KR20150138203A - 피라졸로퀴놀린 유도체의 염, 및 이의 결정 - Google Patents

피라졸로퀴놀린 유도체의 염, 및 이의 결정 Download PDF

Info

Publication number
KR20150138203A
KR20150138203A KR1020157026005A KR20157026005A KR20150138203A KR 20150138203 A KR20150138203 A KR 20150138203A KR 1020157026005 A KR1020157026005 A KR 1020157026005A KR 20157026005 A KR20157026005 A KR 20157026005A KR 20150138203 A KR20150138203 A KR 20150138203A
Authority
KR
South Korea
Prior art keywords
acid
compound
salt
tetrahydrofuran
added
Prior art date
Application number
KR1020157026005A
Other languages
English (en)
Other versions
KR101997955B1 (ko
Inventor
순스케 오자키
Original Assignee
에자이 알앤드디 매니지먼트 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에자이 알앤드디 매니지먼트 가부시키가이샤 filed Critical 에자이 알앤드디 매니지먼트 가부시키가이샤
Publication of KR20150138203A publication Critical patent/KR20150138203A/ko
Application granted granted Critical
Publication of KR101997955B1 publication Critical patent/KR101997955B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/4738Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4745Quinolines; Isoquinolines ortho- or peri-condensed with heterocyclic ring systems condensed with ring systems having nitrogen as a ring hetero atom, e.g. phenantrolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/145Maleic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/13Crystalline forms, e.g. polymorphs

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Hospice & Palliative Care (AREA)
  • Psychiatry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

본 발명은 제약에서 약물로서 사용될 가능성이 있는 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 및 염산, 브롬화수소산, 황산, 질산, 인산, 말론산, 말레인산, 타르타르산, 메탄술폰산, 벤젠술폰산 및 톨루엔술폰산으로 이루어진 군으로부터 선택된 산의 염; 또는 이의 결정을 제공한다.

Description

피라졸로퀴놀린 유도체의 염, 및 이의 결정{SALT OF PYRAZOLOQUINOLINE DERIVATIVE, AND CRYSTAL THEREOF}
본 발명은 포스포디에스테라제 9(PDE9)에 대한 억제 활성을 갖는 피라졸로퀴놀린 유도체의 염, 및 이것의 결정에 관한 것이다.
세포에서 2차 전달자로서 작용하는 시클릭 구아노신 모노포스페이트(이하, cGMP로 언급함)는 학습 및 기억 행동을 비롯한 다양한 생리학적 기능에서 중요한 역할을 하는 것으로 알려져 있다.
뇌 신경 회로의 시냅스후(postsynaptic) 부위상에서, 일산화질소 합성효소에 의해 생합성된 일산화질소(이하, NO로서 언급함)는 cGMP 합성효소인 구아닐레이트 시클라제(guanylate cyclase)를 활성화한다. 활성화된 구아닐레이트 시클라제는 구아노신 트리포스페이트로부터 cGMP를 생합성한다. cGMP는 cGMP-의존성 단백질 키나제(이하, PKG로 언급함)를 활성화하여 시냅스 가소성에 참여하는 다양한 단백질을 포스포릴화한다. NO/cGMP/PKG 캐스케이드(cascade)의 활성화는 학습 및 기억 행동에 대한 신경 기질로서 알려진 해마의 시냅스 가소성 유도(장기 강화(Long Term Potentiation); 이하, LTP로 언급함)에 참여하는 것으로 알려져 있다(참조예: 비특허 문헌 1). 이러한 캐스케이드의 신경 전달을 활성화하는 약은 해마의 LTP 및 동물의 학습 행동을 개선하는 반면에, 이러한 캐스케이드를 억제하는 약은 반대 작용을 나타내는 것으로 알려져 있다(비특허 문헌 2). 그러므로, 이러한 발견으로부터, 뇌에서 cGMP의 증가는 학습 및 기억 행동의 개선을 유도할 것으로 예측된다.
cGMP는 포스포디에스테라제(이하, PDE로 언급함)에 의해서 PKG 활성화 작용을 갖지 않는 5'-GMP로 신진대사된다. PDE는 11가지 부류를 갖는 것으로 알려져 있으며, PDE9가 cGMP를 특이적으로 신진대사하고 뇌, 척수, 소장 등에서 형질발현되는 것으로 알려져 있다(참조예: 비특허 문헌 3). 즉, PDE9의 억제는 뇌에서 cGMP를 증가시킬 것으로 예측된다. PDE9 억제제는 실제로 해마 LTP를 증가시키며, 동물에서 새로운 물체 인지 시험/수동 회피 학습 시험 등에서 학습 및 기억 행동을 개선하는 것으로 보고되어 있다(비특허 문헌 4). 임상적으로, 알츠하이머병 환자의 상부측두피질에서 구아닐레이트 시클라제 활성이 감소하며 cGMP 농도가 감소할 가능성이 나타난다(비특허 문헌 5). 그러므로, PDE9는 알렉산더 병, 알퍼스 병, 알츠하이머 병, 근위축성 측삭 경화증(ALS; 루게릭병 또는 운동뉴런병으로 알려져 있음), 모세혈관확장 운동실조, 바텐 병(스피엘마이어-보그트-쇼그렌-바텐 병으로도 알려져 있음), 빈스완거 치매(피질하 혈관경화성 뇌증), 양극성 장애, 소 해면상 뇌증(BSE), 카나반 병, 화학요법 유발성 치매, 코카인 증후군, 피질기저부 퇴화, 크루즈펠트-야곱 병, 우울증, 다운 증후군, 전두측두엽 퇴화(전두측두엽 치매, 의미적 치매 및 진행성 언어장애 포함), 게르츠만-스트라우슬러-샤인커 병, 녹내장, 헌팅톤 병(무도증), HIV 관련 치매, 운동과다, 케네디 병, 코르사코프 증후군(기억상실 작화 증후군), 크라베 병, 루이바디 치매, 발화부족형 진행성 실어증, 마카도-조셉 병(척수소뇌 변성증 유형 3), 다발성 경화증, 다계통 위축증(올리브교소뇌 위축증), 중증 근무력증, 파킨슨 병, 펠리제우스-메르츠바하 병, 피크 병(Pick's disease), 초로기 치매(경도 인지 장애), 일차성 측삭 경화증, 일차성 진행성 실어증, 방사선 유발성 치매, 레프섬 병(피탄산 저장병), 샌드호프 병, 슈라이더 병, 정신분열병, 의미적 치매, 노인성 치매, 샤이-드라거 증후군, 척수소뇌변성증, 척수근육 퇴행병, 스틸-리차드슨-올스제위스키 병(진행성 핵상 마비), 및 혈관 아밀로이드증 및 혈관성 치매(다발경색성 치매)와 같은 신경퇴화병 및 정신병의 병리와, 특히 알츠하이머 병에서의 인지 장애 등의 병리와 많은 밀접한 관련을 가질 가능성이 있다.
[비특허 문헌 1] Domek-Lopacinska et al., "Cyclic GMP metabolism and its role in brain physiology", J Physiol Pharmacol., vol. 56, Suppl 2: pp. 15-34, 2005 [비특허 문헌 2] Wang X., "Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system", J. Neurochem., vol. 68, pp. 443-456, 1997 [비특허 문헌 3] Fisher et al., "Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase", J. Biol. Chem., vol. 273: pp. 15559-15564, 1998 [비특허 문헌 4] van der Staay et al., "The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents", Neuropharmacology, vol. 55: pp. 908-918, 2008 [비특허 문헌 5] Bonkale et al., "Reduced nitric oxide responsive soluble guanylyl cyclase activity in the superior temporal cortex of patients with Alzheimer's disease", Neurosci. Lett., vol 187, pp. 5-8, 1995
하기 화학식 (I)로 표시되는 화합물((S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온; 이하 화합물 (I)로 언급함)은 PDE9 억제 활성을 갖는 신규 화합물로서 밝혀졌으며, 이 발명에 대한 특허출원이 출원되어 있다(PCT/JP2012/075748):
[화학식 I]
Figure pct00001
의약품으로서 사용될 가능성이 있는 화합물에 관해서는, 일반적으로 그것의 염 또는 염의 결정의 물리적 특성이 약물의 생체이용률, 약물의 순도, 의약품 제제 등에 큰 영향을 미친다.
그러므로, 본 발명의 목적은 의약품에서 약물로서 사용될 가능성이 있고, 용해 및 경구 흡수 특성이 개선된 화합물 (I)의 염 또는 그것의 결정을 제공하는 것이다.
본 발명자들은 전술한 바와 같은 과제를 해결하기 위해서 화합물 (I)을 면밀하게 조사하였으며, 그 결과, 화합물 (I)의 염 또는 그것의 결정을 발견함으로써 본 발명을 완성하였다.
따라서, 본 발명은 다음에 관한 것이다:
[1] (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 및 염산, 브롬화수소산, 황산, 질산, 인산, 말론산, 말레인산, 타르타르산, 메탄술폰산, 벤젠술폰산 및 톨루엔술폰산으로 이루어진 군으로부터 선택된 산의 염;
[2] (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염;
[3] (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염;
[4] [1]에서 정의한 염의 결정;
[5] 분말 X선 회절에서 10.1°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 결정;
[6] 분말 X선 회절에서 9.9°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 결정;
[7] [1]에서 정의한 염을 활성 성분으로서 포함하는 약제학적 조성물
[P1] (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 및 무기 산, 유기 카르복실산 및 유기 술폰산으로 이루어진 군으로부터 선택된 산의 염;
[P2] 상기 산이 유기 카르복실산인, [P1]에서 정의한 염;
[P3] 상기 유기 카르복실산이 말론산, 말레인산 또는 타르타르산인, [P2]에서 정의한 염;
[P4] 상기 산이 유기 술폰산인, [P1]에서 정의한 염;
[P5] 상기 유기 술폰산이 메탄술폰산, 벤젠술폰산 또는 톨루엔술폰산인, [P4]에서 정의한 염;
[P6] 상기 산이 무기산인, [P1]에서 정의한 염;
[P7] 상기 무기산이 염산, 브롬화수소산, 황산, 질산 또는 인산인, [P6]에서 정의한 염;
[P8] (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염;
[P9] (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염;
[P10] [P1]에서 정의한 염의 결정;
[P11] 상기 산이 말론산, 말레인산, 타르타르산, 메탄술폰산, 벤젠술폰산, 톨루엔술폰산, 염산, 브롬화수소산, 황산, 질산 또는 인산인, [P10]에서 정의한 결정;
[P12] 분말 X선 회절에서 10.1°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 결정;
[P12.1] 분말 X선 회절에서 9.1°및 10.1°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 결정;
[P12.2] 분말 X선 회절에서 9.1°, 10.1°및 11.1°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 결정;
[P12.3] 분말 X선 회절에서 9.1°, 10.1°, 11.1°, 18.2°및 25.8°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 결정;
[P12.4] 분말 X선 회절에서 9.1°, 10.1°, 11.1°, 16.2°,17.6°, 18.2°, 22.0°, 22.4°, 23.8° 및 25.8°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 결정;
[P12.5] 13C 고체 상태 NMR 스펙트럼에서 13.3, 61.9, 114.3, 138.9 및 172.0의 화학 시프트(ppm)에 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 결정;
[P13] 분말 X선 회절에서 9.9°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 결정;
[P13.1] 분말 X선 회절에서 9.9°및 14.6°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 결정;
[P13.2] 분말 X선 회절에서 9.9°, 13.7°및 14.6°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 결정;
[P13.3] 분말 X선 회절에서 6.6°, 9.9°, 13.7°, 14.6°및 25.7°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 결정;
[P13.4] 분말 X선 회절에서 6.6°, 9.9°, 13.7°, 14.6°, 19.0°, 19.6°, 20.5°, 21.7°, 23.5°및 25.7°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 결정;
[P13.5] 13C 고체 상태 NMR 스펙트럼에서 16.8, 67.9, 114.0, 137.7 및 160.7의 화학 시프트(ppm)에 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 결정;
[P14] [P1]에서 정의한 염을 활성 성분으로서 포함하는 약제학적 조성물;
[P14.1] [P8] 또는 [P9]에서 정의한 염을 활성 성분으로서 포함하는 약제학적 조성물;
[P14.2] [P12], [P12.1], [P12.2], [P12.3], [P12.4] 또는 [P12.5]에서 정의한 결정을 활성 성분으로서 포함하는 약제학적 조성물; 및
[P14.3] [P13], [P13.1], [P13.2], [P13.3], [P13.4] 또는 [P13.5]에서 정의한 결정을 활성 성분으로서 포함하는 약제학적 조성물.
본 발명에 의해 제공되는 화합물 (I)의 염 및 이것의 결정은 개선된 용해 및 경구 흡수 특성 및 의약품에서 약물로서 사용될 가능성을 갖는다.
도 1은 실시예 1에서 수득한 화합물 (I) 모노말레인산염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 2는 실시예 2에서 수득한 화합물 (I) 모노벤젠술폰산염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 3은 실시예 3에서 수득한 화합물 (I) 염산염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 4는 실시예 4에서 수득한 화합물 (I) 브롬화수소산 염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 5는 실시예 5에서 수득한 화합물 (I) p-톨루엔술폰산염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 6은 실시예 6에서 수득한 화합물 (I) 질산염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 7은 실시예 7에서 수득한 화합물 (I) 황산염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 8은 실시예 8에서 수득한 화합물 (I) 메탄술폰산염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 9는 실시예 9에서 수득한 화합물 (I) 인산염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 10은 실시예 10에서 수득한 화합물 (I) L-타르타르산염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 11은 실시예 11에서 수득한 화합물 (I) 말로네이트 염의 결정의 분말 X선 회절 패턴이다. 가로 좌표는 회절각(2θ)을 나타내고 세로 좌표는 피크 강도를 나타낸다.
도 12는 화합물 (I), 실시예 1에서 수득한 화합물 (I) 모노말레인산염 및 실시예 2에서 수득한 화합물 (I) 모노벤젠술폰산염에 대하여 수행한 용해 시험의 결과를 나타낸 그래프이다. 가로 좌표는 시간(분)을 나타내고 세로 좌표는 화합물 (I)로 환산한 농도(㎍/mL)를 나타낸다.
도 13은 화합물 (I) 및 실시예 1에서 수득한 화합물 (I) 모노말레인산염을 개에게 경구 투여할 때 화합물 (I)의 혈장 농도 변화를 보여주는 그래프이다. 가로 좌표는 시간(시간)을 나타내고 세로 좌표는 화합물 (I)로 환산한 농도(㎍/mL)를 나타낸다.
이하에서는 본 발명에 의한 염, 결정 및 이것의 제조 방법을 상세하게 설명하고자 한다.
본 명세서에서, "염"은 "통상 사용되는 의미로서의 염" 또는 PDE9 억제 활성을 가진 화합물 (I) 및 약학적으로 허용되는 산을 함유하는 공결정(cocrystal)을 의미한다. "통상 사용되는 의미로서의 염"은 양으로 대전된 염기성 화합물 (I)의 성분과 음으로 대전된 산 성분으로 이루어진 화합물을 말한다. 또한, 공결정은 화합물 (I)의 분자와 산이 일정한 비율 및 일정한 배열로 결정 격자내에 충전된 결정 복합체를 말한다.
구체적으로, 본 발명에 의한 염은 통상 사용되는 의미로서의 염 또는 화합물 (I) 및 유기 카르복실산, 유기 술폰산 및 무기 산으로 이루어진 군으로부터 선택된 산을 함유하는 공결정이다.
바람직한 유기 카르복실산의 예로서는 아세트산, 옥살산, 말레인산, 타르타르산, 푸마르산, 시트르산 및 말론산 염을 들 수 있고, 더욱 바람직하게는 말레인산, 타르타르산 및 말론산을 들 수 있다.
바람직한 유기 술폰산의 예로서는 메탄술폰산, 트리플루오로메탄술폰산, 에탄술폰산, 벤젠술폰산, 톨루엔술폰산 및 캄포술폰산을 들 수 있고, 더욱 바람직하게는 메탄술폰산, 벤젠술폰산 및 톨루엔술폰산을 들 수 있다.
바람직한 무기 산의 예로서는, 플루오르화수소산, 염산, 브롬화수소산, 요오드화수소산, 황산, 질산, 과염소산, 인산, 탄산 및 중탄산을 들 수 있고, 더욱 바람직하게는 염산, 브롬화수소산, 황산, 질산 및 인산을 들 수 있다.
본 발명에 의한 염은 용매화물(solvate)일 수 있다. 본 명세서에서, "화합물 (I)의 염의 용매화물"은 화합물 (I)의 염과 용매 분자가 함께 형성한 고체를 말한다. 용매화물에서 용매의 예로서는 케톤 용매, 예컨대 아세톤, 2-부탄온 및 시클로헥산온; 에스테르 용매, 예컨대 메틸 아세테이트 및 에틸 아세테이트; 에테르 용매, 예컨대 1,2-디메톡시에탄 및 t-부틸 메틸 에테르; 알코올 용매, 예컨대 메탄올, 에탄올, 1-프로판올 및 이소프로판올, 극성 용매, 예컨대 N-메틸-2-피롤리돈, N,N-디메틸포름아미드 및 디메틸 술폭시드; 및 물을 들 수 있다.
본 명세서에서, "결정"은 화합물 (I)의 염의 결정을 말한다. 따라서, 예를 들면 화합물 (I) 모노말레인산염의 결정은 화합물 (I)과 말레인산 사이에서 형성된 통상 사용되는 의미로서의 염의 결정, 또는 화합물 (I)과 말레인산 사이에서 형성된 공결정을 의미한다.
본 발명에서 바람직한 결정의 예로서는 다음을 들 수 있다:
분말 X선 회절에서 10.1°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노말레인산염의 결정;
분말 X선 회절에서 9.1°및 10.1°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노말레인산염의 결정;
분말 X선 회절에서 9.1°, 10.1°및 11.1°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노말레인산염의 결정;
분말 X선 회절에서 9.1°, 10.1°, 11.1°, 18.2°및 25.8°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노말레인산염의 결정;
분말 X선 회절에서 9.1°, 10.1°, 11.1°, 16.2°, 17.6°, 18.2°, 22.0°, 22.4°, 23.8°및 25.8°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노말레인산염의 결정;
분말 X선 회절에서 9.9°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노벤젠술폰산염의 결정;
분말 X선 회절에서 9.9° 및 14.6°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노벤젠술폰산염의 결정;
분말 X선 회절에서 9.9°, 13.7°및 14.6°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노벤젠술폰산염의 결정;
분말 X선 회절에서 6.6°, 9.9°, 13.7°, 14.6°및 25.7°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노벤젠술폰산염의 결정;
분말 X선 회절에서 6.6°, 9.9°, 13.7°, 14.6°, 19.0°, 19.6°, 20.5°, 21.7°, 23.5°및 25.7°의 회절각(2θ±0.2°)에 회절 피크를 갖는 화합물 (I) 모노벤젠술폰산염의 결정;
13C 고체 상태 NMR 스펙트럼에서 13.3, 61.9, 114.3, 138.9 및 172.0의 화학적 이동(ppm)에 피크를 갖는 것을 특징으로 하는 화합물 (I) 모노말레인산염의 결정;
13C 고체 상태 NMR 스펙트럼에서 16.8, 67.9, 114.0, 137.7 및 160.7의 화학적 이동(ppm)에 피크를 갖는 것을 특징으로 하는 화합물 (I) 모노벤젠술폰산염의 결정.
전술한 바와 같은 분말 X선 회절에서 피크는 화합물 (I) 모노말레인산염의 결정 또는 화합물 (I) 모노벤젠술폰산염의 결정 각각의 특징이다.
일반적으로, ±0.2°범위내의 회절각(2θ) 오차가 분말 X선 회절에서 일어날 수 있으므로, 전술한 회절각의 값은 대략 ±0.2°범위내의 값들을 포함하는 것으로 생각할 필요가 있다. 그러므로, 본 발명에는 분말 X선 회절에서 정확히 동일한 회절각에 피크를 갖는 결정뿐만 아니라 회절각의 대략 ±0.2°오차 범위내의 피크를 갖는 결정도 포함된다.
그러므로, 예컨대 본 명세서에서 "10.1°의 회절각(2θ±0.2°)에 회절 피크를 갖는" 것은 "9.9°내지 10.3°의 회절각(2θ)에 회절 피크를 갖는" 것을 의미한다. 다른 회절각에도 동일한 내용이 적용된다.
본 명세서에서, "13.3, 61.9, 114.3, 138.9 및 172.0의 화학적 이동(ppm)에 피크를 갖는" 것은 "13C 고체 상태 NMR 분광분석을 통상적인 측정 조건하에 또는 본 명세서와 실질적으로 동일한 조건하에 수행하였을 때, 각각 13.3, 61.9, 114.3, 138.9 및 172.0의 화학 시프트(ppm)에서의 피크와 실질적으로 동등한 피크를 갖는"것을 의미한다.
"~와 실질적으로 동등한 피크를 갖는"지의 여부를 결정할 때, 전술한 화학 시프트의 값은 ±0.5 ppm의 범위내의 값들을 포함하는 것으로 생각할 필요가 있는데, 그 이유는 13C 고체 상태 NMR 스펙트럼에서 일반적으로 ±0.5 ppm 범위내의 화학 시프트(ppm)에서 오차가 발생할 수 있기 때문이다. 그러므로, 본 발명에는 13C 고체 상태 NMR 스펙트럼에서 정확히 동일한 화학 시프트를 갖는 결정뿐만 아니라 대략 ±0.5 ppm의 오차 범위내의 화학 시프트를 갖는 결정도 포함된다. 따라서, 예컨대 본 명세서에서 13.3의 화학 시프트(ppm)에 피크를 갖는" 것은 "12.8 내지 13.8의 화학 시프트(ppm)에 피크를 갖는" 것을 의미한다. 13C 고체 상태 NMR 스펙트럼에서 다른 화학 시프트에도 동일한 내용이 적용된다.
이하에서는 본 발명에 의한 한 실시양태인 화합물 (I)의 염 또는 이것의 결정 등을 제조하는 방법을 설명하고자 한다.
화합물 (I)의 제조
본 발명에 의한 화합물 (I)은, 하기 참고예 1에 구체적으로 설명한 바와 같이 출발 물질로서 3-옥소테트라히드로푸란, 2-플루오로-5-메틸피리딘 및 4-브로모-2-플루오로벤조산으로부터 합성할 수 있다.
화합물 (I)의 염을 제조하는 방법
화합물 (I)의 염은 염을 제조하는 통상적인 방법에 의해 수득할 수 있다. 구체적으로, 예를 들면 화합물 (I)을 필요에 따라 가열하면서 용매에 현탁 또는 용해시킨 후에, 수득한 현탁액 또는 용액에 유기 카르복실산, 유기 술폰산 및 무기 산으로 이루어진 군으로부터 선택된 산을 첨가하고, 수득한 현탁액 또는 용액을 수분 내지 수 일 동안 실온에서 또는 얼음조로 냉각하면서 교반 또는 방치함으로써 화합물 (I)의 염을 제조할 수 있다. 이러한 제조 방법에 따라 화합물 (I)의 염을 결정 또는 비정질 물질로서 수득할 수 있다. 이 방법에 사용되는 용매의 예로서는, 알코올 용매, 예컨대 에탄올, 1-프로판올 및 이소프로판올; 아세토니트릴; 케톤 용매, 에컨대 아세톤 및 2-부탄온; 에스테르 용매, 예컨대 에틸 아세테이트; 포화 탄화수소 용매, 예컨대 헥산 및 헵탄; 에테르 용매, 예컨대 t-부틸 메텔 에테르 또는 물을 들 수 있다. 이러한 용매를 각각 단독으로 또는 2종 이상을 혼합해서 사용할 수 있다.
전술한 화합물 (I)의 제조 방법에서, 상기 방법을 사용함으로써 화합물 (I)을 합성한 후에 화합물 (I)의 염을 제조할 수 있다.
화합물 (I)의 염의 결정을 제조하는 방법
화합물 (I)의 염의 결정은 전술한 바와 같은 화합물 (I)의 염을 제조하는 방법에 의해서, 또는 화합물 (I)의 염을 용매에 가열 용해시키고 이를 교반하에 냉각을 통해 결정화함으로써 제조할 수 있다.
결정화에 사용되는 화합물 (I)의 염은 임의의 형태로 존재할 수 있고; 수화물, 무수물, 비정질 물질, 결정질 물질 (다수의 결정질 다형체로 이루어진 것들 포함) 또는 이들의 혼합물일 수 있다.
결정화에 사용되는 용매의 예로서는, 알코올 용매, 예컨대 메탄올, 에탄올, 이소프로판올 및 1-프로판올; 아세토니트릴; 아미드 용매, 예컨대 N,N-디메틸포름아미드; 에스테르 용매, 예컨대 에틸 아세테이트; 포화 탄화수소 용매, 예컨대 헥산 및 헵탄; 케톤 용매, 예컨대 아세톤 및 2-부탄온; 에테르 용매, 예컨대 t-부틸 메틸 에테르 또는 물을 들 수 있다. 또한, 이러한 용매를 각각 단독으로 또는 2종 이상을 혼합해서 사용할 수 있다.
사용되는 용매의 양은, 그 하한치가 유리된 형태의 화합물 (I) 또는 이것의 염을 가열에 의해 용해시키거나 현탁액을 교반할 수 있는 양이고, 그 상한치가 결정의 수율을 현저하게 감소시키지 않는 양이라는 조건하에, 적당하게 선택할 수 있다.
전술한 방법에 의해 얻어지는 결정은 단결정 형태로 존재한다. 이러한 결정형은 안정하고, 쉽게 다른 결정형 또는 비정질 물질로 전환되지 않으며, 우수한 물리적 성질을 갖고, 제제화하는 데에도 적합하다.
결정화하는 동안에 종결정 (예: 소정의 화합물 (I)의 염의 결정)을 첨가하거나 첨가하지 않을 수 있다. 종결정을 첨가하는 온도는 특별히 제한되지 않으나, 0 내지 60℃인 것이 바람직하다.
화합물 (I)의 염을 가열에 의해 용해시킬 때 사용되는 온도는, 화합물 (I)이 용매에 따라 적당하게 용해될 수 있는 온도이지만, 재결정화 용매가 환류하기 시작하는 온도 내지 50℃ 범위내인 것이 바람직하고, 65 내지 55℃가 더욱 바람직하다.
결정화하는 동안 냉각하면 급냉각의 경우에 상이한 결정형을 함유하는 (다형성) 물질을 제공할 수 있다. 그러므로, 냉각이 결정의 성질, 입도 등에 미치는 영향을 고려하여 적절하게 냉각 속도를 조절하면서 냉각을 수행하는 것이 바람직하다. 예를 들면 40 내지 5℃/시간의 냉각 속도로 냉각하는 것이 바람직하다. 예를 들면 25 내지 5℃/시간의 냉각 속도로 냉각하는 것이 더욱 바람직하다.
또한, 최종 결정화 온도는 결정의 수율, 성질 등에 관하여 적당하게 선택할 수 있지만, 30 내지 -25℃인 것이 바람직하다.
형성된 결정을 통상의 여과 절차를 통해 분리시키고, 여과된 결정을 필요에 따라 용매로 세척하고, 그것을 더 건조시킴으로써 목적하는 결정을 수득할 수 있다. 결정을 세척하는 데 사용되는 용매로서는, 결정화에 사용된 것과 동일한 용매를 사용할 수 있다. 예를 들면, 용매가 아세톤, 2-부탄온, 에틸 아세테이트, t- 부틸 메틸 에테르 및 헥산/2-부탄온 (2:3 부피비)의 혼합 용매인 것이 바람직하다.
여과 절차를 통해서 분리된 결정을 공기중에 또는 질소 흐름하에 방치하거나 가열함으로써 적절하게 건조시킬 수 있다.
건조 시간으로서, 제조량, 건조 장치, 건조 온도 등에 따라서 잔류 용매의 양이 예정된 양 미만이 되는 시간을 적절하게 선택할 수 있다. 또한, 기류하에서 또는 감압하에서 건조를 수행할 수 있다. 감압 정도는 제조량, 건조 장치, 건조 온도 등에 따라서 적절하게 선택할 수 있다. 수득한 결정을 건조한 후에 필요에 따라 공기중에 방치할 수 있다.
전술한 바와 같은 화합물 (I)의 제조 방법에서, 상기 결정은 화합물 (I)을 합성한 후에 전술한 화합물 (I)의 염의 제조 방법을 더 사용하고, 필요에 따라 화합물 (I)의 염의 결정의 제조 방법을 사용함으로써 제조할 수 있다.
앞서 설명한 제조 방법에 의해 수득한 화합물 (I)의 염 및 이것의 결정은 뇌에서 cGMP의 농도를 증가시킬 것으로 예측되는데, 그 이유는 이들이 후술하는 예시적인 약리학적 시험의 활성 데이터에 의해 입증되는 바와 같이 PDE9 억제 활성을 갖기 때문이다. PDE9 억제 활성 및 뇌에서의 cGMP 증가는 학습 및 기억 행동의 개선을 유도하며, 이러한 염 및 결정은 알츠하이머 병에서 인지 장애 등에 대한 치료재로서 사용될 가능성이 있다.
본 발명에 의한 화학식 (I)의 화합물 또는 이것의 약학적 허용 염은 통상적인 방법에 의해 약학적으로 제조될 수 있으며, 투여 제형을 제조할 수 있고, 그 예로서는 경구 제제 (정제, 과립, 분말, 캡슐, 시럽 등), 주사제 (정맥내 투여용, 근육내 투여용, 피하 투여용, 복강내 투여용 등), 및 외용 제제 (피부도포 제제 (연고, 패치 등), 점안액, 비강 점적액, 좌약 등)을 들 수 있다.
경구 고체 제제를 제조할 경우에, 화학식 (I)의 화합물 또는 이것의 약학적 허용 염, 필요에 따라 부형제, 결합제, 분해제, 윤활제, 착색제 등을 첨가하고, 통상적인 방법에 의해서 정제, 과립, 분말 및 캡슐을 제조할 수 있다. 정제, 과립, 분말, 캡슐 등을 필요에 따라 필름 코팅할 수 있다.
부형제의 예로서는, 락토오스, 옥수수전분 및 결정질 셀룰로오스를 들 수 있고; 결합제의 예로서는 히드록시프로필 셀룰로오스 및 히드록시프로필 메틸 셀룰로오스를 들 수 있으며; 분해제의 예로서는 카르복시메틸 셀룰로오스 칼슘 및 크로스카르멜로스 나트륨을 들 수 있고; 윤활제의 예로서는 스테아르산 마그네슘 및 스테아르산 칼슘을 들 수 있으며; 착색제의 예로서는 산화티타늄을 들 수 있고; 필름 코팅제의 예로서는 히드록시프로필 셀룰로오스, 히드록시프로필 메틸 셀룰로오스 및 메틸 셀룰로오스를 들 수 있으나, 이러한 첨가제들이 전술한 예에 국한되는 것은 아니다.
이러한 고체 제제, 예컨대 정제, 캡슐, 과립 및 분말은 각각 일반적으로 0.001 내지 99.5 중량%, 바람직하게는 0.01 내지 90 중량% 등의 화학식 (I)의 화합물 또는 이것의 약학적 허용 염을 함유할 수 있다.
주사제(정맥내 투여용, 근육내 투여용, 피하 투여용, 복강내 투여용 등)를 제조하는 경우에는, 화학식 (I)의 화합물 또는 이것의 약학적 허용 염에, 필요에 따라서 pH 조절제, 완충제, 현탁제, 가용화제, 항산화제, 방부제(부패방지제), 등장제 등을 첨가하고, 통상적인 방법에 의해서 주사제를 제조할 수 있다. 제제를 동결건조하여 즉석 용해형 친액성화 제제를 제조할 수 있다.
pH 조절제 및 완충제로서는, 예컨대 유기 산 또는 무기 산 및/또는 이것의 염등을 사용할 수 있다. 또한, 현탁제로서는, 예컨대 메틸셀룰로오스, 폴리소르베이트(polysorbate) 80, 카르복시메틸 셀룰로오스 나트륨 등을 사용할 수 있다. 가용화제로서는, 예컨대 폴리소르베이트 80, 폴리옥시에틸렌 소르비탄 모노라우레이트 등을 사용할 수 있다. 항산화제로서는, 예컨대α-토코페롤 등을 사용할 수 있다. 방부제로서는, 메틸 파라히드록시벤조에이트, 에틸 파라히드록시벤조에이트 등을 사용할 수 있다. 등장제로서는, 예컨대 글루코오스, 염화나트륨, 만니톨 등을 사용할 수 있다. pH 조절제, 완충제, 현탁제, 가용화제, 항산화제, 방부제(부패방지제) 및 등장제가 이러한 예에 국한되지 않음은 물론이다.
이러한 주사제는 주사제의 총 질량에 대하여 일반적으로 0.000001 내지 99.5 질량%, 바람직하게는 0.00001 내지 90 질량% 등의 화합물 (I)의 염 또는 이것의 결정을 함유할 수 있다.
외부도포용 제제를 제조할 경우에, 기본 원료를 화학식 (I)의 화합물 또는 이것의 약학적 허용 염에 첨가하고, 필요에 따라서, 예컨대 방부제, 안정화제, pH 조절제, 항산화제, 착색제 등을 첨가한 후, 통상적인 방법에 의해서 예를 들면 피부도포 제제(연고, 패치 등), 점안액, 비강 점적액, 좌약 등을 제조할 수 있다.
사용되는 기본 원료로서는, 예컨대 약품, 유사약물 및 화장품에 사용되는 다양한 원료를 일반적으로 사용할 수 있다. 그 구체적인 예로서는 원료, 예컨대 동물성 및 식물성 오일, 미네랄 오일, 에스테르 오일, 왁스, 유화제, 고급 알코올, 지방산, 실리콘 오일, 계면활성제, 인지질, 알코올, 다가 알코올, 수용성 중합체, 점토 미네랄 및 정제수를 들 수 있다.
이러한 외부도포 제제는 각각 일반적으로 0.000001 내지 99.5 중량%, 바람직하게는 0.00001 내지 90 중량%의 화학식 (I)의 화합물 또는 이것의 약학적 허용 염을 함유할 수 있다.
화합물 (I)의 염 또는 이것의 결정의 용량은 증상의 정도, 연령, 성별, 체중, 투여 제형, 염의 유형, 구체적인 질병의 종류 등에 따라 달라진다. 성인의 경우에, 각각 1회 용량 또는 분할 용량으로서, 일반적으로 1일당 약 30 ㎍ 내지 10 g, 바람직하게는 100 ㎍ 내지 5 g, 더욱 바람직하게는 100 ㎍ 내지 1 g을 경구 투여하거나, 1일당 약 30 ㎍ 내지 1 g, 바람직하게는 100 ㎍ 내지 500 mg, 더욱 바람직하게는 100 ㎍ 내지 300 mg을 주사에 의해서 투여한다.
실시예
이하에서는 참고예 및 실시예에 의거하여 본 발명을 상세히 설명하고자 하나, 본 발명이 후술하는 참고예 및 실시예에 제한되는 것은 아니다.
본 명세서에서 실시예 및 참고예에 다음과 같은 약어를 사용할 것이다.
CDI: 1,1'-카르보닐디이미다졸
DCM: 디클로로메탄
DMF-DMA: N,N-디메틸포름아미드 디메틸 아세탈
DMF: N,N-디메틸포름아미드
DMSO: 디메틸 술폭시드
DTT: 디티오트레이톨
IPA: 이소프로필 알코올
KTB: 칼륨 tert-부톡시드
MTBE: t-부틸메틸 에테르
NBS: N-브로모숙신이미드
Pd(dppf)Cl2 DCM 복합체: [1,1'-비스(디페닐포스핀)페로센]디클로로팔라듐(II) DCM 복합체
Pd(PPh3)4: 테트라키스(트리페닐포스핀)팔라듐(0)
TEA: 트리에틸아민
TFA: 트리플루오로아세트산
THF: 테트라히드로푸란
트리스: 트리스히드록시메틸아미노메탄
양성자 핵 자기 공명 스펙트럼의 화학 시프트는 테트라메틸실란을 기준으로 하여 δ(ppm) 단위로 기록하고; 결합 상수는 헤르츠(Hz) 단위로 기록한다. 분할 패턴의 약어는 다음과 같다: s: 단일선, d: 이중선, t: 삼중선, q: 사중선, m: 다중선, brs: 넓은 단일선 및 brd: 넓은 이중선.
하기 실시예에서 제조된 결정의 분말 X선 결정 회절에서, 수득한 결정을 분말 X선 회절 장치의 샘플단상에 장착하고 다음과 같은 조건하에서 분석하였다.
측정 조건
샘플 홀더: 알루미늄
표적: 구리
검출기: 신틸레이션 계수기
튜브 전압: 50 kV
튜브 전류: 300 mA
슬릿: DS 0.5 mm (높이 제한 슬릿 2 mm), SS 개방, RS 개방
스캐닝 속도: 10°/분
샘플링 간격: 0.02°
스캔 범위: 5 내지 35°
고니오미터(goniometer): 수평 고니오미터
결정의 13C 고체 상태 NMR 스펙트럼은 다음과 같은 조건하에 측정하였다.
측정 조건
사용된 장치: 어밴스(AVANCE) 400 (Bruker Corporation(브루커 코포레이션))
측정 온도: 실온(22℃)
기준 물질: 글리신(외부 기준: 176.03 ppm)
측정된 핵: 13C(100.6248425 MHz)
펄스 반복 시간: 3초
펄스 모드: TOSS 측정
참고예 1
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온의 합성
[화학식 I]
Figure pct00002
(1) 벤질 2-[ 디히드로푸란 -3(2H)- 일디엔 ] 히드라진카르복실레이트의 합성
3-옥소테트라히드로푸란(5.70 g)을 메탄올(150 mL)에 용해시키고, 벤질 카르바제이트(10 g)를 그 용액에 첨가하였다. 혼합물을 실온에서 12 시간 동안 교반하였다. 반응 혼합물을 농축하였다. 잔류물 14.8 g을 미정제 생성물로서 수득하였다. 이것을 더 이상 정제하지 않고 다음 반응에 사용하였다.
(2) (±)- 벤질 2-(테트라히드로푸란-3-일)히드라진 카르복실레이트의 합성
벤질 2-[디히드로푸란-3(2H)-일디엔]히드라진 카르복실레이트(14.8 g)를 물(96 mL)에 현탁시켰다. 아세트산(42.1 mL)을 실온에서 그 현탁액에 첨가하였다. 혼합물을 실온에서 1 시간 동안 교반하였다. 현탁액이 용액으로 되었다. 나트륨 시아노보로하이드라이드(4.0 g)를 이 용액에 조금씩 첨가하였다. 혼합된 용액을 실온에서 2 시간 동안 교반하였다. 반응 혼합물을 0℃까지 냉각하였다. 5N 수산화나트륨 수용액을 첨가함으로써 반응 혼합물을 중화시켰다. 혼합물을 클로로포름으로 추출하였다. 유기 층을 무수 황산마그네슘으로 건조시킨 후에 여과하였다. 여과액을 감압하에 농축하였다. 잔류물을 실리카겔 컬럼 크로마토그래피(메탄올/에틸 아세테이트, 5%)로 정제하였다. 표제 화합물(13.9 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 1.73-1.80 (m, 1H), 1.92-2.06 (m, 1H), 3.66-3.82 (m, 3H), 3.82-4.03 (m, 2H), 5.14 (s, 2H), 7.31-7.40 (m, 5H).
(3) (-)- 벤질 2-(테트라히드로푸란-3-일) 히드라진카르복실레이트 및 (+)- 질 2-(테트라히드로푸란-3-일)히드라진 카르복실레이트의 합성
중탄산나트륨 포화 수용액(30 mL)을 MTBE(110 mL)중의 (±)-벤질 2-(테트라히드로푸란-3-일)히드라진카르복실레이트(11.5 g)의 용액에 첨가하였다. 혼합물을 실온에서 10분 동안 교반한 후에, 유기 층을 분리하였다. 수득한 유기 층을 포화 중탄산나트륨 및 염수로 연속해서 세척하고, 황산마그네슘으로 건조시킨 후에, 건조제를 여과에 의해 제거하였다. 여과액을 감압하에 농축시켰다. 수득한 잔류물을 실리카겔 컬럼 크로마토그래피(에틸 아세테이트/헥산, 25 내지 50%)로 정제하고, 목적하는 분획을 농축하였다. 디에틸 에테르(30 mL)와 헥산(15 mL)을 잔류물에 첨가하였다. 침전된 고체를 여과에 의해 수집하고 감압하에 건조시켜서 순수한 (±)-벤질 2-(테트라히드로푸란-3-일)히드라진 카르복실레이트(6.17 g)를 수득하였다.
이 생성물을 에탄올에 용해시키고 밀리포어(millipore) 필터를 통해서 여과하였다. 수득한 여과액을 두 가지 조건하에서 광학적으로 분해하였다.
조건 1: 키랄셀(CHIRALCEL)TM (DAICEL Corp.(다이셀 코포레이션) 제조), OD-H (20 mm φ x 250 mm L), 20% IPA-헥산, 25 mL/분
조건 2: 키랄팩(CHIRALPAK)TM (다이셀 코포레이션 제조), AD-H (20 mm φ x 250 mm L), 20% IPA-헥산, 24 mL/분. 목적하는 분획을 농축하여 짧은 체류 시간 및 (-) 광학 회전을 갖는 표제 화합물(2.60 g, >99% ee [OD-H, 20% IPA/헥산, 체류 시간=11.2 분]), 및 긴 체류 시간 및 (+) 광학 회전을 갖는 표제 화합물(2.59 g, 97.2% ee [OD-H, 20% IPA/헥산, 체류 시간=12.4 분])을 수득하였다.
(4) (S)-(테트라히드로푸란-3-일)히드라진 염산염의 합성
(-)-벤질 2-(테트라히드로푸란-3-일)히드라진카르복실레이트(50 g)를 메탄올(500 mL)에 용해시키고, 디-t-부틸 디카르보네이트(92.4 g) 및 팔라듐 탄소(50% 습윤)(5 g)를 첨가하였다. 혼합물을 25℃에서 15 psi하에 48 시간 동안 수소 대기중에서 교반하였다. 반응 혼합물을 여과하고, 여과액을 감압하에 농축하였다. 수득한 잔류물을 디이소프로필 에테르(300 mL)에 용해시켰다. 0℃에서 냉각한 후에, 염산/디이소프로필 에테르(500 mL)를 용액에 첨가하였다. 혼합물을 10℃에서 14 시간 동안 교반하였다. 침전된 고체를 여과에 의해 수집하였다. (-)-벤질 2-(테트라히드로푸란-3-일)히드라진카르복실레이트(70 g)으로부터 동일한 작업을 9회 수행하고, (-)-벤질 2-(테트라히드로푸란-3-일)히드라진카르복실레이트(50 g)로부터 동일한 작업을 1회 수행하였다. 수득한 고체를 DCM/에탄올(10/1)(1L)로 2 시간 동안 분쇄하였다. 침전된 고체를 여과에 의해 수집하였다. 수득한 고체를 감압하에 건조시켜서 표제 화합물(235 g)을 수득하였다.
1H-NMR (400 MHz, DMSO-d6) δ (ppm): 1.87-2.09 (m, 2H), 3.55-3.71 (m, 2H), 3.71-3.84 (m, 3H).
수득한 표제 화합물의 절대 배치는 X선 결정분석에 따라 (S)-형인 것으로 확인되었다.
(5) 2- 플루오로 -3- 요오도 -5- 메틸피리딘의 합성
디이소프로필아민(92 mL)을 THF(1.2L)에 첨가하고, 혼합물을 질소 대기하에 -18℃까지 냉각하였다. 이 용액에, 헥산중의 2.69 M n-부틸리튬의 용액(224 mL)을 적가하였다. 적가한 후에, 이 혼합물을 교반하면서 온도를 20 분에 걸쳐 -5℃까지 증가시켰다. 반응 용액을 -73℃까지 냉각시켰다. 이 반응 용액에 2-플루오로-5-메틸피리딘(61 g)의 THF 용액(240 mL)을 적가하였다. 반응 혼합물을 3 시간 반 동안 -75℃에서 교반하였다. 이 용액에 요오드(139 g)의 THF 용액(24 mL)을 적가하였다. 반응 혼합물을 -75℃에서 1 시간 55 분 동안 교반하였다. 반응 후에, 물(220 mL)을 동일한 온도에서 반응 용액에 첨가하였다. 혼합물을 동일한 온도에서 5분 동안 교반하였다. 반응 용액을 다시 실온으로 만든 후에, 물(1.2 L)을 첨가하였다. 이 혼합물에, 티오황산나트륨 오수화물(136 g)의 수용액(300 mL) 및 물(300 mL)을 첨가하고, 혼합물을 10 분 동안 교반하였다. 이 혼합물을 MTBE(1.2 L)로 추출하였다. 유기 층을 포화 염수(500 mL)로 세척하였다. 수성 층을 합해서 MTBE(1 L)로 추출하였다. 유기 층을 합해서 무수 황산마그네슘으로 건조시켰다. 건조제를 여과에 의해 제거하고 여과액을 감압하에 농축시켰다. n-헵탄을 잔류물에 첨가하고, 혼합물을 냉각시켰다. 침전된 고체를 여과에 의해 수집하였다. 고체를 n-헵탄으로 세척하였다. 여과액을 냉각시키고, 침전된 고체를 여과에 의해 수집하였다. 이 절차를 5회 반복해서 표제 화합물(109.69 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 2.29-2.31 (m, 3H), 7.93-8.14 (m, 2H).
ESI-MS m/z 238 [M+H]+
(6) 2- 플루오로 -4- 요오도 -3,5-디메틸피리딘의 합성
디이소프로필아민(88 ml)을 THF(1.2 L)에 첨가하고, 혼합물을 질소 대기하에 -18℃까지 냉각시켰다. 이 용액에 헥산중의 2.69 M n-부틸리튬의 용액(215 mL)을 적가하였다. 적가한 후에, 이 혼합물을 교반하면서 온도를 30 분에 걸쳐 -5℃까지 증가시켰다. 반응 용액을 -72℃까지 냉각시켰다. 이 반응 용액에 2-플루오로-3-요오도-5-메틸피리딘(109.69 g)의 THF 용액(240 mL)을 적가하였다. 반응 혼합물을 -74℃에서 1 시간 반 동안 교반하였다. 이 반응 용액에 요오드화메틸(36 ml)의 THF 용액(160 mL)을 적가하였다. 반응 혼합물을 -70℃ 내지 -74℃에서 2 시간 동안 교반하였다. 반응 후에, 물(200 mL)을 동일한 온도에서 반응 용액에 첨가하였다. 혼합물을 동일한 온도에서 2 시간 동안 교반하였다. 반응 용액을 다시 실온으로 만든 후에 물(1.2 L)을 첨가하였다. 이 혼합물을 3 분 동안 교반하였다. 물(300 mL)을 더 첨가하였다. 이 혼합물을 MTBE(1.2 L)로 추출하였다. 유기 층을 포화 염수(500 mL)로 세척하였다. 수성 층을 합해서 MTBE(1 L)로 추출하였다. 유기 층을 합해서 무수 황산마그네슘으로 건조시켰다. 건조제를 여과에 의해 제거하고 여과액을 감압하에 농축하였다. n-헵탄(100 mL)을 잔류물에 첨가하고, 혼합물을 냉각시켰다. 침전된 고체를 여과에 의해 수집하였다. 고체를 n-헵탄으로 세척하였다. 여과액을 냉각시키고, 침전된 고체를 여과에 의해 수집하였다. 이 절차를 2회 반복하여 표제 화합물(86.9 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 2.39-2.40 (m, 6H), 7.80-7.82 (m, 1H).
ESI-MS m/z 252 [M+H]+
(7) 4- 요오도 -2- 메톡시 -3,5-디메틸피리딘의 합성
2-플루오로-4-요오도-3,5-디메틸피리딘(97.4 g)의 THF(954 mL) 용액에 20℃에서, 28% 나트륨 메톡시드의 메탄올 용액(185 mL)을 첨가하였다. 이 혼합물을 55℃ 내지 65℃에서 2 시간 동안 교반하였다. 반응 용액을 냉각시킨 후에, MTBE(1 L) 및 물(1 L)을 첨가함으로써 분리시켰다. 유기 층을 포화 염수로 세척하였다. 수성 층을 합해서 MTBE(500 mLx2)로 추출하였다. 유기 층을 합해서 무수 황산마그네슘으로 건조시켰다. 건조제를 여과에 의해 제거하고 여과액을 감압하에 농축시켰다. n-헵탄(50 mL)을 잔류물에 첨가하고, 혼합물을 0℃에서 1 시간 동안 교반하였다. 침전된 고체를 여과에 의해 수집하였다. 고체를 냉각된 n-헵탄(10 mL)으로 세척하였다. 표제 화합물(42.6 g)을 수득하였다. 여과액을 감압하에 농축하였다. n-헵탄(5 mL)을 잔류물에 첨가하고, 혼합물을 0℃에서 30 분 동안 교반하였다. 침전된 고체를 여과에 의해 수집하였다. 고체를 냉각된 n-헵탄(2 mL)으로 세척하여 표제 화합물(20.2 g)을 수득하였다. 여과액을 감압하에 농축하였다. n-헵탄(5 mL)을 잔류물에 첨가하고, 혼합물을 0℃에서 30 분 동안 교반하였다. 침전된 고체를 여과에 의해 수집하였다. 고체를 냉각된 n-헵탄(2 mL)으로 세척하였다. 표제 화합물(10.7 g)을 수득하였다. 이들을 합쳐서 표제 화합물(73.5 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 2.33-2.34 (m, 3H), 2.36-2.38 (m, 3H), 3.92 (s, 3H), 7.76 (s, 1H).
ESI-MS m/z 264 [M+H]+
(8) 에틸 3-(4- 브로모 -2- 플루오로페닐 )-3- 옥소프로파노에이트의 합성
CDI(8.88 g)을 DCM(97 mL) 중의 4-브로모-2-플루오로벤조산(CAS 번호 112704-79-7)(10 g)의 현탁액에 첨가하고, 혼합물을 실온에서 3.5 시간 동안 교반하였다. 이 용액을 "용액 1"로 언급한다.
다른 플라스크에서 아세토니트릴 (303 mL)중의 칼륨 에틸 말로네이트(15.5 g)의 현탁액에 TEA(15.9 mL)를 첨가한 후에, 염화마그네슘(10.9 g)을 첨가하고, 혼합물을 실온에서 3 시간 10 분 동안 교반하였다. 이 반응 혼합물에, 25 분에 걸쳐서 위에서 제조한 "용액 1"을 적가한 다음, 반응 혼합물을 실온에서 밤새 교반하였다. 반응 용액을 감압하에서 절반의 부피로 농축하였다. 수득한 잔류물을 에틸 아세테이트(500 mL)중에 희석하고, 빙냉하에 5N 염산(250 mL)를 첨가한 후에, 실온에서 1 시간 동안 교반하였다. 유기 층을 분리하였다. 유기 층을 포화 염수로 세척하고, 무수 황산마그네슘으로 건조시키고, 여과한 후에 감압하에 농축하였다. 수득한 잔류물을 실리카겔 상에서 컬럼 크로마토그래피로 정제하여(에틸 아세테이트/n-헵탄, 5-20%) 표제 화합물(12.8 g)을 수득하였다.
ESI-MS m/z 291 [M+H]+
(9) 에틸 5-(4- 브로모 -2- 플루오로페닐 )-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복실레이트의 합성
DMF-DMA(165 mL) 중의 에틸 3-(4-브로모-2-플루오로페닐)-3-옥소프로파노에이트(45 g)의 용액을 50℃에서 2 시간 15 분 동안 교반하였다. 반응 용액을 감압하에 농축하였다. 톨루엔(200 mL)을 잔류물에 첨가하고, 혼합물을 다시 감압하에 농축하였다. 에탄올(950 mL)을 잔류물에 첨가하고, 혼합물을 50℃까지 가열하였다. 이 용액에, 35 분에 걸쳐서 (S)-(테트라히드로푸란-3-일)히드라진 염산염(21.6 g)의 수용액(60 mL)을 적가하였다. 수득한 반응 혼합물을 50℃에서 2 시간 10 분 동안 교반하였다. 반응 용액을 실온까지 냉각시킨 후에 감압하에 절반의 부피로 농축하였다. 물(200 mL)을 잔류물에 첨가하고 에탄올을 감압하에 증류 제거하였다. 에틸 아세테이트(500 mL)를 수득한 잔류물에 첨가하고 유기 층을 분리하였다. 수성 층을 에틸 아세테이트(100 mL)로 추출하였다. 유기 층을 합쳐서 포화 염수로 세척하고, 무수 황산마그네슘으로 건조시키고, 여과한 후에 감압하에 농축하였다. 잔류물을 실리카겔 상에서 컬럼 크로마토그래피로 정제한 후에(에틸 아세테이트/n-헵탄, 10% 내지 15%), NH 실리카겔(후지 실리시아 케미컬 리미티드(Fuji Silysia Chemical Ltd.)에서 시판하는 프로필아민이 코팅된 실리카 겔) 상에서 단축 경로 컬럼 크로마토그래피로 정제하여(에틸 아세테이트/n-헵탄, 33%) 표제 화합물(43.1 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 1.19 (t, J=7.2 Hz, 3H), 2.19-2.49 (m, 2H), 3.87-4.07 (m, 3H), 4.11-4.25 (m, 3H), 4.58-4.65 (m, 1H), 7.17-7.26 (m, 1H), 7.39-7.47 (m, 2H), 8.06 (s, 1H).
ESI-MS m/z 407 [M+Na]+
(10) 에틸 5-[2- 플루오로 -4-(4,4,5,5- 테트라메틸 -1,3,2- 디옥사보롤란 -2-일)페닐]-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복실레이트의 합성
에틸 5-(4-브로모-2-플루오로페닐)-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복실레이트(43.1 g), 비스(피나콜레이토)디보론(34.3 g), Pd(dppf)Cl2 DCM 복합체(4.59 g) 및 아세트산칼륨(33.1 g)을 진공 펌프를 사용해서 1 시간 동안 감압하에 건조시켰다. DMF(430 mL)중의 건조된 잔류물의 용액을 80℃에서 3 시간 10 분 동안 교반하였다. 반응 용액을 다시 실온으로 만든 후에 셀라이트(Celite)TM를 통해서 여과하였다. 여과액을 감압하에 농축하였다. 잔류물에 에틸 아세테이트(430 mL) 및 포화 염수(200 mL)를 첨가하고, 혼합물을 5 분 동안 교반하였다. 불용성 물질을 셀라이트TM를 사용해서 여과하여 제거하였다. 유기 층을 여과액으로부터 분리하였다. 수성 층을 다시 에틸 아세테이트(50 mL)로 추출하였다. 유기 층을 합쳐서 무수 황산마그네슘으로 건조시키고 여과한 후에, 여과액을 감압하에 농축하였다. 잔류물을 실리카겔 상에서 컬럼 크로마토그래피로 정제하여(에틸 아세테이트/n-헵탄, 10-15%) 표제 화합물(51.9 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 1.16 (t, J=7.2 Hz, 3H), 1.37 (s, 12H), 2.15-2.49 (m, 2H), 3.85-4.06 (m, 3H), 4.14 (q, J=7.2 Hz, 2H), 4.20 (dd, J=15.6, 8.4 Hz, 1H), 4.57-4.66 (m, 1H), 7.30 (t, J=7.2 Hz, 0.5H), 7.35 (t, J=7.2 Hz, 0.5H), 7.63 (dd, J=5.6, 2.0 Hz, 1H), 7.70 (dd, J=7.2, 2.0 Hz, 1H), 8.06 (s, 1H).
(11) 에틸 5-[2- 플루오로 -4-(2- 메톡시 -3,5-디메틸피리딘-4-일)페닐]-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복실레이트의 합성
물(170 mL), 4-요오도-2-메톡시-3,5-디메틸피리딘(35.6 g), Pd(PPh3)4 (6.52 g) 및 탄산세슘(110 g)을 1,4-디옥산(500 mL)중의 5-[2-플루오로-4-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)페닐]-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복실레이트(51.9 g)의 용액에 첨가하고, 반응 혼합물을 110℃에서 6 시간 동안 반응시켰다. 반응 혼합물을 실온까지 복귀시킨 후에, 유기 층을 분리하였다. 유기 층을 감압하에 농축하였다. 형성된 잔류물에 수성 층, 에틸 아세테이트(700 m) 및 물(100 mL)를 첨가하고 유기 층을 분리하였다. 수성 층을 에틸 아세테이트(50 mL)로 다시 추출하였다. 유기 층을 합쳐서 물과 염수로 연속해서 세척하고, 무수 황산마그네슘으로 건조시키고, 여과한 후에 감압하에 농축하였다. 잔류물을 NH 실리카겔 컬럼 크로마토그래피로 정제하였다(에틸 아세테이트/n-헵탄, 5% 내지 14%). 이어서, 생성물을 다시 NH 실리카 겔 컬럼 크로마토그래피에 의해 정제하여(에틸 아세테이트/n-헵탄, 2% 내지 10%) 표제 화합물(43.5 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 1.16 (t, J=7.2 Hz, 1.5H), 1.17 (t, J=7.2 Hz, 1.5H), 1.97 (s, 1.5H), 1.98 (s, 1.5H), 1.99 (s, 1.5H), 2.00 (s, 1.5H), 2.25-2.55 (m, 2H), 3.92-4.27 (m, 6H), 3.99 (s, 1.5H), 4.00 (s, 1.5H), 4.65-4.75 (m, 1H), 7.01 (d, J=9.2 Hz, 1H), 7.05 (d, J=7.2 Hz, 1H), 7.39 (t, J=7.2 Hz, 0.5H), 7.45 (t, J=7.2 Hz, 0.5H), 7.93 (s, 1H), 8.12 (s, 1H).
ESI-MS m/z 440 [M+H]+
(12) 5-[2- 플루오로 -4-(2- 메톡시 -3,5-디메틸피리딘-4-일)페닐]-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복실산의 합성
5N 수산화나트륨 수용액(79 mL)을 에탄올(574 mL)중의 5-[2-플루오로-4-(2-메톡시-3,5-디메틸피리딘-4-일)페닐]-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복실레이트(43.2 g)의 용액에 첨가하고, 반응 혼합물을 60℃에서 2 시간 10 분 동안 교반하였다. 반응 혼합물을 실온까지 냉각시킨 후에 감압하에 절반의 부피로 농축하였다. 물(300 mL)을 잔류물에 첨가하고, 에탄올을 감압하에 증류 제거하였다. 형성된 잔류물에 MTBE(130 mL)를 첨가하고, 수성 층을 분리하였다. 유기 층을 물(30 mL)로 추출하였다. 수성 층을 합쳐서 빙냉하에 5N 염산(78 mL)으로 산성화하고, 에틸 아세테이트로 2회 추출하였다. 수성 층을 합쳐서 무수 황산마그네슘으로 건조시키고 여과한 후에 감압하에 농축하여 표제 화합물(39.0 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 1.91 (s, 1.5H), 1.94 (s, 1.5H), 1.98 (s, 1.5H), 2.01 (s, 1.5H), 2.25-2.56 (m, 2H), 3.92-4.17 (m, 3H), 3.96 (s, 1.5H), 4.00 (s, 1.5H), 4.23 (dd, J=16.0, 8.0 Hz, 1H), 4.65-4.77 (m, 1H), 6.99 (brd, J=10.0 Hz, 1H), 7.03 (dr d, J=7.6 Hz, 1H), 7.38 (t, J=7.6 Hz, 0.5H), 7.44 (t, J=7.6 Hz, 0.5H), 7.90 (s, 0.5H), 7.94 (s, 0.5H), 8.14 (s, 1H).
ESI-MS m/z 434 [M+Na]+
(13) 5-[2- 플루오로 -4-(2- 메톡시 -3,5-디메틸피리딘-4-일)페닐]-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복사미드의 합성
CDI(21.4 g)를 실온에서 DMF(290 mL)중의 5-[2-플루오로-4-(2-메톡시-3,5-디메틸피리딘-4-일)페닐]-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복실산(38.7 g)의 용액에 한번에 첨가하고, 혼합물을 실온에서 95분 동안 교반하였다. 반응 혼합물에 28% 수성 암모니아(95 mL)를 첨가하고, 혼합물을 실온에서 35 분 동안 교반하였다. 반응 혼합물에 28% 수성 암모니아(95 mL)를 다시 첨가하고, 혼합물을 실온에서 90 분 동안 교반하였다. 반응 혼합물을 감압하에 농축하였다. 형성된 잔류물에 클로로포름(250 mL)과 물(80 mL)을 첨가하고, 유기 층을 분리하였다. 수성 층을 클로로포름(50 mL)으로 다시 추출하였다. 유기 층을 합쳐서 포화 염화암모늄 수용액(60 mL x 3)과 염수로 연속해서 세척하고, 무수 황산마그네슘으로 건조시킨 후에 여과하였다. 여과액을 실리카 패드(NH-실리카 겔)에 통과시켰다. 여과액을 감압하에 농축하여 표제 화합물(37.2 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 1.98 (brs, 6H), 2.24-2.60 (m, 2H), 3.90-4.20 (m, 3H), 3.99 (s, 3H), 4.23 (dd, J=16.0, 8.0 Hz, 1H), 4.62-4.71 (m, 1H), 5.32 (brs, 2H), 7.05 (brd, J=10.0 Hz, 1H), 7.10 (dd, J=7.6, 1.2 Hz, 1H), 7.42-7.56 (m, 1H), 7.94 (brs, 1H), 8.03 (s, 1H).
ESI-MS m/z 411 [M+H]+
(14) (S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온의 합성
수산화나트륨 분말(9.43 g)을 실온에서 DMSO(186 mL)중의 5-[2-플루오로-4-(2-메톡시-3,5-디메틸피리딘-4-일)페닐]-1-[(S)-테트라히드로푸란-3-일]-1H-피라졸-4-카르복사미드(37.2 g)의 용액에 한번에 첨가하였다. 반응 혼합물을 동일한 온도에서 50 분 동안, 이어서 70℃에서 45 분 동안 교반하였다. 수냉하에서, 물(600 mL)을 반응 혼합물에 적가한 후에, 아세트산(13.5 mL)을 적가하였다. 침전된 분말을 여과에 의해 수집하였다. 수집된 대상물을 물과 MTBE로 세척한 후에 감압하에 건조시켜서 표제 화합물(34.0 g)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 1.92-1.94 (m, 3H), 1.94-1.96 (m, 3H), 2.55-2.66 (m, 1H), 2.76-2.86 (m, 1H), 4.00 (s, 3H), 4.09-4.16 (m, 1H), 4.24-4.37 (m, 2H), 4.39-4.45 (m, 1H), 5.61-5.68 (m, 1H), 7.04 (d, J=1.5 Hz, 1H), 7.08 (dd, J=1.5 Hz, 8.3Hz, 1H), 7.94 (s, 1H), 8.13 (d, J=8.3 Hz, 1H), 8.31 (s, 1H), 8.86 (s, 1H).
ESI-MS m/z 391 [M+H]+
표제 화합물은 (-)의 광학 회전을 나타내었으며, 이것의 광학 순도는 99% ee 이상이었다[AD-H, 100% 에탄올, 체류 시간: 9.7 분].
참고예 2
(-)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온의 합성
[화학식 I]
Figure pct00003
(±)-5-(2,4- 디메톡시벤질 )-1-(테트라히드로푸란-3-일)-7-(4,4,5,5- 테트라메틸 -1,3,2-디옥사보롤란-2-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온의 합성
(1) 에틸 3-(4- 브로모 -2- 클로로페닐 )-3- 옥소프로피오네이트의 합성
4-브로모-2-클로로벤조산 (1 g)을 DCM (10 mL)에 현탁시켰다. CDI (960 mg)를 수득한 현탁액에 첨가하고, 실온에서 4 시간 동안 교반하였다. 이 용액을 "용액 1"로 하였다. 다른 플라스크에서 질소 대기하에 칼륨 에틸 말로네이트(1.1 g)를 아세토니트릴(20 mL)에 현탁시키고, TEA(1.5 mL)를 첨가하였다. 수득한 용액을 0℃까지 냉각시키고, 염화마그네슘(805 mg)을 조금씩 첨가한 후에, 실온에서 2 시간 동안 교반하였다. 반응 혼합물을 0℃까지 냉각시키고, 위에서 제조한 "용액 1"을 여기에 적가하였다. 적가를 완료한 후에, 반응 혼합물을 실온에서 17 시간 동안 교반하였다. 반응 혼합물을 50℃에서 9 시간 동안 더 교반하였다. 반응 혼합물을 감압하에 농축시키고, DCM을 제거하였다. 수득한 잔류물을 0℃까지 냉각시키고, 에틸 아세테이트(50 mL) 및 2N 염산(20 mL)을 첨가한 후에, 실온에서 1 시간 동안 교반하였다. 수득한 유기 층을 분배하였다. 수득한 수성 층을 에틸 아세테이트로 추출하였다. 추출물을 유기 층과 합치고, 무수 황산마그네슘으로 건조시켰다. 건조제를 여과에 의해서 제거하고, 여과액을 감압하에 농축시켰다. 수득한 잔류물을 실리카겔 컬럼 크로마토그래피로 정제함으로써(에틸 아세테이트/n-헵탄, 0% 내지 10%), 표제 화합물(1.2 g)을 수득하였다.
ESI-MS m/z 307 [M + H]+
(2) (±)-에틸 5-(4- 브로모 -2- 클로로페닐 )-1-(테트라히드로푸란-3-일)-1H- 라졸-4-카르복실레이트의 합성
에틸 3-(4-브로모-2-클로로페닐)-3-옥소프로파노에이트(2.00 g)를 DMF-DMA(6.96 mL)에 용해시키고, 반응 혼합물을 실온에서 1.5 시간 동안 교반하였다. 반응 혼합물을 감압하에 농축시키고, 잔류물을 에탄올(40 mL)에 용해시켰다. (±)-(테트라히드로푸란-3-일)히드라진 염산염(998 mg)을 용액에 첨가하고, 혼합물을 2 시간 동안 환류하에 가열하였다. 반응 혼합물을 실온까지 냉각시킨 후에, 감압하에 농축하였다. 잔류물을 에틸 아세테이트로 추출하고, 유기 층을 실리카겔 컬럼 크로마토그래피로 정제하여(에틸 아세테이트/n-헵탄, 10% 내지 30%) 표제 화합물(1.05 g)을 수득하였다.
ESI-MS m/z 401 [M + H]+
(3) (±)-5-(4- 브로모 -2- 클로로페닐 )-1-(테트라히드로푸란-3-일)-1H- 피라졸 -4-카르복실산의 합성
(±)-에틸 5-(4-브로모-2-클로로페닐)-1-(테트라히드로푸란-3-일)-1H-피라졸-4-카르복실레이트(1.05 g) 및 5N 수산화나트륨 수용액(1.58 mL)을 에탄올(20 mL)과 물(5 mL)의 혼합 용매중에서 60℃하에 3 시간 동안 교반하였다. 반응 혼합물을 실온까지 냉각시킨 후에 감압하에 농축하였다. 5N 염산을 잔류물에 첨가한 후에, 에틸 아세테이트로 추출하였다. 유기 층을 무수 황산마그네슘으로 건조시키고, 건조제를 여과 제거하였다. 여과액을 감압하에 농축하여 표제 화합물(1 g)을 수득하였다.
ESI-MS m/z 371 [M + H]+
(4) (±)-5-(4- 브로모 -2- 클로로페닐 )-N-(2,4- 디메톡시벤질 )-1-(테트라히드로푸란-3-일)-1H-피라졸-4-카르복사미드의 합성
(±)-5-(4-브로모-2-클로로페닐)-1-(테트라히드로푸란-3-일)-1H-피라졸-4-카르복실산(1 g)을 DCM(20 mL)에 용해시키고, CDI(611 mg)를 첨가한 후에, 실온에서 1 시간 동안 교반하였다. 2,4-디메톡시벤질아민(0.809 mL)을 반응 혼합물에 첨가하고, 혼합물을 실온에서 2 시간 동안 교반하였다. 중탄산나트륨 포화 수용액을 반응 혼합물에 첨가한 후에 DCM으로 추출하였다. 유기 층을 감압하에 농축하고, 잔류물을 실리카겔 컬럼 크로마토그래피로 정제하여(에틸 아세테이트/n-헵탄, 10% 내지 40%) 표제 화합물(1.26 g)을 수득하였다.
ESI-MS m/z 522 [H + H]+
(5) (±)-7- 브로모 -5-(2,4- 디메톡시벤질 )-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온의 합성
(±)-5-(4-브로모-2-클로로페닐)-N-(2,4-디메톡시벤질)-1-(테트라히드로푸란-3-일)-1H-피라졸-4-카르복사미드(1.26 g)을 THF(25 mL)에 용해시키고, 0℃에서 KTB(597 mg)를 첨가하였다. 혼합물을 실온까지 서서히 가온시키면서 12 시간 동안 교반하였다. 반응 혼합물을 0℃까지 냉각시키고, 물을 첨가한 후에 여과하였다. 여과 잔류물을 별도로 보관하였다. 여과액을 에틸 아세테이트로 추출하고, 유기 층을 감압하에 농축하였다. 잔류물을 실리카겔 컬럼 크로마토그래피로 정제하였다(에틸 아세테이트/n-헵탄, 10% 내지 70%). 수득한 분획 및 위에서 수득한 여과 잔류물을 합쳐서 농축하여 표제 화합물(488 mg)을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 2.50-2.62 (m, 1H), 2.72-2.82 (m, 1H), 3.76 (s, 3H), 4.02 (s, 3H), 4.07-4.15 (m, 1H), 4.19-4.32 (m, 2H), 4.35-4.42 (m, 1H), 5.46-5.57 (m, 3H), 6.34 (dd, J=8.6 Hz, 2.2 Hz, 1H), 6.52 (d, J=2.2 Hz, 1H), 6.99 (d, J=8.6 Hz, 1H), 7.38 (dd, J=8.6 Hz, 1.8 Hz, 1H), 7.82 (d, J=1.8 Hz, 1H), 7.89 (d, J=8.6 Hz, 1H), 8.32 (s, 1H).
ESI-MS m/z 506 [M + Na]+
(6) (±)-5-(2,4- 디메톡시벤질 )-1-(테트라히드로푸란-3-일)-7-(4,4,5,5- 테트 라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온의 합성
(±)-7-브로모-5-(2,4-디메톡시벤질)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(300 mg), 비스(피나콜레이토)디보론(204 mg), Pd(dppf)Cl2-DCM 복합체(13.6 mg) 및 아세트산칼륨(182 mg)을 1,4-디옥산(15 mL)과 DMSO(1 mL)의 혼합 용매 중에서 130℃하에 3 시간 동안 마이크로파 반응기를 사용해서 반응시켰다. 반응 혼합물을 실온까지 냉각시킨 후에 감압하에 농축하였다. 잔류물을 에틸 아세테이트로 추출하고, 유기 층을 감압하에 농축하였다. 잔류물을 에틸 아세테이트로 추출하고, 유기 층을 감압하에 농축하였다. 잔류물을 실리카겔 패드에 가하고 에틸 아세테이트로 용출하여 표제 화합물(428 mg)을 미정제 생성물로서 수득하였다.
ESI-MS m/z 532 [M + H]+
(7) 3,5- 디브로모 -2- 메톡시피리딘 -4- 아민의 합성
2-메톡시피리딘-4-일아민(15 g) 및 NBS(47.3 g)의 혼합물을 실온에서 3 시간 동안 아세트산 용매(150 mL)중에서 교반하였다. 반응 혼합물을 감압하에 농축하고, 5N 수산화나트륨 수용액(200 mL)을 0℃에서 잔류물에 첨가한 후에, 디에틸 에테르로 추출하였다. 유기 층을 직접 실리카겔 패드로 정제하여(에틸 아세테이트/n-헵탄, 10%) 표제 화합물(32.4 g)을 수득하였다.
ESI-MS m/z 283 [M + H]+
(8) 2- 메톡시 -3,5-디메틸피리딘-4- 아민의 합성
3,5-디브로모-2-메톡시피리딘-4-아민(16 g), 트리메틸보록신(19.8 mL), Pd(dppf)Cl2-DCM 복합체(4.15 g) 및 탄산칼륨(23.5 g)의 혼합물을 환류하에 1,4-디옥산(320 mL)과 물(32 mL)의 혼합 용매중에서 12 시간 동안 가열하였다. 반응 혼합물을 실온까지 냉각시킨 후에 감압하에 농축하였다. 물과 에틸 아세테이트를 잔류물에 첨가한 후에, 셀라이트TM를 통해 여과하였다. 여과액을 에틸 아세테이트로 추출하고, 유기 층을 실리카겔 패드(NH-실리카겔)에 가하고 에틸 아세테이트로 용출하였다. 수득한 용액에 NH-실리카겔(30 g)을 첨가하고, 혼합물을 감압하에 농축하였다. 잔류물을 NH 실리카겔 컬럼 크로마토그래피(에틸 아세테이트/n-헵탄, 0% 내지 30%)로 정제하여 표제 화합물(4.43 g)을 수득하였다.
ESI-MS m/z 153 [M + H]+
(9) 4- 브로모 -2- 메톡시 -3,5-디메틸피리딘의 합성
브롬화구리(I)(12.1 g) 및 t-부틸 나이트라이트(7.07 mL)의 혼합물을 아세토니트릴 용매(80 mL)중에서 70℃하에 10 분 동안 교반하였다. 아세토니트릴(40 mL)중의 2-메톡시-3,5-디메틸피리딘-4-아민(3.9 g)의 용액을 동일한 온도에서 반응 혼합물에 적가하고, 혼합물을 70℃에서 1 시간 동안 교반하였다. 반응 혼합물을 실온까지 냉각시킨 후에 감압하에 농축하였다. 에틸 아세테이트와 중탄산나트륨 포화 수용액을 잔류물에 첨가하고, 혼합물을 실온에서 30 분 동안 교반하였다. 반응 혼합물을 셀라이트TM를 통해 여과하고, 여과액을 에틸 아세테이트로 추출하였다. 유기 층을 감압하에 농축하고, 잔류물을 NH 실리카겔 컬럼 크로마토그래피로 정제하여(n-헵탄, 100%, 이어서 NH-실리카겔 패드, n-헵탄, 100%) 표제 화합물을 수득하였다(4.3 g).
1H-NMR (400 MHz, CDCl3) δ (ppm): 2.28-2.29 (m, 3H), 2.29-2.31 (m, 3H), 3.93 (s, 3H), 7.77-7.84 (m, 1H).
ESI-MS m/z 216 [M+H]+
(10) (±)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온의 합성
(±)-5-(2,4-디메톡시벤질)-1-(테트라히드로푸란-3-일)-7-(4,4,5,5-테트라메틸-1,3,2-디옥사보롤란-2-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(219 mg), 4-브로모-2-메톡시-3,5-디메틸피리딘(134 mg), Pd(PPh3)4(23.8 mg) 및 탄산세슘(403 mg)의 혼합물을 1,4-디옥산(8 mL)과 물(2 mL)의 혼합 용매 중에서 130℃하에 70 분 동안 마이크로파 반응기를 사용해서 반응시켰다. 반응 혼합물을 실온까지 냉각시킨 후에 실리카겔 컬럼 크로마토그래피로 직접 정제하였다(에틸 아세테이트/n-헵탄, 10% 내지 90%). 수득한 커플링 생성물을 TFA(4 mL)에 용해시키고, 혼합물을 70℃에서 2 시간 동안 교반하였다. 반응 혼합물을 실온까지 냉각시킨 후에 감압하에 농축하였다. 중탄산나트륨 포화 수용액을 잔류물에 첨가한 후에 에틸 아세테이트로 추출하였다. 유기 층을 감압하에 농축하고, 잔류물을 실리카 겔 컬럼 크로마토그래피로 정제하여(DCM, 100%, 이어서 에틸 아세테이트/n-헵탄, 50% 내지 100%) 표제 화합물을 수득하였다(78 mg).
ESI-MS m/z 391 [M + H]+
(11) (+)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 및 (-)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온의 합성
(±)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온을 키랄 컬럼 크로마토그래피[다이셀 코포레이션에서 제조한 키랄 컬럼, AD-H(0.46 cm φ x 15 cm), 이동상; 100% 에탄올]로 분석하여 7.8 분에 (+)형을, 그리고 9.7 분에 (-)형을 동정하였고, 광학 분해가 가능함을 확인하였다. (±)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(78 mg)을 에탄올(12 mL)과 메탄올(12 mL)의 혼합 용매에 용해시키고, 용액을 솜뭉치를 통해 여과하였다. 여과액을 키랄 컬럼 크로마토그래피에 의해 광학 분해하여[키랄 컬럼: AD-H 컬럼, 용출 용매: 100% 에탄올, 유속: 10 mL/분, 용출 시간: 80 분/용출, 주입량: 2 mL/주입, 짧은 체류 시간:(+)형, 긴 체류 시간: (-)형], 표제 화합물의 (+)형 26.4 mg 및 (-)형 25.2 mg을 수득하였다.
1H-NMR (400 MHz, CDCl3) δ (ppm): 1.92-1.94 (m, 3H), 1.94-1.96 (m, 3H), 2.55-2.66 (m, 1H), 2.76-2.86 (m, 1H), 4.00 (s, 3H), 4.09-4.16 (m, 1H), 4.24-4.37 (m, 2H), 4.39-4.45 (m, 1H), 5.61-5.68 (m, 1H), 7.04 (d, J=1.5 Hz, 1H), 7.08 (dd, J=1.5 Hz, 8.3 Hz, 1H), 7.94 (s, 1H), 8.13 (d, J=8.3 Hz, 1H), 8.31 (s, 1H), 8.86 (s, 1H).
ESI-MS m/z 391 [M+H]+
전술한 참고예 1에 따라 합성한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온을 다음과 같은 염을 합성하는 데 사용하였다.
실시예 1
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(576.32 mg)에 말레인산(243.97 mg) 및 t-부틸 메틸 에테르(6 mL)을 첨가하고, 현탁액을 실온에서 2일 동안 교반하였다. 고체를 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(713.04 mg)을 백색 고체로서 수득하였다.
1H-NMR (600 MHz, DMSO-d6) δ (ppm): 1.87 (s, 3H), 1.91 (s, 3H), 2.52-2.56 (m, 2H), 3.89 (s, 3H), 3.93 (ddd, J=8, 7, 6 Hz, 1H), 4.03 (dddd, J=8, 8, 7, 2 Hz, 1H), 4.16 (ddd, J=9, 5, 3 Hz, 1H), 4.21 (dd, J=9, 6 Hz, 1H), 5.85-5.89 (m, 1H), 6.25 (s, 2H), 7.09 (dd, J=8, 1 Hz, 1H), 7.21 (d, J=1 Hz, 1H), 7.96 (s, 1H), 8.18 (s, 1H), 8.35 (d, J=8 Hz, 1H), 11.51 (s, 1H).\
13C-NMR (100 MHz, 고체 상태) δ (ppm): 13.3, 16.1, 16.7, 29.5, 35.9, 57.2, 58.0, 61.9, 67.4, 69.7, 74.6, 111.8, 114.3, 122.5, 123.2, 125.7, 126.9, 127.9, 132.7, 133.8, 136.0, 138.9, 154.8, 156.2, 157.8, 158.9, 162.0, 163.4, 164.7, 172.0
분말 X선 회절 각도(2θ ± 0.2°): 9.1°, 10.1°, 11.1°, 16.2°, 17.6°, 18.2°, 22.0°, 22.4°, 23.8°, 25.8°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 결정의 분말 X선 회절 패턴을 도 1에 도시하였다.
실시예 2
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(991.7 mg)에 2-부탄온(10 mL) 및 벤젠술폰산 1수화물(708.0 mg)을 첨가하고, 현탁액을 실온에서 2일 동안 교반하였다. 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(1393.9 mg)을 백색 고체로서 수득하였다.
1H-NMR (600 MHz, DMSO-d6) δ (ppm): 1.87 (s, 3H), 1.91 (s, 3H), 2.52-2.56 (m, 2H), 3.89 (s, 3H), 3.93 (ddd, J=8, 7, 6 Hz, 1H), 4.01-4.05 (m, 1H), 4.16 (ddd, J=9, 5, 3 Hz, 1H), 4.21 (dd, J=9, 6 Hz, 1H), 5.85-5.89 (m, 1H), 7.09 (dd, J=8, 1 Hz, 1H), 7.22 (d, J=1 Hz, 1H), 7.32-7.26 (m, 3H), 7.59-7.57 (m, 2H), 7.96 (s, 1H), 8.18 (s, 1H), 8.35 (d, J=8 Hz, 1H), 11.51 (s, 1H).
13C-NMR (100 MHz, 고체 상태) δ (ppm): 12.8, 16.8, 31.3, 35.2, 59.1, 61.0, 61.6, 62.0, 67.9, 70.1, 70.6, 74.7, 111.6, 114.0, 117.5, 122.7, 125.4, 126.8, 128.8, 130.1, 137.7, 139.2, 146.4, 157.8, 159.6, 160.7
분말 X선 회절 각도(2θ ± 0.2°): 6.6°, 9.9°, 13.7°, 14.6°, 19.0°, 19.6°, 20.5°, 21.7°, 22.7°, 23.5°, 25.7°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 결정의 분말 X선 회절 패턴을 도 2에 도시하였다.
실시예 3
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 염산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(984.6 mg)에 아세톤(20 mL) 및 5N 염산(620 ㎕)을 첨가하고, 현탁액을 실온에서 2일 동안 교반하였다. 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(1100.21 mg)을 백색 고체로서 수득하였다.
분말 X선 회절 각도(2θ ± 0.2°): 11.2°, 12.4°, 12.7°, 17.1°, 23.5°, 26.5°, 29.4°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 염산염의 결정의 분말 X선 회절 패턴을 도 3에 도시하였다.
실시예 4
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 브롬화수소산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(614.45 mg)에 아세톤(6 mL) 및 47% 브롬화수소산(220 ㎕)을 첨가하고, 현탁액을 실온에서 밤새 교반하였다. 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(719.23 mg)을 백색 고체로서 수득하였다.
분말 X선 회절 각도(2θ ± 0.2°): 5.6°, 11.1°, 12.3°, 18.5°, 19.3°, 22.9°, 23.4°, 26.3°, 29.2°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 브롬화수소산염의 결정의 분말 X선 회절 패턴을 도 4에 도시하였다.
실시예 5
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 p-톨루엔술폰산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(100.6 mg)에 2-부탄온(4 mL) 및 p-톨루엔술폰산(65.1 mg)을 첨가하고, 현탁액을 실온에서 밤새 교반하였다. 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(153.15 mg)을 백색 고체로서 수득하였다.
분말 X선 회절 각도(2θ ± 0.2°): 6.5°, 9.8°, 13.9°, 14.4°, 15.3°, 18.5°, 19.3°, 20.3°, 22.8°, 23.3°, 25.4°, 28.2°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 p-톨루엔술폰산염의 결정의 분말 X선 회절 패턴을 도 5에 도시하였다.
실시예 6
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 질산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(22.80 mg)에 에틸 아세테이트(300 ㎕) 및 60% 질산(5.3 ㎕)을 첨가하고, 현탁액을 실온에서 밤새 교반하였다. 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(14.97 mg)을 백색 고체로서 수득하였다.
분말 X선 회절 각도(2θ ± 0.2°): 11.1°, 11.7°, 14.8°, 15.3°, 16.4°, 19.2°, 23.6°, 24.2°, 25.8°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 질산염의 결정의 분말 X선 회절 패턴을 도 6에 도시하였다.
실시예 7
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 황산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(23.53 mg)에 2-부탄온(300 ㎕) 및 95% 황산(4 ㎕)을 첨가하고, 현탁액을 실온에서 밤새 교반하였다. 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(27.34 mg)을 백색 고체로서 수득하였다.
분말 X선 회절 각도(2θ ± 0.2°): 10.7°, 14.0°, 14.5°, 16.2°, 19.1°, 20.0°, 22.8°, 23.6°, 25.3°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 황산염의 결정의 분말 X선 회절 패턴을 도 7에 도시하였다.
실시예 8
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 메탄술폰산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(22.52 mg)에 2-부탄온(300 ㎕) 및 메탄술폰산(4.5 ㎕)을 첨가하고, 현탁액을 실온에서 밤새 교반하였다. 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(28.69 mg)을 백색 고체로서 수득하였다.
분말 X선 회절 각도(2θ ± 0.2°): 14.8°, 17.8°, 18.7°, 23.4°, 29.8°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 메탄술폰산염의 결정의 분말 X선 회절 패턴을 도 8에 도시하였다.
실시예 9
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 인산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(22.29 mg)에 2-부탄온(300 ㎕) 및 인산(4.6 ㎕)을 첨가하고, 현탁액을 실온에서 밤새 교반하였다. 헥산(200 ㎕)을 더 첨가하고 교반한 후에, 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(23.09 mg)을 백색 고체로서 수득하였다.
분말 X선 회절 각도(2θ ± 0.2°): 9.5°, 11.3°, 15.2°, 16.7°, 18.4°, 23.5°, 24.0°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 인산염의 결정의 분말 X선 회절 패턴을 도 9에 도시하였다.
실시예 10
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 L-타르타르산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(27.42 mg)에 아세톤(300 ㎕) 및 L-타르타르산(20.18 mg)을 첨가하고, 현탁액을 실온에서 3일 동안 교반하였다. 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(34.89 mg)을 백색 고체로서 수득하였다.
분말 X선 회절 각도(2θ ± 0.2°): 10.1°, 14.1°, 16.7°, 17.4°, 18.2°, 20.6°, 23.4°, 24.0°, 24.3°, 26.5°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 L-타르타르산염의 결정의 분말 X선 회절 패턴을 도 10에 도시하였다.
실시예 11
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 말로네이트 염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(27.70 mg)에 아세톤(300 ㎕) 및 말론산(26.65 mg)을 첨가하고, 현탁액을 실온에서 3일 동안 교반하였다. 고체 물질을 여과에 의해 수집하고 실온에서 감압하에 건조시킴으로써, 표제 화합물(30.49 mg)을 백색 고체로서 수득하였다.
분말 X선 회절 각도(2θ ± 0.2°): 10.5°, 16.8°, 17.4°, 17.8°, 18.3°, 18.9°, 21.7°, 22.8°, 24.2°, 25.2°, 26.4°.
전술한 방법에 의해 수득한 (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 말로네이트 염의 결정의 분말 X선 회절 패턴을 도 11에 도시하였다.
실시예 12
(S)-7-(2- 메톡시 -3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H- 라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 합성
(S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온(500 mg)에 에틸 아세테이트(2 mL)를 첨가하고, 혼합물을 25℃에서 20 분 동안 교반하였다. 에틸 아세테이트(7.5 mL)에 완전히 용해된 말레인산(223.0 mg)의 용액을 상기 현탁액에 첨가하고, 혼합물을 25℃에서 7일 동안 교반하였다. 고체를 여과에 의해 수집하고, 결정을 에틸 아세테이트(1 mL)로 세척한 후에, 감압하에 40℃에서 건조시킴으로써, 표제 화합물(366.9 mg)을 백색 고체로서 수득하였다.
수득한 표제 화합물은 실시예 1과 동일한 분말 X선 회절 피크를 나타내었다.
[ 시험예 ]
PDE9 억제 활성 시험예
1) 인간 재조합 PDE9 단백질의 제조
hsPDE9A 1cDNA 분획을 진뱅크(GenBank) 데이터 베이스에 등록된 hsPDE9A1의 염기 서열(수탁 번호: AF048837)에 근거하여, 하기 서열(홋카이도 시스템 사이언스 컴퍼니, 리미티드(Hokkaido System Science Co., Ltd.))을 프라이머로서 사용하고, 인간 해마 cDNA 라이브러리(클론테크 레보러토리즈, 인코포레이티드(Clontech Laboratories, Inc.))를 원본 DNA로 사용해서, Pfu50 DNA 중합효소(인비트로겐 코포레이션(Invitrogen Corp.))를 이용함으로써, 다음과 같은 조건의 중합효소 연쇄 반응(PCR)에 의해 증폭시켰다.
hPDE9-1 프라이머: AGGATGGGATCCGGCTCCTCCA (SEQ No. 1)
hPDE9A-3 프라이머: CAGGCACAGTCTCCTTCACTG (SEQ No. 2)
PCR의 조건: [96℃, 5 분] x 1 사이클, [(96℃, 10 초), (57℃, 5 초), (72℃, 2 분)] x 30 사이클
수득한 hsPDE9A 1cDNA 분획을 TOPO-TA 클로닝 벡터(인비트로겐 코포레이션)에 혼입하고, 염기 서열을 조사한 후에; 생성물을 pcDNA 3.1/myc His-tag 벡터(인비트로겐 코포레이션)에 형질감염시킴으로써, 포유류 세포에 대한 인간 PDE9 형질발현 벡터를 제조하였다. 포유류 세포에 대한 인간 PDE9 형질발현 벡터를 리포페타민(LIPOFETAMINE) 2000 시약(깁코(Gibco))을 사용함으로써 일시적인 형질발현에 의해 HEK293 세포로 형질감염시켰다. 웨스턴 블롯 방법에 의해서 HEK293 세포에서 형질발현된 PDE9A에 이어서 인간 PDE9A 1cDNA 분획이 pYNG 벡터(가타쿠라 인더스트리즈 컴퍼니, 리미티드(Katakura Industries Co., Ltd.))에서 형질감염되었음을 확인함으로써 곤충 세포에 대한 형질발현 벡터를 제조하였다. 다량의 PDE9가 형질발현된 균질화된 누에의 상청액을 완충액 A(20 mmol/L 트리스-HCl, pH: 8.0, 1 mmol/L DTT, 10 mmol/L 이미다졸)를 사용해서 평형상태의 Ni 컬럼에 의해 정제하였다. 상청액과 Ni 컬럼을 1 시간 혼합한 후에, 완충액 B(20 mmol/L 트리스-HCl, pH: 8.0, 1 mmol/L DTT)를 사용해서 세정을 수행하고, 완충액 C((20 mmol/L 트리스-HCl, pH: 8.0, 1 mmol/L DTT, 100 mmol/L 이미다졸)를 사용해서 용출을 수행하였다. 용출 분획을 제조 목적으로 수집함으로써 PDE9 효소 용액을 수득하였다.
2) PDE9 억제 작용의 측정
[3H]-cGMP (0.5 μCi/mL)를 함유한 완충액 D(40 mmol/L 트리스-HCl, pH: 7.4, 10 mmol/L MgCl2, 1 mM DTT, 2 μM cGMP) 용액 100 ㎕에, 평가용 화합물 용액 (화합물을 DMSO에 용해시키고 DMSO 농도가 5%가 되도록 희석한 용액) 10 ㎕ 및 위에서 제조한 PDE9 효소 용액을 완충액 E(40 mmol/L 트리스-HCl, pH: 7.4, 10 mmol/L MgCl2, 1 mM DTT, 1 mmol/L EGTA)로 희석함으로써 제조한 용액 90 ㎕를 빙냉하에서 첨가하였다. 수득한 혼합 용액을 30℃에서 10 분 동안 항온처리한 후에, 끓는 물에서 2 분 동안 가열하여 PDE9의 효소 반응을 중단시켰다. 이어서, 생성물을 실온까지 만들고, 5'-뉴클레오티다제(Nucleotidase)(바이오몰 게엠베하(Biomol GmbH), 10 단위/ mL) 50 ㎕를 여기에 첨가한 다음; 생성물을 30℃에서 10 분 동안 항온 처리함으로써, 이전 반응에서 형성된 [3H]-5'-GMP를 [3H]-구아노신으로 전환시켰다. 음이온 교환 수지(바이오-라드(Bio-Rad) AG1-X2 수지, 메쉬 크기: 200-400, H2O:수지=2:1) 500 ㎕를 수득한 반응액에 첨가하고, 10 분 동안 방치한 후에, 원심분리하였으며(2,000 rpm, 10 분); [3H]-구아노신이 존재하는 상청액을 루마플레이트(LumaPlate)(퍼킨 엘머, 인코포레이티드(PerkinElmer, Inc.))로 옮기고, 탑카운트(TopCount) NXT 마이크로플레이트 신틸레이션 및 형광 계수기(퍼킨 엘머, 인코포레이티드)에 의해서 방사능을 측정하였다.
평가 화합물의 억제율을, 평가 화합물을 함유하지 않는 대조군의 방사능을 (A)로 잡고, 효소를 함유하지 않는 블랭크의 방사능을 (B)로 잡으며, 평가 화합물의 방사능을 (C)로 잡아, 하기 식을 사용해서 계산하였다.
억제율= 100 - {[(C) - (B)] / [(A) - (B)]} x 100 (%)
평가 화합물의 PDE9에 대한 IC50 값을 다양한 농도에 대한 억제율로부터 결정하였다. 참고예 2에 따라 합성된 화합물 (I)의 PDE9에 대한 IC50 값은 0.00943 μM이었다.
설치류 뇌척수액 cGMP에 미치는 영향
시험 화합물을 ICR 수컷 마우스(찰스 리버 레보러토리즈 저팬, 인코포레이티드(CHARLES RIVER LABORATORIES JAPAN, INC.)), 스프래그-도우리(SD) 수컷 래트(찰스리버 레보러토리즈 저팬, 인코포레이티드) 또는 롱-에반스(LE) 수컷 래트(동물번식연구소(Institute for Animal Reproduction)(일반재단법인))에 투여한 후에, 펜토바르비탈 마취하에 뇌척수액을 수집하여 -20℃에 보관하였다. 뇌척수액에서 cGMP의 측정은 cGMP EIA 키트(GE 헬스케어(GE Healthcare))의 아세틸화 EIA 절차 또는 cGMP EIA 키트(케이만 케미칼(Cayman Chemical))의 비 아세틸화 절차에 따라 수행하였다. 그 결과를 하기 식을 사용해서 부형제 투여군에서 cGMP의 양(A)에 대한 시험 화합물 투여군에서의 cGMP의 양(B)의 증가분(C)으로서 계산하였다.
cGMP 증가분(C)= [(B) - (A)]/(A) x 100 (%)
참고예 1에 따라 합성된 화합물 (I)의 경우에, 10 mg/kg의 용량을 LE 래트에 투여한후 1 시간째에 cGMP 증가분이 274%이었다.
설치류 해마 cGMP에 미치는 영향
시험 화합물을 SD 수컷 래트(찰스 리버 레보러토리즈 저팬, 인코포레이티드) 또는 LE 수컷 래트(동물번식연구소(재단))에 투여하였다. 이어서, 펜토바르비탈 마취하에 마이크로파 처리를 수행하고, 해마를 분리시켜서 그 중량을 측정한 다음, 액상 질소에서 냉동시켜 -80℃에 보관하였다. 해마에서 cGMP를 측정할 때, 0.5M 과염소산/1mM EDTA 용액을 첨가함으로써 습윤 중량이 5%(w/v)를 구성하도록 하고 혼합물을 균질화하였다. 균질화한 후에, 균질화액을 원심분리하고(10000 rpm, 15 분), 상청액을 수집하였다. 수집된 상청액을 2M 탄산수소칼륨 용액으로 중화시키고 원심분리하였다(13000 rpm, 10 분). 상청액에서 cGMP 농도를 cGMP EIA 키트(GE 헬스케어)의 비 아세틸화 EIA 절차에 따라 측정하였다. 그 결과를 하기 식을 사용해서 부형제 투여군에서 cGMP의 양(A)에 대한 시험 화합물 투여군에서의 cGMP의 양(B)의 증가분(C)으로서 계산하였다.
cGMP 증가분(C)= [(B) - (A)]/(A) x 100 (%)
참고예 1에 따라 합성된 화합물 (I)의 경우에, 10 mg/kg의 용량을 LE 래트에 투여한후 1 시간째에 cGMP 증가분이 58%이었다.
용해 시험
화합물 (I)(50 mg), 실시예 1의 화합물(30 mg) 및 실시예 2의 화합물(30 mg)을 각각 동량의 락토오스 수화물과 함께 히드록시프로필 메틸셀룰로오스 캡슐내에 충전하였다. 애질런트 테크놀로지스(Agilent Technologies)에서 시판하는 708-DS에 소형 교반 패들 및 소형 용기를 장착하여 용해 시험 장치로서 사용하였다. 각각의 약물이 충전된 캡슐을 37℃로 가온된 단식 상태의 유사 장액(레시틴 0.75 mM 및 타우로콜린산나트륨 3 mM을 함유하는 인산염 완충액 pH 6.5)에 첨가하였다. 교반 패들을 50 rpm의 속도로 회전시킴으로써 약물을 용해시켰다. 용해된 용액을 경시적으로 샘플링하고 약물 농도를 HPLC에 의해 측정하였다. 단식 상태의 유사 장액을 사용한 이와 같은 용해 시험이 약물의 용해 및 흡수 특성을 평가하는 데 자주 사용된다[문헌 예: Takano et al., "Oral absorption of poorly water-soluble drugs: computer simulation of fraction absorbed in humans from a miniscale dissolution test", Pharm Res., vol. 23, pp.1144-1156, 2006]. 그 결과를 하기 표 1 및 도 12의 그래프에 나타내었다. 화합물 (I)의 사용시 달성된 농도에 비해서, 실시예 2의 화합물의 사용시 달성된 농도는 약 2배 더 높은 값을 나타내었고, 실시예 1의 화합물의 사용시 달성된 농도는 약 4배 내지 5배 더 높은 값을 나타내었다.
농도 (㎍/mL)
시간 (분) 화합물 (I) 실시예 1 실시예 2
6 0.1 6.4 0.0
10 0.3 11.8 0.5
15 1.8 20.8 7.3
20 3.2 23.3 9.3
30 4.4 27.9 10.2
60 5.0 25.0 10.7
90 5.2 23.9 10.6
120 5.1 22.1 10.7
180 5.2 18.8 9.4
240 5.4 18.8 9.0
개에서의 경구 흡수 특성에 관한 시험
화합물 (I)(100 mg) 및 실시예 1의 화합물(130 mg; 모노말레인산염, 유리된 형태로 환산하면 100 mg)을 각각 히드록시프로필 메틸셀룰로오스 캡슐내에 충전하여 투여용 샘플을 제조하였다. 수득한 캡슐을 소량의 물과 함께 4마리의 비글 견(beagle dog)에 투여하고, 투여후 0.5, 1, 2, 4, 6, 8 및 24 시간의 시점에 각각 혈액을 수집하였다. 원심분리에 의해 얻은 혈장중의 약물 농도를 LC-MS/MS에 의해 측정하였다. 화합물 (I) 및 실시예 1의 화합물을 중간에 세척 기간 1 주일을 두고 교차식으로 각각의 피검체에게 투여하고, 혈장중의 약물 농도 변화를 비교하였다. 그 결과를 하기 표 2 및 도 13의 그래프에 나타내었다. BQL은 정량 한계 미만을 의미하고, NC는 계산하지 않았음을 의미한다. 혈장 약물 농도-시간 곡선 하부의 면적(AUC)에 대한 값을 하기 표 3에 나타내었다. 화합물 (I)을 투여할 경우에 얻은 평균 AUC 값은 1.88±0.95 ㎍.h/mL인 반면에, 실시예 1의 화합물을 투여할 경우에 얻은 평균 AUC 값은 4.00±0.45 ㎍.h/mL이었으며; 실시예 1의 화합물이 흡수율이 더 높고 값의 변화가 더 작았다.
따라서, 본 발명에 의한 염/결정은 의약품용 원료로서 바람직한 용해 및 경구 흡수 특성을 나타내었다.
시간
(시간)
혈장 농도 (㎍/mL)
개 번호 1 개 번호 2 개 번호 3 개 번호 4 평균 표준편차
화합물 (I)
0.25 BQL BQL BQL BQL NC NC
0.5 0.005 0.029 0.034 BQL 0.023 0.015
1 0.055 0.067 0.142 0.017 0.070 0.052
2 0.094 0.061 0.133 0.227 0.129 0.036
4 0.064 0.051 0.104 0.208 0.106 0.028
6 0.045 0.045 0.077 0.164 0.083 0.019
8 0.043 0.041 0.074 0.151 0.077 0.019
24 0.234 0.007 0.009 0.028 0.069 0.130
실시예 1
0.25 BQL BQL 0.279 BQL NC NC
0.5 0.428 0.140 0.377 0.006 0.315 0.199
1 0.506 0.457 0.422 0.422 0.452 0.039
2 0.343 0.469 0.337 0.401 0.388 0.074
4 0.219 0.313 0.272 0.322 0.282 0.047
6 0.158 0.224 0.217 0.248 0.212 0.036
8 0.134 0.199 0.147 0.210 0.172 0.035
24 0.102 0.023 0.020 0.074 0.055 0.046
혈장 농도-시간 곡선 하부 면적(㎍.h/mL)
화합물 (I) 실시예 1
개 번호 1 2.66 3.83
개 번호 2 0.77 4.16
개 번호 3 1.43 3.49
개 번호 4 2.68 4.54
평균 1.88 4.00
표준편차 0.95 0.45
SEQUENCE LISTING <110> Eisai R&D Management Co., Ltd. <120> SALT OF PYRAZOLOQUINOLINE DERIVATIVE AND CRYSTAL THEREOF <130> FP13-0699 <150> JP 2013-079639 <151> 2013-004-05 <160> 2 <170> PatentIn version 3.1 <210> 1 <211> 22 <212> DNA <213> Artificial <220> <223> hPDE9-1 <400> 1 aggatgggat ccggctcctc ca 22 <210> 2 <211> 21 <212> DNA <213> Artificial <220> <223> hPDE9A-3 <400> 2 caggcacagt ctccttcact g 21

Claims (7)

  1. (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온, 및 염산, 브롬화수소산, 황산, 질산, 인산, 말론산, 말레인산, 타르타르산, 메탄술폰산, 벤젠술폰산 및 톨루엔술폰산으로 이루어진 군으로부터 선택된 산의 염.
  2. (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염.
  3. (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염.
  4. 제1항에 따른 염의 결정.
  5. 분말 X선 회절에서 10.1°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노말레인산염의 결정.
  6. 분말 X선 회절에서 9.9°의 회절각(2θ±0.2°)에 회절 피크를 갖는, (S)-7-(2-메톡시-3,5-디메틸피리딘-4-일)-1-(테트라히드로푸란-3-일)-1H-피라졸로[4,3-c]퀴놀린-4(5H)-온 모노벤젠술폰산염의 결정.
  7. 제1항에 따른 염을 활성 성분으로서 포함하는 약제학적 조성물.
KR1020157026005A 2013-04-05 2014-04-03 피라졸로퀴놀린 유도체의 염, 및 이의 결정 KR101997955B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2013-079639 2013-04-05
JP2013079639 2013-04-05
PCT/JP2014/059853 WO2014163147A1 (ja) 2013-04-05 2014-04-03 ピラゾロキノリン誘導体の塩およびその結晶

Publications (2)

Publication Number Publication Date
KR20150138203A true KR20150138203A (ko) 2015-12-09
KR101997955B1 KR101997955B1 (ko) 2019-07-08

Family

ID=51658438

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157026005A KR101997955B1 (ko) 2013-04-05 2014-04-03 피라졸로퀴놀린 유도체의 염, 및 이의 결정

Country Status (13)

Country Link
US (1) US9573947B2 (ko)
EP (1) EP2982675B1 (ko)
JP (1) JP5666755B1 (ko)
KR (1) KR101997955B1 (ko)
CN (1) CN105121440B (ko)
AU (1) AU2014250392B2 (ko)
BR (1) BR112015024393A2 (ko)
CA (1) CA2907971C (ko)
ES (1) ES2645149T3 (ko)
MX (1) MX359843B (ko)
RU (1) RU2655171C2 (ko)
SG (1) SG11201507897SA (ko)
WO (1) WO2014163147A1 (ko)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6851318B2 (ja) * 2015-11-26 2021-03-31 持田製薬株式会社 ピラゾール誘導体の結晶
US11147803B2 (en) 2017-06-01 2021-10-19 Eisai R&D Management Co., Ltd. Dementia therapeutic agent combining pyrazoloquinoline derivative and memantine
US11833146B2 (en) * 2017-06-01 2023-12-05 Eisai R&D Management Co., Ltd. Dementia therapeutic agent combining pyrazoloquinoline derivative and donepezil
BR112019023557A2 (pt) * 2017-06-01 2020-06-02 Eisai R&D Management Co., Ltd. Composição farmacêutica compreendendo inibidor de pde9
AU2018278422B2 (en) * 2017-06-01 2022-03-17 Eisai R&D Management Co., Ltd. Lewy body disease therapeutic agent containing pyrazoloquinoline derivative
WO2021150613A1 (en) 2020-01-20 2021-07-29 Incyte Corporation Spiro compounds as inhibitors of kras
WO2021231526A1 (en) 2020-05-13 2021-11-18 Incyte Corporation Fused pyrimidine compounds as kras inhibitors
WO2022047093A1 (en) 2020-08-28 2022-03-03 Incyte Corporation Vinyl imidazole compounds as inhibitors of kras
US11767320B2 (en) 2020-10-02 2023-09-26 Incyte Corporation Bicyclic dione compounds as inhibitors of KRAS
US12077539B2 (en) 2021-03-22 2024-09-03 Incyte Corporation Imidazole and triazole KRAS inhibitors
WO2023049697A1 (en) 2021-09-21 2023-03-30 Incyte Corporation Hetero-tricyclic compounds as inhibitors of kras
WO2023056421A1 (en) 2021-10-01 2023-04-06 Incyte Corporation Pyrazoloquinoline kras inhibitors
KR20240101561A (ko) 2021-10-14 2024-07-02 인사이트 코포레이션 Kras의 저해제로서의 퀴놀린 화합물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072779A1 (ja) * 2006-12-13 2008-06-19 Aska Pharmaceutical Co., Ltd. キノキサリン誘導体
WO2010101230A1 (ja) * 2009-03-05 2010-09-10 アステラス製薬株式会社 キノキサリン化合物
WO2012033144A1 (ja) * 2010-09-07 2012-03-15 アステラス製薬株式会社 ピラゾロキノリン化合物
WO2013045400A1 (en) * 2011-09-26 2013-04-04 Sanofi Pyrazoloquinolinone derivatives, preparation thereof and therapeutic use thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132484A (ja) 1991-04-26 1993-05-28 Otsuka Pharmaceut Factory Inc ピラゾロキノリン及びピラゾロナフチリジン誘導体
US5688803A (en) 1994-05-24 1997-11-18 Hoffmann-La Roche Inc. Tricyclic dicarbonyl derivatives
BR0313262A (pt) * 2002-08-07 2005-07-12 Mitsubishi Pharma Corp Compostos de dihidropirazolpiridina
RU2426734C2 (ru) 2003-10-03 2011-08-20 Зм Инновейтив Пропертиз Компани Пиразолопиридины и их аналоги
WO2005118583A1 (en) 2004-05-28 2005-12-15 Millennium Pharmaceuticals, Inc. 2, 5-dihydro-pyrazolo`4, 3-c!quinolin-4-ones as chk-1 inhibitors
JP2006045118A (ja) 2004-08-04 2006-02-16 Mochida Pharmaceut Co Ltd 新規ピラゾロキノロン誘導体
EP1925617B1 (en) 2005-09-15 2012-11-14 ASKA Pharmaceutical Co., Ltd. Heterocyclic compound, and production process and use thereof
NZ580904A (en) 2007-05-11 2012-02-24 Pfizer Amino-heterocyclic compounds for inhibiting pde9
UA105362C2 (en) 2008-04-02 2014-05-12 Бьорингер Ингельхайм Интернациональ Гмбх 1-heterocyclyl-1, 5-dihydro-pyrazolo [3, 4-d] pyrimidin-4-one derivatives and their use as pde9a modulators
EP2414363B1 (en) 2009-03-31 2014-01-08 Boehringer Ingelheim International GmbH 1-heterocyclyl-1,5-dihydro-pyrazolo[3,4-d]pyrimidin-4-one derivatives and their use as pde9a modulators
JP6042060B2 (ja) 2011-09-26 2016-12-14 サノフイ ピラゾロキノリノン誘導体、その調製および治療上の使用
CN103930423B (zh) 2011-10-07 2015-09-16 卫材Rd管理有限公司 吡唑并喹啉衍生物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008072779A1 (ja) * 2006-12-13 2008-06-19 Aska Pharmaceutical Co., Ltd. キノキサリン誘導体
WO2010101230A1 (ja) * 2009-03-05 2010-09-10 アステラス製薬株式会社 キノキサリン化合物
WO2012033144A1 (ja) * 2010-09-07 2012-03-15 アステラス製薬株式会社 ピラゾロキノリン化合物
WO2013045400A1 (en) * 2011-09-26 2013-04-04 Sanofi Pyrazoloquinolinone derivatives, preparation thereof and therapeutic use thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
[비특허 문헌 1] Domek-Lopacinska et al., "Cyclic GMP metabolism and its role in brain physiology", J Physiol Pharmacol., vol. 56, Suppl 2: pp. 15-34, 2005
[비특허 문헌 2] Wang X., "Cyclic GMP-dependent protein kinase and cellular signaling in the nervous system", J. Neurochem., vol. 68, pp. 443-456, 1997
[비특허 문헌 3] Fisher et al., "Isolation and characterization of PDE9A, a novel human cGMP-specific phosphodiesterase", J. Biol. Chem., vol. 273: pp. 15559-15564, 1998
[비특허 문헌 4] van der Staay et al., "The novel selective PDE9 inhibitor BAY 73-6691 improves learning and memory in rodents", Neuropharmacology, vol. 55: pp. 908-918, 2008
[비특허 문헌 5] Bonkale et al., "Reduced nitric oxide responsive soluble guanylyl cyclase activity in the superior temporal cortex of patients with Alzheimer's disease", Neurosci. Lett., vol 187, pp. 5-8, 1995

Also Published As

Publication number Publication date
US20160046623A1 (en) 2016-02-18
WO2014163147A1 (ja) 2014-10-09
EP2982675B1 (en) 2017-08-16
RU2015140619A (ru) 2017-05-11
EP2982675A4 (en) 2016-08-10
RU2015140619A3 (ko) 2018-03-26
US9573947B2 (en) 2017-02-21
MX2015013620A (es) 2016-02-25
JPWO2014163147A1 (ja) 2017-02-16
CA2907971A1 (en) 2014-10-09
EP2982675A1 (en) 2016-02-10
CA2907971C (en) 2020-12-29
BR112015024393A2 (pt) 2017-10-24
AU2014250392B2 (en) 2018-03-01
AU2014250392A1 (en) 2015-10-15
CN105121440B (zh) 2017-05-24
MX359843B (es) 2018-10-12
KR101997955B1 (ko) 2019-07-08
SG11201507897SA (en) 2015-11-27
JP5666755B1 (ja) 2015-02-12
CN105121440A (zh) 2015-12-02
RU2655171C2 (ru) 2018-05-24
ES2645149T3 (es) 2017-12-04

Similar Documents

Publication Publication Date Title
KR101997955B1 (ko) 피라졸로퀴놀린 유도체의 염, 및 이의 결정
KR102236605B1 (ko) 피리도피리미딘온 cdk2/4/6 억제제
CA2861795C (en) Pyrazoloquinoline derivative
EP3144308B1 (en) Nitrogen-containing heterocyclic compound
KR102234131B1 (ko) 피리디닐피라졸로퀴놀린 화합물
JP2016537366A (ja) カゼインキナーゼ1d/e阻害剤としての置換された4,5,6,7−テトラヒドロピラゾロ[1,5−a]ピラジン誘導体
TWI790227B (zh) 布魯頓氏酪胺酸激酶之抑制劑
EP4079734A1 (en) Triazolopyridazine derivative, preparation method therefor, pharmaceutical composition thereof, and use thereof
WO2024040267A2 (en) Direct synthesis of n-(3-substituted-chroman-4-yl)-7h- pyrrolo[2,3-d]pyrimidin-4-amines and derivatives thereof
CN118772152A (zh) 作为aak1抑制剂的氮杂环类化合物

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant