KR20160113649A - 합성 가스로부터 디메틸 에테르를 수득하기 위한 방법 및 시스템 - Google Patents

합성 가스로부터 디메틸 에테르를 수득하기 위한 방법 및 시스템 Download PDF

Info

Publication number
KR20160113649A
KR20160113649A KR1020167023011A KR20167023011A KR20160113649A KR 20160113649 A KR20160113649 A KR 20160113649A KR 1020167023011 A KR1020167023011 A KR 1020167023011A KR 20167023011 A KR20167023011 A KR 20167023011A KR 20160113649 A KR20160113649 A KR 20160113649A
Authority
KR
South Korea
Prior art keywords
dimethyl ether
stream
carbon dioxide
feed stream
methanol
Prior art date
Application number
KR1020167023011A
Other languages
English (en)
Other versions
KR102336508B1 (ko
Inventor
헬무트 프리츠
토마스 바르테쉬
클라라 델롬
안드레아스 페셀
요하네스 펜트
하랄트 크라인
Original Assignee
린데 악티엔게젤샤프트
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 린데 악티엔게젤샤프트 filed Critical 린데 악티엔게젤샤프트
Publication of KR20160113649A publication Critical patent/KR20160113649A/ko
Application granted granted Critical
Publication of KR102336508B1 publication Critical patent/KR102336508B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C27/00Processes involving the simultaneous production of more than one class of oxygen-containing compounds
    • C07C27/04Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds
    • C07C27/06Processes involving the simultaneous production of more than one class of oxygen-containing compounds by reduction of oxygen-containing compounds by hydrogenation of oxides of carbon
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/09Preparation of ethers by dehydration of compounds containing hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/34Separation; Purification; Stabilisation; Use of additives
    • C07C41/46Use of additives, e.g. for stabilisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/142
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/582Recycling of unreacted starting or intermediate materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

본 발명은 합성 가스 (SG)로부터 디메틸 에테르 (DME)를 수득하기 위한 방법에 관한 것이다. 합성 가스 (SG)로 제조된 적어도 하나의 공급 흐름 (2)은, 공급 흐름 (2)에 함유된 성분들이 적어도 부분적으로 디메틸 에테르 (DME)로 전환되는 적어도 하나의 합성 단계 (A)로 처리되고, 이에 의해 적어도 디메틸 에테르 (DME) 및 공급 흐름 (2)의 전환되지 않은 성분들을 함유하는 적어도 하나의 원료 생성물 흐름 (3)이 수득된다. 공급 흐름 (2)은 적어도 수소, 일산화탄소 및 이산화탄소를 함유하고, 2.0 내지 5.0의 화학량수를 지닌다. 공급 흐름 (2)은 4 내지 20 몰%의 이산화탄소를 추가로 함유하고, 공급 흐름 (2) 중 이산화탄소 대 일산화탄소의 비는 0.5 내지 4의 범위이다. 적어도 하나의 합성 단계 (A)는 등온 조건 하에 수행된다. 본 발명은 또한 합성 가스 (SG)로부터 디메틸 에테르 (DME)를 생산하기 위한 시스템에 관한 것이다.

Description

합성 가스로부터 디메틸 에테르를 수득하기 위한 방법 및 시스템{METHOD AND SYSTEM FOR OBTAINING DIMETHYL ETHER FROM SYNGAS}
본 발명은 독립항의 전문에 따라 합성 가스로부터 디메틸 에테르를 생산하기 위한 방법 및 시스템에 관한 것이다.
디메틸 에테르 (DME)는 구조적으로 가장 단순한 에테르이다. 디메틸 에테르는 2개의 메틸기를 유기 라디칼로서 함유한다. 디메틸 에테르는 극성이고 통상적으로 용매로서 액체 형태로 이용된다. 디메틸 에테르는 또한 냉각수로서 이용될 수 있고, 통상적인 플루오로클로로하이드로카본을 대신할 수 있다.
최근에, 디메틸 에테르는 연료 가스 (액체 가스) 및 디젤과 같은 통상적인 모터 연료에 대한 대용품으로서 사용이 증가하고 있다. 이의 비교적 높은 55 내지 60개의 세탄 수로 인해, 통상적인 디젤 엔진은, 예를 들어, 디메틸 에테르를 이용한 동작을 위해 단지 약간 변형될 필요가 있다. 디메틸 에테르는 비교적 깨끗하게 그을음 형성 없이 연소한다. 디메틸 에테르가 바이오매스로부터 제조되는 경우, 이는 소위 바이오연료로서 간주되므로, 세금 혜택을 받으며 판매될 수 있다.
디메틸 에테르는 메탄올로부터 직접, 또는 천연 가스 또는 바이오가스로부터 간접적으로 생성될 수 있다. 후자의 경우, 천연 가스 또는 바이오가스는 먼저 개질되어 합성 가스를 제공한다. 합성 가스는 또한 다른 공정에 의해, 예를 들어 폐기물 또는 바이오매스의 열분해에 의해 생산될 수 있다. 합성 가스는 고전적으로 메탄올로 전환되고, 후속하여 디메틸 에테르로 추가로 전환된다. 합성 가스로부터 디메틸 에테르의 생산은 메탄올로부터의 생산에 비해 열역학적으로 그리고 경제적으로 유리하다.
본 발명은 합성 가스로부터 디메틸 에테르의 단일-단계 또는 직접 생산에 관한 것이다. 단일-단계 또는 직접 생산은, 2-단계 생산이 진행됨에 따라, 메탄올의 중간체 분리가 없는 생산을 의미하는 것으로 본원에서 고려된다. 그러나, 진행되는 반응들은 또한 단일-단계 생산의 중간체로서 메탄올을 전달할 수 있으나, 이 메탄올은 추가로 반응하여 사용된 반응기 또는 반응기들에서 적어도 부분적으로 디메틸 에테르를 형성한다. 상응하는 공정은 비교적 오랜 시간 동안 공지되어 있었고 또한 이하에서 더 자세하게 설명된다.
US 2013/0030063 A1호는 등온적으로 동작하는 반응기에서 합성 가스로부터 디메틸 에테르의 직접 합성을 위한 방법에 관한 것이다. 반응기 오프-스트림(off-스트림)에 존재하는 반응하지 않은 합성 가스는 반응기로 재순환될 수 있다. 이를 위해, 반응기 오프-스트림은 먼저 냉각되며, 이러한 방식으로 물 및 메탄올의 주된 분획 및 또한 디메틸 에테르의 약 40%가 응축된다. 디메틸 에테르의 나머지 및 이산화탄소의 주된 분획은 흡수제로서 메탄올을 이용한 흡수체에 의해 러쉬된다(lushed). 마지막으로, 이산화탄소에서 복잡한 방식으로 고갈된 재순환 스트림 및 신선한 공급물이 반응기에 공급되며, 이 때 반응기에서 반응하는 가스 혼합물의 화학량수(stoichiometric number)는 최대 2.05의 값이고 이의 이산화탄소 대 일산화탄소의 비는 최대 0.25이다.
디메틸 에테르의 제조에 있어서, EP 1 026 141 A1호에서 고려되고 이하에서 더 자세하게 기술되는 Topsøe 공정이 또한 이용될 수 있다. Topsøe 공정 및 디메틸 에테르를 제조하기 위한 다른 공정이 또한, 예를 들어, 논문["DME - the new wonder fuel?", Nitrogen & 메탄올 260, 2002, pages 25 to 31]에 언급된다.
합성 가스로부터 디메틸 에테르의 생산을 위한 더욱 유연하고 보다 효율적인 공정 및 시스템에 대한 요구가 여전히 존재한다.
이러한 배경에 대해서, 본 발명은 독립항의 특징부에 따라 합성 가스로부터 디메틸 에테르의 생산을 위한 방법 및 시스템을 제안한다. 바람직한 구체예는 종속항, 및 또한 아래 설명의 요지이다.
본 발명의 특징 및 이점을 설명하기 전에, 그 원리 및 사용된 표현들을 설명할 것이다.
이하 디메틸 에테르의 생산을 간단히 고려해 보면, 이것은 공지된 성분의 합성 가스, 즉, 적어도 일산화탄소, 이산화탄소 및 수소를 적합한 분획으로 함유하는 가스 혼합물을 함유하는 공급물을 반응시켜 디메틸 에테르를 함유하는 생성물 스트림을 형성하는 공정을 의미한다고 여겨진다. 상응하는 생성물 스트림은, 특히 사용된 촉매의 특성 및 합성 가스의 성분들의 개개 함량에 따라, 불완전 반응으로 인해, 그리고 디메틸 에테르의 합성에서 부반응의 발생으로 인해, 디메틸 에테르를 단독으로 함유하는 것이 아니라, 오히려 다른 화합물들을 함유한다. 이것은 적어도 메탄올, 물, 이산화탄소, 일산화탄소 및 수소이지만, 또한 비교적 소량의 메탄, 에탄, 유기산 및 고급 알콜이다. 이러한 추가 화합물들은, 첫째, 후속 분리 단계를 허용하고, 둘째, 필요한 순도의 디메틸 에테르를 생산하기 위해, 적어도 부분적으로 분리되어야 한다.
유체 (용어 유체는 또한 이하에서 상응하는 스트림, 분획 등에 대해 간단하게 사용된다)는 또 다른 유체 (또한 본원에서 출발 유체를 가리킨다)로부터 유래되거나 유체가 출발 유체에 존재하거나 이로부터 수득된 성분들 중 적어도 일부를 지닐 때 그러한 유체로부터 형성된다. 이러한 의미에서 유래되거나 형성된 유체는 분획 또는 하나 이상의 성분의 분리 또는 분기, 하나 이상의 성분에 대한 풍부화 또는 고갈, 하나 이상의 성분의 화학적 또는 물리적 전환, 가열, 냉각, 가압 등에 의해 출발 유체로부터 수득되거나 형성될 수 있다. 스트림은 또한, 예를 들어 이것이 저장 용기로부터 취해진다는 사실에 의해 간단히 형성될 수 있다.
본원에 적용된 사용량의 유체는 하나 이상의 존재하는 성분에 있어서 풍부하거나 부족할 수 있고, 풍부하다는 것은 몰, 중량 또는 부피 기준으로, 적어도 50%, 60%, 70%, 80% 또는 90%의 함량일 수 있고, 부족하다는 것은 많아야 50%, 40%, 30%, 20% 또는 10%의 함량일 수 있다. 본원에 적용된 사용량에서, 이들은 하나 이상의 성분에 있어서 풍부하거나 고갈될 수 있고, 이러한 표현은 그 유체가 형성된 출발 유체에서의 상응하는 함량과 관련된다. 유체는 출발 유체를 기준으로 하여, 이것이 적어도 1.1배, 1.5배, 2배, 5배, 10배, 100배 또는 1000배의 상응하는 성분의 함량을 함유할 때 풍부한 것이고, 이것이 많아야 0.9배, 0.5배, 0.1배, 0.01배 또는 0.001배 함량을 함유할 때 고갈된 것이다. 대개 하나 이상의 성분을 함유하는 유체는 적어도 50%, 60%, 70%, 80% 또는 90%의 이러한 하나 이상의 성분을 함유하거나, 상기 정의의 의미에서 그 점에서 풍부한 것이다.
이하에서, 압력 및 온도를 특성화하기 위해, 압력 수준 및 온도 수준이라는 표현을 이용하는데, 이에 의해 압력 및 온도가 본 발명의 개념을 실현하기 위해서 정확한 압력 또는 온도 값의 형태로 이용될 필요가 없음이 언급되어야 한다. 그러나, 그러한 압력 및 온도는 전형적으로, 예를 들어, 평균에 대해 ± 1%, 5%, 10%, 20% 또는 심지어 50%의 특정 범위 내에 있다. 상이한 압력 수준 및 온도 수준이 이 경우에 별개의 범위에 있거나 서로 중첩되는 범위에 있을 수 있다. 특히, 압력 수준은, 예를 들어 냉각 효과로 인한, 예를 들어 피할 수 없는 또는 예상된 압력 강하를 포함한다. 동일한 사항이 온도 수준에도 적용된다. 본원에서 바(bar)로 언급된 압력 수준은 절대 압력이다.
초기에 이미 언급된 대로, 디메틸 에테르는 합성 가스로부터 중간체로서 메탄올을 통해 2-단계 합성에 의해 생산될 수 있다. 상응하는 과정은, 예를 들어, 문헌[DME Handbook of the Japan DME Forum, ISBN 978-4-9903839-0-9, 2007]의 171면부터 기재된다. 합성 가스로부터 디메틸 에테르의 2-단계 생산은, 언급된 대로, 먼저 메탄올이 합성 가스로부터 생산된 다음, 반응하지 않은 합성 가스가 응축물 (메탄올 및 물)로부터 분리되고, 이어서 메탄올이 추가 반응기에서 탈수화되어 디메틸 에테르 및 물을 생산하는 것을 특징으로 한다.
디메틸 에테르를 생산하기 위해, 일반적으로 각 경우에 바닥부터 가압된 가열 합성 가스로 채워진 업라이트 관형 반응기가 사용된다. 생성된 생성물 스트림을 상단에서 분리하고, 냉각하고, 분리기에 공급한다.
2-단계 공정의 디메틸 에테르의 생산은, 이를 위해 메탄올로부터 디메틸 에테르를 생산하기 위한 장비 외에 중간체로서 메탄올을 생성하기 위한 완전한 시스템이 요구되므로, 비싸다 (및 에너지상 비용이 많이 든다),
특허 문헌에, 1973년 초에 (DE 23 62 944 A1, US 4 098 809 A), 합성 가스로부터 디메틸 에테르의 직접 또는 단일-단계 생산이 기재되었다. 이는 메탄올 및 디메틸 에테르가 수소, 일산화탄소 및 이산화탄소로부터 공동 생산되는 공유 반응 단계에 의해 구별된다. 그에 기반한 추가 공정이 문헌에 기재되어 있다.
문헌[DME Handbook, 185면부터, 특히 187면] 및, 또한, 예를 들어 인용된 EP 1 026 141 A1에 기재된 대로, Topsøe 공정으로 명명된 공지된 조합 공정에서, 메탄올 및 디메틸 에테르 둘 모두가 형성될 수 있는 이중 촉매가 사용된다. 중간체 분리가 없는 적어도 2개의 반응기가 사용되며, 제1 반응기는 등온적으로 냉각되고, 제2 반응기는 단열적으로 동작한다. 약 2의 화학량수 (하기 참조)를 갖는 합성 가스가 이용된다. 디메틸 에테르 및 메탄올의 병렬 생산이 진행되며, 메탄올은 성분의 분리 후 추가 반응기에서 디메틸 에테르로 전환될 수 있다. Topsøe 공정에서, 더욱더 많은 반응기 제공된다 (등온적 및 단열적으로 동작함). 또한, 메탄올의 동시 생산이 요망되지 않는 경우, 비교적 다량으로 생산된 메탄올은 추가 반응기에서 디메틸 에테르로 전환될 필요가 있다.
Topsøe 공정에서, 단 하나의 (구리-기반) 촉매가 메탄올 합성에 이용되는 반응기에서, 이산화탄소는 단지 약간 정도로 형성될 수 있다. 이러한 경우에 상응하는 촉매는 원칙적으로 반응 2H2 + CO → CH3OH 뿐만 아니라 반응 H2O + CO → H2 + CO2 (수성가스 이동(watergas shift)이라고 불림)도 촉매화하지만, 물이 반응기 공급물에 거의 존재하지 않으므로, 수성가스 이동은 Topsøe 공정에서 전혀 진행되지 않거나 임의의 속도로 적은 정도로 진행된다. 일반적으로, 합성 가스 및 또한 재순환 스트림은 Topsøe 공정의 압축 단계 전에 및 사이에 30 내지 40℃로 냉각되고, 응축물은 제거된다. 반면 디메틸 에테르의 합성을 위해 Topsøe 공정에 사용된 촉매는 반응 2CH3OH → CH3OCH3 + H2O를 촉매화한다. 따라서, 상응하는 단열 반응 단계에서, 촉매가 메탄올 합성에 동시에 사용되는 경우, 형성된 물 때문에 수성가스 이동이 적은 정도로 진행될 수 있고, 소량의 이산화탄소가 형성된다. 그러나, 주로, 메탄올이 추가로 형성된다. 상응하는 단열 반응 단계에서, 단 하나의 촉매가 디메틸 에테르의 합성에 사용된다면, 촉매가 수성가스 이동을 형성할 능력이 없으므로, 이산화탄소는 형성되지 않는다.
Topsøe 공정의 반응기 구성의 결과로서, 본 발명의 기초가 되는 대로, 혼합된 촉매를 이용하여 등온 냉각된 단일 반응 단계의 경우에서보다 실질적으로 적은 이산화탄소가 형성된다. 이산화탄소의 용해성 때문에, 이미 상기에 US 2013/0030063 A1을 참조하여 기술한 바와 같이, 이것은 추가로 메탄올에서 전형적으로 제거된다. 따라서, 종합해 보면, Topsøe 공정에서, 이산화탄소는 거의 또는 전혀 형성되지 않고, 이러한 방식으로 본 발명에 따라 이용되는 높은 이산화탄소 함량은 물론 이산화탄소 대 일산화탄소의 높은 비도 상응하는 공급 스트림에 존재하지 않으며 (하기 참조), 이는 본 발명의 상황에서 중요한 특징이자 제어 기구이다.
디메틸 에테르의 직접 합성은 또한, 예를 들어 슬러리 작동 모드 및 비교적 낮은 화학량수로 (하기 참조) 진행될 수 있다. 그러나, 결과적으로, 개개의 반응하지 않은 화합물을 재순환으로 반응에 다시 공급할 수 있도록 하기 위해, 개개의 반응하지 않은 화합물로부터 제거되어야 하는 이산화탄소는 부산물로서 항상 형성된다. 본원에서 상기 반응은 단지 낮은 이산화탄소 함량에서 만족스러운 수율로 진행된다.
발명의 장점
본 발명은 합성 가스로부터 디메틸 에테르의 생산을 위한 방법을 제안하며, 여기서 합성 가스로부터 형성된 적어도 하나의 공급 스트림은 적어도 하나의 합성 단계를 거치는데, 이 때 공급 스트림에 존재하는 성분들은 적어도 부분적으로 디메틸 에테르로 전환된다. 이 경우에, 적어도 하나의 디메틸 에테르 및 공급 스트림의 반응하지 않은 성분들을 함유하는 적어도 하나의 미정제 생성물 스트림이 수득된다.
따라서, 본 발명은 디메틸 에테르의 단일-단계 생산에 이용된다. 언급된 대로, 중간체 메탄올을 통한 디메틸 에테르의 2-단계 생산의 경우에, 메탄올을 분리하고 반응시켜, 디메틸 에테르로 추가로 단리시킨다. 따라서, 본 발명의 상황에 따르면, 적어도 디메틸 에테르 및 공급 스트림의 반응하지 않은 성분들을 함유하는 미정제 생성물 스트림은 수득되지 않는다.
본원에서 공급 스트림이 합성 가스로부터 형성된다고 언급되는 경우에, 이는, 특히 상기에 이미 언급된 대로, 합성 가스 스트림에 추가 성분의 혼합물을 또한 포함한다. 공급 스트림 자체는 혼합 후에 적어도 하나의 합성 단계로 처리되는 것이다.
본 발명에 따르면, 공급 스트림은 2.1 내지 5.0의 화학량수에 상응하는 수소, 일산화탄소 및 이산화탄소를 적어도 함유하도록 제공되며, 이산화탄소 함량은 4 내지 20 몰 퍼센트이며, 공급 스트림에서 이산화탄소 대 일산화탄소의 비는 0.5 내지 4의 범위이고, 적어도 하나의 합성 단계는 등온 조건 하에 수행된다. 특히, 합성은 등온적으로 동작하는 단일 반응기에서 진행될 수 있으나, 이것은 또한 상이한 온도 수준에서 동작할 수 있는 복수의 등온적으로 동작하는 반응기를 이용할 수 있다.
특히 유리하게는, 본 발명의 상황에서, 등온적으로 동작하는 냉각된 고정상(fixed-bed) 반응기가 이용된다. 다른 반응기 유형, 예를 들어 US 2013/0030063 A1에 이용된 유동상(fluidized-bed) 반응기에 비해, 대략 등온적인 조건을 수득하기 위해, 상기 고정상 반응기는, 본 발명의 상황에서, 특정 이점을 제공한다. 유동상 반응기와 대조적으로, 고정상 반응기에서, 반응의 열은 일반적으로 다소 더 불충분하게 제거될 수 있다. 결과적으로, 당분야 숙련자는 처음에는 등온 반응에서의 이용을 위해 해당 반응기의 사용을 고려하지 않을 것이다. 그러나, 본 발명에 따른 존재하는 특수한 반응 조건의 결과로서 (높은 이산화탄소/일산화탄소 비 및 높은 화학량수), 첫째, 반응열이 더 낮아지고, 둘째, 더 많은 희석 가스가 반응기에 존재한다. 이러한 방식으로, 온도 및, 특히 소위 "핫 스팟"이 반응기에서 제어될 수 있다.
일반적으로, 공급 스트림은 화학량수가 2.0 초과, 예를 들어 2.05인 합성 가스로부터 형성된다. 그러나, 공급 스트림은 또한 화학량수가 2.0 미만, 예를 들어 1.7인 합성 가스로부터 형성될 수 있다. 이는, 예를 들어, 높은 화학량수를 갖는 합성 가스 스트림의 혼합물에서, 또는 도 2 내지 4에 도시된 이산화탄소-풍부한 스트림 (8)이 배출될 때 진행될 수 있다. 궁극적으로 형성된 공급 스트림은, 그러나, 2.1 내지 5.0의 상기 화학량수에 의해 본 발명에 따라 구별된다. 본 발명에 따라 이용된 화학량수에 대한 모든 언급은 공급 스트림에 관한 것이고, 이것은 실제로 적어도 하나의 합성 단계로 처리된다. 사용된 합성 가스 스트림에 이산화탄소가 부족할지라도, 이산화탄소-함유 재순환 스트림이 공급 스트림을 형성하는데 이용될 때 상응하는 이산화탄소 함량이 확립된다.
이 경우 화학량수는 특히 2.1 내지 4.8, 예를 들어 2.2 내지 2.4, 2.4 내지 2.6, 2.6 내지 2.8, 2.8 내지 3.0, 3.0 내지 3.2, 3.2 내지 3.4, 3.4 내지 3.6, 3.6 내지 3.8, 3.8 내지 4.0, 4.0 내지 4.2, 4.2 내지 4.4, 4.4 내지 4.6, 또는 4.6 내지 4.8이다.
디메틸 에테르의 생산을 위해 이용된 합성 가스, 또는 합성 가스 및 재순환 스트림으로부터 형성된 다른 공급 스트림의 특성화를 위해, 빈번하게 상기 화학량수 SN이 이용된다. 이 경우, SN = (xH2 - xCO2) / (xCO + xCO2)가 적용되며, 여기서 x는 성분 수소 (H2), 일산화탄소 (CO) 및 이산화탄소 (CO2)의 몰 함량이다. 합성 가스로부터 직접 디메틸 에테르의 통상적인 생산에서 관찰되는 반응은 다음과 같이 기재될 수 있다:
3H2 + 3CO → CH3OCH3 + CO2 (1)
4H2 + 2CO → 2CH3OH → CH3OCH3 + H2O (2)
종래의 공정에서 이상적으로 고려되는 화학량수는,
SN = (3 몰 H2 - 0 몰 CO2) / (0 몰 CO + 3 몰 CO2) = 1.0
와 같은 반응식 (1)에 따라 그리고
SN = (4 몰 H2 - 0 몰 CO2) / (2 몰 CO + 0 몰 CO2) = 2.0.
와 같은 반응식 (2)에 따라 비롯된다.
반응식 (1)에 따른 반응식에서 SN = 1.0일 때, 실질적으로 사용된 성분들의 완전한 전환은 단계별로 달성될 수 있다. 그러나, 형성된 이산화탄소는 이를 위해 개질기를 통해 다시 수행되어야 하고 거기에서 일산화탄소로 전환되어야 한다. 이것은 분명히 에너지 비용이 많이 든다. 따라서, 상응하게 낮은 화학량수로 동작하는 이산화탄소는 통상적인 공정에서 원치 않는 것이며, 그 이유는 이것이 참여 반응을 억제할 수 있기 때문이다. 따라서, 이것은 값비싼 방식으로 분리되어야 한다.
대조적으로, 반응식 (2)에 따른 반응에서 SN = 2.0일 때, 통과 당 낮은 전환율이 존재하여 물이 형성되며, 여기서 수소 및 산소가 결합하여 반응식 (1)에 따라 완전히 요망되는 생성물로 전환될 수 있다.
언급된 대로, 합성 가스로부터 디메틸 에테르의 생산에 있어서, 심지어 개개의 "이상적인" 화학량수가 유지된 경우에도, 존재하는 성분들은 완전히 전환되지 않으며, 심지어 상이한 분획의 경우에도, 상기 반응은 또한 서로 평행하게 진행된다. 따라서, 수득된 미정제 생성물에, 즉, 사용된 반응기 또는 반응기들의 배출구에, 특히 낮은 화학량수로 형성된 이산화탄소가 또한 항상 발견된다.
그 때에 본 발명은 높은 화학량수의 이러한 이산화탄소가, 반응하지 않은 성분과 함께, 사용된 반응기 또는 반응기들로 재순환할 수 있다는 지식에 적어도 부분적으로 기반하며, 그 이유는 이것이 유사하게 전환될 수 있기 때문이다. 따라서, 상응하는 재순환 스트림이 사용되어야 하는 경우, 값비싼 방식으로 분리될 필요가 없다. 동일한 사항이 공급 스트림을 형성하는데 사용되는 합성 가스에도 적용된다. 이것은 또한 항상, 본 발명의 상황에 따라, 분리될 필요가 없거나, 적어도 적은 정도로만 분리될 필요가 있는 특정 양의 이산화탄소를 지닌다.
본 발명의 상황에서, 디메틸 에테르의 생산을 위해, 하기 반응이, 예를 들어, 또한 이용될 수 있음이 밝혀졌다:
6H2 + 2CO2 → 2CH3OH + 2H2O → CH3OCH3 + 3H2O (3)
방정식 (3)에 따라 반응에 존재하는 화학량론적 비는,
SN = (6 몰 H2 - 2 몰 CO2) / (0 몰 CO + 2 몰 CO2) = 2.0
의 화학량수 및 이에 따라 반응식 (2)에 따른 화학량수에 상응한다. 그러나, 본 발명의 상황에서 이용되는 대로, 여전히 더 높은 화학량수의 경우에, 이산화탄소 및 일산화탄소의 디메틸 에테르로의 현저하게 더 높은 전환율이 관찰될 수 있다.
본 발명의 높은 화학량수는, 예를 들어, 2보다 약간 높은 화학량수, 예를 들어 SN = 2.05인 메이크-업, 즉 예컨대 신선한 합성 가스와 함께 합성 가스의 반응하지 않은 성분의 재순환에 의해 달성된다. 재순환의 결과로서, 과량의 수소가 단계별로 농축된다. 이산화탄소가 재순환되는 경우에도, 화학량수는 이에 의해 증가한다. 반응기 입구에 최종 존재하는 공급 스트림, 즉, 반응기에서 실제로 전환되고 신선한 합성 가스 및 임의로 재순환 스트림으로 구성된 스트림의 화학량수는 따라서 적어도 2.1이다.
본 발명의 장점은 특히 상기 언급된 양태들의 조합에 의해 제공된다: 왜냐하면 본원에서 이산화탄소는 개질기에서 일산화탄소를 형성하기 위해 전환될 필요가 없으므로, 비록 사용된 더 높은 화학량수로 인해, 통과 당 보다 낮은 전환율이 달성될 수 있을지라도, 공정의 전반적인 효율에서의 이점이 발생하기 때문이다. 낮은 전환율은 또한 여전히 높은 화학량수에 의해 보상된다. 다시 말해, 이산화탄소가 활용될 수 있고 재순환될 필요가 없기 때문에, 전체 공정은 현저하게 더욱 효율적이다.
바람직하게는 단 하나의 등온적으로 냉각된 반응기가 사용되는 본 발명에 따른 공정 절차의 결과로서, 2개의 상이하게 (등온적 및 단열적으로) 동작하는 반응기가 항상 이용되는 언급된 Topsøe 공정과 같은 공지된 공정 이상의 추가 장점이 제공된다.
등온 공정 절차는 따라서 상응하는 반응기의 냉각에서, 예를 들어 공급물 예열 동안, 다른 목적에 이용가능한 증기가 생산될 수 있으므로 또한 유리하다.
본 발명에 따른 공정의 상황에서 이산화탄소 및 일산화탄소의 함량은 또한 서로에 대한 이들 화합물의 비를 통해 언급될 수 있다. 이 경우에 이산화탄소/일산화탄소 비는 0.5 초과, 특히 0.5 내지 4, 예를 들어 0.5 내지 3, 또는 0.5 내지 2, 특히 0.5 내지 1.0, 1.0 내지 1.5, 또는 1.5 내지 2.0이다.
본 발명의 상황에서, 이산화탄소 대 일산화탄소의 비는, 그 중에서도 상기 설명된 수성가스 이동의 평형에 영향을 주고, 또한 반응 속도를 제어하기 위해, 특히 중요하다.
반응기 공급물에서 높은 이산화탄소 함량의 일반적인 사용의 결과로서, 본 발명의 상황에서, 종래 기술에 비해 실질적으로 높은 에너지 및 탄소 효율이 달성된다. 본 발명의 상황에서, 이는, 상기 기재된 대로, 이산화탄소가 사용된 반응기에서 디메틸 에테르로 전환된다는 사실 때문이다. 이 경우에 본 발명의 장점은 합성 가스 생산을 위한 메탄 또는 천연 가스와 같은 가벼운 공급물의 경우에 특히 분명하다. 인용된 종래 기술에서, 대조적으로, 탄소 또는 바이오매스가 공급물로서 이용된다.
본 발명의 상황에서, 따라서, 생성된 미정제 생성물 스트림은 이산화탄소를 분리하지 않고 (그러나, 요망되는 생성물, 예를 들어 디메틸 에테르를 분리한 후에) 반응으로 완전히 재순환될 수 있다. 본 발명에 따른 공정은 따라서 실현하기가 더 간단함을 증명한다.
본 발명에 따라, 언급된 대로, 등온적으로만 동작하는 반응기를 이용하는 것이 추가로 제공된다. 결과적으로, 단 하나의 반응기만이 제공될 필요가 있다; 반면에, 상이하게 (등온적 및 단열적으로) 동작하는 반응기의 사용은 더 이상 필요하지 않다.
본 발명에 따른 공정은 또한 중간체로서 메탄올을 통한 합성을 포함할 수 있으나, 메탄올은 분리되지 않는다. 따라서, 고가의 분리 기구가 생략될 수 있다. 따라서, 적어도 하나의 합성 단계에서 (예를 들어, 단 하나의 반응기에서), 수소 및 일산화탄소가 먼저 메탄올로 전환되고 메탄올은 그 후에 공급 스트림에 존재하는 성분들의 존재 하에 디메틸 에테르로 추가로 전환된다. 본 발명에 따른 공정의 상황에서, 미정제 생성물 스트림으로부터 분리된 메탄올은 또한 합성 단계로 재순환될 수 있다. 결과적으로, 디메틸 에테르를 형성하기 위해 메탄올의 탈수화에 통상적으로 이용되는 반응기가 생략될 수 있다.
언급된 대로, 유리하게는, 미정제 생성물 스트림으로부터, 공급 스트림의 반응하지 않은 성분들이 적어도 부분적으로 분리되고 재순환된다. 이들은 이 경우에 합성 가스와 함께 사용되어 공급 스트림을 형성할 수 있다. 이러한 경우에, 예를 들어 합성 가스 스트림 및 상응하는 재순환 스트림의 공유 압축이 진행될 수 있고, 그 결과 별도의 압축기 단계가 생략될 수 있다. 그러한 공유 압축은 합성 가스 스트림이 전부 흐르는, 압축기의 두 압축기 단계 사이에 재순환 스트림이 공급될 때 또한 존재한다.
특히, 미정제 생성물 스트림으로부터, 공급 스트림의 반응하지 않은 성분들은 수소, 일산화탄소 및 이산화탄소를 주로 함유하는 재순환 스트림에서 적어도 부분적으로 합성 가스 스트림으로 첨가될 수 있다. 이산화탄소를 분리하는 것은, 언급된 대로, 불필요하거나, 전혀 필요하지 않으며, 그러한 방식으로 본 발명에 따른 공정은 경제적으로 및 에너지에 있어서 유리하다.
미정제 생성물 스트림으로부터 메탄올 스트림을 생산하는 것에 더하여 상기 메탄올 스트림을 적어도 부분적으로 재순환 스트림과 함께 합성 가스 스트림에 첨가하는 것이 또한 유리한 것으로 입증된다. 결과적으로, 메탄올 스트림에 존재하는 메탄올은 합성 가스로부터 디메틸 에테르의 직접 생산과 동시에 디메틸 에테르로 추가로 전환될 수 있다.
본 발명에 따른 공정의 상황에서, 적어도 하나의 합성 단계는 유리하게는 190 내지 310℃의 온도 수준 및/또는 20 내지 100 바의 압력 수준으로 수행된다. 상응하는 조건 하에, 특히 50 바 초과의 압력 수준에서, 상기 기재된 반응 단계들은 특히 효율적으로 진행된다. 이와 반대로, 이미 위에서 인용된 종래 기술에 따르면, 현저하게 낮은 압력 수준이 이용된다.
본 발명에 따른 공정의 상황에서, 적어도 하나의 합성 단계에서, 유리하게는 상기 출발 화합물로부터 중간체로서 메탄올을 통해 디메틸 에테르를 형성할 수 있는 적어도 하나의 촉매, 예를 들어 구리-아연 촉매가 사용된다. 이것은 또한 언급된 조건 하에 효과적으로 동작한다.
본 발명은 특히 미정제 생성물 스트림으로부터, 또한, 물, 디메틸 에테르, 이산화탄소 및/또는 메탄올을 분리하는 공정에 적합하다. 생성된 성분들은, 요건에 따라서, 하기에 또한 기재된 대로 적용되는 공정에 이용될 수 있다.
합성 가스로부터 디메틸 에테르를 생산하기 위한 시스템은 마찬가지로 본 발명의 요지이다. 시스템은 합성 가스로부터 형성된 적어도 하나의 공급 스트림을, 공급 스트림에 존재하는 성분들을 적어도 부분적으로 디메틸 에테르로 전환시키는 적어도 하나의 합성 단계로 처리하기 위해 구비된 적어도 하나의 디메틸 에테르 반응기를 지닌다. 따라서 이것은 디메틸 에테르의 단일-단계 생산을 위해 사용된 적어도 하나의 디메틸 에테르 반응기에 관한 것이다. 복수의 디메틸 에테르 반응기가 존재하는 경우, 이들은 직렬 또는 병렬로 배열될 수 있고 하나 이상의 공급 스트림으로 채워질 수 있다.
이미 설명된 대로, 디메틸 에테르의 단일-단계 생산에 있어서, 적어도 디메틸 에테르, 메탄올 및 물, 및 공급 스트림의 반응하지 않은 성분들을 함유하는 적어도 하나의 미정제 생성물 스트림이 수득된다. 본 발명에 따라, 상기 시스템은 공급 스트림이 2.1 내지 5.0의 화학량수에 따른 수소, 일산화탄소 및 이산화탄소를 적어도 지니고, 공급 스트림 중 이산화탄소 대 일산화탄소의 비가 0.5 내지 4의 범위이고, 적어도 4 내지 20 몰 퍼센트의 이산화탄소를 함유하는 방식으로, 공급 스트림을 형성하도록 구비된 수단에 의해 구별된다. 또한, 본 발명에 따르면, 적어도 하나의 합성 단계 동안 적어도 하나의 디메틸 에테르 반응기가 등온적으로 동작하도록 구비된 적어도 하나의 냉각 기구가 제공된다. 언급된 대로, 사용된 반응기 또는 반응기들의 배타적인 등온 동작 동안, 상응하는 열 제거가 확보되어야 하는 방식으로, 디메틸 에테르를 형성하는 반응이 발열적으로 진행된다.
그러한 시스템은 상기에 광범하게 설명된 공정을 수행하기 위해 특히 구비된다. 본 발명에 따른 시스템은 설명된 장점으로부터 이익을 보고, 따라서 이에 대한 참조가 명백하게 이루어진다.
본 발명은 본 발명의 구체예를 나타내는 도면을 참조하여 보다 자세하게 기술될 것이다.
도 1은 본 발명의 한 구체예에 따라 합성 가스로부터 디메틸 에테르를 생산하는 공정을 개략적인 묘사로 나타낸다.
도 2는 본 발명의 한 구체예에 따라 합성 가스로부터 디메틸 에테르를 생산하는 공정을 개략적인 묘사로 나타낸다.
도 3은 본 발명의 한 구체예에 따라 합성 가스로부터 디메틸 에테르를 생산하는 공정을 개략적인 묘사로 나타낸다.
도 4는 본 발명의 한 구체예에 따라 합성 가스로부터 디메틸 에테르를 생산하는 공정을 개략적인 묘사로 나타낸다.
도면의 상세한 설명
도면에서, 서로 대응하는 엘리먼트는 동일한 참조 부호로 제공되고, 명확하게 하기 위해 반복적으로 설명하지 않는다.
도 1 내지 4는 합성 가스 (SG)로부터 디메틸 에테르 (DME)의 생산을 위한 본 발명에 따른 방법의 구체예를 도시한다. 하나 이상의 등온적으로 동작하는 반응기에서 진행될 수 있는 합성 단계는 (A)로 지정되고 분리 단계는 B로 지정된다. 도시된 모든 구체예는 합성 가스 스트림 (1)이 적어도 하나의 추가 스트림과 조합된 후에, 공급 스트림 (2)로서 합성 단계 A로 처리된다는 사실을 공통적으로 지닌다.
합성 가스 스트림 (1)은 하나 이상의 적합한 업스트림 공정 단계로부터의 (예를 들어, 증기 개질, 자가열 개질, 건조 개질, 또는 부분 산화로부터) 합성 가스 (SG)를 함유할 수 있다. 합성 가스 스트림 (1)은 수소, 일산화탄소 및 이산화탄소, 및 통상적으로 또한 메탄 및 질소와 같은 미량 성분을 함유한다.
공급 스트림 (2)을 형성하기 위해, 합성 가스 스트림 (1) (메이크-업 스트림)은, 합성 가스로부터 디메틸 에테르의 단일-단계 생산을 위한 통상적인 공정과 대조적으로, 이산화탄소로부터 유리되지 않거나 이산화탄소로부터 단지 부분적으로 유리된다. 공급 스트림 (2)을 형성하기 위해, 합성 가스 스트림 (1)은 분리 단계 (B)에서 생산된 성분들로부터 형성된 적어도 하나의 재순환 스트림 (6)과 추가로 혼합된다. 재순환 스트림 (6)은 합성 가스 스트림 (1) 및 재순환 스트림 (6)이 동일한 압력 수준으로 존재하는 방식으로 재순환 압축기에서 가압되거나, 이것은 합성 가스 스트림 (1)과 함께 가압된다. 이 경우, 재순환 스트림 (6)은 합성 가스 스트림 (1) 또는 합성 단계 (A)에서 반응하지 않은 공급 스트림 (2)의 성분들 중 적어도 일부를 함유한다. 공급 스트림 (2)은 상기 언급된 대로, 비교적 높은 화학량수 및 비교적 높은 이산화탄소 함량에 의해 종래 기술로부터 본 발명의 예시된 구체예에서 구별된다.
합성 단계 (A)에서, 디메틸 에테르-함유 미정제 생성물 스트림 (3)은 공급 스트림 (2)으로부터 생산된다. 미정제 생성물 스트림 (3)은, 디메틸 에테르 외에, 반응하지 않은 합성 가스, 메탄올, 물, 및 가능하게는 (적어도 합성 단계 (A)에서) 비활성 가스를 또한 함유할 수 있다. 이것은, 디메틸 에테르를 주로 함유하는 적어도 하나의 생성물 스트림 (4)이 생산되는 분리 단계 (B)로 처리된다. 생성물 스트림 (4)은, 디메틸 에테르 외에, 비교적 다량의 메탄올 및 물, 및 또한 이산화탄소 및 알칸과 같은 불순물을 또한 함유할 수 있다. 발생 순도는 경제적 고려에 기초한다.
도 1에 도시된 본 발명의 구체예에서, 생성물 스트림 (4) 외에, 반응하지 않은 합성 가스 (SG) 또는 합성 가스 스트림 (1) 또는 공급 스트림 (2)의 반응하지 않은 성분들의 오프-스트림 (5)이 수득된다. 오프-스트림 (5)은 수소, 일산화탄소, 이산화탄소, 메탄, 및 추가로 가벼운 비활성 가스를 주로 함유한다. 오프-스트림 (5)을 나누어, 재순환 스트림 (6) 및 및 잔류 스트림 (7)을 수득하며, 잔류 스트림 (7)은 일반적으로 오프-스트림 (5)의 1 내지 10%만을 형성한다. 잔류 스트림 (7)은, 예컨대 개질기의 버너에서, 합성 가스 (SG)를 생산하기 위한 연료 가스로서, 예컨대, 압력-스윙(pressure-swing) 흡착에 의한 수소-풍부 스트림의 생성을 위해, 그러한 개질기의 공급물로서, 생성물 배출로서 및/또는 다른 시스템 부품에서, 예를 들어 개질기의 천연 가스 탈황 업스트립을 위해 사용될 수 있다.
도 2에서, 이산화탄소-풍부 스트림 (8)이 분리 단계 (B)에서 발생하는 본 발명의 추가 구체예가 도시된다. 예를 들어 적어도 80%의, 이러한 이산화탄소-풍부 스트림 (8)에 존재하는 이산화탄소는 도 1에 따라 오프-스트림 (5)에서 발견된다. 따라서, 이산화탄소는, 분리 유닛 (B)의 구성에 따라, 추가 성분들과 함께 (도 1) 또는 분리된 스트림 (8)으로서 수득될 수 있고 (도 2 내지 4) 이 경우 가스상 또는 액체 상태로 존재할 수 있다. 스트림 (8)은, 예를 들어, 오프-스트림 (5)과 혼합되고 (임의로 압력 상승 후에), 합성 가스 (SG)를 생성하기 위해 공급물로서 재순환되고, 가압 전에 또는 동안에 합성 가스 스트림 (1)과 혼합되고, 및/또는, 예컨대 개질기의 버너에 이용되어 합성 가스 (SG)를 생산할 수 있다. 따라서, 분리된 스트림 (8)의 제공은 유연성을 증가시킨다.
도 3에서, 메탄올- 및/또는 물-풍부 스트림 (9)이 분리 단계 (B)에서 발생하는 본 발명의 추가 구체예가 도시된다. 본 발명의 이러한 구체예에서, 생성물 스트림 (4)에는 특히 디메틸 에테르가 풍부하고 메탄올 및/또는 물이 부족할 수 있다. 메탄올- 및/또는 물-풍부 스트림 (9)은 합성 가스 (SG)의 생산을 위해 재순환될 수 있다.
도 4에서, 메탄올-풍부 스트림 (9) 및/또는 물-풍부 스트림 (10)이 분리 단계 (B)에서 별도로 발생하는 본 발명의 추가 구체예가 도시된다. 메탄올-풍부 스트림 (9)은 배출되거나, 합성 가스 (SG)의 생산을 위해 재순환될 수 있다. 메탄올-풍부 스트림 (9)은 또한 합성 단계 (A)로 재순환되고 디메틸 에테르의 형성에 이용될 수 있다. 메탄올의 탈수화를 위한 추가 반응기는 필요하지 않다. 물-풍부 스트림 (10)은 폐수 처리될 수 있다.

Claims (10)

  1. 합성 가스 (SG)로부터 디메틸 에테르 (DME)를 생산하기 위한 방법으로서, 합성 가스 (SG)로부터 형성된 적어도 하나의 공급 스트림 (2)이 적어도 하나의 합성 단계 (A)로 처리되고, 이 때 공급 스트림 (2)에 존재하는 성분들이 적어도 부분적으로 디메틸 에테르 (DME)로 전환되며, 적어도 디메틸 에테르 (DME) 및 공급 스트림 (2)의 반응하지 않은 성분들을 함유하는 적어도 하나의 미정제 생성물 스트림 (3)이 수득되고, 공급 스트림 (2)이 2.1 내지 5.0의 화학량수에 상응하는 수소, 일산화탄소 및 이산화탄소를 함유하고 4 내지 20 몰 퍼센트의 이산화탄소를 함유하고, 공급 스트림 (2) 중 이산화탄소 대 일산화탄소의 비가 0.5 내지 4의 범위이고, 적어도 하나의 합성 단계 (A)가 등온 조건 하에 수행되는 것을 특징으로 하는, 방법.
  2. 제 1항에 있어서, 수소, 일산화탄소 및/또는 이산화탄소가 적어도 하나의 합성 단계 (A)에서 메탄올로 전환되고 메탄올이 공급 스트림 (2)에 존재하는 다른 성분들의 존재 하에 디메틸 에테르로 추가로 전환되는 방법.
  3. 제 1항 또는 제 2항에 있어서, 미정제 생성물 스트림 (3)으로부터, 공급 스트림 (2)의 반응하지 않은 성분들이 적어도 부분적으로 분리되고 합성 가스 (SG)와 함께 이용되어 공급 스트림 (2)을 형성하는 방법.
  4. 제 3항에 있어서, 미정제 생성물 스트림 (3)으로부터, 공급 스트림 (2)의 반응하지 않은 성분들이 수소, 일산화탄소 및 이산화탄소를 주로 함유하는 재순환 스트림 (6)의 형태로 적어도 부분적으로 합성 가스 스트림 (1)에 첨가되는 방법.
  5. 제 4항에 있어서, 미정제 생성물 스트림 (3)으로부터, 메탄올 스트림 (9)이 추가로 생산되고 적어도 부분적으로 재순환 스트림 (6)과 함께 합성 가스 스트림 (1)에 첨가되는 방법.
  6. 제 1항 내지 제 5항 중 어느 한 항에 있어서, 적어도 하나의 합성 단계 (A)가 190 내지 310℃의 온도 수준 및/또는 20 내지 100 바의 압력 수준으로 수행되는 방법.
  7. 제 1항 내지 제 6항 중 어느 한 항에 있어서, 적어도 하나의 합성 단계 (A)에서, 수소 및 일산화탄소로부터 뿐만 아니라, 수소 및 이산화탄소로부터 중간체로서 메탄올을 통해 디메틸 에테르를 형성할 수 있는 적어도 하나의 촉매가 이용되는 방법.
  8. 제 1항 내지 제 7항 중 어느 한 항에 있어서, 미정제 생성물 스트림 (3)으로부터, 추가로 물, 디메틸 에테르, 이산화탄소 및/또는 메탄올이 적어도 부분적으로 분리되는 방법.
  9. 합성 가스 (SG)로부터 디메틸 에테르 (DME)를 생산하기 위한 시스템으로서, 이는 합성 가스 (SG)로부터 형성된 적어도 하나의 공급 스트림 (2)을, 공급 스트림 (2)에 존재하는 성분들을 적어도 부분적으로 디메틸 에테르 (DME)로 전환시키는 적어도 하나의 합성 단계 (A)로 처리하기 위해 구비된 적어도 하나의 디메틸 에테르 반응기를 지니고, 그 결과, 적어도 디메틸 에테르 (DME) 및 공급 스트림 (2)의 반응하지 않은 성분들을 함유하는 적어도 하나의 미정제 생성물 스트림 (3)이 얻어지며, 공급 스트림 (2)이 2.1 내지 5.0의 화학량수에 상응하는 수소, 일산화탄소 및 이산화탄소를 함유하고 4 내지 20 몰 퍼센트의 이산화탄소를 함유하며, 공급 스트림 (2) 중 이산화탄소 대 일산화탄소의 비가 0.5 내지 4의 범위 내에 있도록 하는 방식으로 공급 스트림 (2)을 형성하도록 구비된 수단, 및 적어도 하나의 합성 단계 (A) 동안 적어도 하나의 디메틸 에테르 반응기가 등온적으로 동작하도록 구비된 적어도 하나의 냉각 기구를 특징으로 하는, 시스템.
  10. 제 9항에 있어서, 제 1항 내지 제 8항 중 어느 한 항에 따른 방법을 수행하기 위해 구비된 시스템.
KR1020167023011A 2014-01-28 2015-01-05 합성 가스로부터 디메틸 에테르를 수득하기 위한 방법 및 시스템 KR102336508B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP14000295.7 2014-01-28
EP14000295.7A EP2898943B1 (de) 2014-01-28 2014-01-28 Verfahren und Anlage zur Gewinnung von Dimethylether aus Synthesegas
PCT/EP2015/000007 WO2015113727A1 (de) 2014-01-28 2015-01-05 Verfahren und anlage zur gewinnung von dimethylether aus synthesegas

Publications (2)

Publication Number Publication Date
KR20160113649A true KR20160113649A (ko) 2016-09-30
KR102336508B1 KR102336508B1 (ko) 2021-12-07

Family

ID=50028725

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020167023011A KR102336508B1 (ko) 2014-01-28 2015-01-05 합성 가스로부터 디메틸 에테르를 수득하기 위한 방법 및 시스템

Country Status (12)

Country Link
US (1) US10501394B2 (ko)
EP (1) EP2898943B1 (ko)
JP (1) JP2017508732A (ko)
KR (1) KR102336508B1 (ko)
CN (1) CN105980341B (ko)
AU (1) AU2015213150C1 (ko)
BR (1) BR112016015885B1 (ko)
CA (1) CA2936279C (ko)
MX (1) MX366823B (ko)
MY (1) MY188789A (ko)
RU (1) RU2676688C2 (ko)
WO (1) WO2015113727A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102643920B1 (ko) * 2023-03-30 2024-03-07 (주)바이오프랜즈 산업 폐가스로부터 저탄소 연료를 제조하는 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017010788A1 (de) * 2017-11-22 2019-05-23 Linde Aktiengesellschaft Verfahren und Anlage zur Gewinnung von Dimethylether und Kohlendioxid
EP4116285A1 (de) * 2021-07-08 2023-01-11 Linde GmbH Verfahren und anlage zur herstellung von dimethylether
EP4276086A1 (de) * 2022-05-10 2023-11-15 Linde GmbH Verfahren und anlage zur herstellung von dimethylether

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070793A (ja) * 1999-09-08 2001-03-21 Kansai Electric Power Co Inc:The ジメチルエーテル合成触媒及び合成方法
CN1413974A (zh) * 2002-08-29 2003-04-30 华东理工大学 一种在组合床中催化合成二甲醚的方法
US20130030063A1 (en) * 2011-07-26 2013-01-31 Randhava Sarabjit S Process and method for the producton of dimethylether (dme)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT972655B (it) 1972-12-20 1974-05-31 Snam Progetti Procedimento per la produzione di dimetil etere
US4098809A (en) 1972-12-20 1978-07-04 Snamprogetti S.P.A. Process for the production of dimethyl ether
DK171707B1 (da) * 1995-02-03 1997-04-01 Topsoe Haldor As Fremgangsmåde til fremstilling af dimetylæter i brændstofkvalitet
DK173614B1 (da) * 1999-02-02 2001-04-30 Topsoe Haldor As Fremgangsmåde til fremstilling af methanol/dimethyletherblanding fra syntesegas
US8957259B2 (en) * 2005-09-30 2015-02-17 Battelle Memorial Institute Dimethyl ether production from methanol and/or syngas
RU2375407C2 (ru) * 2008-02-04 2009-12-10 Закрытое Акционерное Общество "Сибирская Технологическая Компания "Цеосит" Способ переработки смеси водорода и оксидов углерода (варианты)
RU2442767C1 (ru) * 2010-08-11 2012-02-20 Учреждение Российской Академии наук Ордена Трудового Касного Знамени Институт нефтехимического синтеза им. А.В. Топчиева РАН (ИНХС РАН) Способ получения экологически чистого высокооктанового бензина

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001070793A (ja) * 1999-09-08 2001-03-21 Kansai Electric Power Co Inc:The ジメチルエーテル合成触媒及び合成方法
CN1413974A (zh) * 2002-08-29 2003-04-30 华东理工大学 一种在组合床中催化合成二甲醚的方法
US20130030063A1 (en) * 2011-07-26 2013-01-31 Randhava Sarabjit S Process and method for the producton of dimethylether (dme)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102643920B1 (ko) * 2023-03-30 2024-03-07 (주)바이오프랜즈 산업 폐가스로부터 저탄소 연료를 제조하는 방법

Also Published As

Publication number Publication date
US20160326078A1 (en) 2016-11-10
EP2898943A1 (de) 2015-07-29
CN105980341B (zh) 2019-01-22
CA2936279C (en) 2022-01-04
AU2015213150B2 (en) 2019-02-14
AU2015213150A1 (en) 2016-07-21
RU2676688C2 (ru) 2019-01-10
AU2015213150C1 (en) 2019-06-27
RU2016134895A (ru) 2018-03-05
EP2898943B1 (de) 2016-11-16
MX366823B (es) 2019-07-25
CA2936279A1 (en) 2015-08-06
MX2016009693A (es) 2016-10-31
WO2015113727A1 (de) 2015-08-06
BR112016015885B1 (pt) 2020-12-01
CN105980341A (zh) 2016-09-28
JP2017508732A (ja) 2017-03-30
RU2016134895A3 (ko) 2018-08-16
KR102336508B1 (ko) 2021-12-07
MY188789A (en) 2022-01-03
US10501394B2 (en) 2019-12-10

Similar Documents

Publication Publication Date Title
US9624440B2 (en) Using fossil fuels to increase biomass-based fuel benefits
US9090543B2 (en) Method for producing dimethyl ether from methane
US20150299594A1 (en) Process for the preparation of hydrocarbons
US20130345326A1 (en) Process for producing a synthesis gas mixture
US6258860B1 (en) Process for the production of methanol
KR20010021833A (ko) 메탄올 및 수소의 제조 방법
US9315452B2 (en) Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a GTL environment
WO2009065352A1 (en) Integrated coal-to-liquids process
KR20150065879A (ko) 합성 가스 제조 방법
KR102336508B1 (ko) 합성 가스로부터 디메틸 에테르를 수득하기 위한 방법 및 시스템
AU774093B2 (en) Natural gas conversion to hydrocarbons and ammonia
JPWO2001098237A1 (ja) 低級オレフィンの製造方法
CA2872194C (en) Process for co-producing commercially valuable products from byproducts of fischer-tropsch process for hydrocarbon fuel formulation in a gtl environment
US10259718B2 (en) Process for co-production of ammonia and methanol
KR101875857B1 (ko) 고열량 합성천연가스 제조 방법
EA041393B1 (ru) Способ получения синтез-газа

Legal Events

Date Code Title Description
N231 Notification of change of applicant
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant