KR20150082450A - 스마트의 rf 렌싱: 효율적이고 동적이며 이동적인 무선 전력 전송 - Google Patents

스마트의 rf 렌싱: 효율적이고 동적이며 이동적인 무선 전력 전송 Download PDF

Info

Publication number
KR20150082450A
KR20150082450A KR1020157014646A KR20157014646A KR20150082450A KR 20150082450 A KR20150082450 A KR 20150082450A KR 1020157014646 A KR1020157014646 A KR 1020157014646A KR 20157014646 A KR20157014646 A KR 20157014646A KR 20150082450 A KR20150082450 A KR 20150082450A
Authority
KR
South Korea
Prior art keywords
radiators
radiator
lens
electromagnetic waves
phase
Prior art date
Application number
KR1020157014646A
Other languages
English (en)
Other versions
KR102225531B1 (ko
Inventor
카우쉬크 센굽타
세예드 알리 하지미리
Original Assignee
캘리포니아 인스티튜트 오브 테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캘리포니아 인스티튜트 오브 테크놀로지 filed Critical 캘리포니아 인스티튜트 오브 테크놀로지
Publication of KR20150082450A publication Critical patent/KR20150082450A/ko
Application granted granted Critical
Publication of KR102225531B1 publication Critical patent/KR102225531B1/ko

Links

Images

Classifications

    • H02J17/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/22Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
    • H01Q21/225Finite focus antenna arrays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/20Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
    • H02J50/23Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • H02J50/402Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/90Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/60Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Aerials With Secondary Devices (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

RF 렌즈는 라디오 주파수 전자기 EM 파들을 전송하도록 적응된 다수의 라디에이터들을 포함하며, EM 파들의 위상들은 작은 크기의 공간에, 방사된 전력을 집중하여 그 공간에 배치된 전자 디바이스에 전력을 공급하도록 변조된다. 따라서, 라디에이터들에 의해 방사된 파들은 그 공간에서 보강적으로 간섭하도록 야기된다. 다수의 라디에이터들은 1차원 또는 2차원 어레이로 선택적으로 형성된다. 라디에이터들에 의해 방사된 전자기파들은 동일한 주파수를 가지나 가변 진폭들을 가진다.

Description

스마트의 RF 렌싱: 효율적이고 동적이며 이동적인 무선 전력 전송{SMART RF LENSING: EFFICIENT, DYNAMIC AND MOBILE WIRELESS POWER TRANSFER}
[0001] 본 출원은 "Smart RF Lensmg: Efficient, Dynamic And Mobile Wireless Power Transfer"라는 명칭으로 2012년 11월 9일에 출원된 미국 가특허 출원 제61/724,638호의 우선권을 35 § U.S.C 119(e)하에서 주장하며, 이의 내용들은 그 전체가 인용에 의해 본원에 통합된다.
[0002] 본 발명은 무선 통신에 관한 것으로, 특히 무선 전력 전송에 관한 것이다.
[0003] 전력 디바이스들에 전력을 공급할 때 사용되는 전기 에너지는 주로 유선 소스들로부터 들어온다. 종래의 무선 전력 전송은 서로 매우 근접하게 배치된 2개의 코일들 간의 자기 유도 효과에 의존한다. 이의 효율성을 증가시키기 위하여, 코일 크기는 방사된 전자기파의 파장보다 더 작은 것으로 선택된다. 전송된 전력은 소스와 충전 디바이스 간의 거리가 증가함에 따라 강하게 감소한다.
[0004] 본 발명의 일 실시예에 따르면, RF 렌즈는 RF 렌즈로부터 멀리 배치된 디바이스에 전력을 공급하기 위하여 전자기파들을 방사하도록 적응된 다수의 라디에이터들을 부분적으로 포함한다. 다수의 라디에이터들 각각은 동일한 주파수에서 동작한다. 다수의 라디에이터들 각각에 의해 방사된 전자기파의 위상은 라디에이터와 디바이스 사이의 거리를 대표하는 것으로 선택된다.
[0005] 일 실시예에서, 다수의 라디에이터들은 어레이로 형성된다. 일 실시예에서, 어레이는 1차원 어레이이다. 다른 실시예에서, 어레이는 2차원 어레이이다. 일 실시예에서, 라디에이터들에 의해 방사된 전자기파들의 진폭들은 가변적이다. 일 실시예에서, 다수의 라디에이터들 각각은 가변 지연 엘리먼트, 해당 라디에이터에 의해 방사된 전자기파의 위상 또는 주파수를 기준 신호의 위상 또는 주파수에 고정하도록 적응된 제어 회로, 증폭기 및 안테나를 부분적으로 포함한다.
[0006] 일 실시예에서, 다수의 라디에이터들은 다른 다수의 라디에이터들이 내부에 배치된 제 2 라디에이터 타일을 수용하도록 적응된 제 1 라디에이터 타일에 형성된다. 일 실시예에서, RF 렌즈는 디바이스의 포지션을 추적하도록 추가로 적응된다. 일 실시예에서, 라디에이터들의 제 1 서브세트의 각각의 라디에이터는 디바이스에 의해 전송된 전자기파를 수신하여, 라디에이터들의 제 1 서브세트에 의해 수신된 전자기파의 위상들에 따라 RF 렌즈로 하여금 디바이스의 포지션을 결정하도록 하기 위한 회로를 포함한다.
[0007] 일 실시예에서, 라디에이터들의 적어도 제 1 서브세트의 각각의 라디에이터는 디바이스에 의해 전송된 전자기파를 수신하여, 디바이스로부터 라디에이터들의 제 1 서브세트의 각각의 라디에이터까지의 전자기파의 이동 시간 및 RF 렌즈로부터 디바이스로 전송된 응답 전자기파의 이동 시간에 따라 RF 렌즈로 하여금 디바이스의 포지션을 결정하도록 하기 위한 회로를 포함한다. 일 실시예에서, RF 렌즈는 반도체 기판에 형성된다.
[0008] 본 발명의 일 실시예에 따른, 디바이스에 전력을 무선으로 공급하는 방법은 다수의 라디에이터들로부터의 동일한 주파수를 가진 다수의 전자기파들을 디바이스에 전송하는 단계, 라디에이터와 디바이스 사이의 거리에 따라 다수의 라디에이터들의 각각의 라디에이터의 위상을 선택하는 단계 및 디바이스에 의해 수신된 전자기파들을 사용하여 디바이스를 충전하는 단계를 부분적으로 포함한다.
[0009] 일 실시예에서, 방법은 라디에이터들을 어레이로 형성하는 단계를 부분적으로 더 포함한다. 일 실시예에서, 라디에이터들은 1차원 어레이로 형성된다. 다른 실시예에서, 라디에이터들은 2차원 어레이로 형성된다. 일 실시예에서, 방법은 라디에이터들 각각에 의해 방사된 전자기파의 진폭을 변경하는 단계를 부분적으로 더 포함한다.
[0010] 일 실시예에서, 각각의 라디에이터들은 가변 지연 엘리먼트, 라디에이터에 의해 방사된 전자기파의 위상 또는 주파수를 기준 신호의 위상 또는 주파수에 고정하도록 적응된 제어 고정 회로, 증폭기 및 안테나를 부분적으로 포함한다. 일 실시예에서, 라디에이터들은 다른 다수의 라디에이터들이 내부에 배치된 제 2 라디에이터 타일을 수용하도록 적응된 제 1 라디에이터 타일에 형성된다.
[0011] 일 실시예에서, 방법은 디바이스의 포지션을 추적하는 단계를 부분적으로 더 포함한다. 일 실시예에서, 방법은 디바이스에 의해 전송되고 라디에이터들의 적어도 서브세트의 각각의 라디에이터에 의해 수신된 전자기파의 상대 위상들에 따라 디바이스의 포지션을 결정하는 단계를 부분적으로 더 포함한다. 일 실시예에서, 방법은 디바이스에 의해 전송되고 라디에이터들의 적어도 서브세트의 각각의 라디에이터에 의해 수신된 전자기파의 이동 시간에 따라 그리고 추가로 RF 렌즈로부터 디바이스에 전송된 응답 전자기파의 이동 시간에 따라 디바이스의 포지션을 결정하는 단계를 부분적으로 더 포함한다. 일 실시예에서, 방법은 RF 렌즈를 반도체 기판에 형성하는 단계를 부분적으로 더 포함한다.
[0012] 도 1은 본 발명의 일 실시예에 따라 RF 렌즈를 형성하는 라디에이터들의 1 차원 어레이를 도시한다.
[0013] 도 2는 본 발명의 하나의 예시적인 실시예에 따라 제 1 위치에서 디바이스에 전력을 무선으로 전달하는 도 1의 RF 렌즈의 측면도이다.
[0014] 도 3은 본 발명의 하나의 예시적인 실시예에 따라 제 2 위치에서 디바이스에 전력을 무선으로 전달하는 도 1의 RF 렌즈의 측면도이다.
[0015] 도 4는 본 발명의 하나의 예시적인 실시예에 따라 제 3 위치에서 디바이스에 전력을 무선으로 전달하는 도 1의 RF 렌즈의 측면도이다.
[0016] 도 5는 본 발명의 하나의 예시적인 실시예에 따라 RF 렌즈를 형성하는 라디에이터들의 2차원 어레이를 도시한다.
[0017] 도 6a는 본 발명의 하나의 예시적인 실시예에 따라 RF 렌즈에 배치된 라디에이터의 단순화된 블록도이다.
[0018] 도 6b는 본 발명의 다른 예시적인 실시예에 따라 RF 렌즈에 배치된 라디에이터의 단순화된 블록도이다.
[0019] 도 7은 본 발명의 하나의 예시적인 실시예에 따라 무선으로 충전되도록 적응된 디바이스의 다수의 전자 컴포넌트들을 도시한다.
[0020] 도 8은 본 발명의 하나의 예시적인 실시예에 따라 디바이스를 무선으로 충전하는 RF 렌즈의 개략도이다.
[0021] 도 9는 본 발명의 하나의 예시적인 실시예에 따라 디바이스들의 쌍을 동시에 충전하는 RF 렌즈의 개략도이다.
[0022] 도 10은 본 발명의 하나의 예시적인 실시예에 따라 정지 디바이스 및 모바일 디바이스들의 쌍을 동시에 충전하는 RF 렌즈의 개략도이다.
[0023] 도 11a는 본 발명의 하나의 예시적인 실시예에 따라 1차원 RF 렌즈의 전자기장 프로파일들의 컴퓨터 시뮬레이션들을 도시한다.
[0024] 도 11b는 도 11a의 전자기장 프로파일들을 생성할 때 사용되는 RF 렌즈의 단순화된 개략도이다.
[0025] 도 12는 도 11b의 RF 렌즈 내에 배치된 라디에이터들의 각각의 인접 쌍 사이의 스페이싱(spacing)의 함수로서 도 11b의 RF 렌즈에 의해 생성되는 컴퓨터 시뮬레이트된 전자기장 프로파일들의 변화들을 도시한다.
[0026] 도 13a는 본 발명의 하나의 예시적인 실시예에 따라 RF 렌즈의 예시적인 컴퓨터-시뮬레이트된 전자기장 프로파일을 -15dB 내지 0 dB의 스케일을 사용하여 도시한다.
[0027] 도 13b는 -45dB 내지 0dB의 스케일을 사용하여 도 13a의 컴퓨터-시뮬레이트된 전자기장 프로파일을 도시한다.
[0028] 도 14a는 본 발명의 하나의 예시적인 실시예에 따라 -15dB 내지 0dB의 스케일을 사용하여 도 13a의 RF 렌즈의 예시적인 컴퓨터-시뮬레이트된 전자기장 프로파일을 도시한다.
[0029] 도 14b는 본 발명의 하나의 예시적인 실시예에 따라 -45dB 내지 0dB의 스케일을 사용하여 도 14a의 컴퓨터-시뮬레이트된 전자기장 프로파일을 도시한다.
[0030] 도 15a는 본 발명의 하나의 예시적인 실시예에 따라 -15dB 내지 0dB의 스케일을 사용하여 RF 렌즈의 예시적인 컴퓨터-시뮬레이트된 전자기장 프로파일을 도시한다.
[0031] 도 15b는 본 발명의 하나의 예시적인 실시예에 따라 -45dB 내지 0dB의 스케일을 사용하여 도 15a의 컴퓨터-시뮬레이트된 전자기장 프로파일을 도시한다.
[0032] 도 16a는 본 발명의 하나의 예시적인 실시예에 따라 -15dB 내지 0dB의 스케일을 사용하여 도 15a의 RF 렌즈의 예시적인 컴퓨터-시뮬레이트된 전자기장 프로파일을 도시한다.
[0033] 도 16b는 본 발명의 하나의 예시적인 실시예에 따라 -45dB 내지 0dB의 스케일을 사용하여 도 16a의 컴퓨터-시뮬레이트된 전자기장 프로파일을 도시한다.
[0034] 도 17a는 본 발명의 하나의 예시적인 실시예에 따라 4개의 라디에이터들이 내부에 배치된 예시적인 라디에이터 타일을 도시한다.
[0035] 도 17b는 본 발명의 하나의 예시적인 실시예에 따라 도 17a의 다수의 라디에이터 타일들을 사용하여 형성된 RF 렌즈를 도시한다.
[0036] 도 18은 본 발명의 다른 예시적인 실시예에 따라, RF 렌즈에 배치된 라디에이터의 단순화된 블록도이다.
[0037] 도 19는 본 발명의 다른 예시적인 실시예에 따라 무선으로 충전되도록 적응된 디바이스에 배치된 다수의 전자 컴포넌트들을 도시한다.
[0038] 도 20은 본 발명의 다른 예시적인 실시예에 따라 디바이스에 의해 전송된 신호를 사용하여 디바이스를 추적하는 RF 렌즈를 도시한다.
[0039] 도 21은 본 발명의 다른 예시적인 실시예에 따라 다수의 산란 객체들 이 존재할 때 디바이스에 전력을 전송하는 RF 렌즈를 도시한다.
[0040] 도 22a는 본 발명의 하나의 실시예에 따라 원형 형상으로 배열된 다수의 라디에이터들을 사용하여 형성된 RF 렌즈를 도시한다.
[0041] 도 22b는 본 발명의 하나의 실시예에 따라 타원 형상으로 배열된 다수의 라디에이터들을 사용하여 형성된 RF 렌즈를 도시한다.
[0042] 본 발명의 일 실시예에 따라, RF 렌즈는 라디오 주파수 전자기 EM 파들(이후, EM 파들 또는 파들로서 대안으로 지칭됨)을 전송하도록 적응된 다수의 라디에이터들을 포함하며, 라디오 주파수 전자기 EM 파들의 위상들 및 진폭들은 작은 크기의 공간(이후, 초점 또는 타겟 존으로 대안적으로 지칭됨)에 배치된 전자 디바이스에 전력을 공급하기 위하여 그 공간에, 방사된 전력을 집중하도록 변조된다. 따라서, 라디에이터들에 의해 방사된 파들은 초점에서 보강적으로 간섭하도록 야기된다. 비록 이하의 설명이 무선 전력 전송과 관련하여 제공될 수 있을지라도, 본 발명의 이하의 실시예들은 임의의 다른 종류의 정보를 무선으로 전송하기 위하여 사용될 수 있다.
[0043] 도 1은 본 발명의 일 실시예에 따라 어레이(100)로 배열되며 RF 렌즈를 형성하는 다수의 라디에이터들을 도시한다. 어레이(100)는 EM 파를 방사하도록 각각 적응된 N개의 라디에이터들(101, 102, 103... 10N-1, 10N)를 포함하는 것으로 도시되며, EM 파의 진폭 및 위상은 충전될 디바이스가 배치되는 초점에서, 방사된 EM 파들의 보강적 간섭을 야기하도록 독립적으로 제어될 수 있으며, 여기서 N은 1보다 큰 정수이다. 도 2는 무선으로 충전되고 있는 디바이스가 배치되는 영역(102), 즉 초점 근처에서 파들 간의 보강적 간섭이 발생하도록 라디에이터들(10i)(여기서, i는 1 내지 N의 정수임)에 의해 생성된 파들의 상대적 위상들이 선택될 때 어레이(100)의 측면도이다. 영역(102)은 어레이(100)의 중심(104)으로부터 대략 거리 d1에 배치되는 것으로 도시된다. 어레이 중심과 초점 사이의 거리는 대안적으로 초점 길이로서 본원에서 지칭된다. 비록 RF 렌즈의 이하의 설명이 라디에이터들의 1차원 또는 2차원 어레이와 관련하여 제공될 수 있을지라도, 본 발명에 따른 RF 렌즈가 라디에이터들의 임의의 다른 어레인지먼트, 예를들어 도 22a에 도시된 라디에이터들(202)의 원형 어레인지먼트(1000) 또는 도 22b에 도시된 라디에이터들(202)의 타원형 어레인지먼트(1010)를 가질 수 있다는 것이 이해된다.
[0044] 도 2로부터 알 수 있는 바와 같이, 각각의 라디에이터(10i)는 어레이(100)의 중심(104)으로부터 거리 yi에 배치되는 것으로 가정된다. 라디에이터(10i)에 의해 방사된 파의 진폭 및 위상은 Ai 및 θi에 의해 각각 표현되는 것으로 가정된다. 방사되고 있는 파들의 파장은 λ에 의해 표현된다고 추가로 가정한다. 라디에이터들에 의해 방사된 파들이 영역(102)(즉, 원하는 초점)에서 보강적으로 간섭하도록 하기 위하여, 이하의 관계는 다양한 위상들 θi과 거리 yi 사이에서 각각 만족된다.
Figure pct00001
[0045] 본 발명에 따르면, RF 신호의 위상이 정확하게 제어될 수 있기 때문에, 다수의 소스들로부터 방사된 전력은 무선으로 충전될 디바이스가 배치되는 타겟 존상에 포커싱될 수 있다. 게다가, 동적 위상 제어는 디바이스가 자신의 초기 위치로부터 이동할 때 디바이스의 추적을 가능하게 한다. 예를들어, 도 3에 도시된 바와같이, 만일 디바이스가 어레이의 중심 지점(104)으로부터 거리 d2에 배치된 상이한 위치로 초점면을 따라 이동하면, 타겟 존이 또한 거리 d2에 배치되도록 하기 위하여, 소스들의 위상들은 다음과 같은 관계에 따라 조절될 수 있다.
Figure pct00002
(1)
[0046] 도 4를 참조하면, 만일 디바이스가 초점면으로부터 상이한 위치로 (예를들어, y-축을 따라 상이한 위치로) 멀리 이동하면, 라디에이터의 위상들은 디바이스상에 포커싱된 타겟 존을 추적하여 유지하기 위하여 이하에 설명된 바와같이 동적으로 조절된다. 파라미터 yc는 어레이의 초점면(즉, y-축에 수직하며 어레이(100)의 중심(104)을 통과하는 면)으로부터 도 4에 도시된 바와같이 디바이스의 새로운 위치의 y-컴포넌트를 나타낸다.
Figure pct00003
(2)
[0047] 전송된 전력량은 라디에이터들에 의해 방사되고 있는 파들의 파장 λ, 도 1에 도시된 어레이 간격(span) 또는 어레이 어퍼처 A 및 초점 길이에 의해, 즉 (λF/A)에 의해 정의된다.
[0048] 일 실시예에서, 라디에이터들 각각 쌍 사이의 거리는 방사되고 있는 신호의 파장 정도이다. 예를들어, 방사된 파의 주파수가 2.4GHz이면(즉, 파장이 12.5cm이면), 각각의 2개의 라디에이터들 간의 거리는 파장들의 수십분의 일 내지 수십배일 수 있으며, 이는 응용에 따라 변화할 수 있다.
[0049] 본 발명에 따르면, RF 렌즈는 근접 장(near-field ) 및 원거리 장(far field) 영역들 모두에서 전력을 무선으로 전송하도록 동작한다. 광 도메인에서, 근접장 영역은 프레넬(Fresnel) 영역으로 지칭되며, 초점 길이가 어퍼처 크기 정도인 영역으로서 정의된다. 광 도메인에서, 원거리 장 영역은 프라운호퍼 영역으로 지칭되며, 초점 길이(F)가 실질적으로 (2A2/λ) 보다 큰 영역으로서 정의된다.
[0050] 본 발명에 따르면, 디바이스에 전력을 무선으로 전송하기 위하여, 라디에이터 위상들은 타겟 지점 및 라디에이터들 간의 거리들의 차이들을 고려하도록 선택된다. 예를들어, 도 2의 초점 길이 d1는 어퍼처 크기 A 정도이라는 것을 가정한다. 따라서, 거리들 S1, S2, S3.....SN은 서로 상이하기 때문에, 라디에이터들(101, 102, 103...10N)의 대응 위상들 θ1, θ2, θ3...θN은 앞서 설명된 표현 (1)을 만족하도록 변화된다. 초점의 크기(대략 λF/A)는 회절 제한 길이 때문에 이러한 영역들에 대하여 상대적으로 작다.
[0051] 본 발명에 따르면, 라디에이터 어레이는 또한 초점 길이가 (2A2/λ)보다 더 큰 원거리 장 영역의 타겟 디바이스에 전력을 무선으로 전송하도록 동작한다. 이러한 영역들에 대하여, 상이한 어레이 엘리먼트들로부터 초점 스폿까지의 거리들이 동일한 것으로 가정된다. 따라서, 이러한 영역들에 대하여 S1=S2=S3...=SN이며 θ1= θ2= θ3.....=θN이다. 초점의 크기는 이러한 영역들에 대하여 상대적으로 더 크며, 따라서 더 큰 기기들에 대한 무선 충전에 더 적합하다.
[0052] 도 5는 본 발명의 다른 실시예에 따른 RF 렌즈(200)를 도시한다. RF 렌즈(200)는 행들 및 열들을 따라 배열된 라디에이터들(202i,j)의 2차원 어레이를 포함하는 것으로 도시된다. 비록 RF 렌즈(200)가 11개의 행들 및 11개의 열들을 따라 배치된 121개의 라디에이터들(202i,j)(정수들 i 및 j는 1 내지 11의 범위를 표시한다)을 포함하는 것으로 도시될지라도, 본 발명의 실시예들에 따른 RF 렌즈가 U개의 행들 및 V개의 열들을 따라 배치된 임의의 수의 라디에이터들을 가질 수 있다는 것이 이해되며, 여기서 U 및 V는 1보다 큰 정수들이다. 이하의 설명에서, 라디에이터들(202i,j)이 라디에이터들(202)로 총칭되거나 또는 개별적으로 지칭될 수 있다.
[0053] 이하에서 더 설명되는 바와같이, 어레이 라디에이터들은 기준 주파수에 고정되며, 기준 주파수는 방사된 주파수의 저조파일 수 있거나(n=1, 2, 3, ...) 또는 방사된 주파수와 동일한 주파수일 수 있다. 각각의 라디에이터에 의해 방사된 파의 위상은 방사된 파들이 공간의 임의의 영역 내의 타겟 존상에 자신들의 전력을 보강적으로 간섭하여 집중되도록 하기 위하여 독립적으로 제어된다.
[0054] 도 6a는 본 발명의 일 실시예에 따라 RF 렌즈 (200)에 배치된 라디에이터(202)의 단순화된 블록도이다. 알 수 있는 바와 같이, 라디에이터(202)는 프로그램가능 지연 엘리먼트(210)(또한 본원에서는 위상 변조기로서 지칭됨), 위상/주파수 고정 루프(212), 전력 증폭기(214) 및 안테나(216)를 부분적으로 포함하는 것으로 도시된다. 프로그램 가능 지연 엘리먼트(210)는 신호 W3을 생성하기 위하여 신호 W2를 지연시키도록 적응된다. 신호 W2와 신호 W3 간의 지연은 지연 엘리먼트에 적용된 제어 신호 Ctrl에 따라 결정된다. 일 실시예에서, 위상/주파수 고정 루프(212)는 신호 W2를 생성하기 위하여 주파수 Fref를 가진 기준 클록 신호 뿐만아니라 신호 W1를 수신하며, 신호 W2의 주파수는 기준 주파수 Fref에 고정된다. 다른 실시예에서, 위상/주파수 고정 루프(212)에 의해 생성된 신호 W2는 기준 주파수 Fref의 배수에 의해 정의된 주파수를 가진다. 신호 W3는 전력 증폭기(214)에 의해 증폭되고 안테나(216)에 의해 전송된다. 따라서 그리고 앞서 설명된 바와같이, 각각의 라디에이터(202)에 의해 방사된 신호의 위상은 라디에이터에 배치된 연관된 프로그램가능 지연 엘리먼트(210)에 의해 변화될 수 있다.
[0055] 도 6b는 본 발명의 다른 실시예에 따라 RF 렌즈(200)에 배치된 라디에이터(202)의 단순화된 블록도이다. 알 수 있는 바와 같이, 라디에이터(202)는 프로그램가능 지연 엘리먼트(210), 위상/주파수 고정 루프(212), 전력 증폭기(214) 및 안테나(216)를 부분적으로 포함하는 것으로 도시된다. 프로그램가능 지연 엘리먼트(210)는 기준 클록 신호 Fref를 지연시켜서, 지연된 기준 클록 신호 Fref _ Delay를 생성하도록 적응된다. 신호 Fref와 신호 Fref _ Delay 간의 지연은 지연 엘리먼트(210)에 적용된 제어 신호 Ctrl에 따라 결정된다. 위상/주파수 고정 루프(212)에 의해 생성된 W2는 신호 Fref_Delay의 주파수의 배수 또는 신호 Fref_Delay의 주파수에 고정된 주파수를 가진다. 다른 실시예들(도시안됨)에서, 지연 엘리먼트는 위상/주파수 고정 루프(212)내에 배치되고 위상/주파수 고정 루프(212)의 부분이다. 또 다른 실시예들(도시안됨)에서, 라디에이터들은 증폭기를 갖지 않을 수도 있다.
[0056] 도 7은 본 발명의 일 실시예에 따라, 무선으로 충전되도록 적응된 디바이스(300)의 다수의 컴포넌트들을 도시한다. 디바이스(300)는 안테나(302), 저류기(304) 및 조절기(306)를 부분적으로 포함하는 것으로 도시된다. 안테나(302)는 본 발명에 따라 라디에이터에 의해 방사된 전자기파들을 수신한다. 정류기(304)는 수신된 AC 전력을 DC 전력으로 변환시키도록 적응된다. 조절기(306)는 정류기(304)로부터 수신된 전압 신호를 조절하고 조절된 전압을 디바이스에 적용하도록 적응된다. 일 실시예에서, 수신기 안테나의 어퍼처 영역이 전자기 장의 타겟 존의 크기와 비슷한 경우에 고전력 전송 효율이 획득된다. 대부분의 방사된 전력이 타겟 존을 형성하는 작은 체적에 집중되기 때문에, 이러한 수신기 안테나는 디바이스를 충전하기 위하여 대부분의 방사된 전력이 활용되도록 최적화된다. 일 실시예에서, 디바이스는 무선 충전을 위하여 요구된 컴포넌트들이 외부에 개장될 수 있다(retro-fitted). 다른 실시예에서, 충전 디바이스에 존재하는 기존 회로소자, 예를들어 안테나, 수신기들 등은 전력을 동력화하기 위하여 사용될 수 있다.
[0057] 도 8은 디바이스(300)를 무선으로 충전하는 RF 렌즈(200)의 개략도이다. 일부 실시예들에서, RF 렌즈(200)는 다수의 디바이스들을 무선으로 동시에 충전한다. 도 9는 유사한 또는 상이한 세기들의 포커싱된 파들을 사용하여 디바이스들(310 및 315)을 동시에 충전하는 RF 렌즈(200)를 도시한다. 도 10은 모바일 디바이스들(320, 325) 및 정지 디바이스(330)를 무선으로 충전하는 RF 렌즈(200)를 도시하며, 이 디바이스들 모두는 실내에 있는 것으로 가정된다.
[0058] 도 11a는 11개의 등방성 라디에이터들의 어레이를 가진 RF 렌즈로부터 2미터 떨어진 거리에 1차원 RF 렌즈에 의해 생성된 컴퓨터-시뮬레이트된 전자기 장 프로파일들을 도시한다. 빔 프로파일들은 3개의 상이한 주파수들, 즉 200 MHz(파장 150cm), 800 MHz(파장 37.5cm) 및 2400 MHz(파장 12.50cm)에 대하여 생성된다. RF 렌즈의 인접 라디에이터들의 각각의 쌍 사이의 거리가 20cm 인것으로 가정되기 때문에, RF 렌즈는 2m의 어퍼처를 가진다. 따라서, 파장들은 라디에이터의 어퍼처 크기 및 초점 길이 정도이다. 도 11b는 서로 20cm 이격된 11개의 라디에이터들(505k)을 가진 RF 렌즈(500)의 단순화된 개략도이며, 여기서 K는 1 내지 11의 정수이다.
[0059] 플롯들(510, 520 및 530)은 앞의 표현(1)에 따라 다양한 라디에이터들의 상대 위상들이 라디에이터들(505K) 각각으로부터 라디에이터(5056)로부터 2미터 떨어져 위치한 지점까지의 경로 차이들을 고려하도록 선택될 때 라디에이터(500)에 의해 방사된 200 MHz, 800MHz 및 2400 MHz 신호들에 대한 전자기 장 프로파일들의 컴퓨터 시뮬레이션들을 각각 도시한다. 이들 프로파일들 각각에 대하여, 회절 제한 초점 크기는 방사된 신호의 파장들 정도이다. 플롯들(515, 525 및 535)은 라디에이터들(505k)의 위상들이 서로 동일하게 세팅될 때 200MHz, 800MHz 및 2400MHz 신호들에 대해 라디에이터 어레이로부터 2미터 떨어진 거리에서의 전자기 장 프로파일들의 컴퓨터 시뮬레이션들을 각각 도시한다.
[0060] 이들 프로파일들로부터 알 수 있는 바와같이, 200MHz(즉, 플롯들(510, 515))의 주파수를 가진 보다 큰 파장에 대하여, 개별 라디에이터들로부터 초점까지의 경로 차이들이 실질적으로 상이하지 않기 때문에, 프로파일들(510 및 515) 간의 차이는 상대적으로 표명되지 않는다(unpronounced). 그러나, 800MHz 및 2400MHz 주파수들 각각에 대하여, EM 제한(초점)은 라디에이터 위상들이 서로 동일하게 세팅될 때 라디에이터들(505k)로부터 초점까지의 경로 차이들을 고려하도록 다양한 라디에이터들의 상대 위상들이 선택되는 경우에 실질적으로 더 크다. 비록 앞의 예들이 200MHz, 800MHz 및 2400MHz의 동작 주파수들과 관련하여 제공될지라도, 본 실시예들이 임의의 다른 동작 주파수, 예를들어 5.8GHz, 10GHz 및 24GHz에서 사용될 수 있다는 것이 이해된다.
[0061] 도 12는 라디에이터들의 각각의 인접한 쌍 사이의 스페이싱(spacing)의 함수로서 RF 렌즈로부터의 2미터 떨어진 거리에서 RF 렌즈(500)에 의해 생성된 컴퓨터 시뮬레이트된 전자기 장 프로파일들의 변형들을 도시한다. RF 렌즈는 2400MHz의 주파수에서 동작하는 것으로 가정된다. 플롯들(610, 620 및 630)은 앞의 표현(1)에 따라 다양한 라디에이터들(505k)로부터 RF 렌즈로부터 2미터 떨어진 지점까지의 경로 차이들을 고려하도록 다양한 라디에이터들의 상대 위상들을 선택한 이후에 5cm, 10cm 및 20cm의 라디에이터 스페이싱들에 대하여 각각 생성된 장 프로파일들의 컴퓨터 시뮬레이션들이다. 플롯들(615, 625 및 650)은 RF 렌즈(500)에 배치된 모든 라디에이터들이 동일한 위상들을 가진다고 가정하여 5cm, 10cm 및 20cm의 라디에이터 스페이싱들에 대하여 각각 생성된 장 프로파일들의 컴퓨터 시뮬레이션들이다. 이들 플롯들로부터 알 수 있는 바와같이, 라디에이터들 사이의 거리가 증가함에 따라(결과적으로 보다 큰 어퍼처 크기를 초래함), EM 제한은 또한 증가하여 보다 작은 초점을 초래한다.
[0062] 도 13a는 도 5에 도시된 RF 렌즈(200)와 같이 900MHz의 주파수에서 동작하는 헤르츠식 다이폴들의 2차원 어레이가 내부에 배치된 RF 렌즈로부터 3미터 떨어진 거리에서 RF 렌즈의 EM 프로파일의 컴퓨터 시뮬레이션이다. 다이폴 라디에이터들 사이의 스페이싱은 30cm인 것으로 가정된다. 라디에이터들의 상대 위상들은 RF 렌즈로부터 3미터 떨어져 배치되는 것으로 가정될 때 라디에이터들로부터 초점까지의 경로 차이들을 고려하도록 선택되었다. 다시 말해서, 라디에이터들의 상대 위상들은 대략 3미터의 초점 길이를 RF 렌즈에 제공하도록 선택된다. 도 13a를 생성할 때 사용되는 스케일은 -15dB 내지 0dB이다. 도 13b는 -45dB 내지 0 dB의 스케일을 사용하여 도 13a의 EM 프로파일을 도시한다.
[0063] 도 14a는 초점으로부터 2미터 떨어진 거리에서, 즉 RF 렌즈로부터 5미터 떨어진 거리에서 도 13a/13b의 RF 렌즈의 EM 프로파일의 컴퓨터 시뮬레이션이다. 도 14a로부터 알 수 있는 바와같이, 방사된 전력은 도 13a 및 도 13b에 도시된 영역들과 비교하여 보다 큰 영역에 걸쳐 확산된다. 도 14a를 생성할 때 사용되는 스케일은 -15dB 내지 0dB이다. 도 14b는 -45dB 내지 0dB의 스케일을 사용하여 도 14a의 EM 프로파일을 도시한다.
[0064] 도 15a는 900MHz의 주파수에 동작하는 헤르츠식 다이폴들의 2차원 어레이가 내부에 배치된 RF 렌즈로부터 3미터 떨어진 거리에서 RF 렌즈의 EM 프로파일의 컴퓨터 시뮬레이션들이다. 다이폴 라디에이터들 사이의 스페이싱은 30cm 인 것으로 가정된다. 라디에이터들의 상대 위상들은 RF 렌즈로부터 3미터 떨어지고 RF 렌즈의 초점 평면으로부터의 1.5m의 오프셋에 배치되는 것으로 가정될 때 라디에이터들로부터 초점까지의 경로 차이들을 고려하도록 선택되었으며, 즉 초점은 초점 평면으로부터 1.5 미터의 y-좌표들을 가진다(도 4 참조). 도 15a를 생성할 때 사용되는 스케일은 -15dB 내지 0dB이다. 도 15b는 -45dB 내지 0 dB의 스케일을 사용하여 도 15a의 EM 프로파일들을 도시한다.
[0065] 도 16a는 초점으로부터 2미터 떨어진 거리에서, 즉 RF 렌즈의 x-y 평면으로부터 5미터 떨어진 거리에서 도 15a/15b의 RF 렌즈의 EM 프로파일의 컴퓨터 시뮬레이션이다. 도 16a로부터 알 수 있는 바와같이, 방사된 전력은 도 15a에 도시된 영역들과 비교하여 보다 큰 영역에 걸쳐 확산된다. 도 16a를 생성할 때 사용되는 스케일은 -15dB 내지 0dB이다. 도 16b는 -45dB 내지 0dB의 스케일을 사용하여 도 16a의 EM 프로파일을 도시한다. 도 13a, 도 13b, 도 14a, 도 14b, 도 15a, 도 15b, 도 16a 및 도 16b에 도시된 EM 프로파일들은 3D 공간의 어느 임의의 지점에 전력을 포커싱할 때 본 발명에 따라 RF 렌즈의 다목적성(versatility)을 나타낸다.
[0066] 본 발명의 일 양상에 따르면, RF 렌즈를 형성하는 어레이의 크기는 구성가능하고 하나 이상의 라디에이터들을 각각 포함할 수 있는 라디에이터 타일들을 사용하여 변경될 있다. 도 17a는 4개의 라디에이터들(1511, 1512, 1521 및 1522)내부에 배치된 라디에이터 타일(700)의 예를 도시한다. 비록 라디에이터 타일(700)이 4개의 라디에이터들을 포함하는 것으로 도시되지라도, 본 발명의 일 양상에 따라, 라디에이터 타일이 4개의 라디에이터들보다 더 적거나 (예를들어, 1개의) 또는 4개의 라디에이터들 보다 더 많은 (예를들어, 6개의) 라디에이터를 가질 수 있다는 것이 이해된다. 도 17b는 7개의 라디에이터 타일들, 즉 라디에이터 타일들(70011, 70012, 70013, 70021, 70022, 70031, 70031)을 사용하여 초기에 형성되고 (이들 라디에이터 타일들 각각은 도 17a에 도시된 라디에이터 타일(700)과 유사하다) 2개 보다 더 많은 라디에이터 타일들(70023 및 70033)이 제공된 RF 렌즈(800)를 도시한다. 비록 도시되지 않았을지라도, 각각의 라디에이터 타일은 라디에이터들에 전력을 공급하고 필요에 따라 라디에이터들로부터 정보를 전달하는데 필요한 전기 연결부들을 포함한다는 것이 이해된다. 일 실시예에서, 타일들에 형성된 라디에이터들은 도 6에 도시된 라디에이터(202)와 유사하다.
[0067] 본 발명의 일 양상에 따르면, RF 렌즈는 모바일 디바이스가 포지션을 변경할 때 충전 프로세스를 계속하기 위하여 모바일 디바이스의 포지션을 추적하도록 적응된다. 이를 달성하기 위하여, 일 실시예에서는 RF 렌즈를 형성하는 라디에이터들의 서브세트 또는 모두가 수신기를 포함한다. 충전되고 있는 디바이스는 또한 추적 단계 동안 연속 신호를 방사하도록 적응된 송신기를 포함한다. RF 렌즈상에 형성된 적어도 3개의 상이한 수신기들에 의해 이러한 신호의 위상들(도달 시간들) 간의 상대적 차이들을 검출함으로써, 충전 디바이스의 포지션이 추적된다.
[0068] 도 18은 본 발명의 일 실시예에 따라, 도 5에 도시된 RF 렌즈(200)와 같은 RF 렌즈에 배치된 라디에이터(902)의 단순화된 블록도이다. 라디에이터(902)는 라디에이터(902)가 수신기 증폭기 및 위상 복원 회로(218) 및 스위치 S1를 가진다는 점을 제외하고, 도 6에 도시된 라디에이터(202)와 유사하다. 전력 전송 동안, 스위치 S1는 안테나(216)를 노드 A를 통해 전송 경로에 배치된 전력 증폭기(214)에 커플링한다. 추적 동안, 스위치 S1은 안테나(216)를 노드 B를 통해, 충전되고 있는 디바이스에 의해 전송된 신호를 수신하기 위하여 수신 경로에 배치된 수신기 증폭기 및 위상 복원 회로(218)에 커플링한다.
[0069] 도 19는 본 발명의 일 실시예에 따라 무선으로 충전되도록 적응된 디바이스(900)의 다수의 컴포넌트들을 도시한다. 디바이스(900)는 디바이스(900)가 전송 증폭기(316) 및 스위치 S2를 가진다는 점을 제외하고, 도 7에 도시된 디바이스(300)와 유사하다. 전력 전송 동안, 스위치 S2는 안테나(302)를 노드 D를 통해 수신 경로에 배치된 정류기(304)에 커플링한다. 추적 동안, 스위치 S2는 RF 렌즈에 의해 나중에 사용된 신호의 전송이 디바이스(300)의 포지션을 검출하도록 하기 위하여 안테나(302)를 노드 C를 통해 전송 증폭기(316)에 커플링한다. 도 20은 디바이스(900)에 의해 전송된 신호를 수신함으로써 디바이스(900)를 추적하는 RF 렌즈(200)를 도시한다.
[0070] 본 발명의 다른 실시예에 따르면, 펄스 기반 측정 기술은 모바일 디바이스의 포지션을 추적하기 위하여 사용된다. 이를 달성하기 위해, RF 렌즈를 형성하는 하나 이상의 라디에이터들은 추적 단계 동안 펄스를 전송한다. 펄스를 수신할 때, 추적되고 있는 디바이스는 어레이에 배치된 라디에이터들에 의해 수신되는 응답을 송신한다. 추적되고 있는 디바이스로부터 RF 렌즈로의 응답 펄스의 이동 시간들과 함께 RF 렌즈로부터 추적되고 있는 디바이스로의 펄스의 이동 시간은 추적되고 있는 디바이스의 포지션을 대표한다. 산란기들이 존재할 때, 디바이스의 포지션은 최대 우도(maximum likelihood), 또는 최소-제곱(least-square), 칼만 필터링(Kalman filtering), 이들 기술들의 조합 등과 같은 그러한 추정 알고리즘들을 사용하여 추적될 수 있다. 디바이스의 포지션은 또한 WiFi 및 GPS 신호들을 사용하여 결정 및 추적될 수 있다.
[0071] 산란 객체들, 반사기들 및 흡수체들의 존재는 무선 충전되고 있는 디바이스상에 빔을 효율적으로 포커싱하는 RF 렌즈의 능력에 영향을 미칠 수 있다. 예를들어, 도 21은 다수의 산란 객체들(250)이 존재할 때 디바이스(300)에 전력을 전송하는 RF 렌즈(950)를 도시한다. 이러한 영향들을 최소화하기 위하여, 어레이의 개별 라디에이터들의 진폭 및 위상은 전력 전송 효율성을 증가시키도록 변화될 수 있다. 다수의 기술들 중 어느 하나는 개별 라디에이터들의 진폭 또는 위상을 변화시키기 위하여 사용될 수 있다.
[0072] 하나의 이러한 기술에 따르면, 산란의 영향을 최소화하기 위해, 신호는 RF 렌즈에 배치된 라디에이터들 중 하나 이상에 의해 전송된다. RF 렌즈로부터 방사된 신호(들)는 산란 객체들에 의해 산란되고 라디에이터들에 의해 수신된다(도 18 참조). 이후, 역 산란 알고리즘(inverse scattering algorithm)은 환경의 산란 반응을 구성하기 위하여 사용된다. 이러한 구성은 시간에 따라 발생할 수 있는 임의의 변화들을 고려하도록 주기적으로 수행될 수 있다. 다른 기술에 따르면, 라디에이터 어레이의 일부분 또는 전체 라디에이터 어레이는 수신된 파들로부터 산란 반응을 구성하기 위하여 주변들을 전자적으로 빔-스캔하는데 사용될 수 있다. 또 다른 기술에 따르면, 무선 충전되고 있는 디바이스는 자신이 수신한 전력에 대한 정보를 라디에이터에 주기적으로 송신하도록 적응된다. 이후, 최적화 알고리즘은 전력 전송 효율성을 최대화하기 위하여 산란을 고려하여 수신된 정보를 이용한다.
[0073] 일부 실시예들에서, 라디에이터들의 진폭/위상 또는 RF 렌즈의 배향은 산란 매체의 장점을 취하도록 조절될 수 있다. 이는 산란 객체들로 하여금, 전력 전송 효율성을 증가시키기 위하여 디바이스쪽으로 자신들의 전력을 보내는 2차 방사원들로서 사용되기 위하여 적절한 위상, 진폭 및 편파를 가지도록 한다.
[0074] 본 발명의 앞의 실시예들은 제한적이 아니라 예시적이다. 본 발명의 실시예들은 RF 렌즈에 배치된 라디에이터들의 수에 의해 제한되지 않고 또한 RF 렌즈를 형성할 때 사용되는 어레이의 차원들에 의해 제한되지 않는다. 본 발명의 실시예들은 라디에이터의 타입, 라디에이터의 동작 주파수 등에 의해 제한되지 않는다. 본 발명의 실시예들은 무선으로 충전될 수 있는 디바이스의 타입에 의해 제한되지 않는다. 본 발명의 실시예들은 라디에이터의 다양한 컴포넌트들이 형성될 수 있는 기판, 반도체, 플렉시블 등의 타입에 의해 제한되지 않는다. 다른 가산들, 감산들 또는 수정들은 본 개시내용을 고려할 때 명백하며, 첨부된 청구항들의 범위내에 속하는 것으로 의도된다.

Claims (34)

  1. RF 렌즈로서,
    상기 RF 렌즈로부터 멀리 배치된 디바이스에 전력을 공급하기 위하여 전자기파들을 방사하도록 적응된 제 1의 복수의 라디에이터들을 포함하며, 상기 복수의 라디에이터들 각각은 제 1 주파수에서 동작하며, 상기 복수의 라디에이터들 각각에 의해 방사된 전자기파의 위상은 상기 라디에이터와 상기 디바이스 사이의 거리에 의해 결정된 것으로 선택되는, RF 렌즈.
  2. 제 1항에 있어서, 상기 제 1의 복수의 라디에이터들은 어레이로 형성되는, RF 렌즈.
  3. 제 2항에 있어서, 상기 어레이는 1차원 어레이인, RF 렌즈.
  4. 제 2항에 있어서, 상기 어레이는 2차원 어레이인, RF 렌즈.
  5. 제 1항에 있어서, 상기 제 1의 복수의 라디에이터들 각각에 의해 방사된 전자기파의 진폭은 가변적인, RF 렌즈.
  6. 제 1항에 있어서, 상기 제 1의 복수의 라디에이터들 각각은,
    가변 지연 엘리먼트; 및
    안테나를 포함하는, RF 렌즈.
  7. 제 1항에 있어서, 상기 제 1의 복수의 라디에이터들은 제 2의 복수의 라디에이터들이 내부에 배치된 제 2 라디에이터 타일을 수용하도록 적응된 제 1 라디에이터 타일에 형성되는, RF 렌즈.
  8. 제 1항에 있어서, 상기 RF 렌즈는 상기 디바이스의 포지션을 추적하도록 추가로 적응되는, RF 렌즈.
  9. 제 1항에 있어서, 상기 제 1의 복수의 라디에이터들의 적어도 제 1 서브세트의 각각의 라디에이터는 상기 디바이스에 의해 전송된 전자기파를 수신하여, 상기 RF 렌즈로 하여금 상기 제 1의 복수의 라디에이터들의 적어도 제 1 서브세트의 각각의 라디에이터에 의해 수신된 상기 전자기파의 위상에 따라 상기 디바이스의 포지션을 결정하도록 하기 위한 회로를 포함하는, RF 렌즈.
  10. 제 1항에 있어서, 상기 복수의 라디에이터들의 적어도 제 1 서브세트의 각각의 라디에이터는 상기 디바이스에 의해 전송된 전자기파를 수신하여, 상기 RF 렌즈로 하여금 상기 디바이스로부터 상기 제 1의 복수의 라디에이터들의 적어도 제 1 서브세트의 각각의 라디에이터까지의 이동 시간 및 상기 RF 렌즈로부터 상기 디바이스로 전송된 응답 전자기파의 상기 전자기파의 이동 시간에 따라 상기 디바이스의 포지션을 결정하도록 하기 위한 회로를 포함하는, RF 렌즈.
  11. 제 1항에 있어서, 상기 RF 렌즈는 반도체 기판에 형성되는, RF 렌즈.
  12. 제 1항에 있어서, 상기 RF 렌즈는 플렉시블 기판에 형성되는, RF 렌즈.
  13. 제 1항에 있어서, 상기 제 1의 복수의 라디에이터들의 진폭/위상은 전자기파들이 상기 디바이스에 전력을 공급하기 위하여 상기 객체에서 벗어나 산란되도록 추가로 선택되는, RF 렌즈.
  14. 제 1항에 있어서, 상기 RF 렌즈는 제 2 디바이스에 전력을 공급하기 위하여 전자기파들을 방사하도록 적응된 제 2의 복수의 라디에이터들을 더 포함하며, 상기 제 2의 복수의 라디에이터들의 각각의 라디에이터는 상기 제 1 주파수와 상이한 제 2 주파수에서 동작하며, 상기 제 2의 복수의 라디에이터들 각각에 의해 방사된 전자기파의 위상은 상기 라디에이터와 상기 제 2 디바이스 간의 거리에 의해 결정되도록 선택되는, RF 렌즈.
  15. 제 1항에 있어서, 상기 제 1의 복수의 라디에이터들 각각에 의해 방사된 상기 전자기파의 위상 또는 주파수를 기준 신호의 위상 또는 주파수에 고정하도록 적응된 제어 회로를 더 포함하는, RF 렌즈.
  16. 제 1항에 있어서, 상기 RF 렌즈는 제 2 디바이스를 추적하여 상기 제 2 디바이스에 전력을 공급하도록 추가로 적응되는, RF 렌즈.
  17. 제 1항에 있어서, 상기 제 1의 복수의 라디에이터들 중 제 1 라디에이터와 상기 제 1의 복수의 라디에이터들 제 2 라디에이터 사이의 거리는 상기 제 1의 복수의 라디에이터들 중 제 3 라디에이터와 상기 제 1의 복수의 라디에이터들 중 제 4 라디에이터 사이의 거리와 상이한, RF 렌즈.
  18. 디바이스에 전력을 무선으로 공급하는 방법으로서,
    제 1의 복수의 라디에이터들로부터 제 1 주파수를 가진 복수의 전자기파들을 상기 디바이스에 전송하는 단계;
    상기 라디에이터와 상기 디바이스 사이의 거리에 따라 상기 제 1의 복수의 라디에이터들의 각각의 라디에이터의 위상을 선택하는 단계; 및
    상기 디바이스에 의해 수신된 상기 복수의 전자기파들을 사용하여 상기 디바이스에 전력을 제공하는 단계를 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  19. 제 18항에 있어서, 상기 제 1의 복수의 라디에이터들을 어레이로 형성하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  20. 제 19항에 있어서, 상기 제 1의 복수의 라디에이터들을 1차원 어레이로 형성하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  21. 제 19항에 있어서, 상기 제 1의 복수의 라디에이터들을 2차원 어레이로 형성하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  22. 제 18항에 있어서, 상기 제 1의 복수의 라디에이터들 각각에 의해 방사된 전자기파의 진폭을 변경하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  23. 제 18항에 있어서, 상기 복수의 라디에이터들 각각은,
    가변 지연 엘리먼트; 및
    안테나를 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  24. 제 18항에 있어서, 상기 제 1의 복수의 라디에이터들은 제 2의 복수의 라디에이터들이 내부에 배치된 제 2 라디에이터 타일을 수용하도록 적응된 제 1 라디에이터 타일에 형성되는, 디바이스에 전력을 무선으로 공급하는 방법.
  25. 제 18항에 있어서, 상기 디바이스의 포지션을 추적하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  26. 제 18항에 있어서, 상기 디바이스에 의해 전송되고 상기 제 1의 복수의 라디에이터들의 제 1 서브세트의 각각의 라디에이터에 의해 수신된 전자기파의 상대 위상들에 따라 상기 디바이스의 포지션을 결정하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  27. 제 18항에 있어서, 상기 디바이스에 의해 전송되고 상기 제 1의 복수의 라디에이터들의 제 1 서브세트의 각각의 라디에이터에 의해 수신된 전자기파의 이동 시간에 따라 그리고 추가로 상기 RF 렌즈로부터 상기 디바이스로 전송된 응답 전자기파의 이동시간에 따라 상기 디바이스의 포지션을 결정하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  28. 제 18항에 있어서, 상기 제 1의 복수의 라디에이터들을 반도체 기판에 형성하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  29. 제 18항에 있어서, 상기 제 1의 복수의 라디에이터들을 플렉시블 기판에 형성하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  30. 제 18항에 있어서, 상기 전자기파들이 상기 제 1의 복수의 라디에이터들에 의해 전송되고 상기 디바이스에 전력을 공급하기 위하여 객체들을 벗어나 산란되도록 상기 제 1의 복수의 라디에이터들의 진폭/위상을 선택하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  31. 제 18항에 있어서, 상기 제 1의 복수의 라디에이터들로부터의 상기 전자기파들의 전송과 동시에, 제 2의 복수의 라디에이터들로부터 제 2 주파수를 가진 제 2의 복수의 전자기파들을 제 2 디바이스에 전송하는 단계;
    상기 라디에이터와 상기 제 2 디바이스 사이의 거리에 따라 상기 제 2의 복수의 라디에이터들의 각각의 라디에이터의 위상을 선택하는 단계; 및
    상기 제 2의 복수의 전자기파들을 사용하여 상기 제 2 디바이스에 전력을 제공하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  32. 제 18항에 있어서, 상기 제 1의 복수의 라디에이터들 각각에 의해 방사된 상기 전자기파의 위상 또는 주파수를 기준 신호의 위상 또는 주파수에 고정하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  33. 제 18항에 있어서, 상기 제 1의 복수의 라디에이터들에 의해 방사된 상기 전자기파들을 사용하여 제 2 디바이스를 추적하여 전력을 공급하는 단계를 더 포함하는, 디바이스에 전력을 무선으로 공급하는 방법.
  34. 제 18항에 있어서, 상기 제 1의 복수의 라디에이터들 중 제 1 라디에이터와 상기 제 1의 복수의 라디에이터들 중 제 2 라디에이터 사이의 거리는 상기 제 1의 복수의 라디에이터들 중 제 3 라디에이터와 상기 제 1의 복수의 라디에이터들 중 제 4 라디에이터 사이의 거리와 상이한, 디바이스에 전력을 무선으로 공급하는 방법.
KR1020157014646A 2012-11-09 2013-11-12 스마트의 rf 렌싱: 효율적이고 동적이며 이동적인 무선 전력 전송 KR102225531B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201261724638P 2012-11-09 2012-11-09
US61/724,638 2012-11-09
PCT/US2013/069757 WO2014075103A1 (en) 2012-11-09 2013-11-12 Smart rf lensing: efficient, dynamic and mobile wireless power transfer

Publications (2)

Publication Number Publication Date
KR20150082450A true KR20150082450A (ko) 2015-07-15
KR102225531B1 KR102225531B1 (ko) 2021-03-08

Family

ID=50685254

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157014646A KR102225531B1 (ko) 2012-11-09 2013-11-12 스마트의 rf 렌싱: 효율적이고 동적이며 이동적인 무선 전력 전송

Country Status (5)

Country Link
US (6) US10367380B2 (ko)
EP (1) EP2917998A4 (ko)
KR (1) KR102225531B1 (ko)
CN (2) CN108390160B (ko)
WO (1) WO2014075103A1 (ko)

Families Citing this family (227)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9923386B1 (en) 2012-07-06 2018-03-20 Energous Corporation Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver
US9893768B2 (en) 2012-07-06 2018-02-13 Energous Corporation Methodology for multiple pocket-forming
US9831718B2 (en) 2013-07-25 2017-11-28 Energous Corporation TV with integrated wireless power transmitter
US10090886B1 (en) 2014-07-14 2018-10-02 Energous Corporation System and method for enabling automatic charging schedules in a wireless power network to one or more devices
US10186913B2 (en) 2012-07-06 2019-01-22 Energous Corporation System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas
US9939864B1 (en) 2014-08-21 2018-04-10 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US10230266B1 (en) 2014-02-06 2019-03-12 Energous Corporation Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof
US10965164B2 (en) 2012-07-06 2021-03-30 Energous Corporation Systems and methods of wirelessly delivering power to a receiver device
US10008889B2 (en) 2014-08-21 2018-06-26 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10128699B2 (en) 2014-07-14 2018-11-13 Energous Corporation Systems and methods of providing wireless power using receiver device sensor inputs
US9838083B2 (en) 2014-07-21 2017-12-05 Energous Corporation Systems and methods for communication with remote management systems
US9806564B2 (en) 2014-05-07 2017-10-31 Energous Corporation Integrated rectifier and boost converter for wireless power transmission
US10063105B2 (en) 2013-07-11 2018-08-28 Energous Corporation Proximity transmitters for wireless power charging systems
US9252628B2 (en) 2013-05-10 2016-02-02 Energous Corporation Laptop computer as a transmitter for wireless charging
US10038337B1 (en) 2013-09-16 2018-07-31 Energous Corporation Wireless power supply for rescue devices
US9124125B2 (en) * 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US10211674B1 (en) 2013-06-12 2019-02-19 Energous Corporation Wireless charging using selected reflectors
US10312715B2 (en) 2015-09-16 2019-06-04 Energous Corporation Systems and methods for wireless power charging
US10381880B2 (en) 2014-07-21 2019-08-13 Energous Corporation Integrated antenna structure arrays for wireless power transmission
US9893554B2 (en) 2014-07-14 2018-02-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9843201B1 (en) 2012-07-06 2017-12-12 Energous Corporation Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof
US9899861B1 (en) 2013-10-10 2018-02-20 Energous Corporation Wireless charging methods and systems for game controllers, based on pocket-forming
US9859757B1 (en) * 2013-07-25 2018-01-02 Energous Corporation Antenna tile arrangements in electronic device enclosures
US9887584B1 (en) 2014-08-21 2018-02-06 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US10218227B2 (en) 2014-05-07 2019-02-26 Energous Corporation Compact PIFA antenna
US9853458B1 (en) 2014-05-07 2017-12-26 Energous Corporation Systems and methods for device and power receiver pairing
US10063064B1 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9843213B2 (en) 2013-08-06 2017-12-12 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US9941754B2 (en) 2012-07-06 2018-04-10 Energous Corporation Wireless power transmission with selective range
US10128693B2 (en) 2014-07-14 2018-11-13 Energous Corporation System and method for providing health safety in a wireless power transmission system
US9941747B2 (en) 2014-07-14 2018-04-10 Energous Corporation System and method for manually selecting and deselecting devices to charge in a wireless power network
US9368020B1 (en) 2013-05-10 2016-06-14 Energous Corporation Off-premises alert system and method for wireless power receivers in a wireless power network
US9876394B1 (en) 2014-05-07 2018-01-23 Energous Corporation Boost-charger-boost system for enhanced power delivery
US9859797B1 (en) 2014-05-07 2018-01-02 Energous Corporation Synchronous rectifier design for wireless power receiver
US9438045B1 (en) 2013-05-10 2016-09-06 Energous Corporation Methods and systems for maximum power point transfer in receivers
US10270261B2 (en) 2015-09-16 2019-04-23 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10211680B2 (en) 2013-07-19 2019-02-19 Energous Corporation Method for 3 dimensional pocket-forming
US9893555B1 (en) 2013-10-10 2018-02-13 Energous Corporation Wireless charging of tools using a toolbox transmitter
US10075008B1 (en) 2014-07-14 2018-09-11 Energous Corporation Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network
US10050462B1 (en) 2013-08-06 2018-08-14 Energous Corporation Social power sharing for mobile devices based on pocket-forming
US10090699B1 (en) 2013-11-01 2018-10-02 Energous Corporation Wireless powered house
US10223717B1 (en) 2014-05-23 2019-03-05 Energous Corporation Systems and methods for payment-based authorization of wireless power transmission service
US9900057B2 (en) 2012-07-06 2018-02-20 Energous Corporation Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas
US10224982B1 (en) 2013-07-11 2019-03-05 Energous Corporation Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations
US10291066B1 (en) 2014-05-07 2019-05-14 Energous Corporation Power transmission control systems and methods
US10148097B1 (en) 2013-11-08 2018-12-04 Energous Corporation Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers
US9906065B2 (en) 2012-07-06 2018-02-27 Energous Corporation Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array
US10205239B1 (en) 2014-05-07 2019-02-12 Energous Corporation Compact PIFA antenna
US9847677B1 (en) 2013-10-10 2017-12-19 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US9793758B2 (en) 2014-05-23 2017-10-17 Energous Corporation Enhanced transmitter using frequency control for wireless power transmission
US10141768B2 (en) 2013-06-03 2018-11-27 Energous Corporation Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position
US10439448B2 (en) 2014-08-21 2019-10-08 Energous Corporation Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver
US9824815B2 (en) 2013-05-10 2017-11-21 Energous Corporation Wireless charging and powering of healthcare gadgets and sensors
US11502551B2 (en) 2012-07-06 2022-11-15 Energous Corporation Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations
US9876379B1 (en) 2013-07-11 2018-01-23 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US10124754B1 (en) 2013-07-19 2018-11-13 Energous Corporation Wireless charging and powering of electronic sensors in a vehicle
US10263432B1 (en) 2013-06-25 2019-04-16 Energous Corporation Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access
US9853692B1 (en) 2014-05-23 2017-12-26 Energous Corporation Systems and methods for wireless power transmission
US10224758B2 (en) 2013-05-10 2019-03-05 Energous Corporation Wireless powering of electronic devices with selective delivery range
US9882430B1 (en) 2014-05-07 2018-01-30 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9887739B2 (en) 2012-07-06 2018-02-06 Energous Corporation Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves
US9882427B2 (en) 2013-05-10 2018-01-30 Energous Corporation Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters
US9867062B1 (en) 2014-07-21 2018-01-09 Energous Corporation System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system
US9899873B2 (en) 2014-05-23 2018-02-20 Energous Corporation System and method for generating a power receiver identifier in a wireless power network
US9954374B1 (en) 2014-05-23 2018-04-24 Energous Corporation System and method for self-system analysis for detecting a fault in a wireless power transmission Network
US10103582B2 (en) 2012-07-06 2018-10-16 Energous Corporation Transmitters for wireless power transmission
US9912199B2 (en) 2012-07-06 2018-03-06 Energous Corporation Receivers for wireless power transmission
US9825674B1 (en) 2014-05-23 2017-11-21 Energous Corporation Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions
US9966765B1 (en) 2013-06-25 2018-05-08 Energous Corporation Multi-mode transmitter
US9787103B1 (en) 2013-08-06 2017-10-10 Energous Corporation Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter
US10063106B2 (en) 2014-05-23 2018-08-28 Energous Corporation System and method for a self-system analysis in a wireless power transmission network
US9973021B2 (en) 2012-07-06 2018-05-15 Energous Corporation Receivers for wireless power transmission
US10199849B1 (en) 2014-08-21 2019-02-05 Energous Corporation Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system
US10992187B2 (en) 2012-07-06 2021-04-27 Energous Corporation System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices
US10199835B2 (en) 2015-12-29 2019-02-05 Energous Corporation Radar motion detection using stepped frequency in wireless power transmission system
US20150326070A1 (en) 2014-05-07 2015-11-12 Energous Corporation Methods and Systems for Maximum Power Point Transfer in Receivers
US10211682B2 (en) 2014-05-07 2019-02-19 Energous Corporation Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network
US10141791B2 (en) 2014-05-07 2018-11-27 Energous Corporation Systems and methods for controlling communications during wireless transmission of power using application programming interfaces
US10992185B2 (en) 2012-07-06 2021-04-27 Energous Corporation Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers
US9871398B1 (en) 2013-07-01 2018-01-16 Energous Corporation Hybrid charging method for wireless power transmission based on pocket-forming
US9948135B2 (en) 2015-09-22 2018-04-17 Energous Corporation Systems and methods for identifying sensitive objects in a wireless charging transmission field
US10291055B1 (en) 2014-12-29 2019-05-14 Energous Corporation Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device
US9859756B2 (en) 2012-07-06 2018-01-02 Energous Corporation Transmittersand methods for adjusting wireless power transmission based on information from receivers
US9143000B2 (en) 2012-07-06 2015-09-22 Energous Corporation Portable wireless charging pad
US10193396B1 (en) 2014-05-07 2019-01-29 Energous Corporation Cluster management of transmitters in a wireless power transmission system
US9991741B1 (en) 2014-07-14 2018-06-05 Energous Corporation System for tracking and reporting status and usage information in a wireless power management system
US10243414B1 (en) 2014-05-07 2019-03-26 Energous Corporation Wearable device with wireless power and payload receiver
US9876648B2 (en) 2014-08-21 2018-01-23 Energous Corporation System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters
US9891669B2 (en) 2014-08-21 2018-02-13 Energous Corporation Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system
US10256657B2 (en) 2015-12-24 2019-04-09 Energous Corporation Antenna having coaxial structure for near field wireless power charging
US10206185B2 (en) 2013-05-10 2019-02-12 Energous Corporation System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions
US9847679B2 (en) 2014-05-07 2017-12-19 Energous Corporation System and method for controlling communication between wireless power transmitter managers
US9941707B1 (en) 2013-07-19 2018-04-10 Energous Corporation Home base station for multiple room coverage with multiple transmitters
US9812890B1 (en) 2013-07-11 2017-11-07 Energous Corporation Portable wireless charging pad
CN108390160B (zh) 2012-11-09 2021-04-27 加州理工学院 智能rf透镜效应:高效、动态和移动无线功率传输
US11843260B2 (en) 2012-11-09 2023-12-12 California Institute Of Technology Generator unit for wireless power transfer
US11616520B2 (en) 2012-11-09 2023-03-28 California Institute Of Technology RF receiver
US9819230B2 (en) 2014-05-07 2017-11-14 Energous Corporation Enhanced receiver for wireless power transmission
US9419443B2 (en) 2013-05-10 2016-08-16 Energous Corporation Transducer sound arrangement for pocket-forming
US9537357B2 (en) 2013-05-10 2017-01-03 Energous Corporation Wireless sound charging methods and systems for game controllers, based on pocket-forming
US9866279B2 (en) 2013-05-10 2018-01-09 Energous Corporation Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network
US9538382B2 (en) 2013-05-10 2017-01-03 Energous Corporation System and method for smart registration of wireless power receivers in a wireless power network
US10103552B1 (en) 2013-06-03 2018-10-16 Energous Corporation Protocols for authenticated wireless power transmission
US10003211B1 (en) 2013-06-17 2018-06-19 Energous Corporation Battery life of portable electronic devices
US10021523B2 (en) 2013-07-11 2018-07-10 Energous Corporation Proximity transmitters for wireless power charging systems
US9979440B1 (en) 2013-07-25 2018-05-22 Energous Corporation Antenna tile arrangements configured to operate as one functional unit
KR102473074B1 (ko) 2013-11-22 2022-11-30 캘리포니아 인스티튜트 오브 테크놀로지 무선 전력 송신을 위한 생성기 유닛
WO2015077726A1 (en) 2013-11-22 2015-05-28 California Institute Of Technology Active cmos recovery units for wireless power transmission
US10075017B2 (en) 2014-02-06 2018-09-11 Energous Corporation External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power
US9935482B1 (en) 2014-02-06 2018-04-03 Energous Corporation Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device
AU2014385258B2 (en) * 2014-03-06 2017-04-06 Halliburton Energy Services, Inc. Downhole power and data transfer using resonators
US10158257B2 (en) 2014-05-01 2018-12-18 Energous Corporation System and methods for using sound waves to wirelessly deliver power to electronic devices
US9966784B2 (en) 2014-06-03 2018-05-08 Energous Corporation Systems and methods for extending battery life of portable electronic devices charged by sound
US10153653B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver
US9800172B1 (en) 2014-05-07 2017-10-24 Energous Corporation Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves
US10153645B1 (en) 2014-05-07 2018-12-11 Energous Corporation Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters
US10170917B1 (en) 2014-05-07 2019-01-01 Energous Corporation Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter
US9973008B1 (en) 2014-05-07 2018-05-15 Energous Corporation Wireless power receiver with boost converters directly coupled to a storage element
WO2015175839A1 (en) 2014-05-14 2015-11-19 California Institute Of Technology Large-scale space-based solar power station: packaging, deployment and stabilization of lightweight structures
US11128179B2 (en) 2014-05-14 2021-09-21 California Institute Of Technology Large-scale space-based solar power station: power transmission using steerable beams
US9876536B1 (en) 2014-05-23 2018-01-23 Energous Corporation Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers
EP3149777B1 (en) 2014-06-02 2024-02-14 California Institute of Technology Large-scale space-based solar power station: efficient power generation tiles
US10116143B1 (en) 2014-07-21 2018-10-30 Energous Corporation Integrated antenna arrays for wireless power transmission
US9871301B2 (en) 2014-07-21 2018-01-16 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10068703B1 (en) 2014-07-21 2018-09-04 Energous Corporation Integrated miniature PIFA with artificial magnetic conductor metamaterials
US10447092B2 (en) * 2014-07-31 2019-10-15 Ossia Inc. Techniques for determining distance between radiating objects in multipath wireless power delivery environments
EP3780334A1 (en) 2014-08-19 2021-02-17 California Institute of Technology Wireless power transfer
US9917477B1 (en) 2014-08-21 2018-03-13 Energous Corporation Systems and methods for automatically testing the communication between power transmitter and wireless receiver
US9965009B1 (en) 2014-08-21 2018-05-08 Energous Corporation Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver
KR101949963B1 (ko) * 2014-10-31 2019-02-19 테스로닉스 인코포레이티드 전자기파들의 정렬을 이용한 무선 에너지 전달
US10256678B2 (en) 2014-10-31 2019-04-09 Teslonix Inc. Wireless energy transfer using alignment of electromagnetic waves
US10474852B2 (en) 2014-10-31 2019-11-12 Teslonix Inc. Charging long-range radio frequency identification tags
US10530190B2 (en) 2014-10-31 2020-01-07 Teslonix Inc. Wireless energy transfer in a multipath environment
US10122415B2 (en) 2014-12-27 2018-11-06 Energous Corporation Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver
US9893535B2 (en) 2015-02-13 2018-02-13 Energous Corporation Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy
WO2017015508A1 (en) 2015-07-22 2017-01-26 California Institute Of Technology Large-area structures for compact packaging
US10992253B2 (en) 2015-08-10 2021-04-27 California Institute Of Technology Compactable power generation arrays
JP2018530180A (ja) 2015-08-10 2018-10-11 カリフォルニア インスティチュート オブ テクノロジー 積層電力増幅器の供給電圧を制御するためのシステム及び方法
US9906275B2 (en) 2015-09-15 2018-02-27 Energous Corporation Identifying receivers in a wireless charging transmission field
US10523033B2 (en) 2015-09-15 2019-12-31 Energous Corporation Receiver devices configured to determine location within a transmission field
US10158259B1 (en) 2015-09-16 2018-12-18 Energous Corporation Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field
US9941752B2 (en) 2015-09-16 2018-04-10 Energous Corporation Systems and methods of object detection in wireless power charging systems
US10008875B1 (en) 2015-09-16 2018-06-26 Energous Corporation Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver
US10211685B2 (en) 2015-09-16 2019-02-19 Energous Corporation Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10199850B2 (en) 2015-09-16 2019-02-05 Energous Corporation Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter
US10778041B2 (en) 2015-09-16 2020-09-15 Energous Corporation Systems and methods for generating power waves in a wireless power transmission system
US11710321B2 (en) 2015-09-16 2023-07-25 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9893538B1 (en) 2015-09-16 2018-02-13 Energous Corporation Systems and methods of object detection in wireless power charging systems
US9871387B1 (en) 2015-09-16 2018-01-16 Energous Corporation Systems and methods of object detection using one or more video cameras in wireless power charging systems
US10186893B2 (en) 2015-09-16 2019-01-22 Energous Corporation Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver
US10027168B2 (en) 2015-09-22 2018-07-17 Energous Corporation Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter
US10033222B1 (en) 2015-09-22 2018-07-24 Energous Corporation Systems and methods for determining and generating a waveform for wireless power transmission waves
US10153660B1 (en) 2015-09-22 2018-12-11 Energous Corporation Systems and methods for preconfiguring sensor data for wireless charging systems
EP3353793A4 (en) 2015-09-22 2019-05-08 California Institute of Technology RF RECEIVER
US10135294B1 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers
US10020678B1 (en) 2015-09-22 2018-07-10 Energous Corporation Systems and methods for selecting antennas to generate and transmit power transmission waves
US10050470B1 (en) 2015-09-22 2018-08-14 Energous Corporation Wireless power transmission device having antennas oriented in three dimensions
US10135295B2 (en) 2015-09-22 2018-11-20 Energous Corporation Systems and methods for nullifying energy levels for wireless power transmission waves
US10128686B1 (en) 2015-09-22 2018-11-13 Energous Corporation Systems and methods for identifying receiver locations using sensor technologies
US10333332B1 (en) 2015-10-13 2019-06-25 Energous Corporation Cross-polarized dipole antenna
US10734717B2 (en) 2015-10-13 2020-08-04 Energous Corporation 3D ceramic mold antenna
US9899744B1 (en) 2015-10-28 2018-02-20 Energous Corporation Antenna for wireless charging systems
US9853485B2 (en) 2015-10-28 2017-12-26 Energous Corporation Antenna for wireless charging systems
US10135112B1 (en) 2015-11-02 2018-11-20 Energous Corporation 3D antenna mount
US10063108B1 (en) 2015-11-02 2018-08-28 Energous Corporation Stamped three-dimensional antenna
US10027180B1 (en) 2015-11-02 2018-07-17 Energous Corporation 3D triple linear antenna that acts as heat sink
US9866074B2 (en) 2015-11-17 2018-01-09 Ossia Inc. Integrated circuits for transmitting wireless power, receiving wireless power, and/or communicating wirelessly
US20170155285A1 (en) * 2015-11-30 2017-06-01 Electronics And Telecommunications Research Institute Open type resonance coil without dual loops having serial type in-phase direct power feeding method without dual loops
US11863001B2 (en) 2015-12-24 2024-01-02 Energous Corporation Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns
US10027158B2 (en) 2015-12-24 2018-07-17 Energous Corporation Near field transmitters for wireless power charging of an electronic device by leaking RF energy through an aperture
US10038332B1 (en) 2015-12-24 2018-07-31 Energous Corporation Systems and methods of wireless power charging through multiple receiving devices
US10027159B2 (en) 2015-12-24 2018-07-17 Energous Corporation Antenna for transmitting wireless power signals
US10256677B2 (en) 2016-12-12 2019-04-09 Energous Corporation Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad
US10320446B2 (en) 2015-12-24 2019-06-11 Energous Corporation Miniaturized highly-efficient designs for near-field power transfer system
US10079515B2 (en) 2016-12-12 2018-09-18 Energous Corporation Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad
US10008886B2 (en) 2015-12-29 2018-06-26 Energous Corporation Modular antennas with heat sinks in wireless power transmission systems
EP3414817A4 (en) * 2016-02-09 2020-01-15 Teslonix Inc. BEST WIRELESS POWER TRANSFER USING ELECTROMAGNETIC WAVE ALIGNMENT
US10230271B2 (en) 2016-03-03 2019-03-12 uBeam Inc. Beamforming for wireless power transfer
US10148137B2 (en) 2016-03-03 2018-12-04 uBeam Inc. Beamforming for wireless power transfer
WO2017173208A1 (en) * 2016-03-31 2017-10-05 Commscope Technologies Llc Lensed antennas for use in wireless communications systems
WO2017171440A1 (ko) * 2016-03-31 2017-10-05 삼성전자 주식회사 무선 전력 송신 장치 및 그 제어 방법
US10797504B2 (en) * 2016-05-19 2020-10-06 Motorola Solutions, Inc. System, method and device for wireless power transfer
US10923954B2 (en) 2016-11-03 2021-02-16 Energous Corporation Wireless power receiver with a synchronous rectifier
KR102226403B1 (ko) 2016-12-12 2021-03-12 에너저스 코포레이션 전달되는 무선 전력을 최대화하기 위한 근접장 충전 패드의 안테나 존들을 선택적으로 활성화시키는 방법
RU2643177C1 (ru) 2016-12-14 2018-01-31 Самсунг Электроникс Ко., Лтд. Микроволновое беспроводное зарядное устройство с фокусировкой микроволнового поля
CN106532984B (zh) * 2016-12-28 2019-07-02 王策 一种锁定移动目标的电磁波无线充电或供电的方法和装置
US10389161B2 (en) 2017-03-15 2019-08-20 Energous Corporation Surface mount dielectric antennas for wireless power transmitters
US10680319B2 (en) 2017-01-06 2020-06-09 Energous Corporation Devices and methods for reducing mutual coupling effects in wireless power transmission systems
US10439442B2 (en) 2017-01-24 2019-10-08 Energous Corporation Microstrip antennas for wireless power transmitters
US11011942B2 (en) 2017-03-30 2021-05-18 Energous Corporation Flat antennas having two or more resonant frequencies for use in wireless power transmission systems
KR20180117394A (ko) 2017-04-19 2018-10-29 재단법인 다차원 스마트 아이티 융합시스템 연구단 주파수 제어 기반의 무선 충전 시스템
US10958108B2 (en) * 2017-05-03 2021-03-23 Searete Llc Wireless power transfer management
US10511097B2 (en) 2017-05-12 2019-12-17 Energous Corporation Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain
US11462949B2 (en) 2017-05-16 2022-10-04 Wireless electrical Grid LAN, WiGL Inc Wireless charging method and system
WO2018218252A1 (en) 2017-05-26 2018-11-29 California Institute Of Technology Method and apparatus for dynamic rf lens focusing and tracking of wireless power recovery unit
US10283952B2 (en) 2017-06-22 2019-05-07 Bretford Manufacturing, Inc. Rapidly deployable floor power system
US10848853B2 (en) 2017-06-23 2020-11-24 Energous Corporation Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power
US10714830B2 (en) * 2017-10-03 2020-07-14 Hughes Network Systems, Llc Digital phase shifter switch and transmission line reduction
US10122219B1 (en) 2017-10-10 2018-11-06 Energous Corporation Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves
US11342798B2 (en) 2017-10-30 2022-05-24 Energous Corporation Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band
US11011941B2 (en) 2018-01-10 2021-05-18 Guru, Inc. Method and apparatus for wireless power delivery tracking
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad
US11159057B2 (en) 2018-03-14 2021-10-26 Energous Corporation Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals
JP6760322B2 (ja) * 2018-03-22 2020-09-23 株式会社豊田中央研究所 電力伝送システム
EP3776799A4 (en) * 2018-03-27 2021-12-29 Guru Wireless, Inc. Situation aware wireless power transmission
WO2019209294A1 (en) * 2018-04-25 2019-10-31 Ossia, Inc. Directional wireless power and wireless data communication
US10796112B2 (en) 2018-05-28 2020-10-06 Teslonix Inc. Protocol layer coordination of wireless energy transfer systems
US11515732B2 (en) * 2018-06-25 2022-11-29 Energous Corporation Power wave transmission techniques to focus wirelessly delivered power at a receiving device
US11634240B2 (en) 2018-07-17 2023-04-25 California Institute Of Technology Coilable thin-walled longerons and coilable structures implementing longerons and methods for their manufacture and coiling
US11772826B2 (en) 2018-10-31 2023-10-03 California Institute Of Technology Actively controlled spacecraft deployment mechanism
US11437735B2 (en) 2018-11-14 2022-09-06 Energous Corporation Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body
CN113196615A (zh) * 2018-12-12 2021-07-30 惠普发展公司,有限责任合伙企业 用于运动中设备的无线充电的接收器和发射器
US11539243B2 (en) 2019-01-28 2022-12-27 Energous Corporation Systems and methods for miniaturized antenna for wireless power transmissions
WO2020163574A1 (en) 2019-02-06 2020-08-13 Energous Corporation Systems and methods of estimating optimal phases to use for individual antennas in an antenna array
KR20220002960A (ko) * 2019-04-19 2022-01-07 구루 와이어리스, 아이엔씨. 무선 전력 전송을 위해 구성된 로밍 및 분절형 전력 생성 장치
WO2021055898A1 (en) 2019-09-20 2021-03-25 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
CN114731061A (zh) 2019-09-20 2022-07-08 艾诺格思公司 使用无线功率发射系统中的功率放大器控制器集成电路来分类和检测异物
US11381118B2 (en) 2019-09-20 2022-07-05 Energous Corporation Systems and methods for machine learning based foreign object detection for wireless power transmission
CN115104234A (zh) 2019-09-20 2022-09-23 艾诺格思公司 使用多个整流器保护无线电力接收器以及使用多个整流器建立带内通信的系统和方法
US11355966B2 (en) 2019-12-13 2022-06-07 Energous Corporation Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device
US10985617B1 (en) 2019-12-31 2021-04-20 Energous Corporation System for wirelessly transmitting energy at a near-field distance without using beam-forming control
CN111262019B (zh) * 2020-01-17 2021-04-06 浙江大学 一种基于平面口径空间馈电的二维菲涅尔区板天线
US11799324B2 (en) 2020-04-13 2023-10-24 Energous Corporation Wireless-power transmitting device for creating a uniform near-field charging area
IL282599B (en) 2021-04-22 2022-02-01 Wi Charge Ltd Wireless power transmission system
WO2023022309A1 (ko) * 2021-08-18 2023-02-23 한국과학기술원 중거리 무선 전력 전송 효율을 높이기 위한 배열 안테나 설계 방법
US11916398B2 (en) 2021-12-29 2024-02-27 Energous Corporation Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967462B1 (en) * 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
WO2007084716A2 (en) * 2006-01-18 2007-07-26 Nigel Power Llc Method and system for powering an electronic device via a wireless link
US20070182367A1 (en) * 2006-01-31 2007-08-09 Afshin Partovi Inductive power source and charging system
US20100259447A1 (en) * 2009-04-10 2010-10-14 Raytheon Company Wireless power transmission system and method
JP2011199975A (ja) * 2010-03-18 2011-10-06 Nec Corp 非接触送電装置、非接触送電システムおよび非接触送電方法

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1119732A (en) 1907-05-04 1914-12-01 Nikola Tesla Apparatus for transmitting electrical energy.
GB2256948B (en) * 1991-05-31 1995-01-25 Thomas William Russell East Self-focussing antenna array
WO1998012667A2 (en) 1996-08-29 1998-03-26 Johnson Steven A Wavefield imaging using inverse scattering techniques
US6208287B1 (en) 1998-03-16 2001-03-27 Raytheoncompany Phased array antenna calibration system and method
US6127799A (en) * 1999-05-14 2000-10-03 Gte Internetworking Incorporated Method and apparatus for wireless powering and recharging
US7522878B2 (en) 1999-06-21 2009-04-21 Access Business Group International Llc Adaptive inductive power supply with communication
US7212414B2 (en) 1999-06-21 2007-05-01 Access Business Group International, Llc Adaptive inductive power supply
EP1734461A2 (en) 1999-07-12 2006-12-20 Matsushita Electric Industrial Co., Ltd. Mobile body discrimination apparatus for rapidly acquiring respective data sets transmitted through modulation of reflected radio waves by transponders which are within a communication region of an interrogator apparatus
DE19958265A1 (de) 1999-12-05 2001-06-21 Iq Mobil Electronics Gmbh Drahtloses Energieübertragungssystem mit erhöhter Ausgangsspannung
US6184651B1 (en) 2000-03-20 2001-02-06 Motorola, Inc. Contactless battery charger with wireless control link
TW479904U (en) 2000-10-09 2002-03-11 Sunplus Technology Co Ltd Diode circuit to simulate zero cutoff voltage and the rectifying circuit having zero cutoff voltage characteristics
US7324785B2 (en) 2001-01-11 2008-01-29 Broadcom Corporation Transmit power control of wireless communication devices
US7356952B2 (en) 2002-06-17 2008-04-15 Philip Morris Usa Inc. System for coupling package displays to remote power source
US7091852B2 (en) * 2002-07-02 2006-08-15 Tri-Sentinel, Inc. Emergency response personnel automated accountability system
US6970089B2 (en) 2002-07-03 2005-11-29 Battelle Memorial Institute K1-53 Full-spectrum passive communication system and method
GB0229141D0 (en) * 2002-12-16 2003-01-15 Splashpower Ltd Improvements relating to contact-less power transfer
US7580672B2 (en) * 2003-06-27 2009-08-25 Qualcomm Incorporated Synthetic path diversity repeater
AU2004306911B2 (en) 2003-10-17 2008-09-11 Powercast Corporation Method and apparatus for a wireless power supply
GB2414120B (en) 2004-05-11 2008-04-02 Splashpower Ltd Controlling inductive power transfer systems
US7084811B1 (en) 2004-09-14 2006-08-01 Hrl Laboratories, Llc Agile optical wavelength selection for antenna beamforming
US7260418B2 (en) * 2004-09-29 2007-08-21 California Institute Of Technology Multi-element phased array transmitter with LO phase shifting and integrated power amplifier
CA2941269C (en) 2005-10-24 2017-06-13 Powercast Corporation Method and apparatus for high efficiency rectification for various loads
WO2007068002A2 (en) 2005-12-09 2007-06-14 Tego Inc. Multiple radio frequency network node rfid tag
US9130602B2 (en) 2006-01-18 2015-09-08 Qualcomm Incorporated Method and apparatus for delivering energy to an electrical or electronic device via a wireless link
WO2008026080A2 (en) * 2006-09-01 2008-03-06 Bio Aim Technologies Holding Ltd. Systems and methods for wireless power transfer
US8004235B2 (en) 2006-09-29 2011-08-23 Access Business Group International Llc System and method for inductively charging a battery
JP4769684B2 (ja) * 2006-10-12 2011-09-07 株式会社デンソーアイティーラボラトリ 電子走査式レーダ装置
JP4308855B2 (ja) 2007-01-17 2009-08-05 セイコーエプソン株式会社 受電制御装置、受電装置および電子機器
WO2008091065A1 (en) * 2007-01-26 2008-07-31 Lg Electronics Inc. Contactless interface within a terminal to support a contactless service
JP2008245404A (ja) 2007-03-27 2008-10-09 Kddi Corp 電力伝送システム
US8446248B2 (en) 2007-06-14 2013-05-21 Omnilectric, Inc. Wireless power transmission system
US8159364B2 (en) 2007-06-14 2012-04-17 Omnilectric, Inc. Wireless power transmission system
US8619639B2 (en) 2007-07-06 2013-12-31 Lantiq Deutschland Gmbh Power detector radio frequency multiplexer
CN101939922A (zh) 2007-10-01 2011-01-05 迈凌有限公司 I/q校准技术
DE602007013780D1 (de) 2007-11-29 2011-05-19 Nokia Siemens Networks Oy Funkzellenleistungsüberwachung und/oder -steuerung basierend auf den Endgerätpositionierungsdaten und Funkqualitätsparametern
US8855554B2 (en) 2008-03-05 2014-10-07 Qualcomm Incorporated Packaging and details of a wireless power device
PL2263296T3 (pl) 2008-04-03 2016-06-30 Koninklijke Philips Nv Bezprzewodowy system transmisji energii
US8571118B2 (en) 2008-04-09 2013-10-29 Qualcomm Incorporated Transmission line directional coupling
US8466654B2 (en) 2008-07-08 2013-06-18 Qualcomm Incorporated Wireless high power transfer under regulatory constraints
US7893564B2 (en) 2008-08-05 2011-02-22 Broadcom Corporation Phased array wireless resonant power delivery system
US20100034238A1 (en) 2008-08-05 2010-02-11 Broadcom Corporation Spread spectrum wireless resonant power delivery
BRPI0822996A2 (pt) 2008-09-03 2015-06-23 Thomson Licensing Método e aparelho para controle de potência de transmissão em redes sem fio
WO2010030767A1 (en) 2008-09-11 2010-03-18 The Board Of Trustees Of The University Of Alabama System and method for three mode wireless enrgy harvesting
US8401595B2 (en) 2008-12-08 2013-03-19 Samsung Electronics Co., Ltd. Method and system for integrated wireless power and data communication
US8497658B2 (en) 2009-01-22 2013-07-30 Qualcomm Incorporated Adaptive power control for wireless charging of devices
US8223885B2 (en) 2009-02-19 2012-07-17 Research In Motion Limited Mobile wireless communications device with separate In-phase (I) and Quadrature (Q) phase power amplification and power amplifier pre-distortion and IQ balance compensation
JP4752932B2 (ja) * 2009-02-25 2011-08-17 株式会社デンソー 送信装置、受信装置、及び送受信装置
US8154402B2 (en) 2009-03-12 2012-04-10 Raytheon Company Wireless temperature sensor network
CN101833839A (zh) 2009-03-13 2010-09-15 深圳富泰宏精密工业有限公司 多功能便携式电子装置
US8338991B2 (en) 2009-03-20 2012-12-25 Qualcomm Incorporated Adaptive impedance tuning in wireless power transmission
US8970180B2 (en) 2009-04-07 2015-03-03 Qualcomm Incorporated Wireless power transmission scheduling
US8508422B2 (en) 2009-06-09 2013-08-13 Broadcom Corporation Method and system for converting RF power to DC power utilizing a leaky wave antenna
US8853995B2 (en) 2009-06-12 2014-10-07 Qualcomm Incorporated Devices for conveying wireless power and methods of operation thereof
US10566838B2 (en) 2009-08-07 2020-02-18 Auckland Uniservices Limited Inductive power transfer system
US8374545B2 (en) 2009-09-02 2013-02-12 Qualcomm Incorporated De-tuning in wireless power reception
US8415837B2 (en) 2009-11-18 2013-04-09 The Regents Of The University Of California Switch mode voltage rectifier, RF energy conversion and wireless power supplies
KR101730824B1 (ko) * 2009-11-30 2017-04-27 삼성전자주식회사 무선 전력 트랜시버 및 무선 전력 시스템
US8390249B2 (en) 2009-11-30 2013-03-05 Broadcom Corporation Battery with integrated wireless power receiver and/or RFID
US8879995B2 (en) 2009-12-23 2014-11-04 Viconics Electronics Inc. Wireless power transmission using phased array antennae
US8686685B2 (en) * 2009-12-25 2014-04-01 Golba, Llc Secure apparatus for wirelessly transferring power and communicating with one or more slave devices
US8421408B2 (en) * 2010-01-23 2013-04-16 Sotoudeh Hamedi-Hagh Extended range wireless charging and powering system
US9154002B2 (en) 2010-01-25 2015-10-06 Access Business Group International Llc Systems and methods for detecting data communication over a wireless power link
GB201006904D0 (en) 2010-04-26 2010-06-09 Cambridge Entpr Ltd RFID TAG location systems
KR101162857B1 (ko) 2010-06-04 2012-07-04 엘지이노텍 주식회사 전력 전송을 위한 송신장치 및 수신장치
KR101183525B1 (ko) 2010-06-11 2012-09-20 명지대학교 산학협력단 이동 단말의 배터리를 무선으로 충전하기 위한 rf 에너지 수확 시스템 및 방법
US8847577B2 (en) * 2010-08-04 2014-09-30 Sensus Spectrum Llc Method and system of measuring current in an electric meter
KR101739283B1 (ko) 2010-08-31 2017-05-25 삼성전자주식회사 적응형 공진 전력 전송 장치
US9173178B2 (en) * 2010-09-21 2015-10-27 Broadcom Corporation Method and system for power headroom reporting in the presence of multiple transmit antennas
KR101796788B1 (ko) * 2010-12-20 2017-11-10 엘지이노텍 주식회사 에너지 전달 장치 및 방법
US9118217B2 (en) 2010-09-30 2015-08-25 Broadcom Corporation Portable computing device with wireless power distribution
JP5573628B2 (ja) 2010-11-22 2014-08-20 富士通株式会社 位相差検出方法、位相制御方法、位相差検出回路、位相制御回路及び無線電力伝送装置
KR101672768B1 (ko) 2010-12-23 2016-11-04 삼성전자주식회사 무선 전력 및 데이터 송수신 시스템
TW201240462A (en) 2011-03-18 2012-10-01 Acer Inc Electronic device and method for automatically searching a plurality of signal sources for substitute video content
TWI436620B (zh) 2011-03-31 2014-05-01 Pegatron Corp 可攜式電子裝置及其控制方法
JP2014519798A (ja) 2011-05-13 2014-08-14 サムスン エレクトロニクス カンパニー リミテッド 無線電力送信システムにおける送信機及び受信機、前記装置らの無線電力送受信方法
KR101322843B1 (ko) 2011-05-17 2013-10-28 삼성전자주식회사 전력 수신단을 사용한 무선 전력 전송을 위한 장치 및 방법
WO2012164697A1 (ja) * 2011-06-01 2012-12-06 株式会社日立製作所 無線送信機、無線受信機、無線通信システム、昇降機制御システムおよび変電設備制御システム
JP5718170B2 (ja) 2011-06-14 2015-05-13 株式会社ヨコオ 非接触で充電される電子装置及び高周波整流器
US9030161B2 (en) 2011-06-27 2015-05-12 Board Of Regents, The University Of Texas System Wireless power transmission
JP3170470U (ja) 2011-07-07 2011-09-15 阪和電子工業株式会社 積分値測定回路
US9252846B2 (en) 2011-09-09 2016-02-02 Qualcomm Incorporated Systems and methods for detecting and identifying a wireless power device
KR20130035905A (ko) 2011-09-30 2013-04-09 삼성전자주식회사 무선 충전 장치 및 방법
US9264108B2 (en) 2011-10-21 2016-02-16 Qualcomm Incorporated Wireless power carrier-synchronous communication
US9145110B2 (en) 2011-10-27 2015-09-29 Ford Global Technologies, Llc Vehicle wireless charger safety system
SG190477A1 (en) 2011-11-28 2013-06-28 Sony Corp Wireless energy transfer system
WO2013095067A1 (ko) 2011-12-22 2013-06-27 유한회사 한림포스텍 무선 전력전송장치 및 방법
US8831528B2 (en) 2012-01-04 2014-09-09 Futurewei Technologies, Inc. SAR control using capacitive sensor and transmission duty cycle control in a wireless device
US9144051B2 (en) 2012-02-15 2015-09-22 Microchip Technology Incorporated Proximity detection using an antenna and directional coupler switch
KR101953913B1 (ko) 2012-04-02 2019-03-04 엘에스전선 주식회사 전송 코일 배열을 이용한 무선 전력 전송 장치 및 무선 전력 전송 시스템
US8830710B2 (en) 2012-06-25 2014-09-09 Eta Devices, Inc. RF energy recovery system
US9130397B2 (en) 2013-05-10 2015-09-08 Energous Corporation Wireless charging and powering of electronic devices in a vehicle
US9124125B2 (en) * 2013-05-10 2015-09-01 Energous Corporation Wireless power transmission with selective range
US20140008993A1 (en) 2012-07-06 2014-01-09 DvineWave Inc. Methodology for pocket-forming
US9419476B2 (en) 2012-07-10 2016-08-16 Farrokh Mohamadi Flat panel, stationary or mobile, spatially beam-formed wireless energy delivery system
KR101930805B1 (ko) 2012-07-10 2018-12-20 삼성전자주식회사 무선 전력 수신 장치 및 방법
US11843260B2 (en) 2012-11-09 2023-12-12 California Institute Of Technology Generator unit for wireless power transfer
US11616520B2 (en) 2012-11-09 2023-03-28 California Institute Of Technology RF receiver
CN108390160B (zh) 2012-11-09 2021-04-27 加州理工学院 智能rf透镜效应:高效、动态和移动无线功率传输
WO2014075109A1 (en) 2012-11-12 2014-05-15 Parris Marcia Helena Ear protector and ear protector wrap
EP3567697A1 (en) 2012-12-18 2019-11-13 Nucleus Scientific, Inc. Nonlinear system identification for optimization of wireless power transfer
US20140203768A1 (en) 2013-01-18 2014-07-24 Qualcomm Incorporated Systems, methods, and apparatus related to inductive power transfer transmitter with sonic emitter
US10097051B2 (en) 2013-02-27 2018-10-09 National University Of Singapore Rectenna circuit elements, circuits, and techniques for enhanced efficiency wireless power transmission or ambient RF energy harvesting
US9365126B2 (en) 2013-05-10 2016-06-14 Qualcomm Incorporated System and method for detecting the presence of a moving object below a vehicle
US9601267B2 (en) 2013-07-03 2017-03-21 Qualcomm Incorporated Wireless power transmitter with a plurality of magnetic oscillators
GB2517907B (en) 2013-08-09 2018-04-11 Drayson Tech Europe Ltd RF Energy Harvester
WO2015077726A1 (en) 2013-11-22 2015-05-28 California Institute Of Technology Active cmos recovery units for wireless power transmission
KR102473074B1 (ko) 2013-11-22 2022-11-30 캘리포니아 인스티튜트 오브 테크놀로지 무선 전력 송신을 위한 생성기 유닛
US9530038B2 (en) 2013-11-25 2016-12-27 Hand Held Products, Inc. Indicia-reading system
US9772401B2 (en) 2014-03-17 2017-09-26 Qualcomm Incorporated Systems, methods, and apparatus for radar-based detection of objects in a predetermined space
US9991751B2 (en) 2014-05-09 2018-06-05 The Board Of Trustees Of The Leland Stanford Junior University Short range wireless communication
US9735605B2 (en) 2014-06-17 2017-08-15 Qualcomm Incorporated Methods and systems for object detection and sensing for wireless charging systems
EP3780334A1 (en) 2014-08-19 2021-02-17 California Institute of Technology Wireless power transfer
KR101640785B1 (ko) 2014-09-25 2016-07-19 국방과학연구소 광대역 렉테나 및 렉테나용 정류 장치
JP2017537585A (ja) 2014-10-14 2017-12-14 オハイオ ステート イノベーション ファウンデーション ワイヤレス機器からエネルギーを自動採取することが可能なシステム、及びシステムを使用する方法
US10027354B2 (en) 2015-03-25 2018-07-17 Intel IP Corporation Phased array weighting for power efficiency improvement with high peak-to-average power ratio signals
US20160380439A1 (en) 2015-06-26 2016-12-29 Lei Shao Notification techniques for wireless power transfer systems
EP3353793A4 (en) 2015-09-22 2019-05-08 California Institute of Technology RF RECEIVER
US10033230B2 (en) 2015-09-25 2018-07-24 Intel Corporation Controlling a wireless power transmitter based on human presence
WO2018218252A1 (en) 2017-05-26 2018-11-29 California Institute Of Technology Method and apparatus for dynamic rf lens focusing and tracking of wireless power recovery unit
US11404915B2 (en) 2017-11-21 2022-08-02 Guru, Inc. Wireless power transfer for consumer applications
US10615647B2 (en) 2018-02-02 2020-04-07 Energous Corporation Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967462B1 (en) * 2003-06-05 2005-11-22 Nasa Glenn Research Center Charging of devices by microwave power beaming
WO2007084716A2 (en) * 2006-01-18 2007-07-26 Nigel Power Llc Method and system for powering an electronic device via a wireless link
US20070182367A1 (en) * 2006-01-31 2007-08-09 Afshin Partovi Inductive power source and charging system
US20100259447A1 (en) * 2009-04-10 2010-10-14 Raytheon Company Wireless power transmission system and method
JP2011199975A (ja) * 2010-03-18 2011-10-06 Nec Corp 非接触送電装置、非接触送電システムおよび非接触送電方法

Also Published As

Publication number Publication date
US20180226841A1 (en) 2018-08-09
US11502552B2 (en) 2022-11-15
CN104885333A (zh) 2015-09-02
US20230238713A1 (en) 2023-07-27
EP2917998A1 (en) 2015-09-16
EP2917998A4 (en) 2016-07-20
US20180233964A1 (en) 2018-08-16
WO2014075103A1 (en) 2014-05-15
KR102225531B1 (ko) 2021-03-08
CN108390160A (zh) 2018-08-10
US10367380B2 (en) 2019-07-30
US11616401B2 (en) 2023-03-28
US10320242B2 (en) 2019-06-11
CN104885333B (zh) 2018-05-15
US20140175893A1 (en) 2014-06-26
US20150130293A1 (en) 2015-05-14
CN108390160B (zh) 2021-04-27
US11616402B2 (en) 2023-03-28
US20180233963A1 (en) 2018-08-16

Similar Documents

Publication Publication Date Title
KR102225531B1 (ko) 스마트의 rf 렌싱: 효율적이고 동적이며 이동적인 무선 전력 전송
US20230142689A1 (en) Rf receiver
EP3353793A1 (en) Rf receiver
Zhang et al. Near-field wireless power transfer for 6G internet of everything mobile networks: Opportunities and challenges
EP3072214B1 (en) Generator unit for wireless power transfer
US20150022009A1 (en) Method for 3 dimensional pocket-forming
US10396859B1 (en) Apparatus for wirelessly transmitting power after confirming location of receiver and method thereof
CN108879894B (zh) 一种基于聚焦波的多目标选择性无线输能方法及装置
JP6437954B2 (ja) 無線給電方法
US9537225B2 (en) Method for use with a reflectarray antenna for wireless telecommunication
CN110168809A (zh) 聚焦微波场的微波无线充电器
Win et al. Location awareness via intelligent surfaces: A path toward holographic NLN
KR20190041950A (ko) 고집적 배열 안테나를 이용하는 무선 전력 송신기, 컴팩트 mimo 안테나를 이용하는 무선 전력 송신기 및 무선 전력 송신 시스템
Fazzini et al. Ranging on-demand microwave power transfer in real-time
Yang et al. Auto-tracking wireless power transfer system with focused-beam phased array
KR20190075431A (ko) 전력 수신 장치의 수신 전력을 모니터링하여 무선 전력을 전송하는 무선 전력 전송 시스템
Salam et al. Underground phased arrays and beamforming applications
Wang et al. Microwave power transmission based on retro-reflective beamforming
US10790711B2 (en) Magnetic field generating apparatus having cannon shape and magnetic field generation method thereof
Luo et al. Wireless power transfer in the radiative near-field using a reconfigurable holographic metasurface aperture
Tragas et al. RESOLUTION: reconfigurable systems for mobile local communication and positioning
Katbay et al. Retrodirective wireless power transfer for short and long range applications
Visser Maximizing DC power in WPT using a transient transmit array antenna
Luo Wireless power transfer in the radiative near-field using a novel reconfigurable holographic metasurface aperture
Visser Transient directed WPT

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E90F Notification of reason for final refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant