KR20160136993A - Aquaculture method for seahorse fry - Google Patents

Aquaculture method for seahorse fry Download PDF

Info

Publication number
KR20160136993A
KR20160136993A KR1020150071441A KR20150071441A KR20160136993A KR 20160136993 A KR20160136993 A KR 20160136993A KR 1020150071441 A KR1020150071441 A KR 1020150071441A KR 20150071441 A KR20150071441 A KR 20150071441A KR 20160136993 A KR20160136993 A KR 20160136993A
Authority
KR
South Korea
Prior art keywords
hippocampus
water
fry
breeding
days
Prior art date
Application number
KR1020150071441A
Other languages
Korean (ko)
Other versions
KR101744393B1 (en
Inventor
노섬
노경언
신상옥
Original Assignee
노섬
노경언
신상옥
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 노섬, 노경언, 신상옥 filed Critical 노섬
Priority to KR1020150071441A priority Critical patent/KR101744393B1/en
Publication of KR20160136993A publication Critical patent/KR20160136993A/en
Application granted granted Critical
Publication of KR101744393B1 publication Critical patent/KR101744393B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K61/00Culture of aquatic animals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish

Abstract

The present invention relates to a method for producing sea horse fry comprising: step (A) for stocking sea horse broodstork; step (B) for mating the sea horse broodstork in step (A) at a male and female rate of 1:1; step (C) for collecting sea horse fry born in (B) step; step (D) for acclimating the sea horse fry in step (C) in breeding water by stages with brackish water salinity within 1-5 days of a birth thereof; and step (E) for re-acclimating the sea horse fry in step (D) in breeding water with sea water salinity within 15-30 days. In addition, step (C), step (D), or step (E) is performed by irradiating light from the bottom surface of the farming water tank. As the method of producing sea horse fry is provided, provided is a method capable of lowering a mortality rate of conventional sea horse larvae and fry, and producing sea horse fry stable and to be cultured.

Description

Seahorse, a method of producing a fish {Aquaculture method for seahorse fry}

The present invention relates to a method of producing a hippocampus, and more particularly, to a method of producing a hippocampus capable of increasing the survival rate of the hippocampus by irradiating the bottom of the tank with the low- Production method.

For a long time, sea horses have attracted people's attention as a unique lifestyle, such as the unique shape of a fish, and the birth of a female egg, which is a hot-blooded egg. The hippocampus is a tibia fish belonging to the Syngnathidae along with seadragon, pipefish, and is known to live in 36 species worldwide. Five species are known in Korea including Hippocampus kuda , H. hiatrix , H. coronatus , H. marinikei and H. trimaculatus . It lives in seaweed and seabird communities.

The hippocampus has a tail that can fix the body to the substrate, and the head is perpendicular to the body. The hippocampus lives in a monogamous lifestyle and breeds in a unique way for males to breed. At the breeding season, females and males wrap their tail together and mate, and the female lays eggs in the pouch (nursery bag) on the male's abdomen. From this time, the males not only take care of the embryos and hatch them, but also raise their offspring in their belts until they grow to some degree. When a male's stomach is getting more and more, and the baby's hippocampus grows up to about 1 cm, the male sends out a hippocampus, which already has the shape of an adult.

The hippocampus has attracted a lot of attention in the world market for ornamental fish market due to its unique and beautiful appearance and slow and elegant movements. In China, it has traditionally been used as various medicines from asthma to erectile dysfunction. In Korea, the hippocampus also acts on the liver and kidneys to protect the ovaries and promote blood circulation. The erectile dysfunction caused by weakness of the kidneys, nocturnal enuresis, symptoms of atrophy of the testicles, Of mental breakdown and abdominal pain.

In particular, the annual consumption of hippocampus in the Chinese medicinal product market is estimated to reach 25 million, and the price is also used as a high-quality medicinal product that is priced at 2 million won per kilo to 10 million won. Most of the hippocampus consumed in China has been naturally harvested from natural sources such as Southeast Asia.

In 2004, however, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) designated hippocampus as an endangered species, Illegal capture is prohibited, and in the Southeast Asian countries, the ban on fisheries is being reduced to preserve the fishery resources of the country. In the natural state, hippocampus, which is easily caught by low reproductive rate and slow swimming, has become indiscriminately over - exploited as the market has grown. In fact, hippocampal populations in some Southeast Asian regions such as the Philippines have been reported to have decreased by more than 70%.

However, since CITES regulates only wild animals, cultured hippocampus produced in aquaculture facilities is excluded from the regulation and is available as a target organism for international trade. However, hippocampus is very sensitive to the environment, and it is a species with a high mortality rate which causes mass mortality easily even in small environmental changes.

Currently, only 16 countries, including China and Australia, are cultivating hippocampus. Since the first artificial breeding in Guangdong in China in 1957, studies on hippocampal artificial breeding have been conducted, but commercial scale began in Australia, New Zealand and the United States in the 1990s. In particular, since 2000, Australia has launched a mass production of hippocampus for big-belly seahorse ( H. abdominalis ), and nine Australian and New Zealand companies have shipped 170,000 a month, In the pharmaceutical market. In China, the largest consumer of hippocampus, workshops on hippocampal aquaculture, conservation and management are being actively carried out, and they are jumping into global western sea horse wars.

However, one of the reasons that the hippocampus has not been active in the global supply shortage of hippocampus is that it has a very high mortality rate of hippopotamus and fries, and it is difficult to establish the method of breeding . Particularly, the hippocampus moves up and down by controlling the amount of air in the breeze while using the fins in vertical swimming. In this process, when the air is inhaled excessively, it floats on the surface of the water and can not go down to the floor. .

In addition, it has been difficult to produce hippocampus even at a possible fertilization stage since the massive deaths occurred within 12 days after the birth of hippocampus hippocampus, and since it is influenced by food feeding and growing environment, Research on the establishment of

Korean Patent No. 10-1054365 discloses a water tank filled with seawater so that horses can be reared, and water inside the seawater filled in the tank so that food creatures of marine feathers featuring daylight characteristics can be collected in the central area of the water filled in the tank And it emits light so that the food creatures of the sea horses gather in the central area of the sea so that the sea horses can prevent the dead sea bubbles from being blown during feeding to improve the survival rate of the sea horses We have started breeding tank for fry. In Korean Patent No. 10-0979406, seawater settlement and aquaculture methods are used in which fishes of trout and salmon are moved into a breeding tank, and seawater adapted to continuously increase the salinity of the water in the breeding tank so as to survive at a salinity corresponding to the seawater An adaptation step, and a step of culturing the fish through the seawater adaptation step in seawater. Korean Patent No. 10-0820041 discloses a hatching growing step of hatching eggs of a fish in a water tank for a predetermined period of time. The hatching step is a step of moving the fish through the hatching growing step into the aquaculture tank, Increase to Wherein the step of adapting the seawater adaptation step comprises adapting the seawater adaptation step so that the seawater is adapted to be able to survive at a salinity corresponding to the seawater, and a shipping step of shipping the fish through the seawater adaptation step. Of the present invention. Korean Patent Laid-open Publication No. 10-2009-0111066 discloses a method comprising: i) performing seawater fermentation for 48 hours at a salt content of 7.5 ‰ or less; Ii) seeding the seawater at a temperature of 15 ‰ or lower for 48 hours; And iii) a step of conducting seawater fermentation for 48 hours at a salt content of less than 22.5 ‰, and a method of storing or distributing fermented shark at a salt content of 30 ‰ or less. However, the above-mentioned inventions relate to the seawater settlement for the convenience of seawater and fresh water passages of migratory fishes and the convenience of the aquaculture process, and the seawater settlement method for improving the survival rate of cultured hippocampus And the purpose, composition, and effect of the.

The hippocampus continues to be a supply shortage worldwide every year and is emerging as a high-value-added farming species. However, hippocampal horses have a very high mortality rate, and hippocampus habit was very difficult. In particular, there were massive deaths within 12 days after the birth of hippocampus, and there was difficulty in producing hippocampus capable of breeding.

Therefore, it is urgent to establish a method to produce hatchery fry that can be cultured stably by studying various breeding conditions after hatching. It is an object of the present invention to provide a method for lowering the mortality of such conventional hippocampus and fry, and for producing stable and formable hatchlings.

In order to solve the above problems, the present invention provides a method for controlling a hippocampus, comprising the steps of (A) hatching a hippocampus, (B) subjecting the hippocampus of the step (A) (C) collecting a flea of a hippocampus, (D) cultivating the horses of the step (C) in a stepwise manner by raising the number of breeding water to the sea saltiness within one to five days of the birth, (C), (D), or (E), the step (E) of rearing the breeding water to the sea water salinity within 15 to 30 days after the hatching The method of producing hippocampus is provided.

The production of hippocampus according to the present invention can significantly increase the survival rate of hippocampal hippocampus at the early stage of hippocampus birth, which has caused massive deaths, thereby producing hippocampus capable of producing high value-added hippocampus, .

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing systematic steps of a method for producing hippocampus of the present invention.
Fig. 2 is a photograph showing the external shape of five kinds of hippocampus H. kuda , H. reidi , H. barbouri, H. abdominalis, and H. coronatus used in the present invention.
FIG. 3 is a graph showing the survival rate of H. abdominalis larvae raised at a salinity of 18 ppt according to the age of rearing.
FIG. 4 is an exploded perspective view of a water tank for hippocampus with lower illumination for hippocampus production.
FIG. 5 is a photograph showing the results of light irradiation at the bottom of the water tank during each critical period after the birth of H. kuda , H. reidi , H. barbouri, H. abdominalis, and H. coronatus hippocampus, And the survival rate of hippocampus.

The present invention relates to a method of producing a fryer capable of adapting to the environment by stabilizing food feeding right after birth. Hereinafter, a concrete example will be described in detail based on experiments conducted to establish the method for producing hippocampus of the present invention.

When a hermaphrodite child is born, it is born with the same shape as a sextant. However, the swimming ability is weak, the tail is wrapped around the support (substrate), and the stable water in the bottom of the tank is not stable enough to be swallowed up by the water in the breeding water. These massive dead organisms occur 2-3 times depending on the type of hippocampus during the aquaculture process. The inventors managed to divide the high risk period of the hippocampus into critical periods for each type of hippocampus.

The critical period of the risk of mass mortality in hippocampal aquaculture varies from hippocampus to 7 days, from 10 to 16 days, and from 80 to 90 days, especially from 30 to 50 days after birth Reducing the mortality rate was the most important factor in healthy hatchery production. Therefore, the present inventor completed the present invention while establishing breeding conditions from 30 to 50 days immediately after birth of hippocampus.

BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram showing systematic steps of a method for producing hippocampus of the present invention. The present invention relates to a method for producing a hippocampus, comprising the steps of (A) picking up a hippocampus, (B) mating the hippocampus of step (A) at a ratio of 1: 1, collecting hippocampus (C) a step (D) of raising the horseshoe in step (C) in a stepwise manner by raising the rabbits in the rabbit salinity within 1 to 5 days of the birth, the horses in step (D) (E), wherein the step (C), the step (D), or the step (E) comprises the step of re- And then performing the inspection.

1. Hippocampal management

The target species for mass production of hippocampus are ① external form considering beauty and body color ② body shape should be large compared with that used for ornamental and industrial ③ economical thing that can reduce production cost in consideration of environmental characteristic of Korea ④ It is easy to produce because of its rapid growth considering species specificity.

Fig. 2 is a photograph showing the outer shapes of five kinds of hippocampus H. kuda , H. reidi , H. barbouri, H. abdominalis, and H. coronatus used in the present invention. Based on the hippocampus selection criteria, five species were selected for breeding H. kuda , H. reidi , H. barbouri , H. abdominalis and domestic H. coronatus .

The hippocampus were stabilized for 2 ~ 3 days in the preliminary tank before being stored in the experimental water tank, and then treated for 3 hours with fresh water bath and formalin at 100ppm for 3 days to disinfect disease and parasites.

2. Childbirth Earthen  secure

The hatchlings were placed in 10 round water tanks (500L) each of 30 male and female hatchlings and mated with a male to female ratio of 1: 1. In the general fish with complete aquaculture technology, female eggs and male semen are separated and collected during the production of seedlings, and then artificially fertilized to produce the fishes and fry.

On the other hand, hippocampus induces the female to nurse the male nursery pouch through natural mating of the male and female pairs (male and female), and the male acquires the eardrum through the natural process of giving birth to the baby hippocampus two to four weeks later . The males of hippopotamus are transferred to the feeding tanks after mating, and about 200 to 1,000 females are born each month depending on the species.

3. Breeding of poultry and fish

(One). Decrease in mortality due to nesting

Hippocampus immediately after birth decreased in swimming ability and could not be stabilized in the lower part of the breeding tank, and mass mortality within 5 ~ 7 days was frequent, and 100% of the hippocampus was killed all the time. . In order to improve the mortality rate, the present inventors conducted seedling production experiments in consideration of the natural ecological environment in which the hippocampus and the fry were inhabited. The habitat of H. abdominalis is mainly a shallow water aquifer, and in the case of H. kuda , it is known that the mangrove of the nose area is thick.

Therefore, H. abdominalis and H. kuda are presumed to have the ability to adapt to low salt environment, and if horses of these species survive adaptation to low salt environment, change in energy consumption and related metabolic rate , Which may have a positive effect on food intake and digestion.

Therefore, the inventors of the present invention measured hatching of fish in a salt water environment of 18 ppt which is the general salinity of offshore or mangrove habitat, and measured food intake, growth state and mortality. During the salinity adjustment of the breeding water, the method of raising horseshoe and feathers is to select the method of ring modification, and in principle, the time to adjust the salinity is exponential, and at intervals of 4-5 days, At night, only the water of the adjusted salinity is drained, and the water quality is stabilized and the remaining food organisms and organic matter are discharged smoothly.

H. abdominalis for low salt feeding Shortly after birth, 300 rabbits were transferred to 4 experimental water tanks, and the number of breeding water which was 34 ppt in 3 experimental tanks was reduced to 24 ppt on the first day and 18 ppt on the second day, and then 18 ppt ≪ / RTI > The other experimental tank continued to maintain a salinity of 34 ppt. During the experimental period, the hatching rate of alfalfa was fed on the basis of feeding four times a day and the amount of food remaining was investigated.

Survival after 20 days of H. abdominalis larvae raised at 18 ppt of salinity Experimental Section Total number of grains Survival Survival rate (%) 34 ppt 300 48 16 18 ppt-1 300 277 92.3 18 ppt-2 300 280 93.3 18 ppt-3 300 268 89.3

Table 1 shows the survival rates of H. abdominalis larvae after 20 days of fertilization with 18 ppt similar to the salinity of normal nursing water. H. abdominalis larvae died at 84 ppt within 20 days of birth when they were raised at 34 ppt, which is the common saltwater exposure with their parents at birth. Thereafter, the mortality rate is further increased in the second and third critical periods. However, the survival rate of H. abdominalis larvae was significantly increased to 92.3, 93.3, and 89.3% in the three experimental groups when the salinity of H. abdominalis was adjusted to 18 ppt.

FIG. 3 is a graph showing the survival rate of H. abdominalis larvae raised at a salinity of 18 ppt according to the age of rearing. In the control group of 34 ppt of the rearing water resistance, more than 70% of the individuals died from the 3rd day after the rearing started.

However, when the salinity of cattle was converted to 18 ppt, H. abdominalis It was found that the larvae adapt to low-salinity water during the 20-day rearing period, and that the dead organisms also decreased dramatically, and that they could be reared without the primary critical period mass mortality with the highest mortality rate in hatchery production .

These results seem to be related to the metabolic energy of osmotic control of fish. In order for organisms to maintain their life activities, it is important to keep the environment within the body physiologically within a certain range. The osmolality of osseous fishes is maintained at 300mOsm / kg irrespective of freshwater fishes and sea fishes. Both freshwater fish and sea water fish use energy.

Therefore, lowering the salinity in the early growth stage of hippocampus, which requires a lot of energy, can save the energy consumed in the control of osmotic pressure, which is considered to be helpful in increasing the survival rate of fishes and fishes.

After 15 ~ 20 days, depending on the species, the number of reared water was changed to 30 ~ 36 ppt, especially 34ppt, which was the same as the number of hatching of hippocampus, and the survival rate did not decrease sharply.

(2). Reduced mortality from under illumination

H. abdominalis , H. barbouri And H. coronatus were able to significantly reduce the mortality rate of the first critical period by transferring 34 ppt of freshwater to the low salt feeding channel, but H. kuda and H. reidi still showed high mortality rate. H. kuda and H. reidi were more abundant than H. abdominalis , H. barbouri, and H. coronatus . H. kuda died in 34% H. reidi and 36% died in drifting larvae after the conversion to low salt feeding.

Most of the drifting sea hippocampus seems to come up to the rearing water along with the larvae of the swimmers. Once they are inhabited by the breeding water, they can not descend to the bottom of the tank by the magnetic force of the hippocampus. Therefore, it is necessary to keep the biological food in the lower part of the breeding tank so that the hippocampus can be stably placed in the lower part of the breeding tank and can be fed. For this purpose, we used the luminosity of food organisms.

Appearance of drifting fishes per hippocampus depending on location of illumination (10 days after birth) Seahorse type Initial population Number of migratory birds appearing 10 days after birth Water tank top surface Aquarium side Aquarium bottom   H. kuda 200 68 26 2   H. coronatus 200 5 3 0   H. reidi 200 72 31 2   H. barbouri 200 6 2 0   H. abdominalis 200 8 One 0

Table 2 shows the frequency of appearance of drifting larval fish species by location of illuminator after 10 days of hatching. H. kuda , H. reidi , H. barbouri , H. abdominalis and H. coronatus were separated into three experimental water tanks immediately after each birth, and were irradiated with low salt water. Side and bottom of the tank, and recorded the number of drifting larvae.

As a result, the hippocampus of H. abdominalis , H. barbouri, and H. coronatus was not affected by the location of the lighting system and the mortality rate was significantly reduced by the low salt level. However, when light was irradiated to the lower part of the water tank by installing the lighting device on the bottom of the water tank, the number of drifting larvae decreased significantly.

In order to clarify the effect of the water tank with illuminating device on the survival rate of hippocampus, we investigated the differences in the number of drifting habitat in H. kuda and H. reidi , Respectively.

H. kuda and H. reidi were randomly selected from 100 rabbits immediately after birth and were divided into two groups A and B in the conventional breeding tanks and three groups A, B and C in the hatchery breeding tanks having the lower illuminance according to the present invention Groups of dogs were reared for two weeks each, and the number of drifting larvae floating on the rearing surface during the breeding was measured.

As shown in Table 3, the mortality rate of the hippocampus raised in the conventional breeding tank was 44.5% on average, and the mortality rate of the hippocampus raised in the hippocampal breeding tank according to the present invention was 2.8% And the survival rate of hippocampus and fry were significantly increased in the critical period with a rapid mortality immediately after the birth of the hippocampus.

Comparison of the number of drifting fishes in two-week-old births in a conventional fish breeding tank for each hippocampal fish species and in a hippocampal fish tank having the bottom light according to the present invention      Fish species Conventional breeding tank The horseracing fish tank of the present invention A B A B C H. kuda 52 38 2 0 2 H. reidi 46 42 One 3 3 Sum 98 80 3 3 5 Mortality (%) 49 40 1.5 1.5 2.5

FIG. 4 is an exploded perspective view of a water tank for hippocampus with lower illumination for hippocampus production. In the case of H. kuda and H. reidi , 34% and 36% mortality was obtained with the low salt and the seawater when the lighting system was installed on the surface of the water tank, and the mortality rate was 13% 15.5 percent. In addition, when the lighting device was installed on the bottom of the water tank and the light was irradiated to the lower part of the water tank, the appearance of drifting larvae remarkably decreased and only 1% of each of H. kuda and H. reidi drifted on the rearing water Could know. Therefore, it was possible to significantly reduce the mortality of the hippocampus by irradiating light to the lower part of the tank by installing a lighting device on the bottom of the tank.

According to the hippocampal culturing method of the present invention, growth and survival rate Kinds Average length after birth (mm) Breeding days (days) Average length after breeding days (mm) Survival rate after the blast days (%)  H. kuda 4.15 30 18.6 65.5  H. coronatus 12.65 30 21.8 69  H. reidi 6.1 53 32.6 66  H. barbouri 9.47 30 20.3 78.5  H. abdominalis 12.8 34 36.8 79

Table 4 shows the results of light irradiation at the bottom of the water tank after the birth of H. kuda , H. reidi , H. barbouri, H. abdominalis, and H. coronatus hippocampus, And the survival rate. The number of days of breeding of each species was the first critical period, which was the highest rate of mortality, and 150-300 hippocampus was housed in the experimental tank according to the size of each hippocampus. In addition, low salinity water was changed to 24 ~ 26ppt until the 4th day of hippocampus and 18 ~ 20ppt until 5th day so as to be advantageous for mass production system.

As shown in Table 4, the survival rate was 65% or more in all five species tested. Therefore, we have established five types of hatchery breeding methods that can be cultivated in low salt water level and bottom lighting system.

Also, in order to prevent the hippopotamus from being drifted and becoming dead, a horizontal drain pipe 130 is provided for quickly removing the floating food on the breeding water at the time of water return at night. It is formed by the water flow formed in the breeding water, and the food which is not staying in the breeding water floats on the breeding water surface and is raised along with the foreign matter floating on the breeding water surface. And drained along with the breeding water by the horizontal drainage pipe (130).

The drainage pipe (130) is formed parallel to the breeding water surface, and a drainage network (140) is formed on the surface that meets the direction of flow of the breeding water, and breeding water is drained through the through hole. In addition, the opposite surface of the through hole was formed as a horizontal drain pipe having a wall, so that the water containing floating matters was drained without being collected.

Therefore, the floating water that is floating on the rearing water is drained through the general water recharge process. The amount of water in the breeding water is determined by the infusion amount of the breeding water and the amount of water discharged, and the amount of water in the water tank 100 is determined according to the position where the water drainage pipe 130 is formed. Thus, the floating food of the rearing water can be quickly removed, and the seahorse can be prevented from drifting to the rearing water after the rearing of the seagrass.

FIG. 5 is a photograph showing light from the bottom of the water tank during each critical period after the birth of H. kuda , H. reidi , H. barbouri, H. abdominalis, and H. coronatus hippocampus, And the survival rate of hippocampus. The low - salinity water was re - sampled by sea water between 15 and 30 days depending on species. As shown in FIG. 5, both the survival rate and the growth rate were both good, and healthy fry required for mass production of hippocampus was produced.

The present invention can contribute to the increase of income of farmers and fishermen in high-value-added fish farming by providing a method of stable mass production of hippocampal hippocampus, which is difficult to produce due to lack of supply worldwide but high mortality rate, .

100: aquaculture tank 110: aquarium tank
120: vertical drain pipe 130: horizontal drain pipe
140: drainage network 150: drainage pipe
170: Bubble generator 180: Breeding order intake
200: Lighting filter
300: light source unit 310: light source fixture
310: light source reflector 340:

Claims (4)

(A) a step of stocking a hippocampus;
(B) mating the hippocampus of step (A) at a ratio of 1: 1 male and female;
(C) collecting marine fry from the step (B);
(D) a step of raising the marine fry in step (C) in a stepwise manner at a rabbit salinity within 1 to 5 days of birth;
(E) reconstituting the breeding water to the sea salt salinity within 15 to 30 days of the hatching of the hatching in the step (D).
[3] The method according to claim 1, wherein the salinity in the step (D) is 18 to 20 ppt, and the salinity in the step (E) is 30 to 36 ppt.
The method according to claim 1, wherein the step (C), the step (D), or the step (E) is performed by irradiating light on the bottom of the breeding tank.
The method according to claim 1, wherein the hippocampus is one of H. kuda , H. reidi , H. barbouri, H. abdominalis, or H. coronatus .
KR1020150071441A 2015-05-22 2015-05-22 Aquaculture method for seahorse fry KR101744393B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020150071441A KR101744393B1 (en) 2015-05-22 2015-05-22 Aquaculture method for seahorse fry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020150071441A KR101744393B1 (en) 2015-05-22 2015-05-22 Aquaculture method for seahorse fry

Publications (2)

Publication Number Publication Date
KR20160136993A true KR20160136993A (en) 2016-11-30
KR101744393B1 KR101744393B1 (en) 2017-06-09

Family

ID=57707734

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020150071441A KR101744393B1 (en) 2015-05-22 2015-05-22 Aquaculture method for seahorse fry

Country Status (1)

Country Link
KR (1) KR101744393B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106818562A (en) * 2017-02-24 2017-06-13 天津农学院 A kind of artificial culturing method of hippocampus seedling
CN107372212A (en) * 2017-07-18 2017-11-24 青岛浩然生态海洋水产科技有限公司 A kind of hippocampus seed net cage forms method
CN111631185A (en) * 2020-06-04 2020-09-08 中国水产科学研究院东海水产研究所 Low-quality Hippocampus grey seedlings cultivation method utilizing cultivation background and illumination
CN115486390A (en) * 2022-09-23 2022-12-20 中国水产科学研究院东海水产研究所 Device and method for promoting recovery of male hippocampus during air blowing of infant raising sac

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100820041B1 (en) * 2007-08-03 2008-04-08 김종철 Fish breeding method using osmotic pressure control ability thereof
CN102232362B (en) * 2010-05-06 2013-06-05 海南龙盛生物科技发展有限公司 Biological cultivation method of sea horse

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106818562A (en) * 2017-02-24 2017-06-13 天津农学院 A kind of artificial culturing method of hippocampus seedling
CN107372212A (en) * 2017-07-18 2017-11-24 青岛浩然生态海洋水产科技有限公司 A kind of hippocampus seed net cage forms method
CN111631185A (en) * 2020-06-04 2020-09-08 中国水产科学研究院东海水产研究所 Low-quality Hippocampus grey seedlings cultivation method utilizing cultivation background and illumination
CN111631185B (en) * 2020-06-04 2022-01-11 中国水产科学研究院东海水产研究所 Large-scale low-quality hippocampus japonicus fry breeding method utilizing breeding background and illumination
CN115486390A (en) * 2022-09-23 2022-12-20 中国水产科学研究院东海水产研究所 Device and method for promoting recovery of male hippocampus during air blowing of infant raising sac
CN115486390B (en) * 2022-09-23 2023-08-29 中国水产科学研究院东海水产研究所 Device and method for promoting recovery of air-blowing male hippocampus of infant's sac

Also Published As

Publication number Publication date
KR101744393B1 (en) 2017-06-09

Similar Documents

Publication Publication Date Title
US20210227808A1 (en) Device and method for fish reproduction, hatching and larval culture
CN103493759B (en) A kind of grouper scale artificial seedling rearing method
KR100856855B1 (en) A method for using immature American Bullfrogs as feed
Fielder et al. Hatchery manual for the production of Australian bass, mulloway and yellowtail kingfish
CN102379254A (en) Controllable synchronous brooding breeding method of cherax quadricarinatus
KR101773247B1 (en) Aquaculture tank lighted from below for seahorse fry
KR101744393B1 (en) Aquaculture method for seahorse fry
CN109452203A (en) A kind of flat Rockfish deep water mesh cage large size seedling seed breeding method of Xu Shi
KR100872327B1 (en) Spawning induction by maturation management of Gizzard shad, Konosirus punctatus, and Hatchery technique
CN100370896C (en) Artificial breeding method for semi-smooth tongue sole
KR20130090285A (en) Seed production method of sea bass species through a food organism incubation
CN102919186B (en) Artificial breeding method for sillago sihama
US11310999B2 (en) Aquaculture process for the production of salmon eggs
KR101184458B1 (en) A raising system for raise lugworm seed
Chen et al. Sea cucumber aquaculture in China
Aydın et al. Turbot and flounder aquaculture
Ranjan et al. Good aquaculture practices for marine finfish hatchery
UA65842C2 (en) Method of commercial growing the giant freshwater prawn (macrobrachium rozenbergii)
CN102273419B (en) Method for cultivating Spanish mackerel
KR101839314B1 (en) mandarin fish farming method and the system thereof in early stage
KR101839315B1 (en) mandarin fish farming method and the system thereof in early stage
CN104585094A (en) Method for breeding Xenocypris argentea Gunther artificially
Jobling et al. Seabreams and Porgies (Family: Sparidae)
Ingram et al. Murray cod aquaculture—current information and current status
UA39757U (en) Method for intensive growing of commercial crawfish in polyculture

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal