CN108390160A - 智能rf透镜效应:高效、动态和移动无线功率传输 - Google Patents
智能rf透镜效应:高效、动态和移动无线功率传输 Download PDFInfo
- Publication number
- CN108390160A CN108390160A CN201810343399.1A CN201810343399A CN108390160A CN 108390160 A CN108390160 A CN 108390160A CN 201810343399 A CN201810343399 A CN 201810343399A CN 108390160 A CN108390160 A CN 108390160A
- Authority
- CN
- China
- Prior art keywords
- radiator
- wireless device
- lens
- electromagnetic wave
- equipment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
- H01Q21/06—Arrays of individually energised antenna units similarly polarised and spaced apart
- H01Q21/22—Antenna units of the array energised non-uniformly in amplitude or phase, e.g. tapered array or binomial array
- H01Q21/225—Finite focus antenna arrays
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/20—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves
- H02J50/23—Circuit arrangements or systems for wireless supply or distribution of electric power using microwaves or radio frequency waves characterised by the type of transmitting antennas, e.g. directional array antennas or Yagi antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/60—Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Aerials With Secondary Devices (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
本申请涉及智能RF透镜效应:高效、动态和移动无线功率传输。提供了一种RF透镜,其包括大量辐射体,该大量辐射体适于发送其相位被调制为使辐射的功率集中于小的空间容积中以便给位于该空间中的电子设备供电的射频电磁EM波。因此,致使由辐射体发射的波在该空间中相长干涉。大量辐射体可选择地形成于一维或二维阵列中。由辐射体辐射的电磁波具有相同的频率但可变的振幅。
Description
本申请是申请日为2013年11月12日,申请号为201380069301.3,发明名称为“智能RF透镜效应:高效、动态和移动无线功率传输”的申请的分案申请。
相关申请的交叉引用
本申请要求于2012年11月9日提交的题为“智能RF透明效应:高效、动态和移动无线功率传输(Smart RF Lensing:Efficient,Dynamic And Mobile Wireless PowerTransfer)”的美国临时专利申请号61/724,638根据美国法典第35条119条的权益,其内容通过引用全部并入本文。
技术领域
本申请涉及无线通信,并更具体地涉及无线功率传输。
发明背景
用于给电子设备供电的电能主要来自有线源。传统的无线功率传输依赖于彼此放置非常靠近的两个线圈之间的磁感应效应。为了增大其效率,线圈尺寸被选择为小于所辐射的电磁波的波长。所传输的功率随着源和充电设备之间的距离增大而剧烈地减小。
发明简述
根据本发明的一个实施例的RF透镜部分地包括大量辐射体,其适于辐射电磁波以给远离RF透镜定位的设备供电。大量辐射体中的每个以相同频率进行操作。由大量辐射体中的每个辐射体辐射的电磁波的相位被选择为表示该辐射体和设备之间的距离。
在一个实施例中,大量辐射体形成于阵列中。在一个实施例中,阵列为一维阵列。在另一个实施例中,阵列为二维阵列。在一个实施例中,由辐射体辐射的电磁波的振幅为可变的。在一个实施例中,大量辐射体中的每个辐射体部分地包括可变延时元件、控制电路、放大器和天线,其中控制电路适于将由辐射体辐射的电磁波的相位或频率锁定到参考信号的相位或频率。
在一个实施例中,大量辐射体形成于第一辐射体瓦(tile)中,该第一辐射体瓦适于容纳其中放置有另一大量辐射体的第二辐射体瓦。在一个实施例中,RF透镜进一步适于追踪设备的位置。在一个实施例中,辐射体的第一子集中的每个包括电路,以用于接收由设备发送的电磁波,从而使RF透镜能够根据由辐射体的第一子集所接收的电磁波的相位来确定设备的位置。
在一个实施例中,辐射体的至少第一子集中的每个包括电路,以用于接收由设备发送的电磁波,从而使RF透镜能够根据从设备到辐射体的第一子集中的每个辐射体的电磁波的传播时间以及从RF透镜发送到设备的响应电磁波的传播时间来确定设备的位置。在一个实施例中,RF透镜形成于半导体基板中。
根据本发明的一个实施例给设备无线供电的方法部分地包括,从大量辐射体将具有相同频率的大量电磁波发送到设备;根据辐射体和设备之间的距离来选择大量辐射体中的每个辐射体的相位;以及使用由设备所接收的电磁波对设备充电。
在一个实施例中,方法进一步部分地包括,在阵列中形成辐射体。在一个实施例中,辐射体形成于一维阵列中。在另一个实施例中,辐射体形成于二维阵列中。在一个实施例中,方法进一步部分地包括,改变由每个辐射体所辐射的电磁波的振幅。
在一个实施例中,每个辐射体部分地包括,可变延时元件、控制锁定电路、放大器和天线,其中控制锁定电路适于将由辐射体辐射的电磁波的相位或频率锁定到参考信号的相位或频率。在一个实施例中,辐射体形成于第一辐射体瓦中,该第一辐射体瓦适于容纳其中放置有另一大量辐射体的第二辐射体瓦。
在一个实施例中,方法进一步部分地包括,追踪设备的位置。在一个实施例中,方法进一步部分地包括,根据由设备发送的以及由辐射体的至少一个子集中的每个所接收的电磁波的相对相位,来确定设备的位置。在一个实施例中,方法进一步部分地包括,根据由设备发送的以及由辐射体的至少一个子集中的每个所接收的电磁波的传播时间,以及进一步根据从RF透镜发送到设备的响应电磁波的传播时间,来确定设备的位置。在一个实施例中,方法进一步部分地包括,在半导体基板中形成RF透镜。
本申请提供了以下内容:
1)一种RF透镜,包括:
第一多个辐射体,其适于辐射电磁波以给远离所述RF透镜定位的设备供电,其中所述多个辐射体中的每个辐射体以第一频率进行操作,其中由所述多个辐射体中的每个辐射体辐射的电磁波的相位被选择为由该辐射体和所述设备之间的距离来确定。
2)根据1)所述的RF透镜,其中所述第一多个辐射体形成于阵列中。
3)根据2)所述的RF透镜,其中所述阵列为一维阵列。
4)根据2)所述的RF透镜,其中所述阵列为二维阵列。
5)根据1)所述的RF透镜,其中由所述第一多个辐射体中的每个辐射体辐射的电磁波的振幅为可变的。
6)根据1)所述的RF透镜,其中所述第一多个辐射体中的每个辐射体包括:
可变延时元件;以及
天线。
7)根据1)所述的RF透镜,其中所述第一多个辐射体形成于第一辐射体瓦中,所述第一辐射体瓦适于容纳其中放置有第二多个辐射体的第二辐射体瓦。
8)根据1)所述的RF透镜,其中所述RF透镜还适于追踪所述设备的位置。
9)根据1)所述的RF透镜,其中所述第一多个辐射体的至少第一子集中的每个辐射体包括电路,以用于接收由所述设备发送的电磁波,从而使所述RF透镜能够根据由所述第一多个辐射体的所述至少第一子集中的每个辐射体接收的电磁波的相位来确定所述设备的位置。
10)根据1)所述的RF透镜,其中所述多个辐射体的至少第一子集中的每个辐射体包括电路,以用于接收由所述设备发送的电磁波,从而使所述RF透镜能够根据从所述设备到所述第一多个辐射体的所述至少第一子集中的每个辐射体的电磁波的传播时间以及从所述RF透镜发送到所述设备的响应电磁波的传播时间来确定所述设备的位置。
11)根据1)所述的RF透镜,其中所述RF透镜形成于半导体基板中。
12)根据1)所述的RF透镜,其中所述RF透镜形成于柔性基板中。
13)根据1)所述的RF透镜,其中所述第一多个辐射体的振幅/相位还被选择为使由物体散射的电磁波能够给所述设备供电。
14)根据1)所述的RF透镜,其中所述RF透镜还包括:
第二多个辐射体,其适于辐射电磁波以给第二设备供电,其中所述第二多个辐射体中的每个辐射体以不同于所述第一频率的第二频率进行操作,其中由所述第二多个辐射体中的每个辐射体辐射的电磁波的相位被选择为由该辐射体和所述第二设备之间的距离确定。
15)根据1)所述的RF透镜,还包括控制电路,所述控制电路适于将由所述第一多个辐射体中的每个辐射体辐射的电磁波的相位或频率锁定到参考信号的相位或频率。
16)根据1)所述的RF透镜,其中所述RF透镜还适于追踪第二设备并给所述第二设备供电。
17)根据1)所述的RF透镜,其中所述第一多个辐射体中的第一个辐射体和所述第一多个辐射体中的第二个辐射体之间的距离不同于所述第一多个辐射体中的第三个辐射体和所述第一多个辐射体中的第四个辐射体之间的距离。
18)一种给设备无线供电的方法,所述方法包括:
将具有第一频率的多个电磁波从第一多个辐射体发送到所述设备;
根据所述第一多个辐射体中的每个辐射体和所述设备之间的距离,选择该辐射体的相位;以及
使用由所述设备接收的所述多个电磁波给所述设备供电。
19)根据18)所述的方法,还包括:
在阵列中形成所述第一多个辐射体。
20)根据19)所述的方法,还包括:
在一维阵列中形成所述第一多个辐射体。
21)根据19)所述的方法,还包括:
在二维阵列中形成所述第一多个辐射体。
22)根据18)所述的方法,还包括:
改变由所述第一多个辐射体中的每个辐射体辐射的电磁波的振幅。
23)根据18)所述的方法,其中所述多个辐射体中的每个辐射体包括:
可变延时元件;以及
天线。
24)根据18)所述的方法,其中所述第一多个辐射体形成于第一辐射体瓦中,所述第一辐射体瓦适于容纳其中放置有第二多个辐射体的第二辐射体瓦。
25)根据18)所述的方法,还包括:
追踪所述设备的位置。
26)根据18)所述的方法,还包括:
根据由所述设备发送的以及由所述第一多个辐射体的第一子集中的每个辐射体所接收的电磁波的相对相位,来确定所述设备的位置。
27)根据18)所述的方法,还包括:
根据由所述设备发送的以及由所述第一多个辐射体的第一子集中的每个辐射体所接收的电磁波的传播时间,并还根据从所述RF透镜发送到所述设备的响应电磁波的传播时间,来确定所述设备的位置。
28)根据18)所述的方法,还包括:
在半导体基板中形成所述第一多个辐射体。
29)根据18)所述的方法,还包括:
在柔性基板中形成所述第一多个辐射体。
30)根据18)所述的方法,还包括:
选择所述第一多个辐射体的振幅/相位以使由所述第一多个辐射体发送的以及由对象散射的电磁波能够给所述设备供电。
31)根据18)所述的方法,还包括:
在从所述第一多个辐射体发送所述电磁波的同时,将具有第二频率的第二多个电磁波从第二多个辐射体发送到第二设备;
根据所述第二多个辐射体中的每个辐射体和所述第二设备之间的距离选择该辐射体的相位;
使用所述第二多个电磁波给所述第二设备供电。
32)根据18)所述的方法,还包括:
将由所述第一多个辐射体中的每个辐射体辐射的电磁波的相位或频率锁定到参考信号的相位或频率。
33)根据18)所述的方法,还包括:
使用由所述第一多个辐射体辐射的电磁波追踪第二设备并给所述第二设备供电。
34)根据18)所述的方法,其中所述第一多个辐射体中的第一个辐射体和所述第一多个辐射体中的第二个辐射体之间的距离不同于所述第一多个辐射体中的第三个辐射体和所述第一多个辐射体中的第四个辐射体之间的距离。
附图说明
图1示出根据本发明的一个实施例,形成RF透镜的辐射体的一维阵列。
图2为根据本发明的一个示例性实施例,将功率无线递送到第一位置处的设备的图1的RF透镜的侧视图。
图3为根据本发明的一个示例性实施例,将功率无线递送到第二位置处的设备的图1的RF透镜的侧视图。
图4为根据本发明的一个示例性实施例,将功率无线递送到第三位置处的设备的图1的RF透镜的侧视图。
图5为根据本发明的一个示例性实施例,形成RF透镜的辐射体的二维阵列。
图6A为根据本发明的一个示例性实施例,放置在RF透镜中的辐射体的简化方框图。
图6B为根据本发明的另一个示例性实施例,放置在RF透镜中的辐射体的简化方框图。
图7示出根据本发明的一个示例性实施例,适于被无线充电的设备的一些电子部件。
图8为根据本发明的一个示例性实施例,对设备无线充电的RF透镜的示意图。
图9为根据本发明的一个示例性实施例,对一对设备同时无线充电的RF透镜的示意图。
图10为根据本发明的一个示例性实施例,对一对移动设备和固定设备同时充电的RF透镜的示意图。
图11A示出根据本发明的一个示例性实施例,一维RF透镜的电磁场轮廓的计算机模拟。
图11B为用于生成图11A的电磁场轮廓的RF透镜的简化示意图。
图12示出由图11B的RF透镜生成的计算机模拟电磁场轮廓中的变量是其中所放置的每相邻对的辐射体之间的间距的函数。
图13A为根据本发明的一个示例性实施例,RF透镜的以及使用-15dB到0dB标度的示例性计算机模拟电磁场轮廓。
图13B示出使用-45dB到0dB标度的图13A的计算机模拟电磁场轮廓。
图14A为根据本发明的一个示例性实施例,图13A的RF透镜的以及使用-15dB到0dB标度的示例性计算机模拟电磁场轮廓。
图14B示出根据本发明的一个示例性实施例,使用-45dB到0dB标度的图14A的计算机模拟电磁场轮廓。
图15A为根据本发明的一个示例性实施例,RF透镜的以及使用-15dB到0dB标度的示例性计算机模拟电磁场轮廓。
图15B示出根据本发明的一个示例性实施例,使用-45dB到0dB标度的图15A的计算机模拟电磁场轮廓。
图16A为根据本发明的一个示例性实施例,使用-15dB到0dB标度的图15A的RF透镜的示例性计算机模拟电磁场轮廓。
图16B为根据本发明的一个示例性实施例,使用-45dB到0dB标度的图16A的计算机模拟电磁场轮廓。
图17A示出根据本发明的一个示例性实施例,其中放置有四个辐射体的示例性辐射体瓦。
图17B示出根据本发明的一个示例性实施例,使用图17A的大量辐射体瓦而形成的RF透镜。
图18为根据本发明的另一个示例性实施例,放置在RF透镜中的辐射体的简化方框图。
图19示出根据本发明的另一个示例性实施例,放置在适于被无线充电的设备中的一些电子部件。
图20示出根据本发明的另一个示例性实施例,使用由设备发送的信号追踪设备的RF透镜。
图21示出根据本发明的另一个示例性实施例,在存在大量散射物体的情况下将功率传输到设备的RF透镜。
图22A示出根据本发明的一个实施例,使用以圆形布置的大量辐射体而形成的RF透镜。
图22B示出根据本发明的一个实施例,使用以椭圆形布置的大量辐射体而形成的RF透镜。
具体实施方式
根据本发明的一个实施例的RF透镜包括大量辐射体,其适于发送射频电磁EM波(在下文中可选地被称作EM波或波),其相位和振幅被调制以使辐射功率集中于小的空间容积中(在下文中可选地被称作聚集点或目标区),以便给位于该空间中的电子设备供电。因此,致使由辐射体发射的波被在聚集点处相长干涉。尽管以下提供的描述是参考无线功率传输,本发明的以下实施例可用于无线传输任何其他类型的信息。
图1示出根据本发明的一个实施例,形成RF透镜的、布置在阵列100中的大量辐射体。阵列100被示出为包括N个辐射体101、102、103…10N-1、10N,其中每个适于辐射EM波,该EM波的振幅和相位可被独立地控制,以便在将被充电的设备被定位的聚集点处导致辐射的EM波的相长干涉,其中N为大于1的整数。图2为当选择了由辐射体10i(i为从1到N变化的整数)生成的波的相对相位,以使波之间的相长干涉发生在其中正进行无线充电的设备被定位的邻近区域102,即,聚集点时的阵列100的侧视图。区域102被示出为定位在离阵列100的中心104大约距离d1处。阵列中心和聚集点之间的距离在本文被可选地称作焦距。尽管RF透镜的以下描述被提供为对辐射体的一维或二维阵列的参考,但是要理解的是,根据本发明的RF透镜可具有辐射体的任何其他布置,诸如图22A中所示的辐射体202的圆形布置1000,或者图22B中所示的辐射体202的椭圆形布置1010。
如从图2中所示,假定每个辐射体10i定位在离阵列100的中心104的距离yi处。假定分别由Ai处和θi表示由辐射体10i辐射的波的振幅和相位。进一步假定由λ表示正被辐射的波的波长。为了使由辐射体辐射的波在区域102(即,期望聚集点)中相长干涉,在各种相位θi和距离yi之间满足以下关系:
由于可准确地控制RF信号的相位,因此可根据本发明将从多个源辐射的功率聚集在将被无线充电的设备被定位的目标区上。此外,随着设备从其初始位置移动,动态相位控制实现设备的追踪。例如,如图3所示,如果设备沿着焦平面移动到位于离阵列的中心点104距离d2的不同的位置,则为了确保目标区也位于距离d2处,可根据以下关系调节源的相位:
参考图4,如果设备移动到远离焦平面的不同位置处(例如,到沿着y轴的不同点处),则可如下面所描述,动态地调节辐射体的相位,以便追踪和维护聚集在设备上的目标区。参数yc表示设备的新位置离阵列的焦平面的y向量(即,垂直于y轴并通过阵列100的中心104的平面),如图4所示。
通过将由辐射体辐射的波的波长λ、图1中所示的阵列跨距或阵列孔径A和焦距来定义所传输的功率量,即(λF/A)。
在一个实施例中,每对辐射体之间的距离为被辐射的信号的波长的量级。例如,如果所辐射的波的频率为2.4GHz(即,波长为12.5cm),则每两个辐射体之间的距离可为十分之几到几十个波长,这可根据应用变化。
根据本发明的RF透镜操作用于在近场和远场区域两者中无线传输功率。在光域中,近场区域被称作菲涅尔区域且被定义为其中焦距为孔径尺寸的量级的区域。在光域中,远场区域被称作夫琅和费区域且被定义为其中焦距(F)大致大于(2A2/λ)的区域。
为了将功率无线传输到设备,根据本发明,选择辐射体相位,以便考虑目标点和辐射体之间的距离中的差异。例如,假定图2中的焦距d1为孔径尺寸A的量级。因此,由于距离S1、S2、S3…SN彼此不同,所以改变辐射体101、102、103…10N的相应相位θ1、θ2、θ3…θN,以便满足以上所描述的表达式(1)。由于衍射受限长度,因此该类区域的焦点的尺寸(大约为λF/A)相对小。
根据本发明的辐射体阵列也操作用于将功率无线传输到其中焦距大于(2A2/λ)的远场区域中目标设备。对于该类区域,假定从不同阵列元件到聚焦光斑的距离为相同的。因此,对于该类区域,S1=S2=S3…..=SN,且θ1=θ2=θ3…=θN。该类区域的聚集点的尺寸相对较大且因此更适合用于较大器械的无线充电。
图5示出根据本发明的另一个实施例的RF透镜200。RF透镜200被示出为包括沿着行和列布置的二维阵列的辐射体202i,j。尽管RF透镜200被示出为包括沿着11行和11列放置的121个辐射体202i,j(整数i和j为从1到11变化的下标),但是要理解的是,根据本发明的实施例的RF透镜可具有沿着U行和V列放置的任何数目的辐射体,其中U和V为大于1的整数。在以下描述中,辐射体202i,j可集中地或单独地被称作辐射体202。
如下面所进一步描述,阵列辐射体被锁定到参考频率,其可为辐射频率的分谐波(n=1,2,3...),或者在和辐射频率相同的频率下。由每个辐射体辐射的波的相位被独立地控制,以便使所辐射的波能够相长干涉并将它们的功率集中于空间中的任何区域内的目标区上。
图6A为根据本发明的一个实施例,放置在RF透镜200中的辐射体202的简化方框图。如所示出,辐射体202被示出为部分包括可编程延时元件(本文中也被称为相位调制器)210、锁相环路/锁频环路212、功率放大器214,和天线216。可编程延时元件210适于使信号W2延时,以生成信号W3。根据被施加到延时元件的控制信号Ctrl确定信号W2和W3之间的延时。在一个实施例中,锁相环路/锁频环路212接收信号W1以及具有频率Fref的参考时钟信号,以生成信号W2,其频率被锁定到参考频率Fref。在另一个实施例中,由锁相环路/锁频环路212生成的信号W2可具有由多个参考频率Fref定义的频率。信号W3由功率放大器214放大并由天线216发送。因此并如上所述,可通过放置在辐射体中的关联可编程延时元件210改变由每个辐射体202辐射的信号的相位。
图6B为根据本发明的另一个实施例,放置在RF透镜200中的辐射体202的简化方框图。如所示出,辐射体202被示出为部分包括可编程延时元件210、锁相环路/锁频环路212、功率放大器214,和天线216。可编程延时元件210适于使参考信号Fref延时,从而生成延时参考时钟信号Fref_Delay。根据被施加到延时元件210的控制信号Ctrl确定信号Fref和Fref_Delay之间的延时。由锁相环路/锁频环路212生成的信号W2可具有频率,其被锁定到信号Fref_Delay的频率或者信号Fref_Delay的多个频率。在一个实施例中(未示出),延时元件放置在锁相环路/锁频环路212中并为锁相环路/锁频环路212的一部分。在另一个实施例中(未示出),辐射体可不具有放大器。
图7示出根据本发明的一个实施例,适于无线充电的设备300的一些部件。设备300被示出为部分包括天线302、整流器304,和调节器306。天线302根据本发明接收由辐射体辐射的电磁波。整流器304适于将所接收的AC功率转换为DC功率。调节器306适于调节从整流器304接收的电压信号,并将所调节的电压施加到设备。在一个实施例中,如果接收器天线的孔径区域比得上电磁场的目标区的尺寸,则获得高功率传输效率。由于大多数辐射功率集中于形成目标区的小容积中,该种接收器天线因此被最优化用于确保大多数辐射功率用于为设备充电。在一个实施例中,可通过被要求用于无线充电的部件对设备进行外部翻新。在另一个实施例中,存在于充电设备中的现有电路,诸如天线、接收器等等可用于利用功率。
图8为对设备300无线充电的RF透镜200的示意图。在一些实施例中,RF透镜200同时对多个设备无线充电。图9示出RF透镜200同时对设备310充电,并315使用类似或不同的力量的聚焦波。图10示出RF透镜200对被假定为在室内的移动设备320、325和固定设备330无线充电。
图11A示出通过一维RF透镜在距离具有一批11个各向同性辐射体的RF透镜2米处生成的计算机模拟磁场轮廓。为三个不同的频率,即200MHz(波长150cm)、800MHz(波长37.5cm)和2400MHz(波长12.50cm)生成射束轮廓。由于假定RF透镜的每对相邻辐射体之间的距离为20cm,因此RF透镜具有2m的孔径。因此,波长为辐射体的孔径尺寸和焦距的量级。图11B为具有彼此间隔20cm的11个辐射体505k的RF透镜500的简化示意图,其中K为从1到11变化的整数。
绘图510、520和530分别为当选择了各种辐射体的相对相位,以便根据以上表达式(1)说明从辐射体505k中的每个到远离辐射体50562米的点的路径差时的200MHz、800MHz和由辐射体500辐射的2400个信号的电磁场轮廓的计算机模拟。对于这些轮廓中的每个,衍射受限聚焦尺寸为辐射信号的波长的量级。当将辐射体505k的相位设置为彼此相等时,绘图515、525和535分别为200MHz、800MHz和2400个信号在远离辐射体阵列距离2米处的电磁场轮廓的计算机模拟。
如从这些轮廓看出,对于具有200MHz频率的较大波长(即,绘图510、515),由于从单独辐射体到聚集点的路径差不是本质上不同,因此相对忽略轮廓510和515之间的差异。然而,对于800MHz和2400MHz频率中的每个,当选择了各种辐射体的相对相位以便考虑从辐射体505k到聚集点的路径差时,EM限制(聚焦)大幅度地多于当将辐射体相位设置为彼此相等时。尽管提供给了以上示例对200MHz、800MHz和2400MHz的操作频率的参考,但是要理解的是,本发明的实施例可用于任何其他操作频率,诸如5.8GHz、10GHz和24GHz。
图12示出通过RF透镜500在远离RF透镜的2米距离处生成的计算机模拟磁场轮廓的变量是每相邻对的辐射体之间的间距的函数。假定RF透镜在2400MHz频率下操作。绘图610、620和630为在选择各种辐射体的相对相位以根据以上表达式(1)说明从各种辐射体505k到远离RF透镜2处的点的路径差之后,分别为5cm、10cm和20cm的辐射体间距生成的场轮廓的计算机模拟。绘图615、625和635为分别为5cm、10cm和20cm的辐射体间距生成的场轮廓的计算机模拟,其中假定放置在RF透镜500中的所有辐射体具有相同相位。如从这些绘图看出,当辐射体之间的距离增大,从而导致较大的孔径尺寸时,EM限制也增大,从而导致较小的聚集点。
图13A为RF透镜在远离其中放置有二维阵列的赫兹偶极子的RF透镜3米距离处的EM轮廓的计算机模拟,该赫兹偶极子以900MHz的频率进行操作,诸如图5所示的RF透镜200。假定偶极子辐射体之间的间距为30cm。选择辐射体的相对相位,以便考虑从辐射体到被假定为远离RF透镜3米距离处的焦点的路径差。换句话说,辐射体的相对相位被选择为提供给RF透镜大约3米的焦距。用于生成图13A的标度为-15dB到0dB。图13B示出使用-45dB到0dB标度的图13A的EM轮廓。
图14A为图13A/13B的RF透镜在远离焦点的2米距离处(即远离RF透镜5米处)的EM轮廓的计算机模拟。如从图14A中所示,辐射功率分散在与图13A和图13B中示出的那些相比更大的区域上。用于生成图14A的标度为-15dB到0dB。图14B示出使用-45dB到0dB标度的图14A的EM轮廓。
图15A为RF透镜在远离其中放置有二维阵列的赫兹偶极子的RF透镜3米距离处的EM轮廓的计算机模拟,该赫兹偶极子以900MHz的频率进行操作。假定偶极子辐射体之间的间距为30cm。选择辐射体的相对相位,以便考虑从辐射体到被假定为远离RF透镜3米距离处以及在离RF透镜的焦平面1.5cm的偏移处的焦点的路径差,即,聚集点具有离焦平面1.5米的y坐标(参考图4)。用于生成图15A的标度为-15dB到0dB。图15B示出使用-45dB到0dB标度的图15A的EM轮廓。
图16A为图15A/15B的RF透镜在远离焦点的2米距离处(即远离RF透镜的x-y平面5米处)的EM轮廓的计算机模拟。如从图16A中所示,辐射功率分散在与图15A中示出的那个相比更大的区域上。用于生成图16A的标度为-15dB到0dB。图16B示出使用-45dB到0dB标度的图16A的EM轮廓。图13A、图13B、图14A、图14B、图15A、图15B、图16A、图16B中所示的EM轮廓示出根据本发明的RF透镜在3D空间中的任何任意点处聚焦功率中的通用性。
根据本发明的一个方面,形成RF透镜的阵列的大小为可配置的且可通过使用辐射体瓦改变,该辐射体瓦中的每个可包括一个或多个辐射体。图17A示出其中放置有四个辐射体1511、1512、1521和1522的辐射体瓦700的示例。尽管辐射体瓦700被示出为包括四个辐射体,但是要理解的是,根据本发明的一个方面,辐射体瓦可具有少于(例如,一个)或多于(例如,6个)四个的辐射体。图17B示出使用7个辐射体瓦(即辐射体瓦70011、70012、70013、70021、70022、70031、70032)最初形成的并被提供有两个辐射体瓦70023和70033的RF透镜800,该7个辐射体瓦中的每个类似于图17A中示出的辐射体瓦700。尽管未示出,但是要理解的是,每个辐射体瓦包括电气连接,其必要地将功率供应给辐射体以及必要时从辐射体递送信息。在一个实施例中,在瓦中形成的辐射体类似于图6A和6B中所示的辐射体202。
根据本发明的一个方面,RF透镜适于追踪移动设备的位置,以便当移动设备改变位置时,继续充电过程。为了实现该目的,在一个实施例中,形成RF透镜的辐射体的一个子集的或全部包括接收器。被充电的设备还包括发送器,其适于在追踪相位期间辐射连续信号。通过RF透镜上所形成的至少三个不同的接收器来检测该信号的相位(传播时间)之间的相对差异,追踪充电设备的位置。
图18为根据本发明的一个实施例,放置在RF透镜(诸如图5中所示的RF透镜200)中的辐射体902的简化方框图。辐射体902类似于图6A和6B中所示的辐射体202,不同之处在于辐射体902具有接收器放大器和相位恢复电路218以及开关S1。在功率传输期间,开关S1经由节点A将天线216耦合到放置在发送路径中的功率放大器214。在追踪期间,开关S1经由节点B将天线216耦合到接收器放大器及放置在接收路径中的相位恢复电路218,以接收由正在充电的设备发送的信号。
图19示出根据本发明的一个实施例,适于无线充电的设备900的一些部件。设备900类似于图7中所示的设备300,其不同之处在于设备900具有发送放大器316和开关S2。在功率传输期间,开关S2经由节点D将天线302耦合到放置在接收路径中的整流器304。在追踪期间,开关S2经由节点C将天线302耦合到发送放大器316,以实现随后由RF透镜使用的信号的发送,以检测设备300的位置。图20示出通过接收由设备900发送的信号来追踪设备900的RF透镜200。
根据本发明的另一个实施例,基于脉冲的测量技术被用于追踪移动设备的位置。为了实现该目的,形成RF透镜的一个或多个辐射体在追踪相位期间发送脉冲。在接收脉冲后,正被追踪的设备发送由放置在阵列中的辐射体接收了哪个的响应。脉冲从RF透镜到正被追踪的设备的传播时间与响应脉冲从正被追踪的设备到RF透镜的传播时间一起表示正被追踪的设备的位置。在散射体存在的情况下,可使用该估计算法如极大似然或最小二乘方、卡尔曼滤波、这些技术的组合等等来追踪设备的位置。还可使用WiFi和GPS信号来确定和追踪设备的位置。
散射物体、反射物和吸收体的存在可影响RF透镜将射束有效地集中于正在进行无线充电的设备上的能力。例如,图21示出在存在大量散射物体250的情况下将功率传输给设备300的RF透镜950。为了使该类影响最小化,可改变阵列的单独辐射体的振幅和相位,以增大功率传输效率。多个技术中的任一个可用于改变单体辐射体的振幅或相位。
根据一个该种技术,为了使散射的影响最小化,通过放置在RF透镜中的一个或多个辐射体发送信号。从RF透镜辐射的信号由散射物体散射并由辐射体接收(参见图18)。相反散射算法然后用于构造环境的散射行为。可周期性地执行该种构造,以说明可随时间发生的任何改变。根据另一个技术,一部分或整个辐射体阵列可用于电子束扫描周围,以根据所接收的波构造散射行为。根据另一个技术,正在进行无线充电的设备适于周期性地将关于其接收的功率的信息发送给辐射体。最优化算法然后使用所接收的信息以说明散射,以便使功率传输效率最大化。
在一些实施例中,可调节辐射体的振幅/相位或者RF透镜的方位,以利用散射媒介的优点。这使散射物体能够具有合适的相位、振幅和极化,以便被用作辐射体的次级来源,该次级来源将功率引向设备,以增大功率传输效率。
本发明的以上实施例为说明性的且不是限制性的。本发明的实施例不限制于放置在RF透镜中的辐射体的数量,也不被限制于用于形成RF透镜的阵列的维数。本发明的实施例不限制于辐射体的类型、其操作频率等等。本发明的实施例不限制于可被无线充电的设备的类型。本发明的实施例不限制于基板的类型、半导体、柔性或其中可形成辐射体的各种部件的其他方式。鉴于本公开的内容,其他添加、减除或修改是明显的且被认为是落入随附权利要求的范围内。
Claims (26)
1.一种无线设备,其配置成通过由第一多个辐射体辐射的电磁波供电,所述第一多个辐射体形成RF透镜,所述无线设备还配置成响应所述电磁波以使得能够由所述多个辐射体追踪所述无线设备的位置。
2.根据权利要求1所述的无线设备,其中所述无线设备还包括:
整流器,其将所接收的功率整流为DC电压;以及
调节器,其调节所述DC电压。
3.根据权利要求1所述的无线设备,其中使用部件对所述无线设备进行外部翻新以接收所述电磁波。
4.根据权利要求1所述的无线设备,其中所述电磁波的相位响应于所述无线设备的移动动态地变化。
5.根据权利要求1所述的无线设备,其中所述第一多个辐射体中的每个辐射体包括被锁定到相同参考信号的相关联的锁定环路。
6.根据权利要求5所述的无线设备,其中每个锁定环路配置成改变由该锁定环路的关联的辐射体所辐射的电磁波的相位。
7.根据权利要求5所述的无线设备,其中每个锁定环路配置成改变由该锁定环路的关联的辐射体所辐射的电磁波的幅度。
8.根据权利要求5所述的无线设备,其中每个锁定环路配置成改变由该锁定环路的关联的辐射体所辐射的电磁波的频率。
9.根据权利要求5所述的无线设备,其中每个锁定环路配置成改变由该锁定环路的关联的辐射体所辐射的电磁波的极性。
10.根据权利要求1所述的无线设备,其中所述RF透镜还适于在对第一设备供电的同时对第二无线设备供电。
11.根据权利要求1所述的无线设备,其中所述无线设备和RF透镜放置在室内。
12.根据权利要求1所述的无线设备,其中所述第一多个辐射体中的每个辐射体包括可编程延时元件。
13.根据权利要求1所述的无线设备,其中所述第一多个辐射体形成一维辐射体阵列。
14.根据权利要求1所述的无线设备,其中所述第一多个辐射体形成二维辐射体阵列。
15.根据权利要求1所述的无线设备,其中所述第一多个辐射体形成第一瓦,所述第一瓦适于靠近包括第二多个辐射体的第二瓦放置,所述第一瓦和第二瓦彼此电通信并协同操作以辐射电磁波来对所述无线设备供电。
16.根据权利要求1所述的无线设备,其中根据估计算法追踪所述无线设备的位置。
17.根据权利要求1所述的无线设备,其中根据从所述RF透镜辐射的电磁波到所述无线设备的传播时间和所述无线设备发出的响应信号到所述RF透镜的传播时间追踪所述无线设备的位置。
18.根据权利要求1所述的无线设备,其中第一设备的位置使用选自由WiFi和GPS信号所构成的组的信号进行追踪。
19.根据权利要求1所述的无线设备,其中所述第一多个辐射体所辐射的电磁波的频率选自由以下频率所构成的组:5.8HHz、10GHz和24GHz。
20.根据权利要求1所述的无线设备,其中所述第一多个辐射体和第二多个辐射体所辐射的电磁波的波长在mm-波带中。
21.根据权利要求1所述的无线设备,其中所述第一多个锁定环路的相位还被选择为使得电磁波能够被物体散射以对所述无线设备供电。
22.根据权利要求1所述的无线设备,其中所述RF镜头还包括接收器,其配置成接收由于散射而被物体所反射的电磁波。
23.根据权利要求1所述的无线设备,其中所述第一多个辐射体以实质上相同的频率进行操作。
24.根据权利要求23所述的无线设备,其中改变由所述第一多个辐射体中的至少第一辐射体所辐射的电磁波的相位。
25.根据权利要求1所述的无线设备,其中所述无线设备周期性地将关于其所接收的功率的信息发送给所述RF镜头。
26.根据权利要求15所述的无线设备,其中所述第一多个辐射体和所述第二多个辐射体以实质上相同的频率进行操作。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261724638P | 2012-11-09 | 2012-11-09 | |
US61/724,638 | 2012-11-09 | ||
CN201380069301.3A CN104885333B (zh) | 2012-11-09 | 2013-11-12 | 智能rf透镜效应:高效、动态和移动无线功率传输 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380069301.3A Division CN104885333B (zh) | 2012-11-09 | 2013-11-12 | 智能rf透镜效应:高效、动态和移动无线功率传输 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108390160A true CN108390160A (zh) | 2018-08-10 |
CN108390160B CN108390160B (zh) | 2021-04-27 |
Family
ID=50685254
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810343399.1A Active CN108390160B (zh) | 2012-11-09 | 2013-11-12 | 智能rf透镜效应:高效、动态和移动无线功率传输 |
CN201380069301.3A Active CN104885333B (zh) | 2012-11-09 | 2013-11-12 | 智能rf透镜效应:高效、动态和移动无线功率传输 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201380069301.3A Active CN104885333B (zh) | 2012-11-09 | 2013-11-12 | 智能rf透镜效应:高效、动态和移动无线功率传输 |
Country Status (5)
Country | Link |
---|---|
US (6) | US10367380B2 (zh) |
EP (1) | EP2917998B1 (zh) |
KR (1) | KR102225531B1 (zh) |
CN (2) | CN108390160B (zh) |
WO (1) | WO2014075103A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111262019A (zh) * | 2020-01-17 | 2020-06-09 | 浙江大学 | 一种基于平面口径空间馈电的二维菲涅尔区板天线 |
Families Citing this family (231)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10090886B1 (en) | 2014-07-14 | 2018-10-02 | Energous Corporation | System and method for enabling automatic charging schedules in a wireless power network to one or more devices |
US9882430B1 (en) | 2014-05-07 | 2018-01-30 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US10256657B2 (en) | 2015-12-24 | 2019-04-09 | Energous Corporation | Antenna having coaxial structure for near field wireless power charging |
US10291055B1 (en) | 2014-12-29 | 2019-05-14 | Energous Corporation | Systems and methods for controlling far-field wireless power transmission based on battery power levels of a receiving device |
US9941747B2 (en) | 2014-07-14 | 2018-04-10 | Energous Corporation | System and method for manually selecting and deselecting devices to charge in a wireless power network |
US10124754B1 (en) | 2013-07-19 | 2018-11-13 | Energous Corporation | Wireless charging and powering of electronic sensors in a vehicle |
US9838083B2 (en) | 2014-07-21 | 2017-12-05 | Energous Corporation | Systems and methods for communication with remote management systems |
US10199849B1 (en) | 2014-08-21 | 2019-02-05 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9787103B1 (en) | 2013-08-06 | 2017-10-10 | Energous Corporation | Systems and methods for wirelessly delivering power to electronic devices that are unable to communicate with a transmitter |
US9806564B2 (en) | 2014-05-07 | 2017-10-31 | Energous Corporation | Integrated rectifier and boost converter for wireless power transmission |
US9853692B1 (en) | 2014-05-23 | 2017-12-26 | Energous Corporation | Systems and methods for wireless power transmission |
US9891669B2 (en) | 2014-08-21 | 2018-02-13 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US10199835B2 (en) | 2015-12-29 | 2019-02-05 | Energous Corporation | Radar motion detection using stepped frequency in wireless power transmission system |
US9900057B2 (en) | 2012-07-06 | 2018-02-20 | Energous Corporation | Systems and methods for assigning groups of antenas of a wireless power transmitter to different wireless power receivers, and determining effective phases to use for wirelessly transmitting power using the assigned groups of antennas |
US10992185B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | Systems and methods of using electromagnetic waves to wirelessly deliver power to game controllers |
US9923386B1 (en) | 2012-07-06 | 2018-03-20 | Energous Corporation | Systems and methods for wireless power transmission by modifying a number of antenna elements used to transmit power waves to a receiver |
US9859797B1 (en) | 2014-05-07 | 2018-01-02 | Energous Corporation | Synchronous rectifier design for wireless power receiver |
US9893555B1 (en) | 2013-10-10 | 2018-02-13 | Energous Corporation | Wireless charging of tools using a toolbox transmitter |
US10243414B1 (en) | 2014-05-07 | 2019-03-26 | Energous Corporation | Wearable device with wireless power and payload receiver |
US9843201B1 (en) | 2012-07-06 | 2017-12-12 | Energous Corporation | Wireless power transmitter that selects antenna sets for transmitting wireless power to a receiver based on location of the receiver, and methods of use thereof |
US12057715B2 (en) | 2012-07-06 | 2024-08-06 | Energous Corporation | Systems and methods of wirelessly delivering power to a wireless-power receiver device in response to a change of orientation of the wireless-power receiver device |
US9143000B2 (en) | 2012-07-06 | 2015-09-22 | Energous Corporation | Portable wireless charging pad |
US10008889B2 (en) | 2014-08-21 | 2018-06-26 | Energous Corporation | Method for automatically testing the operational status of a wireless power receiver in a wireless power transmission system |
US9899873B2 (en) | 2014-05-23 | 2018-02-20 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US10211682B2 (en) | 2014-05-07 | 2019-02-19 | Energous Corporation | Systems and methods for controlling operation of a transmitter of a wireless power network based on user instructions received from an authenticated computing device powered or charged by a receiver of the wireless power network |
US10193396B1 (en) | 2014-05-07 | 2019-01-29 | Energous Corporation | Cluster management of transmitters in a wireless power transmission system |
US9893768B2 (en) | 2012-07-06 | 2018-02-13 | Energous Corporation | Methodology for multiple pocket-forming |
US10063105B2 (en) | 2013-07-11 | 2018-08-28 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US10992187B2 (en) | 2012-07-06 | 2021-04-27 | Energous Corporation | System and methods of using electromagnetic waves to wirelessly deliver power to electronic devices |
US10965164B2 (en) | 2012-07-06 | 2021-03-30 | Energous Corporation | Systems and methods of wirelessly delivering power to a receiver device |
US9876394B1 (en) | 2014-05-07 | 2018-01-23 | Energous Corporation | Boost-charger-boost system for enhanced power delivery |
US9859757B1 (en) * | 2013-07-25 | 2018-01-02 | Energous Corporation | Antenna tile arrangements in electronic device enclosures |
US9124125B2 (en) | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US10224758B2 (en) | 2013-05-10 | 2019-03-05 | Energous Corporation | Wireless powering of electronic devices with selective delivery range |
US9825674B1 (en) | 2014-05-23 | 2017-11-21 | Energous Corporation | Enhanced transmitter that selects configurations of antenna elements for performing wireless power transmission and receiving functions |
US10211674B1 (en) | 2013-06-12 | 2019-02-19 | Energous Corporation | Wireless charging using selected reflectors |
US10128693B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US9876379B1 (en) | 2013-07-11 | 2018-01-23 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US10230266B1 (en) | 2014-02-06 | 2019-03-12 | Energous Corporation | Wireless power receivers that communicate status data indicating wireless power transmission effectiveness with a transmitter using a built-in communications component of a mobile device, and methods of use thereof |
US9438045B1 (en) | 2013-05-10 | 2016-09-06 | Energous Corporation | Methods and systems for maximum power point transfer in receivers |
US9812890B1 (en) | 2013-07-11 | 2017-11-07 | Energous Corporation | Portable wireless charging pad |
US11502551B2 (en) | 2012-07-06 | 2022-11-15 | Energous Corporation | Wirelessly charging multiple wireless-power receivers using different subsets of an antenna array to focus energy at different locations |
US10223717B1 (en) | 2014-05-23 | 2019-03-05 | Energous Corporation | Systems and methods for payment-based authorization of wireless power transmission service |
US9871398B1 (en) | 2013-07-01 | 2018-01-16 | Energous Corporation | Hybrid charging method for wireless power transmission based on pocket-forming |
US9882427B2 (en) | 2013-05-10 | 2018-01-30 | Energous Corporation | Wireless power delivery using a base station to control operations of a plurality of wireless power transmitters |
US10050462B1 (en) | 2013-08-06 | 2018-08-14 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US9847677B1 (en) | 2013-10-10 | 2017-12-19 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US9887584B1 (en) | 2014-08-21 | 2018-02-06 | Energous Corporation | Systems and methods for a configuration web service to provide configuration of a wireless power transmitter within a wireless power transmission system |
US9973021B2 (en) | 2012-07-06 | 2018-05-15 | Energous Corporation | Receivers for wireless power transmission |
US10439448B2 (en) | 2014-08-21 | 2019-10-08 | Energous Corporation | Systems and methods for automatically testing the communication between wireless power transmitter and wireless power receiver |
US10291066B1 (en) | 2014-05-07 | 2019-05-14 | Energous Corporation | Power transmission control systems and methods |
US9847679B2 (en) | 2014-05-07 | 2017-12-19 | Energous Corporation | System and method for controlling communication between wireless power transmitter managers |
US9859756B2 (en) | 2012-07-06 | 2018-01-02 | Energous Corporation | Transmittersand methods for adjusting wireless power transmission based on information from receivers |
US9831718B2 (en) | 2013-07-25 | 2017-11-28 | Energous Corporation | TV with integrated wireless power transmitter |
US9843213B2 (en) | 2013-08-06 | 2017-12-12 | Energous Corporation | Social power sharing for mobile devices based on pocket-forming |
US10218227B2 (en) | 2014-05-07 | 2019-02-26 | Energous Corporation | Compact PIFA antenna |
US10224982B1 (en) | 2013-07-11 | 2019-03-05 | Energous Corporation | Wireless power transmitters for transmitting wireless power and tracking whether wireless power receivers are within authorized locations |
US10063064B1 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for generating a power receiver identifier in a wireless power network |
US9966765B1 (en) | 2013-06-25 | 2018-05-08 | Energous Corporation | Multi-mode transmitter |
US9368020B1 (en) | 2013-05-10 | 2016-06-14 | Energous Corporation | Off-premises alert system and method for wireless power receivers in a wireless power network |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
US10263432B1 (en) | 2013-06-25 | 2019-04-16 | Energous Corporation | Multi-mode transmitter with an antenna array for delivering wireless power and providing Wi-Fi access |
US9941754B2 (en) | 2012-07-06 | 2018-04-10 | Energous Corporation | Wireless power transmission with selective range |
US10381880B2 (en) | 2014-07-21 | 2019-08-13 | Energous Corporation | Integrated antenna structure arrays for wireless power transmission |
US9899861B1 (en) | 2013-10-10 | 2018-02-20 | Energous Corporation | Wireless charging methods and systems for game controllers, based on pocket-forming |
US10075008B1 (en) | 2014-07-14 | 2018-09-11 | Energous Corporation | Systems and methods for manually adjusting when receiving electronic devices are scheduled to receive wirelessly delivered power from a wireless power transmitter in a wireless power network |
US9876648B2 (en) | 2014-08-21 | 2018-01-23 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US10141791B2 (en) | 2014-05-07 | 2018-11-27 | Energous Corporation | Systems and methods for controlling communications during wireless transmission of power using application programming interfaces |
US10141768B2 (en) | 2013-06-03 | 2018-11-27 | Energous Corporation | Systems and methods for maximizing wireless power transfer efficiency by instructing a user to change a receiver device's position |
US9912199B2 (en) | 2012-07-06 | 2018-03-06 | Energous Corporation | Receivers for wireless power transmission |
US10103582B2 (en) | 2012-07-06 | 2018-10-16 | Energous Corporation | Transmitters for wireless power transmission |
US20150326070A1 (en) | 2014-05-07 | 2015-11-12 | Energous Corporation | Methods and Systems for Maximum Power Point Transfer in Receivers |
US10206185B2 (en) | 2013-05-10 | 2019-02-12 | Energous Corporation | System and methods for wireless power transmission to an electronic device in accordance with user-defined restrictions |
US9991741B1 (en) | 2014-07-14 | 2018-06-05 | Energous Corporation | System for tracking and reporting status and usage information in a wireless power management system |
US10063106B2 (en) | 2014-05-23 | 2018-08-28 | Energous Corporation | System and method for a self-system analysis in a wireless power transmission network |
US9941707B1 (en) | 2013-07-19 | 2018-04-10 | Energous Corporation | Home base station for multiple room coverage with multiple transmitters |
US9867062B1 (en) | 2014-07-21 | 2018-01-09 | Energous Corporation | System and methods for using a remote server to authorize a receiving device that has requested wireless power and to determine whether another receiving device should request wireless power in a wireless power transmission system |
US10270261B2 (en) | 2015-09-16 | 2019-04-23 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10038337B1 (en) | 2013-09-16 | 2018-07-31 | Energous Corporation | Wireless power supply for rescue devices |
US10148097B1 (en) | 2013-11-08 | 2018-12-04 | Energous Corporation | Systems and methods for using a predetermined number of communication channels of a wireless power transmitter to communicate with different wireless power receivers |
US9954374B1 (en) | 2014-05-23 | 2018-04-24 | Energous Corporation | System and method for self-system analysis for detecting a fault in a wireless power transmission Network |
US10186913B2 (en) | 2012-07-06 | 2019-01-22 | Energous Corporation | System and methods for pocket-forming based on constructive and destructive interferences to power one or more wireless power receivers using a wireless power transmitter including a plurality of antennas |
US9939864B1 (en) | 2014-08-21 | 2018-04-10 | Energous Corporation | System and method to control a wireless power transmission system by configuration of wireless power transmission control parameters |
US9906065B2 (en) | 2012-07-06 | 2018-02-27 | Energous Corporation | Systems and methods of transmitting power transmission waves based on signals received at first and second subsets of a transmitter's antenna array |
US9948135B2 (en) | 2015-09-22 | 2018-04-17 | Energous Corporation | Systems and methods for identifying sensitive objects in a wireless charging transmission field |
US9887739B2 (en) | 2012-07-06 | 2018-02-06 | Energous Corporation | Systems and methods for wireless power transmission by comparing voltage levels associated with power waves transmitted by antennas of a plurality of antennas of a transmitter to determine appropriate phase adjustments for the power waves |
US9853458B1 (en) | 2014-05-07 | 2017-12-26 | Energous Corporation | Systems and methods for device and power receiver pairing |
US10312715B2 (en) | 2015-09-16 | 2019-06-04 | Energous Corporation | Systems and methods for wireless power charging |
US10090699B1 (en) | 2013-11-01 | 2018-10-02 | Energous Corporation | Wireless powered house |
US10211680B2 (en) | 2013-07-19 | 2019-02-19 | Energous Corporation | Method for 3 dimensional pocket-forming |
US10128699B2 (en) | 2014-07-14 | 2018-11-13 | Energous Corporation | Systems and methods of providing wireless power using receiver device sensor inputs |
US10205239B1 (en) | 2014-05-07 | 2019-02-12 | Energous Corporation | Compact PIFA antenna |
US9793758B2 (en) | 2014-05-23 | 2017-10-17 | Energous Corporation | Enhanced transmitter using frequency control for wireless power transmission |
US9824815B2 (en) | 2013-05-10 | 2017-11-21 | Energous Corporation | Wireless charging and powering of healthcare gadgets and sensors |
US9252628B2 (en) | 2013-05-10 | 2016-02-02 | Energous Corporation | Laptop computer as a transmitter for wireless charging |
US9893554B2 (en) | 2014-07-14 | 2018-02-13 | Energous Corporation | System and method for providing health safety in a wireless power transmission system |
US11843260B2 (en) | 2012-11-09 | 2023-12-12 | California Institute Of Technology | Generator unit for wireless power transfer |
US10367380B2 (en) | 2012-11-09 | 2019-07-30 | California Institute Of Technology | Smart RF lensing: efficient, dynamic and mobile wireless power transfer |
US10003278B2 (en) | 2013-11-22 | 2018-06-19 | California Institute Of Technology | Active CMOS recovery units for wireless power transmission |
US11616520B2 (en) | 2012-11-09 | 2023-03-28 | California Institute Of Technology | RF receiver |
US9866279B2 (en) | 2013-05-10 | 2018-01-09 | Energous Corporation | Systems and methods for selecting which power transmitter should deliver wireless power to a receiving device in a wireless power delivery network |
US9538382B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | System and method for smart registration of wireless power receivers in a wireless power network |
US9419443B2 (en) | 2013-05-10 | 2016-08-16 | Energous Corporation | Transducer sound arrangement for pocket-forming |
US9819230B2 (en) | 2014-05-07 | 2017-11-14 | Energous Corporation | Enhanced receiver for wireless power transmission |
US9537357B2 (en) | 2013-05-10 | 2017-01-03 | Energous Corporation | Wireless sound charging methods and systems for game controllers, based on pocket-forming |
US10103552B1 (en) | 2013-06-03 | 2018-10-16 | Energous Corporation | Protocols for authenticated wireless power transmission |
US10003211B1 (en) | 2013-06-17 | 2018-06-19 | Energous Corporation | Battery life of portable electronic devices |
US10021523B2 (en) | 2013-07-11 | 2018-07-10 | Energous Corporation | Proximity transmitters for wireless power charging systems |
US9979440B1 (en) | 2013-07-25 | 2018-05-22 | Energous Corporation | Antenna tile arrangements configured to operate as one functional unit |
WO2015077730A1 (en) | 2013-11-22 | 2015-05-28 | California Institute Of Technology | Generator unit for wireless power transfer |
US9935482B1 (en) | 2014-02-06 | 2018-04-03 | Energous Corporation | Wireless power transmitters that transmit at determined times based on power availability and consumption at a receiving mobile device |
US10075017B2 (en) | 2014-02-06 | 2018-09-11 | Energous Corporation | External or internal wireless power receiver with spaced-apart antenna elements for charging or powering mobile devices using wirelessly delivered power |
US9915145B2 (en) * | 2014-03-06 | 2018-03-13 | Halliburton Energy Services, Inc. | Downhole power and data transfer using resonators |
US9966784B2 (en) | 2014-06-03 | 2018-05-08 | Energous Corporation | Systems and methods for extending battery life of portable electronic devices charged by sound |
US10158257B2 (en) | 2014-05-01 | 2018-12-18 | Energous Corporation | System and methods for using sound waves to wirelessly deliver power to electronic devices |
US9800172B1 (en) | 2014-05-07 | 2017-10-24 | Energous Corporation | Integrated rectifier and boost converter for boosting voltage received from wireless power transmission waves |
US10153653B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for using application programming interfaces to control communications between a transmitter and a receiver |
US9973008B1 (en) | 2014-05-07 | 2018-05-15 | Energous Corporation | Wireless power receiver with boost converters directly coupled to a storage element |
US10170917B1 (en) | 2014-05-07 | 2019-01-01 | Energous Corporation | Systems and methods for managing and controlling a wireless power network by establishing time intervals during which receivers communicate with a transmitter |
US10153645B1 (en) | 2014-05-07 | 2018-12-11 | Energous Corporation | Systems and methods for designating a master power transmitter in a cluster of wireless power transmitters |
WO2015179214A2 (en) | 2014-05-14 | 2015-11-26 | California Institute Of Technology | Large-scale space-based solar power station: power transmission using steerable beams |
US10340698B2 (en) | 2014-05-14 | 2019-07-02 | California Institute Of Technology | Large-scale space-based solar power station: packaging, deployment and stabilization of lightweight structures |
US9876536B1 (en) | 2014-05-23 | 2018-01-23 | Energous Corporation | Systems and methods for assigning groups of antennas to transmit wireless power to different wireless power receivers |
US12021162B2 (en) | 2014-06-02 | 2024-06-25 | California Institute Of Technology | Ultralight photovoltaic power generation tiles |
US11362228B2 (en) | 2014-06-02 | 2022-06-14 | California Institute Of Technology | Large-scale space-based solar power station: efficient power generation tiles |
US10068703B1 (en) | 2014-07-21 | 2018-09-04 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
US10116143B1 (en) | 2014-07-21 | 2018-10-30 | Energous Corporation | Integrated antenna arrays for wireless power transmission |
US9871301B2 (en) | 2014-07-21 | 2018-01-16 | Energous Corporation | Integrated miniature PIFA with artificial magnetic conductor metamaterials |
WO2016019362A1 (en) * | 2014-07-31 | 2016-02-04 | Ossia, Inc. | Techniques for determining distance between radiating objects in multipath wireless power delivery environments |
CN111193330A (zh) | 2014-08-19 | 2020-05-22 | 加州理工学院 | 用于无线功率传输的恢复单元和从rf波生成dc功率的方法 |
US9965009B1 (en) | 2014-08-21 | 2018-05-08 | Energous Corporation | Systems and methods for assigning a power receiver to individual power transmitters based on location of the power receiver |
US9917477B1 (en) | 2014-08-21 | 2018-03-13 | Energous Corporation | Systems and methods for automatically testing the communication between power transmitter and wireless receiver |
EP3213390A4 (en) * | 2014-10-31 | 2018-03-14 | Teslonix Inc. | Wireless energy transfer using alignment of electromagnetic waves |
US10474852B2 (en) | 2014-10-31 | 2019-11-12 | Teslonix Inc. | Charging long-range radio frequency identification tags |
US10256678B2 (en) | 2014-10-31 | 2019-04-09 | Teslonix Inc. | Wireless energy transfer using alignment of electromagnetic waves |
US10530190B2 (en) | 2014-10-31 | 2020-01-07 | Teslonix Inc. | Wireless energy transfer in a multipath environment |
US10122415B2 (en) | 2014-12-27 | 2018-11-06 | Energous Corporation | Systems and methods for assigning a set of antennas of a wireless power transmitter to a wireless power receiver based on a location of the wireless power receiver |
US9893535B2 (en) | 2015-02-13 | 2018-02-13 | Energous Corporation | Systems and methods for determining optimal charging positions to maximize efficiency of power received from wirelessly delivered sound wave energy |
WO2017015508A1 (en) | 2015-07-22 | 2017-01-26 | California Institute Of Technology | Large-area structures for compact packaging |
US10992253B2 (en) | 2015-08-10 | 2021-04-27 | California Institute Of Technology | Compactable power generation arrays |
US10454565B2 (en) | 2015-08-10 | 2019-10-22 | California Institute Of Technology | Systems and methods for performing shape estimation using sun sensors in large-scale space-based solar power stations |
US9906275B2 (en) | 2015-09-15 | 2018-02-27 | Energous Corporation | Identifying receivers in a wireless charging transmission field |
US10523033B2 (en) | 2015-09-15 | 2019-12-31 | Energous Corporation | Receiver devices configured to determine location within a transmission field |
US10158259B1 (en) | 2015-09-16 | 2018-12-18 | Energous Corporation | Systems and methods for identifying receivers in a transmission field by transmitting exploratory power waves towards different segments of a transmission field |
US10199850B2 (en) | 2015-09-16 | 2019-02-05 | Energous Corporation | Systems and methods for wirelessly transmitting power from a transmitter to a receiver by determining refined locations of the receiver in a segmented transmission field associated with the transmitter |
US9941752B2 (en) | 2015-09-16 | 2018-04-10 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US9893538B1 (en) | 2015-09-16 | 2018-02-13 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10186893B2 (en) | 2015-09-16 | 2019-01-22 | Energous Corporation | Systems and methods for real time or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US10211685B2 (en) | 2015-09-16 | 2019-02-19 | Energous Corporation | Systems and methods for real or near real time wireless communications between a wireless power transmitter and a wireless power receiver |
US9871387B1 (en) | 2015-09-16 | 2018-01-16 | Energous Corporation | Systems and methods of object detection using one or more video cameras in wireless power charging systems |
US11710321B2 (en) | 2015-09-16 | 2023-07-25 | Energous Corporation | Systems and methods of object detection in wireless power charging systems |
US10008875B1 (en) | 2015-09-16 | 2018-06-26 | Energous Corporation | Wireless power transmitter configured to transmit power waves to a predicted location of a moving wireless power receiver |
US10778041B2 (en) | 2015-09-16 | 2020-09-15 | Energous Corporation | Systems and methods for generating power waves in a wireless power transmission system |
US10135294B1 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for preconfiguring transmission devices for power wave transmissions based on location data of one or more receivers |
US10033222B1 (en) | 2015-09-22 | 2018-07-24 | Energous Corporation | Systems and methods for determining and generating a waveform for wireless power transmission waves |
US10128686B1 (en) | 2015-09-22 | 2018-11-13 | Energous Corporation | Systems and methods for identifying receiver locations using sensor technologies |
US10027168B2 (en) | 2015-09-22 | 2018-07-17 | Energous Corporation | Systems and methods for generating and transmitting wireless power transmission waves using antennas having a spacing that is selected by the transmitter |
US10020678B1 (en) | 2015-09-22 | 2018-07-10 | Energous Corporation | Systems and methods for selecting antennas to generate and transmit power transmission waves |
EP3353793A4 (en) * | 2015-09-22 | 2019-05-08 | California Institute of Technology | RF RECEIVER |
US10153660B1 (en) | 2015-09-22 | 2018-12-11 | Energous Corporation | Systems and methods for preconfiguring sensor data for wireless charging systems |
US10135295B2 (en) | 2015-09-22 | 2018-11-20 | Energous Corporation | Systems and methods for nullifying energy levels for wireless power transmission waves |
US10050470B1 (en) | 2015-09-22 | 2018-08-14 | Energous Corporation | Wireless power transmission device having antennas oriented in three dimensions |
US10333332B1 (en) | 2015-10-13 | 2019-06-25 | Energous Corporation | Cross-polarized dipole antenna |
US10734717B2 (en) | 2015-10-13 | 2020-08-04 | Energous Corporation | 3D ceramic mold antenna |
US9853485B2 (en) | 2015-10-28 | 2017-12-26 | Energous Corporation | Antenna for wireless charging systems |
US9899744B1 (en) | 2015-10-28 | 2018-02-20 | Energous Corporation | Antenna for wireless charging systems |
US10027180B1 (en) | 2015-11-02 | 2018-07-17 | Energous Corporation | 3D triple linear antenna that acts as heat sink |
US10063108B1 (en) | 2015-11-02 | 2018-08-28 | Energous Corporation | Stamped three-dimensional antenna |
US10135112B1 (en) | 2015-11-02 | 2018-11-20 | Energous Corporation | 3D antenna mount |
US9866074B2 (en) | 2015-11-17 | 2018-01-09 | Ossia Inc. | Integrated circuits for transmitting wireless power, receiving wireless power, and/or communicating wirelessly |
US20170155285A1 (en) * | 2015-11-30 | 2017-06-01 | Electronics And Telecommunications Research Institute | Open type resonance coil without dual loops having serial type in-phase direct power feeding method without dual loops |
US10027159B2 (en) | 2015-12-24 | 2018-07-17 | Energous Corporation | Antenna for transmitting wireless power signals |
US10186892B2 (en) | 2015-12-24 | 2019-01-22 | Energous Corporation | Receiver device with antennas positioned in gaps |
US10320446B2 (en) | 2015-12-24 | 2019-06-11 | Energous Corporation | Miniaturized highly-efficient designs for near-field power transfer system |
US10079515B2 (en) | 2016-12-12 | 2018-09-18 | Energous Corporation | Near-field RF charging pad with multi-band antenna element with adaptive loading to efficiently charge an electronic device at any position on the pad |
US10256677B2 (en) | 2016-12-12 | 2019-04-09 | Energous Corporation | Near-field RF charging pad with adaptive loading to efficiently charge an electronic device at any position on the pad |
US11863001B2 (en) | 2015-12-24 | 2024-01-02 | Energous Corporation | Near-field antenna for wireless power transmission with antenna elements that follow meandering patterns |
US10038332B1 (en) | 2015-12-24 | 2018-07-31 | Energous Corporation | Systems and methods of wireless power charging through multiple receiving devices |
US10164478B2 (en) | 2015-12-29 | 2018-12-25 | Energous Corporation | Modular antenna boards in wireless power transmission systems |
CN108702030A (zh) * | 2016-02-09 | 2018-10-23 | 泰斯尼克斯公司 | 使用电磁波对准的改进的无线能量传递 |
US10230271B2 (en) | 2016-03-03 | 2019-03-12 | uBeam Inc. | Beamforming for wireless power transfer |
US10148137B2 (en) | 2016-03-03 | 2018-12-04 | uBeam Inc. | Beamforming for wireless power transfer |
EP3437157A4 (en) | 2016-03-31 | 2019-11-13 | Commscope Technologies LLC | LENS ANTENNAS FOR WIRELESS COMMUNICATIONS SYSTEMS |
EP3444925B1 (en) | 2016-03-31 | 2022-04-27 | Samsung Electronics Co., Ltd. | Wireless power transmission apparatus and control method therefor |
US10797504B2 (en) * | 2016-05-19 | 2020-10-06 | Motorola Solutions, Inc. | System, method and device for wireless power transfer |
US10923954B2 (en) | 2016-11-03 | 2021-02-16 | Energous Corporation | Wireless power receiver with a synchronous rectifier |
CN116455101A (zh) * | 2016-12-12 | 2023-07-18 | 艾诺格思公司 | 发射器集成电路 |
RU2643177C1 (ru) * | 2016-12-14 | 2018-01-31 | Самсунг Электроникс Ко., Лтд. | Микроволновое беспроводное зарядное устройство с фокусировкой микроволнового поля |
CN106532984B (zh) * | 2016-12-28 | 2019-07-02 | 王策 | 一种锁定移动目标的电磁波无线充电或供电的方法和装置 |
US10389161B2 (en) | 2017-03-15 | 2019-08-20 | Energous Corporation | Surface mount dielectric antennas for wireless power transmitters |
US10680319B2 (en) | 2017-01-06 | 2020-06-09 | Energous Corporation | Devices and methods for reducing mutual coupling effects in wireless power transmission systems |
US10439442B2 (en) | 2017-01-24 | 2019-10-08 | Energous Corporation | Microstrip antennas for wireless power transmitters |
WO2018183892A1 (en) | 2017-03-30 | 2018-10-04 | Energous Corporation | Flat antennas having two or more resonant frequencies for use in wireless power transmission systems |
KR20180117394A (ko) | 2017-04-19 | 2018-10-29 | 재단법인 다차원 스마트 아이티 융합시스템 연구단 | 주파수 제어 기반의 무선 충전 시스템 |
US10958108B2 (en) * | 2017-05-03 | 2021-03-23 | Searete Llc | Wireless power transfer management |
US10511097B2 (en) | 2017-05-12 | 2019-12-17 | Energous Corporation | Near-field antennas for accumulating energy at a near-field distance with minimal far-field gain |
US12074452B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Networked wireless charging system |
US12074460B2 (en) | 2017-05-16 | 2024-08-27 | Wireless Electrical Grid Lan, Wigl Inc. | Rechargeable wireless power bank and method of using |
US11462949B2 (en) | 2017-05-16 | 2022-10-04 | Wireless electrical Grid LAN, WiGL Inc | Wireless charging method and system |
US10720797B2 (en) | 2017-05-26 | 2020-07-21 | California Institute Of Technology | Method and apparatus for dynamic RF lens focusing and tracking of wireless power recovery unit |
US10283952B2 (en) | 2017-06-22 | 2019-05-07 | Bretford Manufacturing, Inc. | Rapidly deployable floor power system |
US10848853B2 (en) | 2017-06-23 | 2020-11-24 | Energous Corporation | Systems, methods, and devices for utilizing a wire of a sound-producing device as an antenna for receipt of wirelessly delivered power |
US10714830B2 (en) * | 2017-10-03 | 2020-07-14 | Hughes Network Systems, Llc | Digital phase shifter switch and transmission line reduction |
US10122219B1 (en) | 2017-10-10 | 2018-11-06 | Energous Corporation | Systems, methods, and devices for using a battery as a antenna for receiving wirelessly delivered power from radio frequency power waves |
US11342798B2 (en) | 2017-10-30 | 2022-05-24 | Energous Corporation | Systems and methods for managing coexistence of wireless-power signals and data signals operating in a same frequency band |
EP3738190A4 (en) | 2018-01-10 | 2021-12-29 | Guru, Inc. | Method and apparatus for wireless power delivery tracking |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
US11159057B2 (en) | 2018-03-14 | 2021-10-26 | Energous Corporation | Loop antennas with selectively-activated feeds to control propagation patterns of wireless power signals |
JP6760322B2 (ja) * | 2018-03-22 | 2020-09-23 | 株式会社豊田中央研究所 | 電力伝送システム |
EP3776799A4 (en) * | 2018-03-27 | 2021-12-29 | Guru Wireless, Inc. | Situation aware wireless power transmission |
KR102657294B1 (ko) * | 2018-04-25 | 2024-04-12 | 오시아 인크. | 지향성 무선 전력 및 무선 데이터 통신 |
US10796112B2 (en) | 2018-05-28 | 2020-10-06 | Teslonix Inc. | Protocol layer coordination of wireless energy transfer systems |
US11515732B2 (en) * | 2018-06-25 | 2022-11-29 | Energous Corporation | Power wave transmission techniques to focus wirelessly delivered power at a receiving device |
US11634240B2 (en) | 2018-07-17 | 2023-04-25 | California Institute Of Technology | Coilable thin-walled longerons and coilable structures implementing longerons and methods for their manufacture and coiling |
US11772826B2 (en) | 2018-10-31 | 2023-10-03 | California Institute Of Technology | Actively controlled spacecraft deployment mechanism |
US11437735B2 (en) | 2018-11-14 | 2022-09-06 | Energous Corporation | Systems for receiving electromagnetic energy using antennas that are minimally affected by the presence of the human body |
WO2020122907A1 (en) | 2018-12-12 | 2020-06-18 | Hewlett-Packard Development Company, L.P. | Receivers and transmitters for wireless charging of devices in motion |
WO2020160015A1 (en) | 2019-01-28 | 2020-08-06 | Energous Corporation | Systems and methods for miniaturized antenna for wireless power transmissions |
EP3921945A1 (en) | 2019-02-06 | 2021-12-15 | Energous Corporation | Systems and methods of estimating optimal phases to use for individual antennas in an antenna array |
CN114025986A (zh) * | 2019-04-19 | 2022-02-08 | 谷鲁无线股份有限公司 | 用于无线功率传送的自适应漫游且铰接生成单元 |
US11381118B2 (en) | 2019-09-20 | 2022-07-05 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
WO2021055898A1 (en) | 2019-09-20 | 2021-03-25 | Energous Corporation | Systems and methods for machine learning based foreign object detection for wireless power transmission |
US11139699B2 (en) | 2019-09-20 | 2021-10-05 | Energous Corporation | Classifying and detecting foreign objects using a power amplifier controller integrated circuit in wireless power transmission systems |
CN115104234A (zh) | 2019-09-20 | 2022-09-23 | 艾诺格思公司 | 使用多个整流器保护无线电力接收器以及使用多个整流器建立带内通信的系统和方法 |
WO2021119483A1 (en) | 2019-12-13 | 2021-06-17 | Energous Corporation | Charging pad with guiding contours to align an electronic device on the charging pad and efficiently transfer near-field radio-frequency energy to the electronic device |
US10985617B1 (en) | 2019-12-31 | 2021-04-20 | Energous Corporation | System for wirelessly transmitting energy at a near-field distance without using beam-forming control |
US11799324B2 (en) | 2020-04-13 | 2023-10-24 | Energous Corporation | Wireless-power transmitting device for creating a uniform near-field charging area |
IL282599B (en) | 2021-04-22 | 2022-02-01 | Wi Charge Ltd | Wireless power transmission system |
WO2023022309A1 (ko) * | 2021-08-18 | 2023-02-23 | 한국과학기술원 | 중거리 무선 전력 전송 효율을 높이기 위한 배열 안테나 설계 방법 |
US11916398B2 (en) | 2021-12-29 | 2024-02-27 | Energous Corporation | Small form-factor devices with integrated and modular harvesting receivers, and shelving-mounted wireless-power transmitters for use therewith |
US20240213810A1 (en) * | 2022-12-23 | 2024-06-27 | Ossia Inc. | Method and apparatus for providing high power in a wireless power system |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6967462B1 (en) * | 2003-06-05 | 2005-11-22 | Nasa Glenn Research Center | Charging of devices by microwave power beaming |
US7091852B2 (en) * | 2002-07-02 | 2006-08-15 | Tri-Sentinel, Inc. | Emergency response personnel automated accountability system |
US20100259447A1 (en) * | 2009-04-10 | 2010-10-14 | Raytheon Company | Wireless power transmission system and method |
CN102640394A (zh) * | 2009-11-30 | 2012-08-15 | 三星电子株式会社 | 无线电力收发机和无线电力系统 |
Family Cites Families (122)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1119732A (en) | 1907-05-04 | 1914-12-01 | Nikola Tesla | Apparatus for transmitting electrical energy. |
GB2256948B (en) * | 1991-05-31 | 1995-01-25 | Thomas William Russell East | Self-focussing antenna array |
WO1998012667A2 (en) | 1996-08-29 | 1998-03-26 | Johnson Steven A | Wavefield imaging using inverse scattering techniques |
US6208287B1 (en) | 1998-03-16 | 2001-03-27 | Raytheoncompany | Phased array antenna calibration system and method |
US6127799A (en) * | 1999-05-14 | 2000-10-03 | Gte Internetworking Incorporated | Method and apparatus for wireless powering and recharging |
US7522878B2 (en) | 1999-06-21 | 2009-04-21 | Access Business Group International Llc | Adaptive inductive power supply with communication |
US7212414B2 (en) | 1999-06-21 | 2007-05-01 | Access Business Group International, Llc | Adaptive inductive power supply |
EP1734461A2 (en) | 1999-07-12 | 2006-12-20 | Matsushita Electric Industrial Co., Ltd. | Mobile body discrimination apparatus for rapidly acquiring respective data sets transmitted through modulation of reflected radio waves by transponders which are within a communication region of an interrogator apparatus |
DE19958265A1 (de) | 1999-12-05 | 2001-06-21 | Iq Mobil Electronics Gmbh | Drahtloses Energieübertragungssystem mit erhöhter Ausgangsspannung |
US6184651B1 (en) | 2000-03-20 | 2001-02-06 | Motorola, Inc. | Contactless battery charger with wireless control link |
TW479904U (en) | 2000-10-09 | 2002-03-11 | Sunplus Technology Co Ltd | Diode circuit to simulate zero cutoff voltage and the rectifying circuit having zero cutoff voltage characteristics |
US7324785B2 (en) | 2001-01-11 | 2008-01-29 | Broadcom Corporation | Transmit power control of wireless communication devices |
US7356952B2 (en) | 2002-06-17 | 2008-04-15 | Philip Morris Usa Inc. | System for coupling package displays to remote power source |
US6970089B2 (en) | 2002-07-03 | 2005-11-29 | Battelle Memorial Institute K1-53 | Full-spectrum passive communication system and method |
GB0229141D0 (en) * | 2002-12-16 | 2003-01-15 | Splashpower Ltd | Improvements relating to contact-less power transfer |
US7580672B2 (en) * | 2003-06-27 | 2009-08-25 | Qualcomm Incorporated | Synthetic path diversity repeater |
AU2004306911B2 (en) | 2003-10-17 | 2008-09-11 | Powercast Corporation | Method and apparatus for a wireless power supply |
GB2414120B (en) | 2004-05-11 | 2008-04-02 | Splashpower Ltd | Controlling inductive power transfer systems |
US7084811B1 (en) | 2004-09-14 | 2006-08-01 | Hrl Laboratories, Llc | Agile optical wavelength selection for antenna beamforming |
WO2006039500A2 (en) * | 2004-09-29 | 2006-04-13 | California Institute Of Technology | Multi-element phased array transmitter with lo phase shifting and integrated power amplifier |
ZA200803885B (en) | 2005-10-24 | 2009-08-26 | Powercast Corp | Method and apparatus for high efficiency rectification for various loads |
WO2007068002A2 (en) | 2005-12-09 | 2007-06-14 | Tego Inc. | Multiple radio frequency network node rfid tag |
US9130602B2 (en) | 2006-01-18 | 2015-09-08 | Qualcomm Incorporated | Method and apparatus for delivering energy to an electrical or electronic device via a wireless link |
US8447234B2 (en) * | 2006-01-18 | 2013-05-21 | Qualcomm Incorporated | Method and system for powering an electronic device via a wireless link |
US7952322B2 (en) * | 2006-01-31 | 2011-05-31 | Mojo Mobility, Inc. | Inductive power source and charging system |
WO2008026080A2 (en) * | 2006-09-01 | 2008-03-06 | Bio Aim Technologies Holding Ltd. | Systems and methods for wireless power transfer |
US8004235B2 (en) | 2006-09-29 | 2011-08-23 | Access Business Group International Llc | System and method for inductively charging a battery |
JP4769684B2 (ja) | 2006-10-12 | 2011-09-07 | 株式会社デンソーアイティーラボラトリ | 電子走査式レーダ装置 |
JP4308855B2 (ja) | 2007-01-17 | 2009-08-05 | セイコーエプソン株式会社 | 受電制御装置、受電装置および電子機器 |
EP2122540A1 (en) * | 2007-01-26 | 2009-11-25 | LG Electronics Inc. | Contactless interface within a terminal to support a contactless service |
JP2008245404A (ja) | 2007-03-27 | 2008-10-09 | Kddi Corp | 電力伝送システム |
US8446248B2 (en) | 2007-06-14 | 2013-05-21 | Omnilectric, Inc. | Wireless power transmission system |
US8159364B2 (en) * | 2007-06-14 | 2012-04-17 | Omnilectric, Inc. | Wireless power transmission system |
US8619639B2 (en) | 2007-07-06 | 2013-12-31 | Lantiq Deutschland Gmbh | Power detector radio frequency multiplexer |
KR20100081996A (ko) | 2007-10-01 | 2010-07-15 | 맥스리니어 인코포레이티드 | I/q 교정 기법 |
ES2361937T3 (es) | 2007-11-29 | 2011-06-24 | Nokia Siemens Networks Oy | Control y/o monitorización de rendimiento de célula de radio basado en datos de posicionamiento de equipo de usuario y parámetro de calidad de radio. |
US8855554B2 (en) | 2008-03-05 | 2014-10-07 | Qualcomm Incorporated | Packaging and details of a wireless power device |
JP5474927B2 (ja) | 2008-04-03 | 2014-04-16 | コーニンクレッカ フィリップス エヌ ヴェ | 無線電力伝送システム |
WO2009126811A2 (en) | 2008-04-09 | 2009-10-15 | Intellon Corporation | Transmission line directional awareness |
US8466654B2 (en) | 2008-07-08 | 2013-06-18 | Qualcomm Incorporated | Wireless high power transfer under regulatory constraints |
US7893564B2 (en) | 2008-08-05 | 2011-02-22 | Broadcom Corporation | Phased array wireless resonant power delivery system |
US20100034238A1 (en) | 2008-08-05 | 2010-02-11 | Broadcom Corporation | Spread spectrum wireless resonant power delivery |
CN102204366B (zh) | 2008-09-03 | 2015-01-07 | 汤姆森特许公司 | 用于无线网络中传送功率控制的方法以及装置 |
US9318921B2 (en) | 2008-09-11 | 2016-04-19 | The Board Of Trustees Of The University Of Alabama | System and method for three mode wireless energy harvesting |
US8401595B2 (en) | 2008-12-08 | 2013-03-19 | Samsung Electronics Co., Ltd. | Method and system for integrated wireless power and data communication |
US8497658B2 (en) | 2009-01-22 | 2013-07-30 | Qualcomm Incorporated | Adaptive power control for wireless charging of devices |
US8223885B2 (en) | 2009-02-19 | 2012-07-17 | Research In Motion Limited | Mobile wireless communications device with separate In-phase (I) and Quadrature (Q) phase power amplification and power amplifier pre-distortion and IQ balance compensation |
JP4752932B2 (ja) * | 2009-02-25 | 2011-08-17 | 株式会社デンソー | 送信装置、受信装置、及び送受信装置 |
US8154402B2 (en) | 2009-03-12 | 2012-04-10 | Raytheon Company | Wireless temperature sensor network |
CN101833839A (zh) | 2009-03-13 | 2010-09-15 | 深圳富泰宏精密工业有限公司 | 多功能便携式电子装置 |
US8338991B2 (en) | 2009-03-20 | 2012-12-25 | Qualcomm Incorporated | Adaptive impedance tuning in wireless power transmission |
US8970180B2 (en) | 2009-04-07 | 2015-03-03 | Qualcomm Incorporated | Wireless power transmission scheduling |
US8508422B2 (en) | 2009-06-09 | 2013-08-13 | Broadcom Corporation | Method and system for converting RF power to DC power utilizing a leaky wave antenna |
US8853995B2 (en) | 2009-06-12 | 2014-10-07 | Qualcomm Incorporated | Devices for conveying wireless power and methods of operation thereof |
IN2012DN01935A (zh) | 2009-08-07 | 2015-08-21 | Auckland Uniservices Ltd | |
US8374545B2 (en) | 2009-09-02 | 2013-02-12 | Qualcomm Incorporated | De-tuning in wireless power reception |
US8415837B2 (en) | 2009-11-18 | 2013-04-09 | The Regents Of The University Of California | Switch mode voltage rectifier, RF energy conversion and wireless power supplies |
US8390249B2 (en) | 2009-11-30 | 2013-03-05 | Broadcom Corporation | Battery with integrated wireless power receiver and/or RFID |
US8879995B2 (en) | 2009-12-23 | 2014-11-04 | Viconics Electronics Inc. | Wireless power transmission using phased array antennae |
US8686685B2 (en) * | 2009-12-25 | 2014-04-01 | Golba, Llc | Secure apparatus for wirelessly transferring power and communicating with one or more slave devices |
US8421408B2 (en) * | 2010-01-23 | 2013-04-16 | Sotoudeh Hamedi-Hagh | Extended range wireless charging and powering system |
GB2489895B (en) | 2010-01-25 | 2014-08-20 | Access Business Group Int Llc | Systems and methods for detecting data communication over a wireless power link |
JP2011199975A (ja) * | 2010-03-18 | 2011-10-06 | Nec Corp | 非接触送電装置、非接触送電システムおよび非接触送電方法 |
GB201006904D0 (en) | 2010-04-26 | 2010-06-09 | Cambridge Entpr Ltd | RFID TAG location systems |
KR101162857B1 (ko) | 2010-06-04 | 2012-07-04 | 엘지이노텍 주식회사 | 전력 전송을 위한 송신장치 및 수신장치 |
KR101183525B1 (ko) | 2010-06-11 | 2012-09-20 | 명지대학교 산학협력단 | 이동 단말의 배터리를 무선으로 충전하기 위한 rf 에너지 수확 시스템 및 방법 |
US8847577B2 (en) * | 2010-08-04 | 2014-09-30 | Sensus Spectrum Llc | Method and system of measuring current in an electric meter |
KR101739283B1 (ko) | 2010-08-31 | 2017-05-25 | 삼성전자주식회사 | 적응형 공진 전력 전송 장치 |
US9173178B2 (en) * | 2010-09-21 | 2015-10-27 | Broadcom Corporation | Method and system for power headroom reporting in the presence of multiple transmit antennas |
KR101796788B1 (ko) * | 2010-12-20 | 2017-11-10 | 엘지이노텍 주식회사 | 에너지 전달 장치 및 방법 |
US9118217B2 (en) | 2010-09-30 | 2015-08-25 | Broadcom Corporation | Portable computing device with wireless power distribution |
JP5573628B2 (ja) | 2010-11-22 | 2014-08-20 | 富士通株式会社 | 位相差検出方法、位相制御方法、位相差検出回路、位相制御回路及び無線電力伝送装置 |
KR101672768B1 (ko) | 2010-12-23 | 2016-11-04 | 삼성전자주식회사 | 무선 전력 및 데이터 송수신 시스템 |
TW201240462A (en) | 2011-03-18 | 2012-10-01 | Acer Inc | Electronic device and method for automatically searching a plurality of signal sources for substitute video content |
TWI436620B (zh) | 2011-03-31 | 2014-05-01 | Pegatron Corp | 可攜式電子裝置及其控制方法 |
US10326309B2 (en) | 2011-05-13 | 2019-06-18 | Samsung Electronics Co., Ltd | Wireless power system comprising power transmitter and power receiver and method for receiving and transmitting power of the apparatuses |
KR101322843B1 (ko) | 2011-05-17 | 2013-10-28 | 삼성전자주식회사 | 전력 수신단을 사용한 무선 전력 전송을 위한 장치 및 방법 |
US9219506B2 (en) * | 2011-06-01 | 2015-12-22 | Hitachi, Ltd. | Wireless transmitter, wireless receiver, wireless communication system, elevator control system, and transformer equipment control system |
JP5718170B2 (ja) | 2011-06-14 | 2015-05-13 | 株式会社ヨコオ | 非接触で充電される電子装置及び高周波整流器 |
US9030161B2 (en) * | 2011-06-27 | 2015-05-12 | Board Of Regents, The University Of Texas System | Wireless power transmission |
JP3170470U (ja) | 2011-07-07 | 2011-09-15 | 阪和電子工業株式会社 | 積分値測定回路 |
US9252846B2 (en) | 2011-09-09 | 2016-02-02 | Qualcomm Incorporated | Systems and methods for detecting and identifying a wireless power device |
KR20130035905A (ko) | 2011-09-30 | 2013-04-09 | 삼성전자주식회사 | 무선 충전 장치 및 방법 |
US9264108B2 (en) | 2011-10-21 | 2016-02-16 | Qualcomm Incorporated | Wireless power carrier-synchronous communication |
US9145110B2 (en) | 2011-10-27 | 2015-09-29 | Ford Global Technologies, Llc | Vehicle wireless charger safety system |
SG190477A1 (en) | 2011-11-28 | 2013-06-28 | Sony Corp | Wireless energy transfer system |
WO2013095067A1 (ko) | 2011-12-22 | 2013-06-27 | 유한회사 한림포스텍 | 무선 전력전송장치 및 방법 |
US8831528B2 (en) | 2012-01-04 | 2014-09-09 | Futurewei Technologies, Inc. | SAR control using capacitive sensor and transmission duty cycle control in a wireless device |
US9144051B2 (en) | 2012-02-15 | 2015-09-22 | Microchip Technology Incorporated | Proximity detection using an antenna and directional coupler switch |
KR101953913B1 (ko) | 2012-04-02 | 2019-03-04 | 엘에스전선 주식회사 | 전송 코일 배열을 이용한 무선 전력 전송 장치 및 무선 전력 전송 시스템 |
US8830710B2 (en) | 2012-06-25 | 2014-09-09 | Eta Devices, Inc. | RF energy recovery system |
US9124125B2 (en) * | 2013-05-10 | 2015-09-01 | Energous Corporation | Wireless power transmission with selective range |
US9130397B2 (en) | 2013-05-10 | 2015-09-08 | Energous Corporation | Wireless charging and powering of electronic devices in a vehicle |
US20140008993A1 (en) | 2012-07-06 | 2014-01-09 | DvineWave Inc. | Methodology for pocket-forming |
KR101930805B1 (ko) | 2012-07-10 | 2018-12-20 | 삼성전자주식회사 | 무선 전력 수신 장치 및 방법 |
US9419476B2 (en) | 2012-07-10 | 2016-08-16 | Farrokh Mohamadi | Flat panel, stationary or mobile, spatially beam-formed wireless energy delivery system |
US10367380B2 (en) * | 2012-11-09 | 2019-07-30 | California Institute Of Technology | Smart RF lensing: efficient, dynamic and mobile wireless power transfer |
US11843260B2 (en) | 2012-11-09 | 2023-12-12 | California Institute Of Technology | Generator unit for wireless power transfer |
US11616520B2 (en) | 2012-11-09 | 2023-03-28 | California Institute Of Technology | RF receiver |
US10003278B2 (en) | 2013-11-22 | 2018-06-19 | California Institute Of Technology | Active CMOS recovery units for wireless power transmission |
WO2014075109A1 (en) | 2012-11-12 | 2014-05-15 | Parris Marcia Helena | Ear protector and ear protector wrap |
SG11201504742VA (en) | 2012-12-18 | 2015-07-30 | Nucleus Scient Inc | Nonlinear system identification for optimization of wireless power transfer |
US20140203768A1 (en) | 2013-01-18 | 2014-07-24 | Qualcomm Incorporated | Systems, methods, and apparatus related to inductive power transfer transmitter with sonic emitter |
WO2014133461A1 (en) | 2013-02-27 | 2014-09-04 | National University Of Singapore | Rectenna circuit elements, circuits, and techniques for enhanced efficiency wireless power transmission or ambient rf energy harvesting |
US9365126B2 (en) | 2013-05-10 | 2016-06-14 | Qualcomm Incorporated | System and method for detecting the presence of a moving object below a vehicle |
US9601267B2 (en) | 2013-07-03 | 2017-03-21 | Qualcomm Incorporated | Wireless power transmitter with a plurality of magnetic oscillators |
GB2517907B (en) | 2013-08-09 | 2018-04-11 | Drayson Tech Europe Ltd | RF Energy Harvester |
WO2015077730A1 (en) | 2013-11-22 | 2015-05-28 | California Institute Of Technology | Generator unit for wireless power transfer |
US9530038B2 (en) | 2013-11-25 | 2016-12-27 | Hand Held Products, Inc. | Indicia-reading system |
US9772401B2 (en) | 2014-03-17 | 2017-09-26 | Qualcomm Incorporated | Systems, methods, and apparatus for radar-based detection of objects in a predetermined space |
WO2015172049A1 (en) | 2014-05-09 | 2015-11-12 | The Board Of Trustees Of The Leland Stanford Junior University | Short range wireless communication |
US9735605B2 (en) | 2014-06-17 | 2017-08-15 | Qualcomm Incorporated | Methods and systems for object detection and sensing for wireless charging systems |
CN111193330A (zh) | 2014-08-19 | 2020-05-22 | 加州理工学院 | 用于无线功率传输的恢复单元和从rf波生成dc功率的方法 |
KR101640785B1 (ko) | 2014-09-25 | 2016-07-19 | 국방과학연구소 | 광대역 렉테나 및 렉테나용 정류 장치 |
CN110140276A (zh) | 2014-10-14 | 2019-08-16 | 俄亥俄州国家创新基金会 | 能够从无线装置自采集能量的系统和使用该系统的方法 |
US10027354B2 (en) | 2015-03-25 | 2018-07-17 | Intel IP Corporation | Phased array weighting for power efficiency improvement with high peak-to-average power ratio signals |
US20160380439A1 (en) | 2015-06-26 | 2016-12-29 | Lei Shao | Notification techniques for wireless power transfer systems |
EP3353793A4 (en) | 2015-09-22 | 2019-05-08 | California Institute of Technology | RF RECEIVER |
US10033230B2 (en) | 2015-09-25 | 2018-07-24 | Intel Corporation | Controlling a wireless power transmitter based on human presence |
US10720797B2 (en) | 2017-05-26 | 2020-07-21 | California Institute Of Technology | Method and apparatus for dynamic RF lens focusing and tracking of wireless power recovery unit |
US11404915B2 (en) | 2017-11-21 | 2022-08-02 | Guru, Inc. | Wireless power transfer for consumer applications |
US10615647B2 (en) | 2018-02-02 | 2020-04-07 | Energous Corporation | Systems and methods for detecting wireless power receivers and other objects at a near-field charging pad |
-
2013
- 2013-11-12 US US14/078,489 patent/US10367380B2/en active Active
- 2013-11-12 EP EP13854148.7A patent/EP2917998B1/en active Active
- 2013-11-12 CN CN201810343399.1A patent/CN108390160B/zh active Active
- 2013-11-12 WO PCT/US2013/069757 patent/WO2014075103A1/en active Application Filing
- 2013-11-12 CN CN201380069301.3A patent/CN104885333B/zh active Active
- 2013-11-12 KR KR1020157014646A patent/KR102225531B1/ko active IP Right Grant
-
2014
- 2014-11-24 US US14/552,414 patent/US10320242B2/en active Active
-
2018
- 2018-03-30 US US15/942,211 patent/US11502552B2/en active Active
- 2018-04-12 US US15/952,128 patent/US11616402B2/en active Active
- 2018-04-12 US US15/952,124 patent/US11616401B2/en active Active
-
2022
- 2022-11-14 US US17/986,807 patent/US20230238713A1/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7091852B2 (en) * | 2002-07-02 | 2006-08-15 | Tri-Sentinel, Inc. | Emergency response personnel automated accountability system |
US6967462B1 (en) * | 2003-06-05 | 2005-11-22 | Nasa Glenn Research Center | Charging of devices by microwave power beaming |
US20100259447A1 (en) * | 2009-04-10 | 2010-10-14 | Raytheon Company | Wireless power transmission system and method |
CN102640394A (zh) * | 2009-11-30 | 2012-08-15 | 三星电子株式会社 | 无线电力收发机和无线电力系统 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111262019A (zh) * | 2020-01-17 | 2020-06-09 | 浙江大学 | 一种基于平面口径空间馈电的二维菲涅尔区板天线 |
CN111262019B (zh) * | 2020-01-17 | 2021-04-06 | 浙江大学 | 一种基于平面口径空间馈电的二维菲涅尔区板天线 |
Also Published As
Publication number | Publication date |
---|---|
US10367380B2 (en) | 2019-07-30 |
CN108390160B (zh) | 2021-04-27 |
WO2014075103A1 (en) | 2014-05-15 |
US20180233964A1 (en) | 2018-08-16 |
EP2917998A4 (en) | 2016-07-20 |
US20150130293A1 (en) | 2015-05-14 |
US20230238713A1 (en) | 2023-07-27 |
US11502552B2 (en) | 2022-11-15 |
CN104885333B (zh) | 2018-05-15 |
KR20150082450A (ko) | 2015-07-15 |
US20140175893A1 (en) | 2014-06-26 |
EP2917998A1 (en) | 2015-09-16 |
KR102225531B1 (ko) | 2021-03-08 |
US10320242B2 (en) | 2019-06-11 |
US11616401B2 (en) | 2023-03-28 |
EP2917998B1 (en) | 2024-09-04 |
US20180233963A1 (en) | 2018-08-16 |
US11616402B2 (en) | 2023-03-28 |
US20180226841A1 (en) | 2018-08-09 |
CN104885333A (zh) | 2015-09-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104885333B (zh) | 智能rf透镜效应:高效、动态和移动无线功率传输 | |
EP3072214B1 (en) | Generator unit for wireless power transfer | |
US10284020B2 (en) | Energy delivery modulation in wireless power delivery environments | |
US20230142689A1 (en) | Rf receiver | |
Choi et al. | Toward realization of long-range wireless-powered sensor networks | |
Khang et al. | Microwave power transfer with optimal number of rectenna arrays for midrange applications | |
Jadidian et al. | Magnetic MIMO: How to charge your phone in your pocket | |
JP2023088974A (ja) | ワイヤレス電力信号の伝播パターンを制御するための選択的に起動される供給部を有するループアンテナ | |
CN108352209A (zh) | Rf接收器 | |
WO2015009892A1 (en) | Method for 3 dimensional pocket-forming | |
US11146115B2 (en) | Conformal wave selector | |
US10644528B2 (en) | Multiple-orientation wireless charging | |
Yang et al. | Auto-tracking wireless power transfer system with focused-beam phased array | |
US20240213810A1 (en) | Method and apparatus for providing high power in a wireless power system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |