), 및 염수 (100 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=1:1)에 의해 정제하여 (2S, 4R)-4-((((9H-플루오렌-9-일)메톡시)카르보닐)아미노)-2-메틸-5-페닐펜탄산 (5.3 g, 40% 수율)을 수득하였다.
LC-MS: 430 [M+1]; 1H NMR (400 MHz, 메탄올-d4) δ ppm 7.78 - 7.83 (m, 2 H), 7.59 - 7.65 (m, 2 H), 7.37 - 7.43 (m, 2 H), 7.28 - 7.35 (m, 2 H), 7.14 - 7.26 (m, 5 H),6.94 - 7.01 (m, 1 H), 4.28 - 4.36 (m, 1 H), 4.21 - 4.27 (m, 1 H), 4.10 - 4.16 (m, 1 H), 3.84 - 3.93 (m, 1 H), 2.68 - 2.82 (m, 2 H), 2.48 - 2.60 (m, 1 H), 1.86- 1.95 (m, 1 H), 1.42 - 1.51 (m, 1 H), 1.17 (d, J=7.03 Hz, 3 H), 1.09 - 1.14 (m, 1 H).
<반응식>
Figure pct00060
중간체 47
Figure pct00061
에틸 클로로포르메이트 (12.6 mL, 0.13 mol)를 무수 THF (200 mL) 중 I-Me-Boc-L-Val-OH (27.3 g, 0.12 mol) 및 트리에틸아민 (14.7 mL, 0.13 mol)의 용액에 -20℃에서 15분에 걸쳐 적가하고, 생성된 백색 현탁액을 추가로 30분 동안 교반하였다. 이어서, 에테르 (500 mL) 중 디아조메탄 용액 (0.36 mol, N-니트로소-N-메틸우레아 60 g으로부터 제조되고, 수산화칼륨 상에서 건조시킴)을 반응 혼합물에 캐뉼라를 통해 도입하였다. 혼합물을 실온으로 가온되도록 하고, 추가로 5시간 동안 교반한 다음, 수성 아세트산 (10%, 250 mL)을 사용하여 조심스럽게 켄칭하였다. 층을 분리하고, 유기 층을 포화 중탄산나트륨 (300 mL x 3) 및 염수 (300 mL x 3)로 세척하고, 건조 (Na2SO4)시키고, 약 200 mL로 농축하였다. 잔류물을 THF (900 mL) 및 물 (100 mL) 중에 용해시켰다. 용액을 40℃로 가열하고, 아세트산은 (500 mg)을 첨가하였다. 현탁액을 5시간 동안 교반한 다음, 약 300 mL로 농축시켰다. 잔류물을 EtOAc (500 mL x3)로 추출하였다. 유기 층을 포화 중탄산나트륨 (300 mL x 3) 및 염수 (300 mL)로 세척하고, 건조 (Na2SO4)시키고, 농축하여 (R)-3-(tert-부톡시카르보닐(메틸)아미노)-4-메틸펜탄산 (23.8 g, 81% 수율)을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
1H NMR (300 MHz, CDCl3): δ 10.08 (bs, 1H), 4.00 (m, 1H), 2.75 (m, 3H), 2.55 (m, 2H), 1.43 (s, 9h), 0.85~0.84 (m, 6H).
중간체 48
Figure pct00062
트리에틸아민 (34.3 mL, 0.244 mol)을 CH2Cl2 (300 mL) 중 중간체 47 (60 g, 0.244 mol) 및 N,O-디메틸히드로아민 히드로클로라이드 (23.9 g, 0.244 mol)의 현탁액에 0℃에서 교반하면서 첨가하였다. 현탁액을 이 온도에서 0.5시간 동안 교반한 다음, EDCI (46.9 g, 0.244 mol)를 0℃에서 조금씩 첨가하였다. 반응 혼합물을 0℃에서 추가로 2시간 동안 교반한 다음, 물 (300 mL)로 켄칭하였다. 유기 상을 분리하고, 5% KHSO4 수성 (300 mLx3), 포화 수성 NaHCO3 (300 mLx3), 및 염수 (300 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 잔류물을 실리카 겔 크로마토그래피 (EtOAc/헥산=1:3)에 의해 추가로 정제하여 tert-부틸 (R)-(1-(메톡시(메틸)아미노)-4-메틸-1-옥소펜탄-3-일)(메틸)카르바메이트 (52 g, 74% 수율)를 오일로서 수득하였다.
중간체 49
Figure pct00063
tert-부틸 니트라이트 (NaNO2 0.61 mol 및 tert-부틸 알콜 110 mL로부터 제조됨)를 ACN (500 mL) 중 CuBr2 (260 g, 1.16 mol) 및 에틸 2-아미노티아졸-4-카르복실레이트 (100 g, 0.58 mol)의 현탁액에 0℃에서 1시간의 기간에 걸쳐 적가하였다. 혼합물을 실온에서 12시간 동안 교반한 다음, EtOAc (800 mL) 및 물 (800 mL)로 켄칭하였다. 혼합물을 여과하고, 여과물을 수성 및 유기 상으로 분리하였다. 수성 상을 EtOAc (800 mLx2)로 추출하였다. 합한 유기 추출물을 5% KHSO4 수성 (300 mLx3), 포화 수성 NaHCO3 (300 mLx3), 및 염수 (300 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켜 에틸 2-브로모티아졸-4-카르복실레이트 (79.4g, 58% 수율)를 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
1H NMR (300 MHz, DMSO-d6): δ 7.45 (s, 1H), 4.20 (q, J=7.2 Hz, 2H), 1.25 (t, J=7.2 Hz, 3H).
중간체 50
Figure pct00064
NaBH4 (16.5g, 0.43 mol)를 에탄올 (500 mL) 중 중간체 49 (68 g, 0.288 mol)의 용액에 50℃에서 교반하면서 0.5시간의 기간에 걸쳐 조금씩 첨가하였다. 현탁액을 환류 하에 5시간 동안 가열하고, NaBH4의 또 다른 배치 (8.25g, 0.22 mol)를 조금씩 첨가하였다. 혼합물을 환류 하에 추가로 12시간 동안 가열하였다. 이를 실온으로 냉각시킨 후, 용매를 감압 하에 제거하고, 잔류물을 DCM (500 mL) 중에 용해시키고, 포화 수성 NaHCO3 (300 mLx3), 및 염수 (300 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켜 알콜을 수득하였다. 알콜을 DMF (300 mL) 중에 용해시키고, 이미다졸 (28.3 g, 0.416 mol)을 첨가하였다. THF (100 mL) 중 TBS-Cl (62.4 g, 0.416 mol)의 용액을 이 용액에 실온에서 적가하였다. 혼합물을 12시간 동안 교반한 다음, 물 (800 mL)로 켄칭하고, EtOAc (800 mLx2)로 추출하였다. 합한 유기 추출물을 5% KHSO4 수성 (300 mLx3), 포화 수성 NaHCO3 (300 mLx3), 및 염수 (300 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 잔류물을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=1:30)에 의해 정제하여 2-브로모-4-((tert-부틸디메틸실릴옥시)메틸)티아졸 (42.0 g, 47% 수율, 두 단계에 대해)을 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.15 (t, J=1.5 Hz, 1H), 4.84 (d, J=1.5 Hz, 2H), 0.94 9s, 9H), 0.12 (s, 6H).
중간체 51
Figure pct00065
n-BuLi의 용액 (77 ml, 헥산 중 2.5N, 0.19mol)을 건조 THF (500 mL) 중 중간체 50 (53.9 g, 0.175 mol)의 용액에 -78℃에서 N2 하에 교반하면서 1시간에 걸쳐 적가하였다. 현탁액을 이 온도에서 30분 동안 교반하였다. 이어서, 건조 THF (200 mL) 중 중간체 48 (50.4 g, 0.175 mol)의 용액을 -78℃에서 30분에 걸쳐 적가하였다. 반응 혼합물을 이 온도에서 1시간 동안 교반한 다음, 실온으로 가온되도록 하고, 12시간 동안 교반하였다. 혼합물을 20% 수성 염화암모늄 (1 L)으로 켄칭하고, 유기 용매를 감압 하에 제거하였다. 생성된 혼합물을 EtOAc (500 mLx3)로 추출하였다. 합한 유기 상을 5% KHSO4 수성 (500 mLx3), 포화 수성 NaHCO3 (500 mLx3), 및 염수 (500 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=1:10)에 의해 추가로 정제하여 (R)-tert-부틸 1-(4-((tert-부틸디메틸실릴옥시)메틸)티아졸-2-일)-4-메틸-1-옥소 펜탄-3-일(메틸)카르바메이트 (38.1 g, 48% 수율)를 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.55 (m, 1H), 4.91 (s, 2H), 4.27 (m, 1H), 3.20~3.60 (m, 2H), 1.90 (m, 1H), 1.03 (d, J=6.6 Hz, 3H), 0.97 (s, 9H), 0.88 (d, J=6.6 Hz, 3H), 0.15 (s, 6H).
중간체 52
Figure pct00066
NaBH4 (4.7g, 125 mmol)를 메탄올 (200 mL) 중 중간체 51 (38.0 g, 83.3 mmol)의 용액에 실온에서 교반하면서 0.5시간의 기간에 걸쳐 조금씩 첨가하였다. 현탁액을 2시간 동안 교반하고, NaBH4의 또 다른 배치 (1.5 g, 40 mmol)를 첨가하고, 혼합물을 추가로 2시간 동안 교반하였다. 용매를 감압 하에 제거하고, 잔류물을 EtOAc (200 mL) 중에 용해시키고, 포화 수성 NaHCO3 (200 mLx3), 및 염수 (200 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 실리카 겔 크로마토그래피 (EtOAc/헥산=1:6)에 의해 추가로 정제하여 tert-부틸 (1R,3R)-1-(4-((tert-부틸디메틸실릴옥시)메틸)티아졸-2-일)-1-히드록시-4-메틸펜탄-3-일(메틸)카르바메이트 (16.2 g, 42% 수율) 및 tert-부틸 ((1S,3R)-1-(4-(((tert-부틸디메틸실릴)옥시)메틸)티아졸-2-일)-1-히드록시-4-메틸펜탄-3-일)(메틸)카르바메이트 (이성질체, 17.3 g, 45% 수율)를 수득하였다.
tert-부틸 (1R,3R)-1-(4-((tert-부틸디메틸실릴옥시)메틸)티아졸-2-일)-1-히드록시-4-메틸펜탄-3-일(메틸)카르바메이트 (1R,3R-이성질체): 1H NMR (300 MHz, CDCl3): δ 7.11 (s, 1H), 4.98 (bs, 1H), 4.80 (s, 2H), 4.68 (dt, J=11.7 Hz, 1H), 3.95 (dt, J=3.3 및 12 Hz, 1H), 2.75 (s, 3H), 1.70 ~1.95 (m, 2H), 1.49 (s, 9H), 0.95 (s, 9H), 0.85~0.95 (m, 6H), 0.15 (s, 6H).
tert-부틸 ((1S,3R)-1-(4-(((tert-부틸디메틸실릴)옥시)메틸)티아졸-2-일)-1-히드록시-4-메틸펜탄-3-일)(메틸)카르바메이트 (1S,3R-이성질체): 1H NMR (300 MHz, CDCl3): δ 7.07 (s, 1H), 5.01 (m, 1H), 4.81 (s, 2H), 4.81 (bs, 1H), 3.86 (dt, J=3.3 및 10.5 Hz, 1H), 2.35 (s, 3H), 2.25 (m, 1H), 1.74 (m, 1H), 1.43 (s, 9H), 1.00 (d, J=6.6 Hz, 3H), 0.96 (s, 9H), 0.84 (d, J=6.6 Hz, 3H), 0.15 (s, 6H).
중간체 53
Figure pct00067
아세틸 클로라이드 (22.5 mL, 0.316 mol)를 피리딘 (140 mL) 중 중간체 52 (19.7 g, 43 mmol)의 용액에 0℃에서 교반하면서 1시간에 걸쳐 적가하였다. 반응 혼합물을 실온으로 가온되도록 하고, 12시간 동안 교반하였다. 혼합물을 물 (200 mL)로 켄칭하고, 유기 용매를 감압 하에 제거하였다. 잔류물을 DCM (500 mL) 중에 용해시키고, 5% KHSO4 수성 (200 mLx3), 포화 수성 NaHCO3 (200 mLx3), 및 염수 (200 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=1:10)에 의해 정제하여 (1R,3R)-3-(tert-부톡시카르보닐(메틸)아미노)-1-(4-((tert-부틸디메틸실릴옥시)메틸)티아졸-2-일)-4-메틸펜틸 아세테이트 (18.5 g, 86% 수율)를 오일로서 수득하였다. LC-MS에 의해 그의 구조를 확인하였다.
중간체 54
Figure pct00068
THF (100 mL) 중 테트라부틸암모늄 플루오라이드 (45.7 g, 175 mmol)의 용액을 THF (100 mL) 중 중간체 53 (17.5 g, 35 mmol)의 용액에 0℃에서 교반하면서 적가하였다. 반응 혼합물을 실온으로 가온되도록 하고, 12시간 동안 교반하였다. 혼합물을 물 (100 mL)로 켄칭하고, 유기 용매를 감압 하에 제거하였다. 잔류물을 CH2Cl2 ( 500 mL) 중에 용해시키고, 5% KHSO4 수성 (200 mLx3), 포화 수성 NaHCO3 (200 mLx3), 및 염수 (200 mLx1)로 세척하고, 건조 (Na2SO4 포함)시키고, 농축 건조시켰다. 조 물질을 플래쉬 크로마토그래피 (실리카 겔, EtOAc/헥산=1:4)에 의해 정제하여 (1R,3R)-3-(tert-부톡시카르보닐(메틸)아미노)-1-(4-(히드록시메틸)티아졸- 2-일)-4-메틸펜틸 아세테이트 (9.3 g, 69% 수율)를 오일로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.15 (d, J=3 Hz, 1H), 5.81~5.86 (m, 1H), 4.74 (d, J=3Hz, 2H), 4.11 (m, 1H), 2.70 및 2.63 (s, 3H), 2.31 (m, 1H), 2.15 (s, 3H), 2.05 (m, 1H), 1.70 (m, 1H), 1.47 (s, 9H), 0.98 (d, J=6.6 Hz, 3H), 0.86 (d, J=6.6 Hz, 3H).
중간체 55
Figure pct00069
데스-마르틴 퍼아이오디난 (14.9 g, 34.2 mmol)을 디클로로메탄 (250 mL) 중 중간체 54 (8.8 g, 22.8 mmol)의 용액에 첨가하였다. 반응 혼합물을 실온에서 12시간 동안 교반한 다음, 수성 수산화나트륨 (1N, 200 mLx3), 수성 티오황산나트륨 (1N, 200 mLx3), 포화 수성 NaHCO3 (200 mLx3), 및 염수 (200 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켜 알데히드를 수득하였다.
이 조 알데히드를 tert-부틸 알콜 (250 mL) 중에 용해시키고, 물 (150 mL) 중 아염소산나트륨 (80%, 11.6 g, 102 mmol) 및 인산이수소나트륨 1수화물 (33.6 g, 244 mmol)의 용액을 실온에서 1시간에 걸쳐 적가하였다. 반응 혼합물을 추가로 16시간 동안 교반한 다음, 염산 (0.1N, 100 mL)으로 희석하고, EtOAc (200 mL x 3)로 추출하였다. 합한 유기 층을 5% KHSO4 수성 (200 mLx3), 및 염수 (200 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켜 2-((1R,3R)-1-아세톡시-3-(tert-부톡시카르보닐(메틸)아미노)-4-메틸펜틸)티아졸-4-카르복실산 (7.5 g, 82% 수율)을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
1H NMR (300 MHz, CDCl3): δ 8.26 (s, 1H), 5.87~6.01 (m, 1H), 4.15 (m, 1H), 2.72 및 2.65 (s, 3H), 2.35 (m, 1H), 2.20 (s, 3H), 2.18 (m, 1H), 1.75 (m, 1H), 1.49 (s, 9H), 1.00 (d, J=6.6 Hz, 3H), 0.88 (d, J=6.6 Hz, 3H).
중간체 56
Figure pct00070
TFA (30 mL)를 디클로로메탄 (80 mL) 중 중간체 55 (7.4 g, 18.5 mmol)의 용액에 첨가하였다. 혼합물을 12시간 동안 교반하고, 용매를 감압 하에 제거하였다. 잔류물을 아세톤 (100 mL) 및 물 (100 mL) 중에 용해시켰다. 용액 pH를 2 M 수성 NaOH를 사용하여 8.5로 조정하고, 아세톤 (50 mL) 중 Fmoc-OSu (6.2 g, 18.5 mmol)의 용액을 적가하고, 이 과정 동안 이 용액의 pH를 2 M 수성 NaOH를 사용하여 8~9로 유지하였다. 현탁액을 4시간 동안 교반하고, 2 M 수성 HCl을 사용하여 pH 3으로 산성화시키고, EtOAc (200 mLx3)로 추출하였다. 합한 유기 상을 물 (100 mL x3), 5% KHSO4 수성 (100 mLx3), 및 염수 (100 mLx1)로 세척하고, 건조 (Na2SO4)시키고, 농축 건조시켰다. 조 물질을 플래쉬 크로마토그래피 (실리카 겔, MeOH/CH2Cl2=1:40)에 의해 정제하여 2-((1R,3R)-3-((((9H-플루오렌-9-일)메톡시)카르보닐)(메틸)아미노)-1-아세톡시-4-메틸펜틸)티아졸-4-카르복실산 (5.1 g, 53% 수율)을 수득하였다.
LC-MS: 523 [M+1]; 1H NMR (400 MHz, CDCl3) δ ppm 0.56 (br. s., 1 H) 0.67 - 0.82 (m, 2 H) 0.83 - 0.96 (m, 2 H) 1.64 (dt, J=10.36, 6.57 Hz, 1 H) 1.88 (s, 1 H) 2.07 (s, 2 H) 2.09 - 2.17 (m, 1 H) 2.19 - 2.33 (m, 1 H) 2.52 - 2.67 (m, 3 H) 3.86 - 4.01 (m, 1 H) 4.08 (s, 1 H) 4.12 - 4.21 (m, 1 H) 4.29 - 4.40 (m, 1 H) 4.68 (dd, J=10.61, 5.56 Hz, 1 H) 5.85 (dd, J=10.86, 3.28 Hz, 1 H) 7.19 - 7.27 (m, 2 H) 7.27 - 7.35 (m, 2 H) 7.42 - 7.58 (m, 2 H) 7.61 - 7.71 (m, 2 H) 8.11 - 8.19 (m, 1 H)
중간체 57
Figure pct00071
DIEA (0.419 mL, 2.40 mmol)를 DCM (1.5 mL) 중 중간체 46 (0.344 g, 0.80 mmol)의 용액에 첨가하고, 혼합물을 실온에서 5분 동안 교반한 다음, 2-클로로트리틸 클로라이드 수지 (0.5 g, 0.80 mmol)를 혼합물에 첨가하였다. 혼합물을 실온에서 4시간 동안 진탕시키고, 생성된 수지를 DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x 6 mL)으로 세척한 다음, 실온에서 DIEA (0.419 mL, 2.40 mmol) MeOH/DCM (1:1, 5 mL)으로 30분 동안 처리하였다. 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), 및 DCM (3 x 6 mL)으로 세척하고, 고진공 하에 밤새 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였다. 건조된 수지를 후속 단계에 사용하였다. LC-MS: 430 (M + 1).
중간체 58
Figure pct00072
수지 중간체 57 (0.5 g, 0.80 mmol)에 DMF 중 20% 피페리딘 (5 mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC-MS: 208 (M + 1).
중간체 59
Figure pct00073
수지 중간체 58 (0.4 g, 0.64 mmol)에 DMF (4 mL) 중 중간체 56 (0.351 g, 0.67 mmol) HATU (0.487 g, 1.28 mmol), 2,4,6-트리메틸피리딘 (0.256 mL, 1.92 mmol), 및 DIEA (0.335 mL, 1.92 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시켰다. 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였다. 반응이 완결되었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC-MS: 712 (M + 1).
중간체 60
Figure pct00074
수지 중간체 59 (0.4 g, 0.64 mmol)에 DMF 중 20% 피페리딘 (4 mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC/MS: 491 (M + H).
중간체 61
Figure pct00075
수지 중간체 60 (0.4 g, 0.64 mmol)에 DCM (4 mL) 중 중간체 24 (0.341 g, 0.96 mmol), DMAP (3.91 mg, 0.03 mmol), 및 DIEA (0.335 mL, 1.92 mmol)의 용액을 실온에서 첨가하였다. 혼합물을 실온에서 1시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), DCM (3 x 6 mL)으로 세척하고, 고진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였다. 생성된 수지를 후속 단계에 사용하였다. LC-MS: 825 (M + 1).
중간체 62
Figure pct00076
수지 중간체 61 (0.4 g, 0.64 mmol)에 DMF 중 20% 피페리딘 (4 mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 6 mL), MeOH (3 x 6 mL), DCM (3 x 6 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계 반응에 사용하였다. LC-MS: 603 (M + 1).
Figure pct00077
중간체 63
Figure pct00078
H2O/EtOH (720 mL, 5/1) 중 4,4-디메틸시클로헥사논 (30 g, 0.238 mol), 히드록실아민 히드로클로라이드 (32.8 g, 0.476 mol) 및 아세트산나트륨 (39.0 g, 0.476 mol)의 용액을 환류 하에 가열하였다. 반응을 TLC에 의해 모니터링하고, 완결 시 실온으로 냉각시켰다. 이를 디클로로메탄 (500 mL)으로 희석하였다. 유기 층을 분리하고, 염수 (100 mL)로 세척하고, Na2SO4 상에서 건조시켰다. 용매를 감압 하에 제거하고, 4,4-디메틸시클로헥사논 옥심을 무색 고체로서 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
중간체 64
Figure pct00079
크실렌 (1000 mL) 중 오염화인 (120 g, 0.576 mol)의 교반 슬러리에 크실렌 (400 mL) 중 중간체 63 (27.2 g, 0.192 mol)의 용액을 20분에 걸쳐 첨가하였다. 첨가 동안 반응 혼합물을 수조를 사용하여 30-36℃에서 유지하였다. 이어서, 이를 80℃로 가열하고, 1.5시간 동안 교반하였다. 균질한 반응 혼합물을 실온으로 냉각시키고, 포화 수성 탄산나트륨 (2000 mL)에 부었다. 혼합물을 밤새 정치시키고, 침전물을 수집하였다. 3,3-디클로로-5,5-디메틸아제판-2-온 (28.4 g)을 갈색 고체로서 수득하고, 이를 후속 단계에 추가 정제 없이 사용하였다.
1H NMR (300 MHz, CDCl3): δ 6.51 (bs, 1H), 3.39-3.44 (m, 1H), 3.16-3.21 (m, 1H), 1.41-1.51 (m, 2H), 1.17 (s, 2H), 0.99 (s, 6H).
중간체 65
Figure pct00080
중간체 64 (25.8, 0.123 mol)를 빙초산 (1300 mL) 중에 용해시키고, 40 atm의 수소 하에 Pd/C (13 g, 10%) 상에서 실온에서 2시간 동안 교반하였다. 촉매를 여과하고, 여과물을 진공 하에 농축시켰다. DCM (200 mL) 및 수성 포화 NaHCO3 (200 mL)을 잔류물에 첨가하고, 혼합물을 10분 동안 교반하였다. 유기 층을 분리하고, Na2SO4 상에서 건조시키고, 진공 하에 농축시켜 3-클로로-5,5-디메틸아제판-2-온 (19.1 g)을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다.
1H NMR (300 MHz, CDCl3): δ 6.19 (brs, 1H), 4.75 (d, J = 11 Hz, 1H), 3.30-3.36 (m, 1H), 3.11-3.17 (m, 1H), 1.91-2.09 (m, 2H), 1.39-1.59 (m, 2H), 1.14 (s, 3H), 1.04 (s, 3H).
중간체 66
Figure pct00081
중간체 65 (16.1 g, 0.092 mol) 및 Ba(OH)2 (35.1 g, 0.11 mol)가 채워진 플라스크에 물 (400 mL)을 첨가하였다. 이 혼합물을 110℃에서 2시간 동안 교반하였다. 이어서, 이를 실온으로 냉각시키고, THF (400 mL) 중 CBZ 클로라이드 (20.6 g, 0.121 mol)의 용액을 첨가하였다. 혼합물을 실온에서 밤새 교반한 다음, 1N HCl을 사용하여 pH 3으로 조정하였다. 조 생성물을 에틸 아세테이트 (2 x 200 mL)로 추출하였다. 합한 추출물을 염수 (100 mL)로 세척하고, Na2SO4 상에서 건조시키고, 감압 하에 농축시켰다. 잔류물을 실리카 겔 크로마토그래피에 의해 정제하여 1-((벤질옥시)카르보닐)-4,4-디메틸피페리딘-2-카르복실산을 점성 오일 (7 g)로서 수득하였다.
1H NMR (300 MHz, CDCl3): δ 7.33-7.38 (m, 5H), 5.16-5.19 (m, 2H), 4.78-4.88 (m, 1H), 3.95-3.99 (m, 1H), 3.23-3.27 (m, 1H), 2.07 (s, 2H), 1.64-1.71 (m, 1H), 1.37-1.40 (m, 2H), 0.97 (s, 3H), 0.93 (s, 3H).
중간체 67
Figure pct00082
2종의 거울상이성질체를 키랄팩 IC에 의해 이동상 A 90% 이산화탄소/ 이동상 B 10% 에탄올을 사용하여 분리하였다 (210 nm에서 검출).
(R)-1-((벤질옥시)카르보닐)-4,4-디메틸피페리딘-2-카르복실산: LC-MS: 292 [M+1]; 1H NMR (400 MHz, 클로로포름-d) δ ppm 0.93 (s, 3 H) 0.98 (s, 3 H) 1.40 (d, J=11.80 Hz, 2 H) 1.68 (dd, J=14.05, 7.28 Hz, 1 H) 1.99 - 2.18 (m, 1 H) 3.27 (m, J=12.30 Hz, 1 H) 3.97 (m, J=12.80 Hz, 1 H) 4.69 - 4.95 (m, 1 H) 5.11 - 5.25 (m, 2 H) 7.28 - 7.44 (m, 5 H) 9.63 (br. s, 1 H)
중간체 68
Figure pct00083
MeOH (20 mL) 및 물 (20.00 mL) 중 중간체 67 (1.14 g, 3.91 mmol)의 용액에 파라포름알데히드 (0.705 g, 7.83 mmol) 및 Pd/C (10%) (0.4 g, 3.76 mmol)를 첨가하였다. 반응 혼합물을 실온에서 수소 분위기 하에 밤새 교반하였다. TLC로부터, 반응은 완결되지 않았다. 추가의 파라포름알데히드 (0.705 g, 7.83 mmol)를 첨가하고, 반응 혼합물을 실온에서 수소 분위기 하에 밤새 교반하였다. TLC는 반응이 완결되었음을 나타내었다. 반응 혼합물을 여과하고, 촉매를 MeOH (2 x 20 mL)로 세척하였다. 여과물을 진공 하에 농축시켜 조 생성물을 백색 고체로서 수득하였으며, 이를 에테르 (3 x 20 mL)로 세척하고, 고진공 하에 밤새 건조시켜 (R)-1,4,4-트리메틸피페리딘-2-카르복실산 (0.671 g, 100%)을 백색 고체로서 수득하였다.
LC-MS: 172 [M+1]; 1H NMR (400 MHz, D2O) δ ppm 0.96 (s, 3 H) 1.01 (s, 3 H) 1.49 - 1.63 (m, 3 H) 1.83 (dt, J=14.56, 2.64 Hz, 1 H) 2.79 (s, 3 H) 3.08 - 3.18 (m, 1 H) 3.27 - 3.34 (m, 1 H) 3.54 (dd, J=12.80, 3.26 Hz, 1 H).
중간체 69
Figure pct00084
수지 중간체 62 (0.1 g, 0.16 mmol)에 DMF (1 mL) 중 중간체 68 (0.055 g, 0.32 mmol), HATU (0.122 g, 0.32 mmol), 2,4,6-트리메틸피리딘 (0.064 mL, 0.48 mmol), 및 DIEA (0.056 mL, 0.32 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 2 mL), MeOH (3 x 2 mL), 및 DCM (3 x 2 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계에 사용하였다. LC-MS: 756 (M+1).
화합물 4
Figure pct00085
수지 중간체 69 (0.1 g, 0.13 mmol)에 DCM (1 mL) 및 TFA (1 mL)를 첨가하였다. 혼합물을 실온에서 20분 동안 진탕시킨 다음, 여과하고, 수지를 DCM/TFA (1:1, 3 x 2 mL)로 세척하고, 여과물을 진공 하에 증발시켰다. 잔류물을 역상 HPLC (ACN/H2O, 0.1% TFA, ACN 5%에서 75%, 14분 내)에 의해 정제하였다. 순수한 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-N,3-디메틸-2-((R)-1,4,4-트리메틸피페리딘-2-카르복스아미도)펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-2-메틸-5-페닐펜탄산 (30 mg 수율 30%)을 백색 고체로서 수득하였다.
LC-MS: 756.5 [M+1]; 1H NMR (400 MHz, 메탄올-d4) δ ppm 0.75 (dd, J=6.53, 2.01 Hz, 3 H), 0.85 (td, J=7.34, 3.64 Hz, 4 H), 0.90 - 0.99 (m, 11 H), 1.01 - 1.16 (m, 9 H), 1.45 - 1.66 (m, 6 H), 1.67 - 1.85 (m, 4 H), 1.86 - 1.97 (m, 1 H), 2.03 - 2.06 (m, 3 H), 2.16 - 2.34 (m, 2 H), 2.39 - 2.51 (m, 1 H), 2.66 (d, J=1.25 Hz, 3 H), 2.75 - 2.85 (m, 2 H), 3.02 (d, J=1.25 Hz, 3 H), 3.16 (br. s., 1 H), 3.79 - 3.93 (m, 1 H), 4.29 (br. s., 2 H), 4.57 - 4.66 (m, 1 H), 5.55 - 5.70 (m, 1 H), 7.01 - 7.18 (m, 5 H), 7.98 (d, J=1.25 Hz, 1 H).
중간체 70
Figure pct00086
수지 중간체 62 (0.1 g, 0.16 mmol)에 DMF (1 mL) 중 중간체 1 (0.050 g, 0.32 mmol), HATU (0.122 g, 0.32 mmol), 2,4,6-트리메틸피리딘 (0.064 mL, 0.48 mmol), 및 DIEA (0.056 mL, 0.32 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 2 mL), MeOH (3 x 2 mL), 및 DCM (3 x 2 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지를 후속 단계에 사용하였다. LC-MS: 742 (M+1).
화합물 5
Figure pct00087
수지 중간체 70 (0.1 g, 0.16 mmol)에 DCM (1 mL) 및 TFA (1 mL)를 첨가하였다. 혼합물을 실온에서 20분 동안 진탕시킨 다음, 여과하고, 수지를 DCM/TFA (1:1, 3 x 2 mL)로 세척하고, 여과물을 진공 하에 증발시켰다. 잔류물을 역상 HPLC (ACN/H2O, 0.1% TFA, ACN 5%에서 50%, 14분 내)에 의해 정제하였다. 순수한 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((2R,4R)-1,4-디메틸피페리딘-2-카르복스아미도)-N,3-디메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-2-메틸-5-페닐펜탄산 (0.040 g, 29.2%)을 백색 고체로서 수득하였다.
LC-MS: 742 (M+1); 1H NMR (400 MHz, CD3OD) δ ppm 0.71 - 0.78 (m, 3 H), 0.80 - 0.87 (m, 3 H), 0.93 (dd, J=9.91, 6.65 Hz, 6 H), 1.07 (d, J=7.03 Hz, 6 H) ,1.42 - 1.65 (m, 3 H), 1.74 - 1.85 (m, 3 H), 1.86 - 1.98 (m, 3 H), 2.05 (s, 4 H), 2.16 - 2.35 (m, 2 H), 2.38 - 2.51 (m, 1 H), 2.59 - 2.72 (m, 3 H), 2.77 - 2.83 (m, 2 H), 3.02 (s, 3 H), 3.84 - 3.94 (m, 1 H), 4.20 - 4.35 (m, 2 H), 4.56 - 4.65 (m, 1 H), 5.57 - 5.67 (m, 1 H), 7.03 - 7.09 (m, 1 H), 7.13 (s, 4 H), 7.91 - 8.02 (m, 2 H).
중간체 71
Figure pct00088
DCM (24 mL) 중 에틸 2-((1R,3R)-3-((2S,3S)-2-(tert-부톡시카르보닐아미노)-N,3-디메틸펜탄아미도)-1-히드록시-4-메틸펜틸)티아졸-4-카르복실레이트 (문헌 [Patterson A. et al. J. Org. Chem. 2008, 73, 4362]에 기재된 바와 같이 제조됨) (1.2 g, 2.40 mmol)의 용액에 교반하면서 1시간 동안 동등한 부피의 TFA (24.00 mL)를 첨가하였다. 이어서, 용액을 농축시키고, EtOAc로 희석하고, 포화 NaHCO3 (수성)으로 1회 세척하였다. 수성 분획을 EtOAc로 2회 역추출하고, 합한 유기 분획을 Na2SO4로 건조시키고, 여과하고, 농축시켜 Boc-탈보호된 유리 아민을 수득하였으며, 이를 후속 단계에 추가 정제 없이 사용하였다. CH2Cl2 (24 mL) 중 이 아민에 HOBT (0.368 g, 2.40 mmol) 및 중간체 1 (0.3969 g, 2.52 mmol)을 첨가하였다. 이어서, 혼합물을 가염된 빙수조에서 교반하면서 냉각시키고, PS-카르보디이미드 (1.23 mmol/g) (2.598 g, 2.88 mmol)를 첨가하였다. 조를 실온으로 가온하고, 교반을 14시간 동안 계속하였다. 이어서, 혼합물을 여과하고, 수지를 DCM으로 세척하고, 여과물을 농축시켰다. 이어서, 조 혼합물을 EtOAc로 희석하고, 포화 수성 NaHCO3으로 1회 세척하였다. 수성 분획을 EtOAc로 2회 역추출하고, 합한 유기 분획을 Na2SO4로 건조시키고, 여과하고, 농축시켜 4-메틸Mep-커플링된 중간체를 수득하였으며, 이를 추가 정제 없이 사용하였다. 디옥산 (24 mL) 중 희석된 조 중간체에 탈기수 (24 mL) 중 LiOH (0.230 g, 9.60 mmol)의 용액을 첨가하였다. 5시간 동안 교반한 후, 용액을 농축시켰다. 잔류물을 실리카 겔 칼럼에 의해 DCM/DCM:MeOH:NH4OH (90:10:1에서 70:30:1) (DCM:MeOH:NH4OH, 0에서 100% 구배로서)로 용리시키면서 정상 플래쉬 크로마토그래피를 사용하여 정제하였다. 순수한 분획을 농축시키고, 최종적으로 고진공 하에 건조시켜, 2-((1R,3R)-3-((2S,3S)-2-((2R,4R)-1,4-디메틸피페리딘-2-카르복스아미도)-N,3-디메틸펜탄아미도)-1-히드록시-4-메틸펜틸)티아졸-4-카르복실산 (1.003 g, 82%)을 무정형 고체로서 수득하였다. LC-MS: 509 [M+1].
중간체 72
Figure pct00089
피리딘 (19.47 mL) 중 중간체 71 (1.0026 g, 1.96 mmol)의 용액을 빙수조에서 냉각시키고, 아세트산 무수물 (0.927 ml, 9.82 mmol)을 교반하면서 첨가하였다. 조를 실온으로 가온하고, 교반을 24시간 동안 계속하였다. 이어서, 용액을 빙수조에서 냉각시키고, 탈기수/디옥산의 1:1 (v/v) 용액 (40 mL)을 첨가하였다. 조를 실온으로 가온하고, 교반을 22시간 동안 계속하였다. 잔류물을 증발에 의해 농축시키고, 잔류물을 역상 크로마토그래피에 의해 ACN/H2O (0.1% TFA), ACN 5%에서 50%를 사용하여 14분 내에 정제하고, 순수한 분획을 동결건조시켜 2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((2R,4R)-1,4-디메틸피페리딘-2-카르복스아미도)-N,3-디메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복실산 (0.945 g, 72.2%)을 무색 고체로서 수득하였다.
LC-MS: 551 [M+1]; 1H NMR (400 MHz, 메탄올-d4) δ ppm 0.85 (d, J=6.53 Hz, 3 H), 0.88 - 0.98 (m, 4 H), 0.98 - 1.08 (m, 6 H), 1.10 - 1.28 (m, 4 H), 1.59 (ddd, J=13.49, 7.47, 2.89 Hz, 1 H), 1.70 (d, J=14.05 Hz, 1 H), 1.81 - 2.12 (m, 5 H), 2.12 - 2.25 (m, 3 H), 2.32 (d, J=7.78 Hz, 2 H), 2.72 - 2.93 (m, 4 H), 3.07 - 3.18 (m, 4 H), 4.02 (d, J=10.54 Hz, 1 H), 4.10 - 4.39 (m, 1 H), 4.65 - 4.76 (m, 1 H), 5.64 - 5.80 (m, 1 H), 8.30 - 8.39 (m, 1 H), 8.66 (d, J=7.28 Hz, 1 H).
중간체 73
Figure pct00090
중간체 72 (100 mg, 0.18 mmol)를 DCM (5 mL) 중 2,3,4,5,6-펜타플루오로페놀 (49.32 mg, 0.27 mmol) 및 DIC (41.34 μl, 0.27 mmol)의 용액에 0℃에서 첨가하였다. 용액을 실온에 도달하도록 하고, 4시간 동안 교반한 다음, 용매를 진공 하에 제거하였다. EtOAc (4 mL)를 혼합물에 첨가하고, 생성된 현탁액을 흡인 여과하여, 여과물 중 목적 활성화 산을 수득하였다. EtOAc를 진공 하에 제거한 다음, 건조 DMF (1.3 mL)를 첨가하고, 이어서 중간체 18 (52.2 mg, 0.18 mmol) 및 DIEA (0.213 mL)를 첨가하였다. 혼합물을 밤새 교반한 다음, DMF를 고진공 하에 제거하였다. 잔류물을 역상 크로마토그래피 (ACN/H2O, 10 mM 아세트산암모늄 함유, ACN 10%에서 80%, 20분 내)에 의해 정제하여 순수한 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((2R,4R)-1,4-디메틸피페리딘-2-카르복스아미도)-N,3-디메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-2-메틸-5-(4-니트로페닐)펜탄산 (85 mg, 59.3%)을 무색 고체로서 수득하였다. LC-MS: 787 [M+1]
화합물 6
Figure pct00091
25 mL 둥근 바닥 플라스크에 교반용 막대 및 중간체 73 (84.5 mg, 0.11 mmol) 및 MeOH (5 mL)를 채우고, Pd-C 10% (50 mg, 0.47 mmol)를 질소 하에 첨가하였다. 혼합물을 수소 풍선을 사용하여 1시간 동안 실온에서 수소화하였다. 조 LC/MS는 출발 물질의 생성물로의 완전한 전환을 나타내었다. 반응 혼합물을 규조토 패드를 통해 여과하고, 필터 상에서 MeOH로 세척하였다. 여과물을 감압 하에 농축시키고, 최종적으로 고진공 하에 건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((2R,4R)-1,4-디메틸피페리딘-2-카르복스아미도)-N,3-디메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-5-(4-아미노페닐)-2-메틸펜탄산 (79 mg, 97%)을 고체로서 수득하였다.
LC-MS: 757 [M+1]; 1H NMR (400 MHz, 메탄올-d4) δ ppm 8.10 (s, 1 H) 6.99 (d, J=8.28 Hz, 2 H) 6.65 (d, J=8.28 Hz, 2 H) 5.66 - 5.78 (m, 1 H) 4.71 - 4.80 (m, 1H) 4.24 - 4.43 (m, 2 H) 3.13 (s, 3 H) 2.77 - 2.83 (m, 2 H) 2.61 - 2.71 (m, 1 H) 2.49 - 2.56 (m, 1 H) 2.44 (s, 3 H) 2.27 - 2.40 (m, 2 H) 2.17 (s, 3 H) 1.86 - 2.04 (m, 4 H) 1.74 - 1.83 (m, 1 H) 1.53 - 1.69 (m, 3 H) 1.31 (br. s., 3H) 1.17 (d, J=7.03 Hz, 4H) 0.98 - 1.07 (m, 8 H) 0.93 (d, J=7.53 Hz, 6H) 0.83 - 0.87 (m, 3 H).
화합물 7-10에 대한 일반적 합성 반응식
Figure pct00092
중간체 74
Figure pct00093
수지 중간체 28 (0.2 g, 0.32 mmol)에 DMF (4 mL) 중 (S)-2-(((9H-플루오렌-9-일)메톡시)카르보닐아미노)-6-(tert-부톡시카르보닐아미노)헥산산 (0.300 g, 0.64 mmol), HATU (0.243 g, 0.64 mmol), 2,4,6-트리메틸피리딘 (0.128 mL, 0.96 mmol), 및 DIEA (0.168 mL, 0.96 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 2 mL), MeOH (3 x 2 mL), 및 DCM (3 x 2 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지 중간체 74를 후속 단계 반응에 사용하였다. LC-MS: 1221 (M + 1).
중간체 75
Figure pct00094
수지 중간체 74 (0.2 g, 0.32 mmol)에 DMF 중 20% 피페리딘 (2 mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 3 mL), MeOH (3 x 3 mL), DCM (3 x 3 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지 중간체 75를 후속 단계 반응에 사용하였다. LC/MS: 999 (M + H).
중간체 76
Figure pct00095
수지 중간체 75 (0.2 g, 0.32 mmol)에 DMF (2 mL) 중 2,5-디옥소피롤리딘-1-일 6-(2,5-디옥소-2,5-디히드로-1H-피롤-1-일)헥사노에이트 (0.148 g, 0.48 mmol)의 용액에 이어서 N-메틸모르폴린 (0.106 mL, 0.96 mmol)을 실온에서 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 3 mL), DCM (3 x 3 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지 중간체 76을 후속 단계에 사용하였다. LC-MS: 1192 (M + 1).
화합물 7
Figure pct00096
수지 중간체 76 (0.2 g, 0.32 mmol)에 실온에서 DCM (1 mL) 및 TFA (1 mL)를 첨가하였다. 혼합물을 실온에서 20분 동안 진탕시키고, 여과하였다. 수지를 DCM/TFA (1:1, 3 x 2 mL)로 세척하고, 합한 여과물을 진공 하에 증발시켰다. 잔류물을 역상 HPLC (ACN/물, 0.1%TFA, ACN 5%에서 75%, 14분 내)에 의해 정제하였다. 순수한 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((2R,4R)-1,4-디메틸피페리딘-2-카르복스아미도)-N-에틸-3-메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-5-(4-((S)-6-아미노-2-(6-(2,5-디옥소-2,5-디히드로-1H-피롤-1-일)헥산아미도)헥산아미도)페닐)-2-메틸펜탄산 (0.095 g, 22.48%)을 백색 고체로서 수득하였다.
LC-MS: 1092 [M+1]; 1H NMR (400 MHz, 메탄올-d4) δ ppm 7.99 (s, 1 H), 7.34 (d, J =8.53 Hz, 2 H), 7.10 (d, J=8.53 Hz, 2 H), 6.66 (s, 2 H), 5.64 (d, J=10.79 Hz, 1 H), 4.50 - 4.61 (m, 1 H), 4.21 - 4.35 (m, 2 H), 3.92 (d, J=9.29 Hz, 1 H), 3.69 (br. s., 1 H), 3.37 (t, J=7.15 Hz, 2 H), 3.15-3.35 ( m, 4H), 3.04 (dt, J=3.58, 1.85 Hz, 1 H), 2.84 (t, J=7.65 Hz, 2 H), 2.76 (d, J=7.03 Hz, 2 H), 2.62 (br. s., 2 H), 2.38 - 2.52 (m, 2 H), 2.25 (t, J=11.54 Hz, 1 H), 2.16 (t, J=7.40 Hz, 2 H), 2.04 - 2.11 (m, 4 H), 1.70 - 2.00 (m, 7 H) 1.42 - 1.69 (m, 11 H), 1.34 - 1.40 (m, 1 H), 1.27 (t, J=6.78 Hz, 3 H), 1.16 - 1.24 (m, 2 H), 1.01 - 1.14 (m, 7 H), 0.90 (d, J=6.78 Hz, 3 H), 0.94 (d, J=6.53 Hz, 3 H), 0.84 (t, J=7.40 Hz, 3 H), 0.79 (d, J=6.53 Hz, 3 H).
중간체 77
Figure pct00097
수지 중간체 28에 DMF (38 mL) 중 (S)-2-((((9H-플루오렌-9-일)메톡시)카르보닐)아미노)-5-우레이도펜탄산 (3.88 g, 9.76 mmol), HATU (3.71 g, 9.76 mmol), 2,4,6-트리메틸피리딘 (2.59 mL, 19.52 mmol) 및 DIEA (3.41 mL, 19.52 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 100 mL), MeOH (3 x 100 mL), 및 DCM (3 x 100 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지 중간체 77을 후속 단계 반응에 사용하였다. LC-MS: 1150 (M + 1).
중간체 78
Figure pct00098
수지 중간체 77에 DMF 중 20% 피페리딘의 용액 (35 mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시켰다. 생성된 수지를 여과하고, DMF (3 x 100 mL), MeOH (3 x 100 mL), 및 DCM (3 x 100 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였고, 약한 신호가 나타났다. 생성된 수지 중간체 78을 후속 단계 반응에 사용하였다. LC-MS: 928 (M + 1).
중간체 79
Figure pct00099
수지 중간체 78에 DMF (20 mL) 중 (S)-2-((((9H-플루오렌-9-일)메톡시)카르보닐)아미노)-3-메틸부탄산 (1.529 g, 4.50 mmol), HATU (1.713 g, 4.50 mmol), 2,4,6-트리메틸피리딘 (1.294 mL, 9.76 mmol) 및 DIPEA (1.705 mL, 9.76 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 75 mL), MeOH (3 x 75 mL), 및 DCM (3 x 75 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지 중간체 79를 후속 단계 반응에 사용하였다. LC-MS: 1250 (M + 1).
중간체 80
Figure pct00100
수지 중간체 79에 DMF 중 20% 피페리딘의 용액 (20 mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 75 mL), MeOH (3 x 75 mL), 및 DCM (3 x 75 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지 중간체 80을 후속 단계 반응에 사용하였다. LC/MS: 1028 (M + 1).
중간체 81
Figure pct00101
수지 중간체 80에 실온에서 DMF (18 mL) 중 2,5-디옥소피롤리딘-1-일 6-(2,5-디옥소-2,5-디히드로-1H-피롤-1-일)헥사노에이트 (1.157 g, 3.75 mmol)의 용액에 이어서 4-메틸모르폴린 (1.032 mL, 9.38 mmol)을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 75 mL), MeOH (3 x 75 mL), 및 DCM (3 x 75 mL)으로 세척하고, 진공 하에 건조시켰다. TFA를 첨가하여 소량의 수지를 절단하고, LC/MS에 의해 분석하였고, 목적 생성물의 형성이 나타났다. 수지 중간체 81을 후속 단계에 사용하였다. LC-MS: 1220 (M + 1).
화합물 8
Figure pct00102
81로부터의 수지에 DCM (40 mL) 중 TFA (2.89 mL, 37.54 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 5분 동안 진탕시키고, 생성된 수지를 여과하고, 추가의 50 mL DCM으로 세척하였다. 합한 추출물을 농축시켰다. 조 물질을 역상 HPLC (C18 칼럼, 0.1% TFA/물/0.1 TFA 아세토니트릴, 0-40%, 30분 방법)에 의해 정제하였다. 순수한 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((2R,4R)-1,4-디메틸피페리딘-2-카르복스아미도)-N-에틸-3-메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-5-(4-((S)-2-((S)-2-(6-(2,5-디옥소-2,5-디히드로-1H-피롤-1-일)헥산아미도)-3-메틸부탄아미도)-5-우레이도펜탄아미도)페닐)-2-메틸펜탄산 (0.620 g, 12.38%)을 백색 고체로서 수득하였다.
LC-MS: 1220 (M + 1); 1H NMR (400 MHz, CD3OD) δ ppm 8.03 (s, 1 H), 7.30 - 7.44 (m, 2 H), 7.07 (d, J=8.53 Hz, 2 H), 6.69 (s, 2 H), 5.53 - 5.68 (m, 1 H), 4.52 -4.63 (m, 1 H), 4.19 - 4.40 (m, 3 H), 4.01 - 4.12 (m, 2 H), 3.89 - 3.99 (m, 1 H), 3.56 - 3.74 (m, 1 H), 3.33 - 3.43 (m, 2 H), 3.23 - 3.32 (m, 1 H), 2.96 - 3.13(m, 4 H), 2.83 - 2.95 (m, 1 H), 2.66 - 2.83 (m, 3 H), 2.57 (br. s., 3 H), 2.40 - 2.52 (m, 2 H), 2.14 - 2.24 (m, 3 H), 2.02 - 2.11 (m, 4 H), 1.87 - 2.00 (m, 5 H), 1.72 - 1.87 (m, 4 H), 1.42 - 1.68 (m, 10 H), 1.16 - 1.28 (m, 5H), 1.09 (d, J=7.03 Hz, 6 H,) 0.76 - 0.96 (m, 16 H).
중간체 82
Figure pct00103
수지 중간체 38 (0.35 g, 0.56 mmol)에 DMF (5mL) 중 (S)-2-((((9H-플루오렌-9-일)메톡시)카르보닐)아미노)-6-((tert-부톡시카르보닐)아미노)헥산산 (0.525 g, 1.12 mmol), HATU (0.426 g, 1.12 mmol), 2,4,6-트리메틸피리딘 (0.223 mL, 1.68 mmol) 및 DIPEA (0.293 mL, 1.68 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 2시간 동안 진탕시킨 후, 생성된 수지를 여과하고, DMF (3 x 5 mL), MeOH (3 x 5 mL), 및 DCM (3 x 5 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LCMS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지 중간체 82를 후속 단계 반응에 사용하였다. LC/MS: 1221 (M + 1).
중간체 83
Figure pct00104
수지 중간체 82에 DMF 중 20% 피페리딘 (4mL)을 첨가하였다. 혼합물을 실온에서 6분 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 5 mL), MeOH (3 x 5 mL), DCM (3 x 5 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지 중간체 83을 후속 단계 반응에 사용하였다. LC/MS: 999 (M + 1).
중간체 84
Figure pct00105
수지 중간체 83에 실온에서 DCM (4mL) 중 2,5-디옥소피롤리딘-1-일 6-(2,5-디옥소-2,5-디히드로-1H-피롤-1-일)헥사노에이트 (0.259 g, 0.84 mmol)의 용액에 이어서 4-메틸모르폴린 (0.185 mL, 1.68 mmol)을 첨가하였다. 혼합물을 실온에서 6시간 동안 진탕시키고, 생성된 수지를 여과하고, DMF (3 x 5 mL), MeOH (3 x 5 mL), DCM (3 x 5 mL)으로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 수지로부터 절단하고, LC/MS에 의해 분석하였으며, 이는 반응이 완결되었음을 나타내었다. 생성된 수지 중간체 84를 후속 단계 반응에 사용하였다. LC-MS: 1192 (M + 1).
중간체 85
Figure pct00106
수지 중간체 84 (0.35g, 0.56 mmol)에 DCM (5 mL) 중 TFA (0.216 mL, 2.80 mmol)를 첨가하였다. 혼합물을 실온에서 10분 동안 진탕시켰다. 용매를 감압 하에 제거하였다. 잔류물을 DMSO 중에 용해시키고, 역상 HPLC (0.1 TFA/물/아세토니트릴, 20-80%, 14분)에 의해 정제하였다. 순수한 생성물을 함유하는 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-(1,2-디메틸피페리딘-2-카르복스아미도)-N-에틸-3-메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-5-(4-((S)-6-((tert-부톡시카르보닐)아미노)-2-(6-(2,5-디옥소-2,5-디히드로-1H-피롤-1-일)헥산아미도)헥산아미도)페닐)-2-메틸펜탄산 (0.123 g, 18.42%)을 백색 고체로서 수득하였다. LC/MS: 1192 (M + 1).
화합물 9
Figure pct00107
중간체 85 (95 mg, 0.08 mmol)에 DCM (1 mL) 중 TFA (0.123 mL, 1.59 mmol)의 용액을 첨가하였다. 혼합물을 실온에서 1시간 동안 진탕시켰다. 용매를 감압 하에 제거하였다. 잔류물을 DMSO 중에 용해시키고, 역상 HPLC (0.1 TFA/물/아세토니트릴, 10-70%, 10분)에 의해 정제하였다. 순수한 생성물을 함유하는 분획을 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((R)-1,2-디메틸피페리딘-2-카르복스아미도)-N-에틸-3-메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-5-(4-((S)-6-아미노-2-(6-(2,5-디옥소-2,5-디히드로-1H-피롤-1-일)헥산아미도)헥산아미도)페닐)-2-메틸펜탄산 (53.0 mg, 50.4%)을 백색 고체로서 수득하였다.
LC-MS: 1092 (M + 1).; 1H NMR (400 MHz, CD3OD) δ ppm 7.97 (s, 1 H), 7.36 (d, J=8.28 Hz, 2 H), 7.11 (d, J=8.28 Hz, 2 H), 6.65 (s, 2 H), 5.63 (d, J=11.29 Hz, 1 H), 4.34 (dd, J=8.28, 5.77 Hz, 1 H), 4.26 (br. s., 1 H),3.75-3.60 (m, 1 H), 3.32 - 3.46 (m, 4 H), 3.30-3.25 (m, 1 H), 2.71 - 2.90 (m, 5 H), 2.49 - 2.62 (m, 3 H), 2.27 (t, J=12.05 Hz, 1 H), 2.17 (t, J=7.40 Hz, 3 H) 2.00 - 2.12 (m, 5 H), 1.84 - 1.96 (m, 3 H), 1.72 - 1.84 (m, 4 H), 1.58 - 1.69 (m, 5 H), 1.47 - 1.56 (m, 4 H), 1.36 - 1.44 (m, 5 H), 1.14 - 1.30 (m, 6 H), 1.01 - 1.10 (m, 4 H), 0.93 (dd, J=13.93, 6.65 Hz, 7 H), 0.74 - 0.86 (m, 7 H).
중간체 86
Figure pct00108
수지 중간체 75 (0.20 g, 0.16 mmol)에 실온에서 DCM 중 2,5-디옥소피롤리딘-1-일-3-(2,5-디옥소-2,5-디히드로-1H-피롤-1-일)프로파노에이트 (85 mg, 0.32 mmol)의 용액에 이어서 DIEA (0.056 mL, 0.32 mmol)를 첨가하였다. 혼합물을 실온에서 4시간 동안 진탕시키고, 생성된 수지를 DMF (3 X 3 mL), DCM (3 X 3 mL), 및 MeOH (3 X 3 mL)로 세척하고, 진공 하에 건조시켰다. 소량의 화합물을 TFA/DCM (1:2)에 의해 수지로부터 절단하였다. 용매를 증발시킨 후, 조 생성물을 LC/MS에 의해 분석하였다. LC/MS는 커플링 반응이 완결되었음을 나타내었다. LC/MS: 1050.37 (M+1).
화합물 10
Figure pct00109
수지 중간체 86 (0.20 g, 0.16 mmol)에 실온에서 TFA / DCM (1:2, 3 mL)을 첨가하였다. 혼합물을 실온에서 10분 동안 진탕시키고, 여과하였다. 수지를 DCM (3 X 3 mL)으로 세척하고, 모든 여과물을 합하고, 감압 하에 증발시켜 조 생성물을 수득하였다. 조 생성물을 역상 HPLC (H2O 및 CH3CN, 0.1% TFA 함유, CH3CN 5%에서 40%, 12 CV의 길이 내)에 의해 정제하였다. 수집된 분획을 합하고, 동결건조시켜 (2S,4R)-4-(2-((1R,3R)-1-아세톡시-3-((2S,3S)-2-((2R,4R)-1,4-디메틸피페리딘-2-카르복스아미도)-N-에틸-3-메틸펜탄아미도)-4-메틸펜틸)티아졸-4-카르복스아미도)-5-(4-((S)-6-아미노-2-(3-(2,5-디옥소-2,5-디히드로-1H-피롤-1-일)프로판아미도)헥산아미도)페닐)-2-메틸펜탄산을 백색 분말 (70 mg, 35%)로서 수득하였다.
LC/MS: 1050.37 (M+1); 1H NMR (400 MHz, 메탄올-d4) δ 7.99 (s, 1H), 7.35 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.5 Hz, 2H), 6.65 (s, 2H), 5.64 (d, J = 10.9 Hz, 1H), 4.56 (d, J = 8.9 Hz, 1H), 4.28 (td, J = 11.3, 10.0, 6.1 Hz, 2H), 3.92 (d, J = 11.5 Hz, 1H), 3.69 (q, J = 6.8 Hz, 3H), 3.31 - 3.23 (m, 1H), 3.18 (s, 1H), 2.83 (t, J = 7.7 Hz, 3H), 2.76 (d, J = 7.1 Hz, 3H), 2.63 (s, 3H), 2.50 - 2.40 (m, 4H), 2.25 (t, J = 12.8 Hz, 1H), 2.06 (s, 4H), 2.00 - 1.69 (m, 8H), 1.69 - 1.52 (m, 6H), 1.53 - 1.31 (m, 4H), 1.28 (d, J = 6.4 Hz, 3H), 1.08 (d, J = 7.1 Hz, 7H), 0.92 (dd, J = 13.7, 6.7 Hz, 7H), 0.83 (t, J = 7.4 Hz, 4H), 0.78 (d, J = 6.6 Hz, 3H).
접합의 일반적 설명
항체를 함유하는 ADC는 이에 제한되지는 않지만 알데히드/쉬프 연결, 술프히드릴 연결, 산-불안정성 연결, 시스-아코니틸 연결, 히드라존 연결과 같은 표준 방법에 의해, 문헌 [Hamblett, Clin. Cancer Res. 2004, 10, 7063-7070; Doronina et al., Nat. Biotechnol. 2003, 21(7), 778-784 및 Francisco et al., Blood, 2003, 102, 1458-1465]에 의해 기재된 것과 유사한 방법에 의해, 및 하기 비제한 실시예의 적절한 변형에 의해 제조될 수 있다.
항체를 환원 조건 하에 PBS pH 7.2 중 40 몰 당량 TCEP 및 1mM EDTA를 3시간 동안 37℃에서 사용하여 처리하여 티올-반응성 종 예컨대 시스테인, 글루타티온, 금속을 제거하고, 항체 내 쇄간 디술피드 결합을 환원시킨다. 이 단계에 4℃에서 10,000 MWCO 투석 카세트 (써모 사이언티픽(Thermo Scientific))를 사용하여 PBS pH 7.2, 1 mM EDTA 중에서의 투석의 2 라운드가 이어진다. 디술피드 결합은 PBS pH 7.2, 1 mM EDTA 중 4시간 동안 25℃에서의 항체 상에서의 데히드로아스코르브산에 의한 산화에 의해 재형성된다. 그 후, 화학식 II의 화합물의 20 몰 당량을 PBS pH 7.2, 1 mM EDTA, 10% v/v DMSO (디메틸 술폭시드) (써모 사이언티픽) 중에서 1시간 동안 25℃에서 인큐베이션하여 항체의 반응성 티올 기를 통해 접합한다. 접합체는 여과에 의해 정제한다. 접합 반응물을 N-아세틸 시스테인 (시그마-알드리치(Sigma-Aldrich))의 4 몰 당량을 첨가하여 켄칭한다. 항체-약물 접합체를 5 mM NaPO4, pH 6 중 20K MWCO 카세트를 사용하여 4℃에서 밤새 투석하고, 이어서 5 mL 세라믹스 히드록시아파타이트 (CHT) 유형 II 카트리지 (바이오라드(Biorad))를 사용하여 정제한다. 접합체를 카트리지로부터 10 mM NaPO4 pH 6 및 0에서 2 M NaCl 선형 구배를 사용하여 용리시키고, 농축시키고, 완충제 교환에 의해 20 mM 히스티딘-HCl, pH 6.0 중에서 투석을 사용하여 제제화할 수 있다.
시험관내 증식 검정
아메리칸 타입 컬쳐 콜렉션(American Type Tissue Collection; ATCC) (미국 20108 버지니아주 마나사스 피.오. 박스 1549)으로부터 수득한 인간 암 세포주 (DU 145, NCI-N87, 및 MDA-MB-361)의 패널을 사용하여 본 발명의 튜부리신 화합물의 상대 세포독성을 결정하였다. 세포를 배양 배지에 조직-배양-처리된 96-웰 플레이트의 웰당 2,000 내지 5,000의 밀도로 80μl 부피로 플레이팅하고, 밤새 부착되도록 하였다. 시험 물품을 배양 배지 중에 희석시킴으로써 시험된 각각의 화합물의 5X 농축물을 제조하였다. 최종 용량 곡선이 단계적인 1:4 연속 희석물 시리즈에서 4μg/ml에서 61pg/ml에 이르도록 각각의 시험 물품 20 마이크로리터를 세포에 이중 또는 삼중으로 첨가하였다. 처리된 세포를 37℃ / 5% CO2에서 72 내지 144시간 동안 배양하였다. 프로메가(Promega)로부터의 셀타이터-글로(CellTiter-Glo) 발광 생존율 검정을 사용하여 상대 세포독성을 결정하였다. 간략하게, 셀타이터-글로 시약 100μl를 각각의 웰에 첨가하고, 10분 동안 실온에서 온화하게 진탕하면서 인큐베이션되도록 한 다음, 560nM에서의 각각의 샘플의 흡광도를 퍼킨 엘머 엔비전(Perkin Elmer EnVision) 발광측정기를 사용하여 판독하였다. 퍼센트 세포 생존율을 하기 식에 의해 계산하였다: (처리된 샘플의 평균 발광/대조 (비처리된) 샘플의 평균 발광) x 100. IC50 값을 그래프패드 프리즘(GraphPad Prism) 소프트웨어에 의해 로지스틱 비-선형 회귀 분석을 사용하여 결정하였다. 모든 화합물을 모든 세포주에 대해 검정하지 않았다. 표 I은 검정을 위한 데이터를 제공한다.
<표 I>
Figure pct00110
특허, 특허 출원, 논문, 교과서 등을 포함한 본원에 인용된 모든 참고문헌, 및 그에 인용된 참고문헌은, 이들이 이미 포함되어 있지 않은 경우에, 이로써 모든 목적을 위해 그 전문이 본원에 참조로 포함된다.

Claims (39)

  1. 화학식 I의 구조를 갖는 화합물 또는 그의 제약상 허용되는 염.
    <화학식 I>
    Figure pct00111

    여기서:
    R1은 CH3, 또는 CH2 CH3이고,
    R2는 H 또는 CH3이고,
    R3은 H 또는 NH2이고,
    n은 1 또는 2이다.
  2. 제1항에 있어서, n이 1이고, R1이 메틸인 화합물.
  3. 제1항에 있어서, R2가 메틸인 화합물.
  4. 제1항에 있어서, R3이 NH2인 화합물.
  5. 제1항에 있어서, n이 1이고, R1이 메틸이고, R2가 메틸이고, R3이 NH2인 화합물.
  6. 화학식 (Ii)의 화합물.
    Figure pct00112
  7. 화학식 (Iii)의 화합물.
    Figure pct00113
  8. 화학식 (Iiii)의 화합물.
    Figure pct00114
  9. 화학식 (Iiv)의 화합물.
    Figure pct00115
  10. 화학식 (Iv)의 화합물.
    Figure pct00116
  11. 화학식 (Ivi)의 화합물.
    Figure pct00117
  12. 화학식 II의 구조를 갖는 화합물 또는 그의 제약상 허용되는 염.
    <화학식 II>
    Figure pct00118

    여기서:
    R1은 CH3, 또는 CH2 CH3이고,
    R2는 H 또는 CH3이고,
    R4는 CH3, (CH2)4NH2, 또는 (CH2)3NHC(=O)NH2이고,
    R5는 H; C(CH3)(CH3)이고,
    R6은 NHC(=O), 또는 CH2이고,
    n은 1 또는 2이고,
    m은 0, 1, 2 또는 3이다.
  13. 제12항에 있어서, n이 1이고, R1이 메틸인 화합물.
  14. 제12항에 있어서, R2가 메틸인 화합물.
  15. 제12항에 있어서, R3이 NH2인 화합물.
  16. 제12항에 있어서, n이 1이고, R1이 메틸이고, R2가 메틸이고, R3이 NH2인 화합물.
  17. 제12항에 있어서, R4가 (CH2)4NH2인 화합물.
  18. 제12항에 있어서, R5가 H인 화합물.
  19. 제12항에 있어서, R6이 CH2인 화합물.
  20. 제12항에 있어서, m이 1인 화합물.
  21. 제12항에 있어서, n이 1이고, m이 1이고, R1이 메틸이고, R2가 메틸이고, R3이 NH2이고, R4가 (CH2)4NH2이고, R5가 H이고, R6이 CH2인 화합물.
  22. 화학식 (IIi)의 화합물.
    Figure pct00119
  23. 화학식 (IIii)의 화합물.
    Figure pct00120
  24. 화학식 (IIiii)의 화합물.
    Figure pct00121
  25. 화학식 (IIiv)의 화합물.
    Figure pct00122
  26. 화학식 II의 구조를 갖는 화합물 및 항체의 접합체인 항체-약물 접합체.
    <화학식 II>
    Figure pct00123

    여기서:
    R1은 CH3, 또는 CH2 CH3이고,
    R2는 H 또는 CH3이고,
    R4는 CH3, (CH2)4NH2, 또는 (CH2)3NHC(=O)NH2이고,
    R5는 H; C(CH3)(CH3)이고,
    R6은 NHC(=O), 또는 CH2이고,
    n은 1 또는 2이고,
    m은 0, 1, 2 또는 3이다.
  27. 제26항에 있어서, 항체가 모노클로날 항체인 항체-약물 접합체.
  28. 제26항에 있어서, 항체가 암 항원에 특이적인 항체-약물 접합체.
  29. 제26항에 있어서, 항체가 알렘투주맙, 베바시주맙, 브렌툭시맙, 세툭시맙, 겜투주맙, 이필리무맙, 오파투무맙, 파니투무맙, 리툭시맙, 토시투모맙 또는 트라스투주맙인 항체-약물 접합체.
  30. 화학식 (IIi)의 화합물 및 항체의 접합체인 항체-약물 접합체.
    Figure pct00124
  31. 화학식 (IIii)의 화합물 및 항체의 접합체인 항체-약물 접합체.
    Figure pct00125
  32. 화학식 (IIiii)의 화합물 및 항체의 접합체인 항체-약물 접합체.
    Figure pct00126
  33. 화학식 (IIiv)의 화합물의 접합체인 항체-약물 접합체.
    Figure pct00127
  34. 제1항 내지 제25항 중 어느 한 항의 화합물을 함유하는 제약 조성물.
  35. 제26항 내지 제33항 중 어느 한 항의 항체-약물 접합체를 함유하는 제약 조성물.
  36. 유효량의 제1항 내지 제25항 중 어느 한 항의 화합물을 암을 앓고 있는 대상체에게 투여함으로써 암을 치료하는 방법.
  37. 제36항에 있어서, 대상체가 편평 세포암, 소세포 폐암, 비소세포 폐암, 위장암, 호지킨 림프종, 비-호지킨 림프종, 췌장암, 교모세포종, 신경교종, 자궁경부암, 난소암, 간암, 방광암, 유방암, 결장암, 결장직장암, 자궁내막 암종, 골수종, 타액선 암종, 신장암, 기저 세포 암종, 흑색종, 전립선암, 외음부암, 갑상선암, 고환암, 식도암, 두경부암, 점액성 난소암, 담관암종 또는 신장 유두상 암종을 앓고 있는 것인 방법.
  38. 유효량의 제26항 내지 제33항 중 어느 한 항의 항체-약물 접합체를 암을 앓고 있는 대상체에게 투여함으로써 암을 치료하는 방법.
  39. 제38항에 있어서, 대상체가 편평 세포암, 소세포 폐암, 비소세포 폐암, 위장암, 호지킨 림프종, 비-호지킨 림프종, 췌장암, 교모세포종, 신경교종, 자궁경부암, 난소암, 간암, 방광암, 유방암, 결장암, 결장직장암, 자궁내막 암종, 골수종, 타액선 암종, 신장암, 기저 세포 암종, 흑색종, 전립선암, 외음부암, 갑상선암, 고환암, 식도암, 두경부암, 점액성 난소암, 담관암종 또는 신장 유두상 암종을 앓고 있는 것인 방법.
KR1020167031176A 2014-04-11 2015-04-10 튜부리신 유도체 KR20160142392A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201461978460P 2014-04-11 2014-04-11
US61/978,460 2014-04-11
PCT/US2015/025235 WO2015157594A1 (en) 2014-04-11 2015-04-10 Tubulysin derivatives

Publications (1)

Publication Number Publication Date
KR20160142392A true KR20160142392A (ko) 2016-12-12

Family

ID=54264545

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167031176A KR20160142392A (ko) 2014-04-11 2015-04-10 튜부리신 유도체

Country Status (19)

Country Link
US (2) US9427479B2 (ko)
EP (1) EP3129362A4 (ko)
JP (1) JP2017510661A (ko)
KR (1) KR20160142392A (ko)
CN (1) CN106458942A (ko)
AR (1) AR100006A1 (ko)
AU (1) AU2015243379B2 (ko)
CA (1) CA2945318A1 (ko)
CL (1) CL2016002548A1 (ko)
EA (1) EA032203B1 (ko)
IL (1) IL247822A0 (ko)
MA (1) MA39862A (ko)
MX (1) MX2016013373A (ko)
NZ (1) NZ725131A (ko)
PH (1) PH12016501995A1 (ko)
SG (1) SG11201608203RA (ko)
TW (1) TW201625662A (ko)
UY (1) UY36075A (ko)
WO (1) WO2015157594A1 (ko)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160142392A (ko) * 2014-04-11 2016-12-12 메디뮨 엘엘씨 튜부리신 유도체
JP2017512765A (ja) 2014-04-11 2017-05-25 メディミューン,エルエルシー 二重特異性her2抗体
CA2977589A1 (en) 2015-02-25 2016-09-01 William Marsh Rice University Desacetoxytubulysin h and analogs thereof
AU2016352967A1 (en) 2015-11-10 2018-06-21 Medimmune, Llc Binding molecules specific for ASCT2 and uses thereof
US11793880B2 (en) 2015-12-04 2023-10-24 Seagen Inc. Conjugates of quaternized tubulysin compounds
US11229708B2 (en) 2015-12-04 2022-01-25 Seagen Inc. Conjugates of quaternized tubulysin compounds
EP3411371A1 (en) * 2016-02-01 2018-12-12 Pfizer Inc Tubulysin analogs and methods for their preparation
SG11201808979UA (en) 2016-04-15 2018-11-29 Macrogenics Inc Novel b7-h3 binding molecules, antibody drug conjugates thereof and methods of use thereof
WO2018069289A1 (en) 2016-10-11 2018-04-19 Medimmune Limited Antibody-drug conjugates with immune-mediated therapy agents
EP3661963A1 (en) 2017-08-01 2020-06-10 MedImmune, LLC Bcma monoclonal antibody-drug conjugate
MX2020006192A (es) * 2017-12-31 2020-08-20 Hangzhou Dac Biotech Co Ltd Un conjugado de un analogo de tubulisina con enlazadores ramificados.
CN109456212A (zh) * 2018-12-03 2019-03-12 康化(上海)新药研发有限公司 一种沙库比曲中间体的合成方法
TWI753252B (zh) * 2019-05-03 2022-01-21 中國大陸商杭州多禧生物科技有限公司 含支鏈連接體的Tubulysin同系物偶聯物
US20230115871A1 (en) * 2019-06-24 2023-04-13 Hangzhou Dac Biotech Co., Ltd A conjugate of a cytotoxic agent to a cell binding molecule with branched linkers
EP4171653A2 (en) * 2020-06-24 2023-05-03 Regeneron Pharmaceuticals, Inc. Tubulysins and protein-tubulysin conjugates
WO2022053650A1 (en) 2020-09-11 2022-03-17 Medimmune Limited Therapeutic b7-h4 binding molecules
US20230183358A1 (en) 2021-11-10 2023-06-15 Astrazeneca Ab Antibody molecules and conjugates
GB202117928D0 (en) 2021-12-11 2022-01-26 Cancer Research Tech Ltd Immunotherapy for cancer
WO2024002938A1 (en) 2022-06-27 2024-01-04 Astrazeneca Ab Combinations involving epidermal growth factor receptor tyrosine kinase inhibitors for the treatment of cancer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7064211B2 (en) * 2002-03-22 2006-06-20 Eisai Co., Ltd. Hemiasterlin derivatives and uses thereof
EP1828776A4 (en) * 2004-12-09 2010-03-17 Eisai R&D Man Co Ltd TUBULINISOTYPE SEARCH IN CANCER THERAPY WITH HEMIASTERLINANALOGES
IT1394860B1 (it) * 2009-07-22 2012-07-20 Kemotech S R L Composti farmaceutici
US8394922B2 (en) * 2009-08-03 2013-03-12 Medarex, Inc. Antiproliferative compounds, conjugates thereof, methods therefor, and uses thereof
KR101733853B1 (ko) * 2011-11-17 2017-05-08 화이자 인코포레이티드 세포독성 펩티드 및 그의 항체 약물 접합체
AU2012348017A1 (en) * 2011-12-05 2014-07-03 Igenica Biotherapeutics, Inc. Antibody-drug conjugates and related compounds, compositions, and methods
WO2014126836A1 (en) * 2013-02-14 2014-08-21 Bristol-Myers Squibb Company Tubulysin compounds, methods of making and use
JP2017512765A (ja) * 2014-04-11 2017-05-25 メディミューン,エルエルシー 二重特異性her2抗体
KR20160142392A (ko) * 2014-04-11 2016-12-12 메디뮨 엘엘씨 튜부리신 유도체
WO2015155345A1 (en) * 2014-04-11 2015-10-15 Medimmune Limited Antibodies and antibody-drug conjugates

Also Published As

Publication number Publication date
JP2017510661A (ja) 2017-04-13
US10159745B2 (en) 2018-12-25
CL2016002548A1 (es) 2017-02-24
PH12016501995A1 (en) 2017-01-09
CA2945318A1 (en) 2015-10-15
EA201691963A1 (ru) 2017-06-30
EP3129362A4 (en) 2017-08-23
AR100006A1 (es) 2016-08-31
MX2016013373A (es) 2017-05-02
TW201625662A (zh) 2016-07-16
WO2015157594A1 (en) 2015-10-15
UY36075A (es) 2015-10-30
AU2015243379A1 (en) 2016-11-03
SG11201608203RA (en) 2016-10-28
IL247822A0 (en) 2016-11-30
US20160339114A1 (en) 2016-11-24
NZ725131A (en) 2018-03-23
MA39862A (fr) 2017-02-15
AU2015243379B2 (en) 2018-02-01
EA032203B1 (ru) 2019-04-30
EP3129362A1 (en) 2017-02-15
US9427479B2 (en) 2016-08-30
US20150291657A1 (en) 2015-10-15
CN106458942A (zh) 2017-02-22

Similar Documents

Publication Publication Date Title
US10159745B2 (en) Tubulysin derivatives
JP7138350B2 (ja) 共役連結体、該連結体を含有する細胞結合分子-薬物共役体、並びに該共役体及び連結体の使用及び製造方法
KR102434626B1 (ko) 항-b7-h3 항체 및 항체 약물 콘쥬게이트
CA3013412C (en) Specific conjugation linkers, specific immunoconjugates thereof, methods of making and uses such conjugates thereof
CA2991975C (en) Novel linkers and their uses in specific conjugation of drugs to a biological molecule
CA2852860C (en) Cytotoxic peptides and antibody drug conjugates thereof
EP3270965B1 (en) Cd48 antibodies and conjugates thereof
JP2023530128A (ja) 細胞結合分子とカンプトテシン類縁体との共役体
CA2934617A1 (en) Antibody drug conjugates (adcs) with kinesin spindle protein (ksp)
CA2990398A1 (en) Antibody drug conjugates of kinesin spindel protein (ksp) inhibitors with anti-cd123-antibodies
CA3082912A1 (en) Anti-cd22 antibody-maytansine conjugates, combinations, and methods of use thereof
KR20210106467A (ko) 튜불리신 및 단백질-튜불리신 접합체
JP2023553808A (ja) Mcl-1阻害剤抗体-薬物コンジュゲートおよび使用方法
CA3222185A1 (en) Neodegrader-anti-cd33 antibody conjugates
CN114652853A (zh) 抗il-4r抗体-药物偶联物及医药用途
WO2021222783A1 (en) Anti-tm4sf1 antibody drug conjugates and methods of using same
NZ788873A (en) Anti-B7-H3 antibodies and antibody drug conjugates
NZ624470B2 (en) Cytotoxic peptides and antibody drug conjugates thereof