KR20150119158A - 계측 장치 및 계측 방법 - Google Patents

계측 장치 및 계측 방법 Download PDF

Info

Publication number
KR20150119158A
KR20150119158A KR1020157024796A KR20157024796A KR20150119158A KR 20150119158 A KR20150119158 A KR 20150119158A KR 1020157024796 A KR1020157024796 A KR 1020157024796A KR 20157024796 A KR20157024796 A KR 20157024796A KR 20150119158 A KR20150119158 A KR 20150119158A
Authority
KR
South Korea
Prior art keywords
circuit
section
current
switching
physical quantity
Prior art date
Application number
KR1020157024796A
Other languages
English (en)
Other versions
KR101750644B1 (ko
Inventor
히로유키 도쿠사키
히로시 이마이
야스카즈 오오노
게이키 마쯔우라
Original Assignee
오므론 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 오므론 가부시키가이샤 filed Critical 오므론 가부시키가이샤
Publication of KR20150119158A publication Critical patent/KR20150119158A/ko
Application granted granted Critical
Publication of KR101750644B1 publication Critical patent/KR101750644B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/18Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using inductive devices, e.g. transformers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Dc-Dc Converters (AREA)

Abstract

본 발명의 계측 장치(1)는, 물리량 변환부의 일례인 CT(2)의 출력 전류를 계측하는 계측 회로(4)와, 계측 회로의 출력을 입력으로 하는 전원 회로(6)를 구비한다. 또한, 계측 회로의 출력을 전원 회로에 입력하는 회로를 구성하는 제1 상태와, 계측 회로의 출력을 CT에 직접 입력하는 회로를 구성하는 제2 상태를 전환하는 회로 전환부로서의 1쌍의 FET(71, 72)와, 전원 회로에 의해 구동되며, FET의 제어를 행하는 전환 제어부(122)를 구비한다. 전환 제어부는, 대기 시에 FET를 제1 상태가 되도록 제어하고, 계측 시에는 FET를 제2 상태가 되도록 제어한다.

Description

계측 장치 및 계측 방법{MEASURING APPARATUS AND MEASURING METHOD}
본 발명은, 계측 장치 및 계측 방법으로서, 전류를 계측하는 계측 회로를 구비하고, 또한, 그 전류를 전원으로서 이용하는 계측 장치 및 계측 방법에 관한 것이다.
종래부터 CT(Current Transformer)에 의해 전류를 취출하고, 그 전류를 계측하는 계측 장치가 존재한다. 이러한 계측 장치는, 예를 들어 전기 설비의 소비 전력을 계측하기 위하여 사용된다.
일본 특허 공개 제2002-131344호 공보(특허문헌 1) 및 일본 특허 공개 제2010-55356호 공보(특허문헌 2)에서는, 이러한 장치에 있어서, CT의 출력 전류를 전원으로서 이용하는 것이 개시되어 있다. 이에 의해, 장치의 배선이 불필요하게 되기 때문에, 전기 설비마다 소비 전력을 미세하게 계측할 수 있다.
일본 특허 공개 제2002-131344호 공보 일본 특허 공개 제2010-55356호 공보
그러나, 전류를 계측하는 계측 회로가 전원 회로와 접속되어 있는 경우, 전원 회로와 접속되어 있지 않은 경우보다도 전류의 계측 정밀도가 저하되어 버린다.
본 발명은 상기와 같은 과제를 해결하기 위하여 이루어진 것으로서, 그 목적은, 고정밀도로 전류를 계측할 수 있는 계측 장치 및 계측 방법을 제공하는 것이다.
본 발명의 일 국면에 따르는 계측 장치는, 물리량을 전류로 변환하기 위한 물리량 변환부와, 물리량 변환부의 출력 전류를 계측하는 계측 회로와, 계측 회로의 출력을 입력으로 하는 전원 회로와, 계측 회로의 출력을 전원 회로에 입력하는 회로를 구성하는 제1 상태와, 계측 회로의 출력을 물리량 변환부에 직접 입력하는 회로를 구성하는 제2 상태를 전환하는 회로 전환부와, 전원 회로에 의해 구동되며, 회로 전환부의 제어를 행하는 전환 제어부를 구비한다. 전환 제어부는, 대기 시에 회로 전환부를 제1 상태가 되도록 제어하고, 계측 시에는 회로 전환부를 제2 상태가 되도록 제어하는 것을 특징으로 한다.
본 발명의 다른 국면에 따르는 계측 장치는, 물리량을 전류로 변환하고, 교류 전류를 취출하기 위한 접속부를 포함하는 물리량 변환부와, 각각이 접속부에 흐르는 교류 전류를 직류 전류로 정류하기 위한 제1 및 제2 정류 회로와, 제1 정류 회로에 있어서의 접지측의 제1 정류 소자의 애노드측 및, 제2 정류 회로에 있어서의 접지측의 제2 정류 소자의 애노드측 중 적어도 한쪽에 접속되는 검출부를 포함하는, 물리량 변환부의 출력 전류를 계측하기 위한 계측 회로와, 제1 및 제2 정류 회로의 출력을 입력으로 하는 전원 회로와, 제1 및 제2 정류 회로의 출력을 전원 회로에 입력하는 회로를 구성하는 제1 상태와, 계측 회로의 출력을 물리량 변환부에 직접 입력하는 회로를 구성하는 제2 상태를 전환하는 회로 전환부와, 전원 회로에 의해 구동되며, 회로 전환부의 제어를 행하는 전환 제어부를 구비한다. 전환 제어부는, 대기 시에 회로 전환부를 제1 상태가 되도록 제어하고, 계측 시에는 회로 전환부를 제2 상태가 되도록 제어하는 것을 특징으로 한다.
본 발명의 또 다른 국면에 따르는 계측 장치는, 물리량을 전류로 변환하고, 교류 전류를 취출하기 위한 접속부를 포함하는 물리량 변환부와, 물리량 변환부에 의한 변환 후의 출력 전류를 직류 전류로 정류하기 위한 정류 회로와, 정류 회로와 병렬 접속되며, 물리량 변환부의 출력 전류를 계측하는 계측 회로와, 정류 회로의 출력을 입력으로 하는 전원 회로와, 정류 회로의 출력을 전원 회로에 입력하는 회로를 구성하는 제1 상태와, 계측 회로의 출력을 물리량 변환부에 직접 입력하는 회로를 구성하는 제2 상태를 전환하는 회로 전환부와, 전원 회로에 의해 구동되며, 회로 전환부의 제어를 행하는 전환 제어부를 구비한다. 전환 제어부는, 대기 시에 회로 전환부를 제1 상태가 되도록 제어하고, 계측 시에는 회로 전환부를 제2 상태가 되도록 제어하는 것을 특징으로 한다.
본 발명의 또 다른 국면에 따르는 계측 방법은, 전류를 계측하기 위한 계측 방법이며, 물리량 변환부에 있어서 물리량을 전류로 변환하는 변환 스텝과, 대기 시에, 계측 회로의 출력을 전원 회로에 입력하는 회로를 구성하는 제1 상태와 계측 회로의 출력을 물리량 변환부에 직접 입력하는 회로를 구성하는 제2 상태를 전환하기 위한 회로 전환부를, 제1 상태가 되도록 제어함으로써, 변환 스텝에 의한 변환 후의 출력 전류를 전원 회로에 공급하는 스텝과, 대기 시 이외의 기간에, 회로 전환부를 제2 상태가 되도록 제어함으로써, 변환 스텝에 의한 변환 후의 출력 전류를 계측하는 스텝을 포함한다.
본 발명에 따르면, 고정밀도로 전류를 계측할 수 있다.
도 1은 본 발명의 실시 형태 1에 관한 계측 장치의 구성도이다.
도 2는 본 발명의 실시 형태 1에 관한 2차측 회로에 있어서, 전력 공급 시의 출력 전류의 경로를 도시하는 도면이다.
도 3은 본 발명의 실시 형태 1에 관한 2차측 회로에 있어서, 계측 시의 출력 전류의 경로를 도시하는 도면이다.
도 4는 2차측 회로에 전원 회로가 포함되지 않은 경우의 단순한 회로 구성을 도시하는 도면이다.
도 5는 본 발명의 실시 형태 1에 관한 계측 장치가 실행하는 계측 처리를 도시하는 흐름도이다.
도 6은 본 발명의 실시 형태 1에 관한 계측 장치의 제1 동작 결과를 도시하는 도면이다.
도 7은 본 발명의 실시 형태 1에 관한 계측 장치의 제2 동작 결과를 도시하는 도면이다.
도 8은 본 발명의 실시 형태 1 및 비교예 1, 2에 있어서의 계측 장치 각각의 계측 오차를 도시하는 그래프이다.
도 9는 본 발명의 실시 형태 2에 관한 2차측 회로의 구성을 도시하는 도면이다.
도 10은 본 발명의 실시 형태 3에 관한 2차측 회로의 구성을 도시하는 도면이다.
도 11은 본 발명의 실시 형태 3의 변형예에 관한 2차측 회로의 구성을 도시하는 도면이다.
도 12는 본 발명의 실시 형태 4에 관한 2차측 회로의 구성 및, 전력 공급 시의 출력 전류의 경로를 도시하는 도면이다.
도 13은 본 발명의 실시 형태 4에 관한 2차측 회로의 구성 및, 계측 시의 출력 전류의 경로를 도시하는 도면이다.
도 14는 본 발명의 실시 형태 4의 변형예 1에 관한 2차측 회로의 구성을 도시하는 도면이다.
도 15는 본 발명의 실시 형태 4의 변형예 2에 관한 2차측 회로의 구성을 도시하는 도면이다.
도 16은 본 발명의 실시 형태 4의 변형예 3에 관한 2차측 회로의 구성을 도시하는 도면이다.
도 17은 일반적인 2차측 회로의 구성을 도시하는 도면이다.
도 18은 일반적인 2차측 회로를 사용한 경우의, CT의 출력 전류의 영향을 도시하는 그래프이다.
도 19는 변환 특성이 떨어지는 CT를 사용한 경우의 충전기의 충전 특성을 도시하는 그래프이다.
본 발명의 실시 형태에 대하여 도면을 참조하면서 상세하게 설명한다. 또한, 도면 중 동일 또는 상당 부분에는 동일 부호를 부여하고, 그 설명은 반복하지 않는다.
<실시 형태 1>
본 실시 형태에 따른 계측 장치는, 물리량을 전류로 변환하고, 그 전류를 전원으로서 이용한다. 전류로의 변환은, 예를 들어 변류기로서의 CT에 의해 행하여진다. CT는, 전력선에 흐르는 전류를 소정의 변류비에 의해 변환하여 취출한다. 이 경우, 물리량은 전력이다.
먼저, 본 실시 형태에 따른 계측 장치의 개략 구성에 대하여 설명한다.
(개략 구성에 대해서)
도 1은 본 발명의 실시 형태 1에 관한 계측 장치(1)의 구성도이다. 도 1을 참조하여, 계측 장치(1)는, 적어도 전력선(9)에 흐르는 전류를 계측한다. 본 실시 형태에 따른 계측 장치(1)는, 전력선(9)에 흐르는 전류를 계측함으로써, 전력선(9)을 통하여 공급되는 전기 설비에 있어서의 소비 전력을 계측한다. 계측 장치(1)는 CT(2)와, CT(2)의 2차측 회로(3)로서, 계측 회로(4)와, 정류 회로(5)와, 전원 회로(6)와, 전환 회로(7)를 구비한다. 또한, 계측 장치(1)는 CT(2)의 2차측 회로(3)에 접속되는 감시부(10)를 더 구비한다.
CT(2)는, 전력선(9)에 흐르는 1차측 전류 If를 2차측 전류로 변환하고, 1쌍의 단자(접속부)(21, 22)로부터 취출한다. 이와 같이 하여, CT(2)는, 계측 대상이 되는 전류를 추출한다. 계측 회로(4)는 CT(2)로부터의 출력 전류 Is를 계측한다. 계측 회로(4)는 출력 전류 Is를 검출하기 위한 검출부로서, 예를 들어 저항기(40)를 포함한다. 이하, 이 저항기를 「검출 저항기(40)」라고 한다. 정류 회로(5)는 교류 전류인 출력 전류 Is를 직류 전류로 정류한다. 본 실시 형태에서는, 정류 회로(5)는, 검출 저항기(40)의 후단에 설치되어 있지만, 검출 저항기(40)의 전단에 설치해도 된다. 이 경우, 검출 저항기(40)는 정류 회로(5)에 의해 정류된 전류를 검출한다.
전원 회로(6)는 정류된 직류 전류를 입력하고, 그 전류를 전원으로서 사용한다. 전원 회로(6)는 충전기(61)와 DC/DC 컨버터(62)를 포함한다. 충전기(61)는, 예를 들어 캐패시터로 하지만, 이차 전지 등이어도 된다. DC/DC 컨버터(62)는 충전기(61)로부터의 직류 전압을 소정 레벨로 변환하고, 감시부(10)에 전원을 공급한다. 전원 회로(6)의 구성은, 이와 같은 구성에 한정되지 않고, 예를 들어 충전기(61)의 전단에 컨버터 등이 개재되어 있어도 된다.
전환 회로(7)는, 본 실시 형태에서는, 검출 저항기(40)와 정류 회로(5)와의 접속 부분에 설치된다. 전환 회로(7)는 계측 회로(4)와 전원 회로(6)를 전기적으로 접속 및 차단한다. 즉, 전환 회로(7)는 계측 회로(4)의 출력을 전원 회로(5)에 입력하는 회로를 구성하는 제1 상태와, 계측 회로(4)의 출력을 CT(2)에 직접 입력하는 회로를 구성하는 제2 상태를 전환한다. 또한, 본 실시 형태에 있어서 「직접 입력한다」란, 정류 회로(5) 및 전원 회로(6)를 통하는 일 없이 입력하는 것을 의미하고 있다. 따라서, 제2 상태에 있어서는, 계측 회로(4)와 CT(2) 사이에서 전류의 폐 루프가 형성된다. 전환 회로(7)의 상세 사항에 대해서는 후술한다.
감시부(10)는, 전압을 검출하기 위한 전압 검출부(11)와, 각종 연산 처리를 실행하는 제어 장치인 MPU(Micro-Processing Unit)(12)와, 무선 I/F(interface)(13)를 포함한다. 감시부(10)의 각 부는, 전원 회로(6)에 의해 구동된다.
전압 검출부(11)는 검출 저항기(40)의 양단의 전위차를 검출한다. 전압 검출부(11)에는, 전압 신호를 증폭하기 위한 연산 증폭기(도시하지 않음) 및, 입력한 전압 신호를 디지털 신호로 변환하기 위한 A/D(Analog-to-Digital) 컨버터(도시하지 않음)가 포함되는 것으로 한다. 전압 검출부(11)는, 검출한 전압 신호를 MPU(12)에 출력한다.
MPU(12)는, CT(2)로부터의 출력 전류 Is를 계측하는 제어를 행한다. 본 실시 형태에서는, MPU(12)는, 그 기능 구성으로서, 전류를 계측하기 위한 처리를 실행하는 계측 처리부(121)와, 전환 회로(7)의 전환 제어를 행하는 전환 제어부(122)를 포함한다. 계측 처리부(121)는 전압 검출부(11)로부터 얻어진 전압 신호에 기초하여, 전기 설비에 있어서의 소비 전력을 계산한다. 전환 제어부(122)의 구체적인 제어에 대해서도 후술한다.
무선 I/F(13)는, 도시하지 않은 외부 장치(컴퓨터)와의 사이에서 무선 통신을 실행한다. 예를 들어, 무선 I/F(13)는, 계측 처리부(121)에 의한 계측 데이터를 외부 장치에 송신한다.
본 실시 형태에 따른 2차측 회로(3)의 상세한 설명에 앞서, 일반적인 2차측 회로의 구성에 대하여 설명한다.
(일반적인 2차측 회로의 구성에 대해서)
도 17은 일반적인 2차측 회로(103)의 구성을 도시하는 도면이다. 도 17을 참조하여, 2차측 회로(103)는 도 1의 2차측 회로(3)와 비교하면, 전환 회로(7)를 포함하지 않는다. 2차측 회로(103)에 있어서, CT(2)의 한쪽의 단자(21)는, 검출 저항기(40)[계측 회로(4)]를 통하여 정류 회로(5)의 일단부(5a)에 접속되어 있다. CT(2)의 다른 쪽 단자(22)는 정류 회로(5)의 타단부(5b)에 접속되어 있다. 정류 회로(5)는 4개의 정류 소자(51 내지 54)로 구성된다. 이하의 설명에 있어서, 일단부(5a)측의 2개의 정류 소자(51, 52)로 구성되는 회로를 제1 정류 회로, 타단부(5b)측의 2개의 정류 소자(53, 54)로 구성되는 회로를 제2 정류 회로라고도 한다.
이러한 2차측 회로(103)의 경우, 전원 회로(6)의 입력측 전압(이하 「전원 전압」이라고 함) Vout에 의해, CT(2)의 한쪽의 단자(21)에 전압 부하가 가해진다. 그러면, 그 전압 부하에 의해 CT(2)의 변환 특성(전류 출력 특성)에 영향을 미쳐, 출력 전류 Is는 이상값보다도 감소한다. 즉, 전원 전압 Vout이 포화 전압에 도달하지 않더라도, 단자(21)측에 전압 부하가 가해짐으로써, 출력 전류 Is가 저하되어 버린다. 이상값이란, 정류 회로(5)와 전원 회로(6)가 포함되어 있지 않은, 후술하는 도 4에 도시하는 바와 같은 2차측 회로에 있어서의 출력 전류의 값과 다름없다.
한편, CT(2)가 변환 특성이 우수한 것인 경우, 전원 전압 Vout의 포화 전압도 커지기 때문에, 그러한 영향을 미치기 어렵다. 따라서, 도 17과 같은 2차측 회로(103)에 의해 전류를 계측하는 경우, CT(2)로서는, 변환 특성이 우수한 것을 선정해 둘 필요가 있다.
도 18은 일반적인 2차측 회로(103)를 사용한 경우의, CT(2)의 출력 전류의 영향을 도시하는 그래프이다. 도 18에는, 종축에 CT(2)의 출력 전류 Is의 실효값(단위: uA), 횡축에 전원 전압 Vout(단위: V)을 취한 그래프가 도시되어 있다. 이 그래프에 있어서, 라인 L100이 이상 출력을 나타내고, 라인 L101이 변환 특성이 떨어지는 CT(이하 「제1 CT」라고 함)의 출력을 나타내며, 라인 L102가 변환 특성이 좋은 CT(이하 「제2 CT」라고 함)를 나타내고 있다. 제1 CT로서는, 코어 재질: 규소 강, 코어 단면적: 20㎟, 코어 둘레 길이: 110㎜, 2차측 권취수: 3000회인 것이 사용되고 있다. 제2 CT로서는, 코어 재질: 페라이트, 코어 단면적: 54.24㎟, 코어 둘레 길이: 119.8㎜, 2차측 권취수: 3000회인 것이 사용되고 있다. 즉, 제2 CT는, 제1 CT보다도 코어의 자기 저항이 낮고, 또한, 대형이다. 또한, 이들은 재질도 상이하다. 그로 인해, 제2 CT는 제1 CT보다도 고가이다.
도 18의 라인 L101에 나타난 바와 같이, 제1 CT에서는, 전원 전압 Vout이 0V여도 출력 전류 Is는 이상값보다도 상당히 낮은 값이 되어 있다. 여기서, 제1 CT를 사용한 경우의, 전원 회로(6)에 포함되는 충전기(61)(도 1)의 충전 특성을 도 19에 도시한다. 도 19의 그래프에 있어서, 라인 L201 내지 L204는, 각각, 1차측 전류 If가 2A, 3A, 4A, 5A인 경우의 충전기(61)의 충전 특성을 나타내고 있다. 이들 도면으로부터 알 수 있는 바와 같이, 일반적인 2차측 회로(103)에 제1 CT를 사용한 경우, 계측 정밀도를 보증할 수는 없다.
한편, 도 18의 라인 L102에 나타나는 바와 같이, 제2 CT에서는, 전원 전압 Vout이 낮은 사이에는, 출력 전류 Is는 이상값에 가깝다. 그러나, 제2 CT여도, 전원 전압 Vout이 높아짐에 따라서, 출력 전류 Is와 이상값과의 차가 커지고 있다. 따라서, 일반적인 2차측 회로(103)에 제2 CT를 사용한 경우에도, 고정밀도로 전류(전력)를 계측할 수 없는 것을 알 수 있다.
따라서, 본 실시 형태에서는, 간격을 두고 계측을 행하고, 또한, 계측 시에는 정류 회로(5) 및 전원 회로(6)를 계측 회로(4)로부터 분리하기로 한다. 본 실시 형태에 따른 2차측 회로(3)의 구성에 대해서, 이하에 상세하게 설명한다.
(본 실시 형태에 따른 2차측 회로에 대해서)
다시 도 1을 참조하여, 본 실시 형태에 따른 2차측 회로(3)에서는, 전환 회로(7)가 검출부로서의 검출 저항기(40)의 전류 출력단측에 있어서, 정류 회로(5)에 병렬 접속되어 있다. 따라서, CT(2)의 한쪽의 단자(21)는, 검출 저항기(40)를 통하여 전환 회로(7)의 일단부(7a) 및 정류 회로(5)의 일단부(5a)에 접속되어 있다. CT(2)의 다른 쪽 단자(22)는 전환 회로(7)의 타단부(7b) 및 정류 회로(5)의 타단부(5b)에 접속되어 있다.
본 실시 형태에서는, 전환 회로(7)는 1쌍의 스위칭 소자로서, 동일 극성의 p형 FET(Field effect transistor)(71, 72)를 포함한다. 교류를 ± 양쪽에서 off하기 위해서, 동일 극성의 FET(71, 72)를 역방향으로 배치하고 있다. FET(71)의 드레인은, 전환 회로(7)의 일단부(7a)에 접속되어 있다. FET(71)의 소스는, FET(72)의 소스에 접속되어 있음과 함께, 소정 전압 Vpull_up이 공급되어 있다. FET(72)의 드레인은, 전환 회로(7)의 타단부(7b)에 접속되어 있다. FET(72)의 게이트에는, 저항기(73)를 통하여 소정 전압 Vpull_up이 부여되어 있다. FET(71, 72)의 게이트에는, MPU(12)의 전환 제어부(122)로부터의 제어 신호(CTL 신호)가 부여된다. 또한, 전환 회로(7)는 3 이상의 스위칭 소자를 포함하고 있어도 된다.
FET(71, 72)가 비도통됨으로써, 계측 회로(4)와 전원 회로(6)가 전기적으로 접속되고, FET(71, 72)가 도통됨으로써, 계측 회로(4)와 전원 회로(6)가 전기적으로 차단된다. FET(71, 72)의 제어는, MPU(12)의 전환 제어부(122)에 의해 행하여진다.
여기서, 전환 제어부(122)의 제어에 따른 출력 전류 Is의 경로에 대하여 설명한다. 본 실시 형태에 있어서, 계측 시에 FET(71, 72)가 도통되고, 적어도 대기 시에 FET(71, 72)가 비도통이 된다. 또한, 계측 시란, 계측 처리부(121)에 의한 계측 처리가 실행되고 있는 기간, 즉 전압 검출부(11)에 의해 검출 저항기(40)의 전압이 검출되고 있는 기간을 나타낸다. 또한, 대기 시란, 적어도 계측 시를 제외한 기간이다. 본 실시 형태에서는, 계측 데이터의 처리 시도 대기 시에 포함되는 것으로 한다. 계측 데이터의 처리에는, 계측 데이터의 송신 처리나, 계측 데이터의 기록 처리가 포함된다.
도 2는 본 발명의 실시 형태 1에 관한 2차측 회로(3)에 있어서, 전력 공급 시의 출력 전류 Is의 경로를 도시하는 도면이다. 도 3은 본 발명의 실시 형태 1에 관한 2차측 회로(3)에 있어서, 계측 시의 출력 전류 Is의 경로를 도시하는 도면이다.
도 1 및 도 2를 참조하여, 전환 제어부(122)는, 대기 시에는, 전환 회로(7)의 FET(71, 72)를 off(비도통)로 하고 있다. 이 경우, 전환 회로(7)의 일단부(7a) 및 타단부(7b)는 절연되기 때문에, 계측 회로(4)[검출 저항기(40)]를 통한 출력 전류 Is는, 정류 회로(5)로 흐른다. 따라서, 충전기(61)는, 정류 회로(5)에 의해 정류된 직류 전류에 의해 충전된다. 이 경우의 2차측 회로(3)는 도 17에 도시된 바와 같은 일반적인 2차측 회로(103)와 동등한 회로 구성이 된다.
한편, 도 1 및 도 3을 참조하여, 전환 제어부(122)는, 계측 시에는, 전환 회로(7)의 FET(71, 72)를 on(도통)으로 하는 제어 신호를 출력한다. 이 경우, 전환 회로(7)의 일단부(7a) 및 타단부(7b)는 전기적으로 접속된다. 여기서, FET(71, 72)의 접속부에 인가하는 소정 전압 Vpull_up은, 접지 전위(0V)와 전원 전압 Vout 사이에서 정해져 있다. 이에 의해, FET(71, 72)가 검출 저항기(40)의 전류 출력단에 접속되는 접점(7a)의 전압은, 접지 전위(0V)와 전원 전압 Vout 사이의 값이 되기 때문에, 정류 회로(5)의 4개의 정류 소자(다이오드)(51 내지 54) 모두에, 역방향 바이어스 전압이 가해진다. 그로 인해, 검출 저항기(40)를 통과한 출력 전류 Is는, 정류 회로(5)측으로는 흐르지 않고, 전환 회로(7)의 타단부(7b)로 흐른다. 이 경우의 2차측 회로(3)는 도 4에 도시한 바와 같은, 전원 회로(6)를 갖지 않는 단순한 계측 회로(104)와 동등한 회로 구성이 된다. 전류 계측이 끝나면, 전환 제어부(122)는 전환 회로(7)의 FET(71, 72)를 다시 off로 하는 제어 신호를 출력한다.
(동작에 대해서)
이러한 전환 제어부(122)에 의한 전환 제어를 포함하는 계측 장치(1)의 동작에 대하여 설명한다.
도 5는 본 발명의 실시 형태 1에 관한 계측 장치(1)가 실행하는 계측 처리를 도시하는 흐름도이다. 도 5에 도시하는 계측 처리는, MPU(12)가 기억부(도시하지 않음)에 저장된 프로그램을 실행함으로써 실현된다.
도 1 및 도 5를 참조하여, 전환 제어부(122)는 처음에, 전환 회로(7)를 비도통으로 하고 있다(스텝 S2). CT(2)가 전력선(9)에 설치되고, 출력 전류 Is가 취출되면, 전원 회로(6)의 충전기(61)에 대하여 초기 충전이 개시된다(스텝 S4). 그 후, MPU(12)가 기동되어 스탠바이 상태가 된다(스텝 S6). 또한, 여기에서의 스탠바이 상태는, MPU(12)에 있어서의 스탠바이 상태를 의미하고 있고, 전환 제어에 있어서의 대기 상태(대기 시)와는 일치하지 않는다.
MPU(12)가 스탠바이 상태가 되면, 계측 처리를 위해서, 전환 제어부(122)는, 전환 회로(7)를 도통시킨다(스텝 S8). 즉, FET(71, 72)의 게이트에 ON 신호를 송신한다. 이에 의해, 도 3에 도시되는 바와 같이, 출력 전류 Is는, 전원 회로(6)[충전기(61)]측으로 흐르지 않고 계측 회로(4) 내를 흐른다. 전환 회로(7)가 도통 상태가 되면, MPU(12)의 계측 처리부(121)는 계측 처리를 개시한다(스텝 S10). 계측 처리부(121)에 의한 계측 처리는, 예를 들어 일정 시간 행하여진다.
계측 처리가 끝나면, 전환 제어부(122)는 전환 회로(7)를 다시 비도통으로 한다(스텝 S12). 즉, FET(71, 72)의 게이트에 OFF 신호를 송신한다. 이에 의해, 도 2에 도시되는 바와 같이, 출력 전류 Is는, 전원 회로(6)측으로 흐른다.
계측 처리부(121)는 스텝 S10에서의 계측 처리에 기초하는 계측 데이터를, 외부 장치에 송신한다(스텝 S14). 구체적으로는, 계측 데이터가, 무선 I/F(13)를 경유하여 외부 장치에 송신된다. 송신 처리가 끝나면, MPU(12)는 다시 스탠바이 상태가 된다.
스탠바이 상태가 되고 나서, 예를 들어 일정 시간이 경과하면(스텝 S16에서 "예"), 스텝 S8로 복귀되어, 상기 처리가 반복된다. 또한, 본 실시 형태에서는, 계측 처리(스텝 S10) 때마다, 계측 데이터의 송신(스텝 S14)을 행하기로 했지만, 예를 들어 소정 횟수마다 계측 데이터를 송신해도 된다. 그 경우, 계측 데이터는, 자장치의 기억부(도시하지 않음) 또는, 착탈 가능한 기록 매체(도시하지 않음)에 기록되어 있고, 계측 데이터를 송신할 때, 기록된 계측 데이터가 판독되면 된다.
상술한 바와 같이, 본 실시 형태에 의하면, 계측 시에만 전환 회로(7)가 도통이 되고, 그 결과, 2차측 회로(3)는 상술한 「제2 상태」로 된다. 한편, 대기 시(본 실시 형태에서는 비계측 시)에는, 전환 회로(7)가 비도통이 되기 때문에, 2차측 회로(3)는 상술한 「제1 상태」가 된다.
도 6은 본 발명의 실시 형태 1에 관한 계측 장치(1)의 제1 동작 결과를 도시하는 도면이다. 도 7은 본 발명의 실시 형태 1에 관한 계측 장치(1)의 제2 동작 결과를 도시하는 도면이다. 제1 동작 결과에는, CT(2)가, 상기 제1 CT로 실장된 경우에 있어서의, 각 동작 시의 전원 전압 Vout의 변화가 시간축을 따라서 표시되어 있다. 제2 동작 결과에는, CT(2)가, 상기 제2 CT로 실장된 경우에 있어서의, 각 동작 시의 전원 전압 Vout의 변화가 시간축을 따라서 표시되어 있다.
도 6 및 도 7에 있어서의 기간 T1에는, 초기 충전(도 5의 스텝 S4) 시의 전압 변화가 나타나 있다. 기간 T2에는, MPU(12)의 기동(도 5의 스텝 S6) 시의 전압 변화가 나타나 있다. 기간 T3에는, 계측 처리 및 송신 처리(도 5의 스텝 S10 및 S14)가 행해지고 있을 때의 전압 변화가 나타나 있다. 기간 T4에는, MPU(12)가 스탠바이 상태(도 5의 스텝 S16) 시의 전압 변화가 나타나 있다.
도 6 및 도 7에 도시되는 바와 같이, 계측 처리 및 송신 처리에 의해, 전원 전압 Vout은 급강하된다. 그러나, 일정 기간(T4) 충전을 행함으로써, CT(2)로서 제1 CT 및 제2 CT 중 어느 쪽을 사용했다고 하더라도, 그 후의 계측 처리 및 송신 처리도 적절하게 실행할 수 있다. 이와 같이, 본 실시 형태에서는, 전환 회로(7)를 저소비 전력의 FET(71, 72)로 실현함으로써, 상술한 바와 같이 전환 제어를 행해도 전원 회로(6)로의 전력 공급에 영향을 주는 일 없이 필요한 처리(계측 처리, 송신 처리 등)를 행할 수 있다.
(검증 결과)
마지막으로, 상기 동작에 의한 계측 데이터의 신뢰성에 관한 검증 결과를 나타낸다.
도 8은 본 발명의 실시 형태 1에 관한 계측 장치(1) 및, 비교예 1, 2에 있어서의 계측 장치 각각의 계측 오차를 도시하는 그래프이다. 비교예 1은 2차측 회로가 도 17에 도시한 회로(103)이며, 또한, CT(2)를 제1 CT로 실장한 계측 장치이다. 비교예 2는 2차측 회로가 도 17에 도시한 회로(103)이며, 또한, CT(2)를 제2 CT로 실장한 계측 장치이다. 본 실시 형태에서는, CT(2)가 제1 CT로 실장되어 있다.
도 8에는, 횡축에 전원 전압 Vout(V), 종축에 계측 오차(%)를 취한 그래프가 도시되어 있다. 계측 오차는, 도 4에 도시한 바와 같은 계측 회로(104)에서의 계측값(이상값)과의 오차를 나타낸다. 계측 회로(104)는 계측 회로(4)의 후단에 정류 회로(5) 및 전원 회로(6)를 포함하지 않는 구성이다. 도 8에 있어서, 비교예 1에서의 계측 오차가 라인 L11 상에 나타나고, 비교예 2에서의 계측 오차가 라인 L12 상에 나타나 있다. 또한, 본 실시 형태에서의 계측 오차가 라인 L10 상에 나타나 있다.
전환 회로(7)를 포함하지 않는 2차측 회로(103)의 경우, 상술한 바와 같이, 출력 전류 Is에 영향을 미친다. 따라서, 라인 L11에 나타난 바와 같이, 변환 특성이 좋지 않은 제1 CT의 경우, 전원 전압 Vout이 0V인 시점이어도, 오차는 70%를 초과해 버린다. 또한, 라인 L12에 나타난 바와 같이, 변환 특성이 좋은 제2 CT의 경우에도, 전원 전압 Vout이 상승함에 따라서 오차는 상승하고, 포화 전압 부근에서는, 오차는 10% 가까이가 된다.
이에 반해, 라인 L10에 나타난 바와 같이, 본 실시 형태에 따른 계측 장치(1)에 의하면, CT(2)를, 변환 특성이 좋지 않은 제1 CT로 실장한 경우에도, 전원 전압에 관계없이 측정 오차는 거의 0%인 것을 알 수 있다. 이와 같이, 본 실시 형태에 의하면, CT(2)의 변환 특성에 관계없이, 고정밀도로 전류를 계측할 수 있다. 그 결과, 장치의 소형화 및 비용 절감을 도모할 수 있다.
<실시 형태 2>
상기 실시 형태 1에서는, 전환 회로(7)를 1쌍의 p형 FET에 의해 실현했지만, n형 FET에 의해 실현할 수도 있다. 이하에, 실시 형태 1과의 상위점만 설명한다.
도 9는 본 발명의 실시 형태 2에 관한 2차측 회로(3A)의 구성을 도시하는 도면이다. 도 9에 있어서, 도 1에 도시한 2차측 회로(3)와 동일한 구성에 대해서는, 동일한 부호를 부여하였다. 따라서, 그것들에 관한 설명은 반복하지 않는다. 또한, 이후의 실시 형태에 있어서도 마찬가지이다.
도 9를 참조하여, 본 실시 형태에서는, 2차측 회로(3A)에는, 실시 형태 1에 있어서의 전환 회로(7) 대신에 전환 회로(7A)가 포함된다. 전환 회로(7A)가 접속되는 위치는, 실시 형태 1과 같다.
전환 회로(7A)는, 동일 극성의 1쌍의 n형 FET(71A, 72A)를 포함한다. FET(71A)의 드레인은, 전환 회로(7)의 일단부(7a)에 접속되어 있다. FET(71A)의 소스는, FET(72A)의 소스에 접속되어 있음과 함께, 소정 전압 Vpull_down이 공급되어 있다. FET(72A)의 드레인은, 전환 회로(7)의 타단부(7b)에 접속되어 있다. FET(72A)의 게이트에는, 소정 전압 Vpull_down이 부여되어 있다. FET(71A, 72A)의 게이트에는, MPU(12)의 전환 제어부(122)로부터의 제어 신호가 부여된다. FET(72A)의 게이트에는, 저항기(73)를 통하여 제어 신호가 부여된다.
본 실시 형태에 있어서도, FET(71A, 72A)의 접속부에 인가하는 소정 전압 Vpull_down은, 접지 전위(0V)와 전원 전압 Vout 사이에서 정해져 있다.
또한, 실시 형태 1, 2에서는, 스위칭 소자로서, p형 또는 n형의 FET를 채용했지만, FET에 한하지 않고 바이폴라 트랜지스터 등을 채용해도 된다.
<실시 형태 3>
본 실시 형태에서는, 2차측 회로에 있어서, 검출 저항기가 접지 전위와 정류 소자의 사이에 있는 구성에 대하여 설명한다. 단, 이 경우에도 전환 회로는, 계측 회로(검출 저항기)와 정류 회로의 접속 부분에 설치된다. 이하에, 실시 형태 1과의 상위점만 설명한다.
도 10은 본 발명의 실시 형태 3에 관한 2차측 회로(3B)의 구성을 도시하는 도면이다. 도 10을 참조하여, 본 실시 형태에서는, 2차측 회로(3B)는, 실시 형태 1의 계측 회로(4) 및 전환 회로(7) 각각 대신에, 계측 회로(4A) 및 전환 회로(7B)를 포함한다.
계측 회로(4A)는, 정류 소자(51)의 애노드측(5c)에 접속되는 검출 저항기(41)와, 정류 소자(54)의 애노드측(5d)에 접속되는 검출 저항기(42)를 포함한다. 정류 소자(51)는 제1 정류 회로에 있어서의 접지측의 다이오드이다. 정류 소자(54)는 제2 정류 회로에 있어서의 접지측의 다이오드이다. 즉, 검출 저항기(41, 42)는 모두 일단부가 접지된다.
본 실시 형태에서는, 전압 검출부(11)(도 1)에 의해, 검출 저항기(41, 42) 각각의 전압이 검출된다. MPU(12)의 계측 처리부(121)(도 1)는, 각각의 전압에 기초하여 전력을 계측한다. 또한, 검출 저항기(41, 42)로서는, 계측 시의 전압이 전원 전압 Vout을 초과하지 않는 것이 선정되어 있기로 한다.
전환 회로(7B)에는, n형의 2개의 FET(71A, 72A)가 포함되어 있다. FET(71A)는, CT(2)의 단자(21)와, 정류 소자(51)의 애노드측(5c), 즉 검출 저항기(41)의 타단부와의 사이에 접속되어 있다. FET(72A)는, CT(2)의 단자(22)와, 정류 소자(54)의 애노드측(5d), 즉 검출 저항기(42)의 타단부와의 사이에 접속되어 있다. FET(71A, 72A)의 게이트에는, 제어 신호가 부여된다. 또한, 본 실시 형태에서는, FET(71A, 72A)의 게이트와 접지 사이에는, 저항기(73)가 접속되어 있다.
본 실시 형태에 있어서도, 전환 제어부(122)(도 1)는, 비계측 시에 FET(71A, 72A)를 비도통으로 하고, 계측 시에 FET(71A, 72A)를 도통 상태로 한다. 이에 의해, 비계측 시에는, 2차측 회로(3B)는, 제1 및 제2 정류 회로의 출력을 전원 회로(6)에 입력하는 회로를 구성하는 상태가 된다. 또한, 계측 시에는, 계측 회로(4A)의 출력을 CT(2)에 직접 입력하는 회로를 구성하는 상태가 된다.
본 실시 형태에서는, CT(2)의 단자(21)와 정류 회로(5)의 입력 단자(5a)와의 사이에 계측 회로(4A)가 존재하지 않는다. 그로 인해, 비계측 시에 FET(71A, 72A)가 비도통으로 되어 있는 경우, 검출 저항기(41, 42)에 고전압이 인가되지 않기 때문에, 계측 회로(4A)를 보호할 수 있다.
(변형예)
실시 형태 3에서는, 계측 회로(4A)에, 일단부가 접지된 2개의 검출 저항기(41, 42)를 포함했지만, 어느 한쪽만을 포함하고 있어도 된다. 이 경우의 2차측 회로(3C)를 도 11에 도시한다.
도 11을 참조하여, 본 변형예에서는, 계측 회로(4B)에, 예를 들어 상기한 검출 저항기(41)만이 포함되어 있다. 이 경우, 전압 검출부(11)(도 1)는, 실시 형태 1과 마찬가지로 검출 저항기(41)의 전압만을 검출하면 된다.
또한, 도 10 및 도 11에서는, 전환 회로(7B)가 n형의 FET(71A, 72A)로 실현된 예가 도시되어 있지만, p형 FET 등 다른 스위칭 소자로 실현해도 된다.
<실시 형태 4>
상기 실시 형태 1 내지 3에서는, 전환 회로가 스위칭 소자에 의해 실현되었지만, 스위칭 소자에 한정되지 않고, 아날로그 스위치나, 솔리드 스테이트 릴레이에 의해 실현되어도 된다. 본 실시 형태에서는, 전환 회로를 아날로그 스위치로 실현한 경우의 2차측 회로의 구성에 대하여 설명한다.
도 12 및 도 13은, 본 발명의 실시 형태 4에 관한 2차측 회로(3D)의 구성을 도시하는 도면이다. 도 12 및 도 13에는, 각각, 비계측 시 및 계측 시의 출력 전류 Is의 경로가 나타나 있다.
도 12 및 도 13을 참조하여, 본 실시 형태에서는, 2차측 회로(3D)는, 실시 형태 1의 전환 회로(7) 대신에, 전환 회로(7C)를 포함한다. 전환 회로(7C)는, 2개의 스위치(74, 75)를 포함한다. 스위치(75)는 검출 저항기(40)의 전류 출력단측에 있어서, 정류 회로(5)와 병렬 접속되어 있다. 스위치(74)는, 스위치(75)의 검출 저항기(40)측의 단자(7a)보다도 후단측에 있어서, 검출 저항기(40)와 직렬 접속되어 있다. 보다 구체적으로는, 스위치(74, 75)는, 일단부가 검출 저항기(40)의 전류 출력단측[단자(7a)]에 접속된다. 스위치(74)의 타단부는, 정류 회로(5)의 일단부(5a)에 접속되어 있다. 스위치(75)의 타단부는, CT(2)의 단자(22)와 정류 회로(5)의 타단부(5b)와의 사이[단자(7b)]에 접속된다.
도 12에 도시되는 바와 같이, 비계측 시에는, 전환 제어부(122)(도 1)에 의해, 스위치(75)가 off되고, 스위치(74)가 on된다. 이에 의해, 단자(7a) 및 단자(7b) 사이는 절연되고, 단자(7a) 및 정류 회로의 일단부(5a) 사이는 전기적으로 접속된다. 따라서, 출력 전류 Is는, 정류 회로(5)측으로만 흐르고, 전원 회로(6)에 전력이 공급된다.
이에 반해, 도 13에 도시되는 바와 같이, 계측 시에는, 스위치(75)가 on되고, 스위치(74)가 off된다. 이에 의해, 단자(7a) 및 단자(7b) 사이는 전기적으로 접속되고, 단자(7a) 및 정류 회로의 일단부(5a) 사이는 절연된다. 따라서, 출력 전류 Is는, 정류 회로(5)로는 흐르지 않고, 계측 회로(4)만을 흐른다.
또한, 본 실시 형태와 같이, 전환 회로를 1쌍의 아날로그 스위치로 실현하는 경우, 스위치를 동작시키기 위하여 전원이 필요해진다. 따라서, 본 실시 형태에 따른 계측 장치는, 스위치의 동작용에, 예를 들어 일차 전지(도시하지 않음) 등을 별도로 탑재하고 있는 것이 바람직하다.
(변형예 1)
실시 형태 4에서는, 전력 공급 시(비계측 시)에도, 출력 전류 Is가 검출 저항기를 통과하는 구성이었지만, 전력 공급 시에는, 검출 저항기를 통과하지 않는 구성으로 해도 된다.
도 14는, 본 발명의 실시 형태 4의 변형예 1에 관한 2차측 회로(3E)의 구성을 도시하는 도면이다. 도 14를 참조하여, 본 변형예에서는, 검출 저항기(40)가 정류 회로(5)와 병렬 접속되어 있다. 병렬 회로의 일단부 및 타단부를 각각 단자(8a, 8b)로서 표시하고 있다. 이 경우, 스위치(74)는 단자(8a)와 정류 회로(5)의 일단부(5a)의 사이에 접속되어 있다. 스위치(75)는 병렬 회로에 있어서, 검출 저항기(40)의 전류 출력단측에 직렬 접속되어 있다.
전환 제어부(122)(도 1)에 의한 전환 제어는, 실시 형태 4와 같다. 그 결과, 2차측 회로(3E)는, 비계측 시에, 정류 회로(5)의 출력을 전원 회로(6)에 입력하는 회로를 구성하는 상태가 된다. 또한, 계측 시에, 계측 회로(4C)의 출력을 CT(2)에 직접 입력하는 회로를 구성하는 상태가 된다.
(변형예 2)
또한, 상기 변형예 1과 같이, 검출 저항기(40)를 정류 회로(5)와 병렬 접속하는 경우, 도 15와 같은 구성으로 해도 된다.
도 15는, 본 발명의 실시 형태 4의 변형예 2에 관한 2차측 회로(3F)의 구성을 도시하는 도면이다. 도 15를 참조하여, 본 변형예에서는, 스위치(74)의 위치가 도 14와는 상이하다. 본 변형예에서는, 검출 저항기(40)와 스위치(75) 사이의 접속점(8c)에, 소정 전압 Vpull_up이 공급되어 있고, 그 전압 공급 경로 상에 스위치(74)가 접속되어 있다.
이 경우, 전환 제어부(122)(도 1)는, 비계측 시에 스위치(74, 75)를 off하고, 계측 시에 스위치(74, 75)를 on한다. 여기에서도, 전압 Vpull_up은, 접지 전위(0V)와 전원 회로(6)로의 출력 전압 Vout 사이에서 정해져 있다. 이에 의해, 정류 회로(5)의 4개의 정류 다이오드(51 내지 54) 모두에 역방향 바이어스 전압이 가해진다. 그로 인해, 계측 시에는, 출력 전류 Is는 단자(8a)를 경유하여 검출 저항기(40)측으로만 흐른다.
(변형예 3)
또는, 검출 저항기(40)를 정류 회로(5)와 병렬 접속하는 경우, 도 16과 같은 구성으로 해도 된다.
도 16은, 본 발명의 실시 형태 4의 변형예 3에 관한 2차측 회로(3G)의 구성을 도시하는 도면이다. 도 16을 참조하여, 본 변형예에서는, 스위치(74)의 위치가 도 15와는 상이하다. 본 변형예에서도, 검출 저항기(40)와 스위치(75) 사이의 접속점(8c)에, 소정 전압 Vpull_up이 공급되어 있다. 스위치(74)는 병렬 회로에 있어서, 검출 저항기(40)의 전류 입력단측에 직렬 접속되어 있다. 이 경우의 스위치(74, 75)의 전환 제어는, 상기 변형예 2와 마찬가지이다.
이상 설명한 바와 같이, 각 실시 형태 및 각 변형예에서는, 계측 시에 계측 회로(검출 저항기)로부터 전원 회로가 전기적으로 분리되기 때문에, 계측 정밀도를 향상시킬 수 있다. 따라서, 물리량을 전류로 변환하는 소자로서 소형이면서 또한 자기 저항이 높은 CT를 1개 탑재하는 것만으로, 전류의 계측과 전력 공급을 적절하게 행할 수 있다. 그 결과, 계측 장치의 소형화 및 비용 절감을 도모할 수 있다.
또한, 각 실시 형태 및 각 변형예에서는, CT에 의해 전력이 전류로 변환되는 예를 나타냈지만 한정적이지 않다. 예를 들어, 에너지 하비스트(환경 발전) 등에 의해, 다른 물리량이 전류로 변환되어도 된다. 계측 대상의 물리량으로서는, 예를 들어 i) 풍력량, ii) 수력량, iii) 열량, iv) 조도 등을 들 수 있다. 이들의 경우, 도 1에 도시한 계측 처리부(121)는, 계측 회로에서 전류 또는 전압을 검출하고, 각 물리량을 계측(연산)한다. 물리량이, i) 풍력량 및 ii) 수력량인 경우, 변환 소자로서는 모터가 채용된다. 물리량이, iii) 열량인 경우, 변환 소자로서는 펠체 소자가 채용된다. 물리량이, iv) 조도인 경우, 변환 소자로서는 광전 소자가 채용된다.
변환 소자가 상기와 같은 경우에도, 발전량에 대하여 상대적으로 후단의 전원 전압이 높아지는 경우에 계측 정밀도에 영향을 미치는 경우가 있다. 보다 구체적으로는, 변환 소자가 모터인 경우, 전원 전압에 의해, 모터의 회전에 불필요한 토크가 걸려 출력이 저하되어 버리는 경우가 있다. 또한, 변환 소자가 펠체 소자 및 광전 소자인 경우, CT의 경우와 마찬가지로, 전원 전압에 의해, 소자 사이에 발생한 전압에 따른 전류가 출력되지 않게 되는 경우가 있다. 그로 인해, 사용 가능한 소자가 한정되어, 제품 설계의 자유도가 크게 제한되는 경우가 있었다. 그러나, 상기 각 실시 형태 및 각 변형예와 같은 2차측 회로를 사용함으로써 사용 가능한 소자가 한정되는 일이 없어진다. 따라서, 모든 경우에 있어, 계측 장치의 소형화나 비용 절감을 도모할 수 있다.
금회 개시된 실시 형태는, 모든 점에서 예시이며 제한적인 것이 아니라고 생각되어야 한다. 본 발명의 범위는 상기한 설명이 아닌, 청구범위에 의해 나타나고, 청구범위와 균등의 의미 및 범위 내에서의 모든 변경이 포함되는 것이 의도된다.
1: 계측 장치
2: CT(변류기)
3, 3A, 3B, 3C, 3D, 3E, 3F, 3G: 2차측 회로
4, 4A, 4B, 104: 계측 회로
5: 정류 회로
6: 전원 회로
7, 7A, 7B, 7C: 전환 회로
9: 전력선
10: 감시부
11: 전압 검출부
12: MPU
13: 무선 I/F
40, 41, 42: 검출 저항기
51, 52, 53, 54: 정류 소자
61: 충전기
62: DC/DC 컨버터
71, 71A, 72, 72A: FET
73: 저항기
121: 계측 처리부
122: 전환 제어부

Claims (11)

  1. 물리량을 전류로 변환하기 위한 물리량 변환부와,
    상기 물리량 변환부의 출력 전류를 계측하는 계측 회로와,
    상기 계측 회로의 출력을 입력으로 하는 전원 회로와,
    상기 계측 회로의 출력을 상기 전원 회로에 입력하는 회로를 구성하는 제1 상태와, 상기 계측 회로의 출력을 상기 물리량 변환부에 직접 입력하는 회로를 구성하는 제2 상태를 전환하는 회로 전환부와,
    상기 전원 회로에 의해 구동되며, 상기 회로 전환부의 제어를 행하는 전환 제어부를 구비하고,
    상기 전환 제어부는, 대기 시에 상기 회로 전환부를 상기 제1 상태가 되도록 제어하고, 계측 시에는 상기 회로 전환부를 상기 제2 상태가 되도록 제어하는 것을 특징으로 하는, 계측 장치.
  2. 제1항에 있어서,
    상기 물리량 변환부의 출력 전류는 교류이고,
    상기 물리량 변환부에 의한 변환 후의 출력 전류를 직류 전류로 정류하기 위한 정류 회로를 더 구비하는, 계측 장치.
  3. 제2항에 있어서,
    상기 물리량 변환부는, 교류 전류를 취출하기 위한 접속부를 포함하고,
    상기 계측 회로는, 전류를 검출하기 위한 검출부를 포함하고,
    상기 검출부의 전류 입력단은, 상기 접속부의 한쪽에 접속되고,
    상기 정류 회로는, 상기 검출부의 전류 출력단측에 접속되고,
    상기 회로 전환부는, 상기 검출부의 전류 출력단측과 상기 정류 회로의 사이에 접속되어 있는, 계측 장치.
  4. 제3항에 있어서,
    상기 회로 전환부는, 각각이 상기 검출부의 전류 출력단과 상기 접속부의 다른 쪽에 접속되는 동일 극성의 제1 및 제2 스위칭 소자를 포함하는, 계측 장치.
  5. 제4항에 있어서,
    상기 회로 전환부가 상기 제2 상태일 때, 상기 제1 및 제2 스위칭 소자가 상기 검출부의 전류 출력단에 접속되는 접점의 전압은, 접지 전위와, 상기 전원 회로의 입력측 전압의 사이의 값이 되도록 설정되는, 계측 장치.
  6. 제4항 또는 제5항에 있어서,
    상기 전환 제어부는, 대기 시에 상기 제1 및 제2 스위칭 소자를 비도통으로 함으로써 상기 회로 전환부를 상기 제1 상태로 하고, 계측 시에 상기 제1 및 제2 스위칭 소자를 도통시킴으로써 상기 회로 전환부를 상기 제2 상태로 하는, 계측 장치.
  7. 제4항 내지 제6항 중 어느 한 항에 있어서,
    상기 제1 및 제2 스위칭 소자는, n형 또는 p형 FET, 또는, 바이폴라 트랜지스터를 포함하는, 계측 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서,
    상기 물리량 변환부는, 전력선에 흐르는 전류를, 소정의 변류비에 의해 변환하여 취출하는 변류기로 구성되는, 계측 장치.
  9. 물리량을 전류로 변환하고, 교류 전류를 취출하기 위한 접속부를 포함하는 물리량 변환부와,
    각각이 상기 접속부에 흐르는 교류 전류를 직류 전류로 정류하기 위한 제1 및 제2 정류 회로와,
    상기 제1 정류 회로에 있어서의 접지측의 제1 정류 소자의 애노드측 및, 상기 제2 정류 회로에 있어서의 접지측의 제2 정류 소자의 애노드측 중 적어도 한쪽에 접속되는 검출부를 포함하는, 상기 물리량 변환부의 출력 전류를 계측하기 위한 계측 회로와,
    상기 제1 및 제2 정류 회로의 출력을 입력으로 하는 전원 회로와,
    상기 제1 및 제2 정류 회로의 출력을 상기 전원 회로에 입력하는 회로를 구성하는 제1 상태와, 상기 계측 회로의 출력을 상기 물리량 변환부에 직접 입력하는 회로를 구성하는 제2 상태를 전환하는 회로 전환부와,
    상기 전원 회로에 의해 구동되며, 상기 회로 전환부의 제어를 행하는 전환 제어부를 구비하고,
    상기 전환 제어부는, 대기 시에 상기 회로 전환부를 상기 제1 상태가 되도록 제어하고, 계측 시에는 상기 회로 전환부를 상기 제2 상태가 되도록 제어하는 것을 특징으로 하는, 계측 장치.
  10. 물리량을 전류로 변환하고, 교류 전류를 취출하기 위한 접속부를 포함하는 물리량 변환부와,
    상기 물리량 변환부에 의한 변환 후의 출력 전류를 직류 전류로 정류하기 위한 정류 회로와,
    상기 정류 회로와 병렬 접속되며, 상기 물리량 변환부의 출력 전류를 계측하는 계측 회로와,
    상기 정류 회로의 출력을 입력으로 하는 전원 회로와,
    상기 정류 회로의 출력을 상기 전원 회로에 입력하는 회로를 구성하는 제1 상태와, 상기 계측 회로의 출력을 상기 물리량 변환부에 직접 입력하는 회로를 구성하는 제2 상태를 전환하는 회로 전환부와,
    상기 전원 회로에 의해 구동되며, 상기 회로 전환부의 제어를 행하는 전환 제어부를 구비하고,
    상기 전환 제어부는, 대기 시에 상기 회로 전환부를 상기 제1 상태가 되도록 제어하고, 계측 시에는 상기 회로 전환부를 상기 제2 상태가 되도록 제어하는 것을 특징으로 하는, 계측 장치.
  11. 전류를 계측하기 위한 계측 방법이며,
    물리량 변환부에 있어서 물리량을 전류로 변환하는 변환 스텝과,
    대기 시에, 계측 회로의 출력을 전원 회로에 입력하는 회로를 구성하는 제1 상태와 상기 계측 회로의 출력을 상기 물리량 변환부에 직접 입력하는 회로를 구성하는 제2 상태를 전환하기 위한 회로 전환부를, 상기 제1 상태가 되도록 제어함으로써, 상기 변환 스텝에 의한 변환 후의 출력 전류를 상기 전원 회로에 공급하는 스텝과,
    상기 대기 시 이외의 기간에, 상기 회로 전환부를 상기 제2 상태가 되도록 제어함으로써, 상기 변환 스텝에 의한 변환 후의 출력 전류를 계측하는 스텝을 포함하는, 계측 방법.
KR1020157024796A 2013-03-15 2014-01-22 계측 장치 및 계측 방법 KR101750644B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2013-052982 2013-03-15
JP2013052982A JP6171429B2 (ja) 2013-03-15 2013-03-15 計測装置および計測方法
PCT/JP2014/051186 WO2014141746A1 (ja) 2013-03-15 2014-01-22 計測装置および計測方法

Publications (2)

Publication Number Publication Date
KR20150119158A true KR20150119158A (ko) 2015-10-23
KR101750644B1 KR101750644B1 (ko) 2017-06-23

Family

ID=51536423

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157024796A KR101750644B1 (ko) 2013-03-15 2014-01-22 계측 장치 및 계측 방법

Country Status (6)

Country Link
US (1) US9945887B2 (ko)
EP (1) EP2975416B1 (ko)
JP (1) JP6171429B2 (ko)
KR (1) KR101750644B1 (ko)
CN (1) CN105026940B (ko)
WO (1) WO2014141746A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016134A (ko) * 2016-08-05 2018-02-14 주식회사 아모센스 전원 안정화 장치 및 이를 포함하는 자기유도 전원 공급 시스템
KR20210052175A (ko) * 2019-10-29 2021-05-10 (주)화인파워엑스 무선 온라인 모니터링 시스템을 위한 계기용 변류기의 전원공급장치

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106330300B (zh) * 2015-06-30 2018-11-27 菲尼萨公司 空闲状态检测电路、空闲状态检测方法以及有源光纤缆线
JP6650164B2 (ja) * 2016-02-04 2020-02-19 アルプスアルパイン株式会社 自己給電型の電流センサ
JP6747347B2 (ja) 2017-03-15 2020-08-26 オムロン株式会社 配電網モニタリングシステムおよび配電網モニタリング装置
JP6680251B2 (ja) 2017-03-15 2020-04-15 オムロン株式会社 配電網モニタリングシステム
JP6903963B2 (ja) 2017-03-15 2021-07-14 オムロン株式会社 配電網モニタリングシステムおよび配電網モニタリング装置
JP6677197B2 (ja) 2017-03-15 2020-04-08 オムロン株式会社 高調波検出システム
TWI780791B (zh) * 2021-06-25 2022-10-11 台達電子工業股份有限公司 電流檢測電路及其檢測方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3260976A (en) * 1964-06-30 1966-07-12 Gen Electric Current transformer
US4196387A (en) * 1978-04-17 1980-04-01 Tokyo Shibaura Denki Kabushiki Kaisha Apparatus for measuring output DC current of rectifier devices
JP3728046B2 (ja) * 1996-06-26 2005-12-21 沖電気工業株式会社 極性反転検出回路
JP3306706B2 (ja) * 1998-08-20 2002-07-24 株式会社井上電機製作所 電流測定装置
WO2002031517A2 (en) * 2000-10-13 2002-04-18 Primarion, Inc. System and method for current sensing
JP4258119B2 (ja) * 2000-10-27 2009-04-30 富士電機システムズ株式会社 電流計測装置
JP3475943B2 (ja) * 2001-06-29 2003-12-10 サンケン電気株式会社 スイッチング電源装置
US7626378B1 (en) * 2006-06-21 2009-12-01 Fest Otto P Signal powered A.C. current transformer electronic measuring circuit
CN101926083B (zh) * 2008-01-28 2012-11-21 株式会社村田制作所 Dc-dc转换器
JP5030896B2 (ja) * 2008-08-28 2012-09-19 東洋電機製造株式会社 設備データ収集システム
CN201392362Y (zh) * 2009-03-20 2010-01-27 北京普源精电科技有限公司 一种电流测量装置
US9267826B2 (en) * 2010-05-28 2016-02-23 Schneider Electric It Corporation System for self-powered, wireless monitoring of electrical current, power and energy
KR101153504B1 (ko) * 2010-09-30 2012-06-12 한국전력공사 복수의 입력신호의 처리가 가능한 전자식 전력량 계산기 및 전력량 계산방법
JP5528999B2 (ja) * 2010-12-15 2014-06-25 株式会社アドバンテスト 試験装置
US20130151184A1 (en) * 2011-12-07 2013-06-13 Infineon Technologies Austria Ag Meter Device
CN103376344B (zh) * 2012-04-20 2016-03-30 台达电子工业股份有限公司 电流检测装置及电能质量补偿系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180016134A (ko) * 2016-08-05 2018-02-14 주식회사 아모센스 전원 안정화 장치 및 이를 포함하는 자기유도 전원 공급 시스템
KR20210052175A (ko) * 2019-10-29 2021-05-10 (주)화인파워엑스 무선 온라인 모니터링 시스템을 위한 계기용 변류기의 전원공급장치

Also Published As

Publication number Publication date
CN105026940A (zh) 2015-11-04
JP2014178238A (ja) 2014-09-25
US20160025778A1 (en) 2016-01-28
WO2014141746A1 (ja) 2014-09-18
CN105026940B (zh) 2017-08-25
EP2975416B1 (en) 2020-03-11
JP6171429B2 (ja) 2017-08-02
EP2975416A1 (en) 2016-01-20
EP2975416A4 (en) 2017-03-01
US9945887B2 (en) 2018-04-17
KR101750644B1 (ko) 2017-06-23

Similar Documents

Publication Publication Date Title
KR101750644B1 (ko) 계측 장치 및 계측 방법
US8896334B2 (en) System for measuring soft starter current and method of making same
EP3550311B1 (en) Direct-current electricity leakage detection device and electricity leakage detection device
KR20120040191A (ko) 절연 저항 측정 장치 및 절연 저항 측정 방법
JP6305639B2 (ja) 電流検出装置
KR20150052139A (ko) 절연 결함을 검출 및 측정하기 위한 장치
US20160193926A1 (en) Multifunctional monitoring of electrical systems
US20150180357A1 (en) Synchronous rectifier and a method for controlling it
FR2983300B1 (fr) Systeme de mesure d&#39;un courant de charge et de diagnostic d&#39;une absence de charge ou d&#39;une surcharge
JP6003429B2 (ja) 測定装置
US20140247532A1 (en) Magnetic excitation circuit for electromagnetic flow meter
CN107064597A (zh) 自供电式的电流传感器
JP7068858B2 (ja) スイッチング電源装置
JP6725992B2 (ja) ワイヤレス送電装置およびその制御ic、異常検出方法、充電器
US11979084B2 (en) Active clamp DC/DC converter including current sense peak control mode control
TWI737294B (zh) 具觸電保護功能之傳輸配電系統及其操作方法
JP7034401B2 (ja) 非接触電力センサ装置
CN104620455A (zh) 用于智能电子设备的电源和测量设备
CN213241952U (zh) 核电站驱动装置
RU2782150C2 (ru) Система генерирования выходной мощности и соответствующее применение
JP4081327B2 (ja) 共振型スイッチング電源
JPS6142138Y2 (ko)
JP2005229663A (ja) 電力変換回路における電位差測定方法
KR20160149540A (ko) 전력 변환 장치
AU2013280897A1 (en) System for measuring soft starter current and method of making same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant