KR20150058358A - 레이저 장치 - Google Patents

레이저 장치 Download PDF

Info

Publication number
KR20150058358A
KR20150058358A KR1020157009692A KR20157009692A KR20150058358A KR 20150058358 A KR20150058358 A KR 20150058358A KR 1020157009692 A KR1020157009692 A KR 1020157009692A KR 20157009692 A KR20157009692 A KR 20157009692A KR 20150058358 A KR20150058358 A KR 20150058358A
Authority
KR
South Korea
Prior art keywords
optical fiber
excitation light
laser
correction coefficient
intensity
Prior art date
Application number
KR1020157009692A
Other languages
English (en)
Other versions
KR101726334B1 (ko
Inventor
다이조 미야토
간지 다나카
고지 가지와라
아키라 후지사키
세이이치 하야시
Original Assignee
후루카와 덴키 고교 가부시키가이샤
가부시키가이샤 고마츠 세이사꾸쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 후루카와 덴키 고교 가부시키가이샤, 가부시키가이샤 고마츠 세이사꾸쇼 filed Critical 후루카와 덴키 고교 가부시키가이샤
Publication of KR20150058358A publication Critical patent/KR20150058358A/ko
Application granted granted Critical
Publication of KR101726334B1 publication Critical patent/KR101726334B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/0912Electronics or drivers for the pump source, i.e. details of drivers or circuitry specific for laser pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06716Fibre compositions or doping with active elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/09408Pump redundancy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/1312Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation by controlling the optical pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/0675Resonators including a grating structure, e.g. distributed Bragg reflectors [DBR] or distributed feedback [DFB] fibre lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10069Memorized or pre-programmed characteristics, e.g. look-up table [LUT]

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)

Abstract

증폭용 광파이버와, 상기 증폭용 광파이버를 광 여기하는 여기광을 출력하는 복수의 여기 광원과, 상기 여기 광원을 제어하는 제어부를 가지는 광파이버 레이저부를 구비하고, 상기 제어부는, 소정의 구동 전류를 상기 각 여기 광원에 공급하기 위한 지시값이 입력되면, 당해 지시값에 대응하는 초기 전류값에 보정 계수를 곱한 보정 전류값을 구동 전류로서 상기 각 여기 광원에 공급하는 제어를 행하고, 상기 보정 계수는, 상기 광파이버 레이저부로부터 출력되는 레이저광의 강도의 경시적인 저하가 억제되도록 설정되어 있는 레이저 장치.
이것에 의해, 안정된 강도의 레이저광을 출력할 수 있는 레이저 장치를 제공한다.

Description

레이저 장치{LASER DEVICE}
본 발명은, 레이저 장치에 관한 것이다.
종래, 탄산가스 레이저나 광파이버 레이저를 이용한 레이저 가공용의 레이저 장치가 개시되어 있다(특허문헌 1∼4 참조).
일본국 공개특허 특개평11-261146호 공보 일본국 공개특허 특개2007-190566호 공보 일본국 공개특허 특개2007-134626호 공보 일본국 공개특허 특개2007-114335호 공보
레이저 가공용의 레이저 장치에 있어서, 예를 들면 가공 품질을 안정시키기 위해서는, 출력되는 레이저광의 강도가 안정되어 있는 것이 바람직하다. 특허문헌 1, 2에서는, 레이저광의 강도를 모니터하고, 그 모니터 결과에 의거하여 레이저광의 강도를 일정하게 하는 제어를 행하고 있다.
그러나, 레이저 가공에 이용되는 레이저광의 강도는 예를 들면 1kW 이상으로 매우 높기 때문에, 특허문헌 1, 2에 개시되는 방법에서는, 높은 광 강도의 모니터를 고정밀도로 행하는 것이 곤란한 경우가 있고, 오히려 출력되는 레이저광의 강도가 불안정해지는 경우가 있다. 이와 같이 출력이 불안정해지면, 상정(想定)보다 고강도 또는 저강도의 레이저광이 출력되는 경우가 있고, 가공 품질이 불안정해진다는 등의 문제가 있다. 또, 특허문헌 3, 4와 같이, 출력되는 레이저광의 강도를 일정하게 하는 제어를 행하는 수단을 구비하고 있지 않은 경우에는, 레이저광의 강도를 일정하게 하기 위해 예를 들면 작업자에 의한 정기적인 메인터넌스가 필요하게 되므로, 장치의 취급이 번잡하다는 문제가 있다.
본 발명은, 상기를 감안하여 이루어진 것으로서, 안정된 강도의 레이저광을 출력할 수 있는 레이저 장치를 제공하는 것을 목적으로 한다.
상술한 과제를 해결하고, 목적을 달성하기 위해, 본 발명에 관련된 레이저 장치는, 증폭용 광파이버와, 상기 증폭용 광파이버를 광 여기하는 여기광을 출력하는 복수의 여기 광원과, 상기 여기 광원을 제어하는 제어부를 가지는 광파이버 레이저부를 구비하고, 상기 제어부는, 소정의 구동 전류를 상기 각 여기 광원에 공급하기 위한 지시값이 입력되면, 당해 지시값에 대응하는 초기 전류값에 보정 계수를 곱한 보정 전류값을 구동 전류로서 상기 각 여기 광원에 공급하는 제어를 행하고, 상기 보정 계수는, 상기 광파이버 레이저부로부터 출력되는 레이저광의 강도의 경시(經時)적인 저하가 억제되도록 설정되어 있는 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 보정 계수는, 상기 각 여기 광원의 누적 구동 시간의 함수인 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 보정 계수는, 상기 복수의 여기 광원의 우발 고장률에 의존하는 여기광 강도의 총합의 저하를 보완하도록 설정된 함수인 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 보정 계수는, 상기 누적 구동 시간의 다항식 함수를 포함하는 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 보정 계수는, 상기 증폭용 광파이버의 포토 다크닝에 기인하는 상기 광파이버 레이저부로부터 출력되는 레이저광의 강도의 저하를 보완하도록 설정된 함수인 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 보정 계수는, 상기 누적 구동 시간의 다항식 함수 또는 지수 함수를 포함하는 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 보정 계수는, 상기 복수의 여기 광원의 우발 고장률에 의존하는 여기광 강도의 총합의 저하 및 상기 증폭용 광파이버의 포토 다크닝에 기인하는 상기 광파이버 레이저부로부터 출력되는 레이저광의 강도의 저하를 보완하도록 설정된 함수인 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 제어부는, 상기 각 여기 광원의 누적 구동 시간을 기억하는 기억부와, 상기 기억된 누적 구동 시간을 독출하여 상기 보정 계수를 연산하는 연산부를 가지는 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 보정 계수는, 또한 상기 복수의 여기 광원의 여기광 강도의 총합의 시간 평균값의 함수인 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 제어부는, 상기 각 여기 광원에 공급된 상기 보정 전류값의 누적값을 기억하는 기억부와, 상기 기억된 누적값을 독출하여 상기 여기광 강도의 총합의 시간 평균값을 연산하는 연산부를 가지는 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 제어부는, 상기 보정 계수에 교정 계수를 곱함으로써, 상기 보정 계수를 교정하는 것을 특징으로 한다.
본 발명에 관련된 레이저 장치는, 상기 발명에 있어서, 상기 제어부는, 상기 보정 계수가 상한값을 넘으면, 상기 각 여기 광원으로의 구동 전류의 공급의 정지 및 알람의 발생 중 적어도 어느 일방을 행하는 것을 특징으로 한다.
본 발명에 의하면, 레이저광의 강도의 경시적인 저하가 억제되므로, 안정된 강도의 레이저광을 출력할 수 있다는 효과를 나타낸다.
도 1은, 실시형태에 관련된 레이저 장치의 모식적인 구성도이다.
도 2는, 도 1에 나타낸 광파이버 레이저부의 모식적인 구성도이다.
도 3은, 반도체 여기 레이저의 고장률의 누적 구동 시간 의존성의 일례를 나타낸 도면이다.
도 4는, 증폭용 광파이버의 포토 다크닝에 의한 광파이버 레이저부의 출력광 강도의 경시적인 감쇠 특성의 일례를 나타낸 도면이다.
이하에, 도면을 참조하여 본 발명에 관련된 레이저 장치의 실시형태를 상세하게 설명한다. 또한, 이 실시형태에 의해 본 발명이 한정되는 것은 아니다. 또한 각 도면에 있어서, 동일 또는 대응하는 요소에는 적절히 동일한 부호를 붙이고 있다. 또, 도면은 모식적인 것이며, 각 요소의 치수 비율 등은 현실의 것과는 다르다는 것에 유의해야 한다. 또, 도면 상호 간에 있어서도 서로의 치수 관계나 비율이 다른 부분이 포함되어 있다.
도 1은, 본 발명의 실시형태에 관련된 레이저 장치의 모식적인 구성도이다. 레이저 장치(100)는, 4개의 광파이버 레이저부(10a, 10b, 10c, 10d)와, 7개의 딜리버리 광파이버(20)와, 광합파기(30)와, 출력 광파이버(40)와, 광커넥터(50)를 구비한다.
4개의 광파이버 레이저부(10a, 10b, 10c, 10d)는, 외부로부터 각각 지시 신호(Sa, Sb, Sc, Sd)가 입력되어 동작하고, 각각 싱글 모드의 레이저광(L1)을 출력한다. 지시 신호(Sa, Sb, Sc, Sd)에 대해서는 후술한다.
7개의 딜리버리 광파이버(20)는, 싱글 모드 광파이버이며, 광합파기(30)의 입력 포트에 접속되어 있다. 7개의 딜리버리 광파이버(20) 중 광파이버 레이저부(10a, 10b, 10c, 10d)에 접속된 4개의 딜리버리 광파이버(20)는, 광합파기(30)에 레이저광(L1)을 싱글 모드로 전파한다.
광합파기(30)는, 예를 들면 합파해야 할 광이 입력되는 입력 포트가 7포트인 TFB(Tapered Fiber Bundle)로 구성되어 있다. 광합파기(30)는, 4개의 딜리버리 광파이버(20)가 전파한 레이저광(L1)을 합파하고, 출력 광파이버(40)로 출력한다.
출력 광파이버(40)는, 멀티 모드 광파이버이며, 광합파기(30)가 합파한 레이저광(L1)을 멀티 모드로 전파한다.
광커넥터(50)는, 합파되어 출력 광파이버(40)가 전파한 레이저광(L1)을 출력 광(L2)으로서 출력한다. 광커넥터(50)의 광출사 단면(端面)은 출력 광파이버(40)의 광축에 수직이며, 예를 들면 반사율이 0.5%정도 이하가 되도록 AR 코트가 실시되어 있다.
도 2는, 도 1에 나타낸 광파이버 레이저부(10a)의 모식적인 구성도이다. 또한, 다른 광파이버 레이저부(10b, 10c, 10d)도 광파이버 레이저부(10a)와 동일한 구성으로 할 수 있다. 도 2에 나타낸 바와 같이, 광파이버 레이저부(10a)는, 광합파기(11a)와, 여기 광원으로서의 복수의 반도체 여기 레이저(12a)와, FBG(Fiber Bragg Grating)(13a)와, 증폭용 광파이버(14a)와, FBG(13b)와, 광합파기(1lb)와, 복수의 반도체 여기 레이저(12b)와, 증폭용 광파이버(14b)와, 광검출기(15)와, 제어부(16)를 구비하고 있다. 도면 중 「×」의 기호는 광파이버끼리의 융착 접속부를 나타내고 있다. 또, 증폭용 광파이버(14b)의 출력측은 딜리버리 광파이버(20)의 일부를 구성하고 있다. 이 광파이버 레이저부(10a)는 MOPA(Master Oscillator Power Amplifier) 구조를 가지고 있다.
광합파기(11a)는, 예를 들면 TFB로 구성되어 있다. 광합파기(11a)는, 복수의 반도체 여기 레이저(12a)로부터 출력된 여기광을 합파하고, 증폭용 광파이버(14a)로 출력한다. 여기광은 파장이 예를 들면 915nm이지만, 증폭용 광파이버(14a)를 광 여기할 수 있는 파장이면 특별히 한정은 되지 않는다.
증폭용 광파이버(14a)는, 석영계 유리로 이루어지는 코어부에 증폭 물질인 이테르븀(Yb) 이온이 첨가되고, 코어부의 외주에는 석영계 유리로 이루어지는 내측 클래드층과 수지 등으로 이루어지는 외측 클래드층이 순차 형성된 더블 클래드형의 이테르븀 첨가 광파이버(Ytterbium-doped optical fiber:YDF)이다.
FBG(13a)는, 중심 파장이 예를 들면 1084nm이고, 중심 파장 및 그 주변의 약 2nm의 폭의 파장 대역에 있어서의 반사율이 약 100%이며, 여기광의 파장인 파장 915nm의 광은 대부분 투과한다. 또, FBG(13b)는, 중심 파장이 FBG(13a)와 대략 동일한 예를 들면 1084nm이고, 중심 파장에 있어서의 반사율이 10%∼30%정도이며, 반사 파장 대역의 반값 전폭이 약 1nm이고, 파장 915nm의 광은 대부분 투과한다.
따라서, FBG(13a, 13b)는, 파장 1084nm의 광에 대하여, 증폭용 광파이버(14a)를 사이에 두고 광파이버 공진기를 구성한다. 또한, FBG(13a, 13b)의 중심 파장은, 1084nm로는 한정되지 않고, 증폭용 광파이버(14a)의 발광 파장의 범위 내이면 된다.
광합파기(1lb)도, 예를 들면 TFB로 구성되어 있고, 복수의 반도체 여기 레이저(12b)로부터 출력된, 파장이 예를 들면 915nm의 여기광을 합파하고, 증폭용 광파이버(14b)로 출력한다.
증폭용 광파이버(14b)도, 증폭용 광파이버(14a)와 동일한 구성을 가지는 더블 클래드형의 YDF이다.
광검출기(15)는 예를 들면 포토 다이오드이고, 광파이버 레이저부(10a)의 출력측의 융착 접속부의 근방에 배치되어 있다. 광검출기(15)는 광파이버 레이저부(10a)로부터 출력되는 레이저광(L1)의 강도 모니터를 위해 사용된다.
제어부(16)는, 연산부(16a)와, 기억부(16b)와, 기억부(16c)와, 기억부(16d)를 구비하고 있다.
연산부(16a)는, 광파이버 레이저부(10a)의 제어를 위한 각종 연산 처리를 행하는 것이며, 예를 들면 CPU(Central Processing Unit)로 구성된다. 기억부(16b)는, 연산부(16a)가 연산 처리를 행하기 위해 사용하는 각종 프로그램이나 데이터 등이 저장되어 있고, 예를 들면 ROM(Read Only Memory)으로 구성된다. 기억부(16b)는, 연산부(16a)가 연산 처리를 행할 때의 작업 스페이스 등으로서 사용되는 것이며, 예를 들면 RAM(Random Access Memory)으로 구성된다. 기억부(16c)는, 연산부(16a)의 연산 처리의 결과 등을 기억하기 위한 것이며, 예를 들면 불휘발성 메모리인 EEPROM(Electrically Erasable Programmable Read-Only Memory)이나 Ferroelectric RAM으로 구성된다.
다음에, 레이저 장치(100)의 동작에 대하여 설명한다. 먼저, 광파이버 레이저부(10a)에 있어서, 제어부(16)에는, 외부로부터 지시 신호(Sa)(예를 들면 전압 신호)가 입력된다. 제어부(16)는, 지시 신호(Sa)가 입력되면, 지시 신호(Sa)에 의거하여 복수의 반도체 여기 레이저(12a, 12b)의 각각에 구동 전류(Ia)를 공급한다. 반도체 여기 레이저(12a)는 구동 전류(Ia)가 공급됨으로써 그 전류값에 따른 광 강도의 여기광을 출력한다. 광합파기(11a)는, 각 반도체 여기 레이저(12a)로부터 출력된 여기광을 합파하고, 증폭용 광파이버(14a)로 출력한다.
증폭용 광파이버(14a)에서는, 여기광에 의해 코어부의 Yb 이온이 광 여기되고, 파장 1084nm를 포함하는 대역의 광을 발광한다. 파장 1084nm의 발광은, 증폭용 광파이버(14a)의 광증폭 작용과 FBG(13a, 13b)에 의해 구성되는 광공진기의 작용에 의하여 레이저 발진된다.
한편, 반도체 여기 레이저(12b)도, 구동 전류(Ia)가 공급됨으로써 그 전류값에 따른 광 강도의 여기광을 출력한다. 증폭용 광파이버(14b)는, 광합파기(1lb)에 의해, 발진된 레이저광과 반도체 여기 레이저(12b)로부터의 여기광이 입력되어, 레이저광을 증폭한다. 증폭된 레이저광은 레이저광(L1)으로서 광파이버 레이저부(10a)로부터 출력된다. 레이저광(L1)의 강도는 예를 들면 500W이다. 또한, 사용되는 반도체 여기 레이저(12a, 12b)의 총 개수는, 원하는 레이저광(L1)의 강도와, 반도체 여기 레이저 1개당의 여기광 강도와, 광파이버 레이저부(10a)에 있어서의 여기광으로부터 레이저광(L1)으로의 파워 변환 효율에 의해 설정된다. 사용되는 반도체 여기 레이저(12a, 12b)의 총 개수는 예를 들면 15×4=60개이다.
또, 광파이버 레이저부(10a)에 있어서, 파장 1084nm의 레이저광이 통과하는 광파이버는, 이 레이저광을 싱글 모드로 전파하도록 구성되어 있다.
다른 광파이버 레이저부(10b, 10c, 10d)도, 외부로부터 각각 지시 신호(Sb, Sc, Sd)가 입력되면, 광파이버 레이저부(10a)와 동일한 작용에 의해 레이저광(L1)을 출력한다.
딜리버리 광파이버(20)는, 각 광파이버 레이저부(10a, 10b, 10c, 10d)로부터 출력된 레이저광(L1)을 전파한다.
광합파기(30)는, 레이저광(L1)을 합파하고, 출력 광파이버(40)로 출력한다. 출력 광파이버(40)는, 광합파기(30)가 합파한 레이저광(L1)을 멀티 모드로 전파한다.
광커넥터(50)는, 출력 광파이버(40)가 전파한 레이저광(L1)을 출력광(L2)으로서 출력한다. 출력광(L2)의 파워는 예를 들면 2000W이다. 이 출력광(L2)은 가공 대상으로 유도되어 조사되며, 당해 가공 대상에 컷팅 등의 레이저 가공을 실시하기 위해 사용된다.
광파이버 레이저부(10a)가 출력하는 레이저광(L1)의 강도는, 광검출기(15)가, 근방의 융착 접속부로부터의 레이저광(L1)의 누설광을 수광함으로써 모니터된다.
광파이버 레이저부(10a, 10b, 10c, 10d)는, 외부로부터의 지시 신호(Sa, Sb, Sc, Sd)의 입력이 정지하면 그 구동이 정지한다. 또, 지시 신호(Sa, Sb, Sc, Sd)를 CW(Continuous Wave) 신호로 하면, 광파이버 레이저부(10a, 10b, 10c, 10d)를 CW 구동시킬 수 있고, 지시 신호(Sa, Sb, Sc, Sd)를 펄스 등의 변조 신호로 하면, 광파이버 레이저부(10a, 10b, 10c, 10d)를 변조 구동시킬 수 있다.
다음에, 제어부(16)의 동작에 대하여 보다 구체적으로 설명한다. 먼저, 기억부(16b)에는, 외부로부터의 지시 신호(Sa)가 가지는 지시값(예를 들면 전압값)과, 그 지시값이 입력되었을 때에 각 반도체 여기 레이저(12a, 12b)에 공급해야 할 구동 전류(Ia)의 전류값을 대응시킨 데이터 테이블이 저장되어 있다. 이 전류값은, 그 전류값의 구동 전류를 각 반도체 여기 레이저(12a, 12b)에 공급했을 때에, 광파이버 레이저부(10a)로부터 출력된 레이저광(L1)의 강도가, 지시값과 대응된 소정의 값이 되도록 설정되어 있다. 데이터 테이블에 대해서는, 모든 반도체 여기 레이저(12a, 12b)에 대하여 1개의 데이터 테이블이 준비되어 있으나, 각 반도체 여기 레이저(12a, 12b)마다 데이터 테이블이 준비되어 있어도 된다.
그런데, 기억부(16b)에 저장된 데이터 테이블의 지시값 및 전류값(초기 전류값이라고 한다)은, 레이저 장치(100)의 사용전(예를 들면, 레이저 장치(100)의 출하전)에 설정되는 값이다. 여기에서, 반도체 여기 레이저(12a, 12b) 중 어떤 반도체 여기 레이저에 우발 고장 등이 발생하면, 고장난 반도체 여기 레이저에서는 여기광이 출력되지 않게 된다. 이 경우, 소정의 지시 신호(Sa)가 입력되었을 때에, 기억부(16b)에 저장된 데이터 테이블에 따른 초기 전류값의 구동 전류(Ia)를 각 반도체 여기 레이저(12a, 12b)에 공급하더라도, 광파이버 레이저부(10a)로부터 출력된 레이저광(L1)의 강도가 설정된 소정의 값보다 낮아진다. 여기광 강도의 총합이 저하되기 때문이다. 그 결과, 레이저 가공에 사용되어야 할 출력광(L2)의 강도가 설정된 원하는 강도보다 낮아져 버린다. 이와 같은 출력광(L2)의 강도의 저하는, 일반적으로 경시적으로 증대한다.
그래서, 본 실시형태에서는, 소정의 지시 신호(Sa)가 입력되었을 때에, 기억부(16b)에 저장된 데이터 테이블에 따른 초기 전류값에, 보정 계수를 곱한 보정 전류값의 구동 전류(Ia)를 각 반도체 여기 레이저(12a, 12b)에 공급하도록 하고 있다. 이 보정 전류값은, 그 보정 전류값의 전류를, 고장나 있지 않은 나머지의 각 반도체 여기 레이저(12a, 12b)에 공급했을 때에, 광파이버 레이저부(10a)로부터 출력된 레이저광(L1)의 강도가, 지시값과 대응된 소정의 값이 되도록 설정된다. 이것에 의해, 레이저광(L1)의 강도의 경시적인 저하가 억제된다.
즉, 데이터 테이블에 포함되는 초기 전류값을 Iini, 보정 전류값을 Icor, 보정 계수를 α로 하면, 다음 식(1)이 성립된다.
Icor=α×Iini … (1)
본 실시형태에서는, 광파이버 레이저부(10a)에 있어서, 지시 신호(Sa)가 입력되었을 때에, 초기 전류값에 보정 계수를 곱한 보정 전류값의 구동 전류(Ia)를 각 반도체 여기 레이저(12a, 12b)에 공급하도록 하고 있다. 이것에 의해, 예를 들면 반도체 여기 레이저(12a, 12b)의 몇 개가 고장났다고 하더라도, 여기광 강도의 총합의 저하가 억제되므로, 레이저광(L1)의 강도의 저하가 억제되어, 안정된 강도의 레이저광(L1)을 출력할 수 있다. 또, 다른 광파이버 레이저부(10b, 10c, 10d)에 있어서도, 지시 신호(Sb, Sc, Sd)가 각각 입력되었을 때에, 초기 전류값에 보정 계수를 곱한 보정 전류값의 구동 전류를 각 반도체 여기 레이저에 공급하도록 하고 있으므로, 안정된 강도의 레이저광(L1)을 출력할 수 있다. 따라서, 레이저 장치(100)로서도, 안정된 일정한 강도의 출력광(L2)을 출력할 수 있다.
보정 계수(α)는, 광파이버 레이저부(10a, 10b, 10c, 10d)마다 설정되는 것이 바람직하나, 광파이버 레이저부(10a, 10b, 10c, 10d)에 대하여 1개의 보정 계수(α)가 설정되어도 된다.
이 보정 계수(α)는, 제어부(16)의 연산부(16a)가 연산 처리를 행함으로써 얻을 수 있다. 이하, 보정 계수(α)의 예에 대하여 구체적으로 설명한다.
(반도체 여기 레이저의 우발 고장을 고려한 보정 계수(α))
예를 들면, 반도체 여기 레이저의 우발 고장에 의한 고장률은, 반도체 여기 레이저의 누적 구동 시간, 구동 전류, 환경 온도 등에 의존한다. 여기에서, 고장률이란, 다수의 반도체 여기 레이저의 칩을 동작시킨 경우에, 단위 시간당 몇 개의 칩이 우발 고장나는지를 나타내는 통계적인 양이다.
도 3은, 반도체 여기 레이저의 고장률의 누적 구동 시간 의존성의 일례를 나타낸 도면이다. 도 3은, 구동 전류와 환경 온도를 일정한 값으로 설정한 경우를 나타내고 있다. 가로축은 누적 구동 시간을 나타내고 있다. 여기에서, 누적 구동 시간이란, 반도체 여기 레이저를 구동하고 있었던 시간, 즉 전류를 흐르게 하여 여기광을 출력시키고 있었던 시간을, 사용 개시시부터 누적한 것이다. 도 3에 나타낸 바와 같이, 반도체 여기 레이저의 고장률은, 소정의 구동 시간(t1)까지는 대략 시간에 비례하여 작은 값으로 추이(推移)하지만, 그 후 급격하게 증대하는 경향이 있다. 구동 시간(t1)의 예로서는 10,000시간이다.
따라서, α는, 반도체 여기 레이저의 누적 구동 시간의 함수로서 나타낼 수 있고, 예를 들면 1차 함수나 2차 함수나 3차 함수 등의 다항식 함수로 나타낼 수 있다. 식 (2)는 α(t)를 3차 함수로 나타낸 경우이다.
α(t)=a×t3+b×t2+c×t+1 … (2)
여기에서, t는 누적 구동 시간이다. a, b, c는, 도 3에 나타낸 바와 같은 고장률의 누적 구동 시간 의존성을 고려하여, 여기광 강도의 총합의 저하를 보완하도록 설정할 수 있는 계수이며, 예를 들면 사용하는 반도체 여기 레이저와 동종의 반도체 여기 레이저의 고장률의 실적값 등에 의거하여 설정할 수 있다.
식 (2)에 있어서, 누적 구동 시간(t)이 제로인 경우에는, α(0)=1이 되고, 식 (1)에 있어서 Icor=Iini가 성립된다.
그런데, 본 실시형태와 같이, 레이저 장치가 광파이버 레이저부를 이용한 것인 경우에는, 광파이버 레이저부로부터 레이저 장치의 출력부인 광커넥터까지는, 발진된 레이저광을 기계적으로 차단하는 수단이 없다는 것이 통상이다. 이 경우에는, 반도체 여기 레이저의 누적 구동 시간(t)은, 광파이버 레이저부가 레이저 발진하여 레이저광(L1)이 출력되고 있는 시간의 누적(H)(이하, 누적 발진 시간이라고 한다)과 동일한 값이므로, 식 (2)에 있어서 누적 구동 시간(t) 대신 누적 발진 시간(H)을 이용해도 된다.
이와 같이, 보정 계수(α(t))는 누적 구동 시간(t)의 함수이다. 그래서, 본 실시형태에서는, 제어부(16)에 있어서, 연산부(16a)는, 기억부(16b)에 저장된 프로그램에 따라, 반도체 여기 레이저(12a, 12b)의 구동 상태를 모니터하고, 레이저 장치(100)의 사용 개시시로부터의 구동 시간을 누적하여 누적 구동 시간(t)으로서 기억부(16c)에 기록하여 기억시키고, 값을 갱신하도록 하고 있다. 누적 구동 시간(t)은 일시적으로 기억부(16b)에 기억시켜도 되지만, 그 경우에는 레이저 장치(100)의 사용 종료시(전원 오프시)에는 불휘발성 메모리인 기억부(16c)에 기록된다.
그리고, 연산부(16a)는, 기억부(16c)에 기억된 누적 구동 시간(t)을 독출하여, 기억부(16b)에 저장된 프로그램에 따라 연산 처리를 행하고, 보정 계수(α(t))를 산출하고, 기억부(16c)에 그 보정 계수(α(t))를 기록하여, 값을 갱신한다. 보정 계수(α(t))도 일시적으로 기억부(16b)에 기억시켜도 된다.
그 후, 연산부(16a)는, 소정의 지시 신호(Sa)가 입력되었을 때에, 기억부(16c)에 기억된 보정 계수(α(t))를 독출한다. 그리고, 연산부(16a)는, 기억부(16b)에 저장된 프로그램에 따라, 기억부(16b)에 저장된 데이터 테이블의 초기 전류값에, 보정 계수를 곱하여 보정 전류값을 산출하는 연산 처리를 행하고, 당해 보정 전류값을 구동 전류(Ia)로서 각 반도체 여기 레이저(12a, 12b)에 공급한다. 이것에 의해, 광파이버 레이저부(10a)는, 원하는 광 강도의 레이저광(L1)을 안정적으로 출력할 수 있다. 최종적으로는, 레이저 장치(100)로서도, 원하는 강도의 출력광(L2)을 안정적으로 출력할 수 있다.
반도체 여기 레이저(12a, 12b)의 구동 상태의 모니터는, 소정의 샘플링 시간주기(예를 들면 1㎲ 주기)로 행할 수 있다. 기억부(16c)로의 누적 구동 시간(t)의 기록은, 샘플링마다 행해도 되고, 복수의 샘플링 시간 주기를 포함하는 것보다 긴 시간 주기(예를 들면 200ms 주기)로 행해도 된다. 누적 구동 시간(t)에 대해서는, 예를 들면 기록의 주기(예를 들면 200ms) 내에서 한번이라도 반도체 여기 레이저(12a, 12b)가 구동하고 있는 것을 모니터하면, 기록시에는 그 주기(200ms)를 그 직전의 누적 구동 시간(t)의 값에 가산하여, 새로운 누적 구동 시간(t)으로서 기록하도록 해도 된다. 또는, 누적 구동 시간(t)을 200ms 주기로 기억부(16b)에 기억시켜, 보다 긴 주기(예를 들면 2분 주기)로, 불휘발성 메모리인 기억부(16c)에 기록하도록 해도 된다.
또, 보정 계수(α(t))의 갱신은, 레이저 장치(100)의 사용중에 차차 행해도 되고, 예를 들면 레이저 장치(100)의 전원을 투입한 후의 초기 가동 처리중에 행해도 된다.
또, 보정 계수(α(t))는 구동 시간(t)의 증가에 따라 증대하지만, 너무 커지면, 보정 전류값(Icor)이 증대하여 예를 들면 반도체 여기 레이저(12a, 12b)의 정격 전류를 넘어버리는 경우도 발생한다. 이것을 방지하기 위해, 보정 계수(α(t))에 상한값을 설정하는 것이 바람직하다. 예를 들면 상한값을 1.4로 하면, 1≤α(t)≤1.4가 성립된다. 보정 계수(α(t))가 상한값을 넘으면, 반도체 여기 레이저(12a, 12b)로의 구동 전류(Ia)의 공급을 정지하는 것이 바람직하다. 또, 제어부(16)가 알람 발생부를 구비하고 있고, 보정 계수(α(t))가 상한값을 넘으면, 알람 발생부가 음성이나 표시에 의해 알람을 발생하도록 해도 된다.
그런데, 도 3에 나타낸 고장률의 누적 구동 시간 의존성은, 구동 전류와 환경 온도를 일정한 값으로 설정한 경우를 나타내고 있다. 그러나, 실제의 레이저 장치(100)의 사용 상태에서는, 반도체 여기 레이저(12a, 12b)에 공급하는 구동 전류의 값을 변경하고, 레이저 장치(100)로부터의 출력광(L2)의 강도를 변경하여 사용하는 경우가 있다. 반도체 여기 레이저(12a, 12b)에 공급하는 구동 전류를 변경하면, 반도체 여기 레이저(12a, 12b)에 걸리는 부하도 변화되기 때문에, 고장률의 누적 구동 시간 의존성의 곡선도 변화될 수 있다.
이 경우, 반도체 여기 레이저(12a, 12b)에 걸린 부하의 정보를 보정 계수(α(t))에 받아들이도록 해도 된다.
예를 들면, 반도체 여기 레이저(12a, 12b)에 그때까지 공급한 보정 전류값(Icor)의 누적값인 누적 전류값(Isum)을 이용하여, 보정 계수(α(t))를 이하의 식 (3)과 같이 설정해도 된다.
α(t, Isum)=a(Isum)×t3+b(Isum)×t2+c(Isum)×t+1 … (3)
여기에서, a(Isum), b(Isum), c(Isum)는 누적 전류값(Isum)의 함수이며, α(t, Isum)도 누적 전류값(Isum)의 함수이다.
또한, 누적 전류값(Isum)은, 각 반도체 여기 레이저(12a, 12b)에 그때까지 공급된 보정 전류값(Icor)의 총합의 누적값이어도 된다. 누적 전류값(Isum)은, 반도체 여기 레이저(12a, 12b)의 구동 상태를 모니터할 때에, 레이저 장치(100)의 사용 개시시로부터의 보정 전류값(Icor)의 누적값으로서 기억부(16c)에 기록하고, 값을 갱신하도록 해도 된다.
또, 반도체 여기 레이저(12a, 12b)에 걸린 부하는, 각 반도체 여기 레이저(12a, 12b)로부터 출력된 여기광의 강도의 총합의 평균값으로 나타낼 수도 있다. 예를 들면, 각 반도체 여기 레이저(12a, 12b)로부터 그때까지 실제로 출력된 여기광의 강도의 총합의 시간 평균값인 평균 출력 강도(W)를 이용하여, 보정 계수(α(t))를 이하와 같이 설정해도 된다.
α(t, W)=a(W)×t3+b(W)×t2+c(W)×t+1 … (4)
평균 출력 강도(W)는, 반도체 여기 레이저(12a, 12b)의 구동 상태를 모니터할 때에 그때의 보정 전류값(Icor)을 누적하여 누적 전류값(Isum)으로서 기억부(16c)에 기록해 두고, 그 후 필요에 따라 연산부(16a)가 누적 전류값(Isum)을 독출하여 누적 구동 시간(t)으로 나누는 연산 처리를 함으로써, 평균 출력 강도(W)에 비례하는 값을 구할 수 있다. 따라서, 이값에 소정의 계수를 곱함으로써, 평균 출력 강도(W)를 구할 수 있다.
또한, 각 반도체 여기 레이저(12a, 12b)로부터 출력되는 여기광의 강도는, 반도체 여기 레이저(12a, 12b)의 백 패싯 모니터 등으로 모니터할 수 있다. 따라서, 상기 평균 출력 강도(W)는, 모니터한 여기광의 강도로부터 구해도 된다.
또한, 상기 보정 계수(α(t))는, 반도체 여기 레이저(12a, 12b)(LD)의 정크션 온도를 고려하여 설정해도 된다. 예를 들면, LD의 발생 열량이 Q(여기서, Q는, LD로의 투입 전력(구동 전압×구동 전류)으로부터, LD의 광출력을 뺀 값)일 때, LD의 주위 온도와 정크션 온도의 차가 ΔT로서 측정되었다고 하면, LD의 정크션 온도는, LD의 주위 온도와 ΔT의 가산값으로서 산출된다. 여기에서, 주위 온도는, LD를 탑재한 히트 싱크의 온도, LD의 케이스체 온도, 또는 LD의 설치 장소의 환경 온도 등을 측정하여 얻어진다. 또, 당해 주위 온도 측정 개소와 정크션의 사이의 열저항은 ΔT/Q(Q는 LD의 발생 열량)이기 때문에, 미리 이 열저항을 산출해 두고, 임의의 Q의 값에 대하여 ΔT를 산출해도 된다.
이와 같이 하여 얻어진 ΔT에 대응한 가속 계수를 미리 산출해 두고, 그 가속 계수를, 보정 계수(α(t)) 전체나, (2)∼(4) 식의 각 계수(a∼c)에 곱하는 등 하여, 정크션 온도를 고려한 보정 계수(α(t))를 산출할 수 있다.
그런데, 식 (1)에 나타내어진 바와 같이, 초기 전류값을 Iini, 보정 전류값을 Icor, 보정 계수를 α로 하면, Icor=α(t)×Iini가 성립된다.
보정 계수(α(t))는, 고장률로부터, 누적 구동 시간(t)의 시점에서는, 반도체 여기 레이저(12a, 12b)에 초기 전류값을 흐르게 해도, 출력되는 여기광의 강도의 총합이, t=0일 때보다 저하되어 있다고 가정하고, 그 저하의 정도를 예측하여, 보정 계수(α(t))가 설정되어 있는 것이다. 그러나, 실제의 저하의 정도가, 당초의 예측으로부터 어긋나 있는 경우가 있다. 이 경우에는, 보정 전류값(Icor)으로서, α(t)×Iini를 설정하더라도, 원하는 여기광의 강도의 총합으로는 되지 않는다.
이와 같은 경우에는, 보정 계수(α(t))를 교정하는 것이 바람직하다. 교정은, 당초 설정된 α(t)에 소정의 교정 계수(αO)를 곱하고, α0×α(t)를 새로운 보정 계수(α1(t))로서 이용함으로써 실행된다. 또한, 식 (1)에 있어서, α(t=0)=1로 설정하면, 보정 전류값(Icor)으로서 초기 전류값(Iini)이 공급된다. 그때의 각 반도체 여기 레이저(12a, 12b)로부터 출력된 여기광의 강도의 총합을 구하고, 초기 상태(t=0)일 때의 여기광의 강도의 총합과 비교하면, 초기 상태로부터 실제로 얼마나 반도체 여기 레이저(12a, 12b)가 고장났는지(즉 여기광의 강도의 총합이 얼마나 저하했는지)를 확인할 수 있다. 이 확인 결과에 따라 교정 계수(αO)를 결정해도 된다.
(증폭용 광파이버의 포토 다크닝을 고려한 보정 계수(α))
상술한 바와 같이, 기억부(16b)에 저장된 데이터 테이블에 따른 초기 전류값의 구동 전류(Ia)를 각 반도체 여기 레이저(12a, 12b)에 공급하더라도, 광파이버 레이저부(10a)로부터 출력된 레이저광(L1)의 강도가 설정된 소정의 값보다 낮아지는 경우가 있다. 이와 같이 레이저광(L1)의 강도가 설정된 소정의 값보다 낮아지는 원인으로서는, 반도체 여기 레이저(12a, 12b)의 우발 고장 외에, 예를 들면 YDF인 증폭용 광파이버(14a, 14b)의 포토 다크닝이 있다. 포토 다크닝이란, YDF에 의해 광증폭을 행하고 있을 때에, YDF로부터 출력되는 증폭광의 강도가 경시적으로 감쇠하는 현상이다. 포토 다크닝은 YDF 중에서 컬러 센터가 형성되는 것이 원인이라고도 한다.
도 4는, 증폭용 광파이버(14a, 14b)의 포토 다크닝에 의한 광파이버 레이저부(10a)의 출력광 강도의 경시적인 감쇠 특성의 일례를 나타낸 도면이다. 가로축은 광파이버 레이저부(10a)의 누적 구동 시간(반도체 여기 레이저(12a, 12b)의 누적 구동 시간)을 나타내고 있다. 도 4에 나타낸 바와 같이, 출력광 강도는 초기값(P0)으로부터 서서히 감쇠하고, 구동 시간(t2) 이후에는 대략 일정값이 된다. 구동 시간(t2)의 예로서는 200시간이다.
따라서, 이 경우에도, α는, 반도체 여기 레이저의 누적 구동 시간의 함수로서 나타낼 수 있고, 예를 들면 지수 함수, 혹은 2차 함수나 3차 함수 등의 다항식함수로 나타낼 수 있다. 식 (5)는 α(t)를 지수 함수로 나타낸 경우이다.
α(t)=α2+(1-α2)×e(-f×t) … (5)
여기에서, t는 누적 구동 시간이다. f, α2는, 도 4에 나타낸 바와 같은 포토 다크닝에 의한 감쇠 특성을 고려하여, 포토 다크닝에 기인하는 여기광 강도의 총합의 저하를 보완하도록 설정할 수 있는 계수이며, 예를 들면 사용하는 YDF와 동종의 YDF의 포토 다크닝의 실험 결과 등을 이용하여 설정할 수 있다.
식 (5)에 있어서, 구동 시간(t)이 제로인 경우에는, α(0)=1이 되고, 식 (1)에 있어서 Icor=Iini가 성립된다. 또, 구동 시간(t)이 충분히 커지면, α(t)는 일정값(α2)이 된다.
또, α는, 우발 고장률과 포토 다크닝의 양방을 고려하여, 이하의 식 (6) 또는 식 (7)로 나타내어지는 것을 이용해도 된다.
α(t)={a×t3+b×t2+c×t+1}×{α2+(1-α2)×e(-f×t)} … (6)
α(t)=g×t3+h×t2+i×t+1 … (7)
여기에서, g, h, i는, 고장률의 구동 시간 의존성 및 포토 다크닝에 의한 감쇠 특성의 양방을 고려하여, 여기광 강도의 총합의 저하를 보완하도록 설정할 수 있는 계수이다.
또한, α(t)로서는, 상술한 우발 고장률이나, 포토 다크닝의 영향뿐만 아니라, 출력된 레이저광(L1)의 강도가 설정된 소정의 값보다 낮아지는 것 외의 원인을 고려하여, 이용하는 함수를 설정해도 된다.
또, 상기 실시형태에서는, 지시 신호(Sa)의 지시값과 초기 전류값(Iini)을 대응시킨 데이터 테이블을 기억부(16b)에 저장하도록 하고 있으나, 데이터 테이블 대신, 기억부(16b)가 지시 신호(Sa)의 지시값을 바탕으로 초기 전류값(Iini)을 연산하는 프로그램을 저장하고 있고, 지시 신호(Sa)가 입력되었을 때에 연산부(16a)가 연산 프로그램을 독출하여 초기 전류값(Iini)을 연산하는 구성으로 해도 된다.
또, 상기 실시형태에서는, 레이저 장치가 광파이버 레이저부를 4개 구비하고 있으나, 광파이버 레이저부의 수는 특별히 한정되지 않아, 1 또는 복수의 광파이버 레이저부를 구비하고 있어도 된다.
또, 상기 실시형태에 의해 본 발명이 한정되는 것은 아니다. 상술한 각 구성 요소를 적절히 조합하여 구성한 경우도 본 발명에 포함된다. 또, 새로운 효과나 변형예는, 당업자에 의해 용이하게 도출할 수 있다. 따라서, 본 발명의 보다 광범위한 태양은, 상기의 실시형태에 한정되는 것이 아니라, 여러 가지 변경이 가능하다.
이상과 같이, 본 발명에 관련된 레이저 장치는, 레이저 가공용의 레이저 장치에 유용하다.
10a, 10b, 10c, 10d: 광파이버 레이저부 11a, 1lb, 30: 광합파기
12a, 12b: 반도체 여기 레이저 13a, 13b: FBG
14a, 14b: 증폭용 광파이버 15: 광검출기
16: 제어부 16a: 연산부
16b, 16c, 16d: 기억부 20: 딜리버리 광파이버
40: 출력 광파이버 50: 광커넥터
100: 레이저 장치 L1: 레이저광
L2: 출력광 Sa, Sb, Sc, Sd: 지시 신호

Claims (12)

  1. 증폭용 광파이버와,
    상기 증폭용 광파이버를 광 여기하는 여기광을 출력하는 복수의 여기 광원과,
    상기 여기 광원을 제어하는 제어부를 가지는 광파이버 레이저부를 구비하고,
    상기 제어부는, 소정의 구동 전류를 상기 각 여기 광원에 공급하기 위한 지시값이 입력되면, 당해 지시값에 대응하는 초기 전류값에 보정 계수를 곱한 보정 전류값을 구동 전류로서 상기 각 여기 광원에 공급하는 제어를 행하고, 상기 보정 계수는, 상기 광파이버 레이저부로부터 출력되는 레이저광의 강도의 경시적인 저하가 억제되도록 설정되어 있는 것을 특징으로 하는 레이저 장치.
  2. 제 1항에 있어서,
    상기 보정 계수는, 상기 각 여기 광원의 누적 구동 시간의 함수인 것을 특징으로 하는 레이저 장치.
  3. 제 2항에 있어서,
    상기 보정 계수는, 상기 복수의 여기 광원의 우발 고장률에 의존하는 여기광 강도의 총합의 저하를 보완하도록 설정된 함수인 것을 특징으로 하는 레이저 장치.
  4. 제 3항에 있어서,
    상기 보정 계수는, 상기 누적 구동 시간의 다항식 함수를 포함하는 것을 특징으로 하는 레이저 장치.
  5. 제 2항에 있어서,
    상기 보정 계수는, 상기 증폭용 광파이버의 포토 다크닝에 기인하는 상기 광파이버 레이저부로부터 출력되는 레이저광의 강도의 저하를 보완하도록 설정된 함수인 것을 특징으로 하는 레이저 장치.
  6. 제 5항에 있어서,
    상기 보정 계수는, 상기 누적 구동 시간의 다항식 함수 또는 지수 함수를 포함하는 것을 특징으로 하는 레이저 장치.
  7. 제 2항에 있어서,
    상기 보정 계수는, 상기 복수의 여기 광원의 우발 고장률에 의존하는 여기광 강도의 총합의 저하 및 상기 증폭용 광파이버의 포토 다크닝에 기인하는 상기 광파이버 레이저부로부터 출력되는 레이저광의 강도의 저하를 보완하도록 설정된 함수인 것을 특징으로 하는 레이저 장치.
  8. 제 2항 내지 제 7항 중 어느 한 항에 있어서,
    상기 제어부는, 상기 각 여기 광원의 누적 구동 시간을 기억하는 기억부와, 상기 기억된 누적 구동 시간을 독출하여 상기 보정 계수를 연산하는 연산부를 가지는 것을 특징으로 하는 레이저 장치.
  9. 제 2항 내지 제 8항 중 어느 한 항에 있어서,
    상기 보정 계수는, 또한 상기 복수의 여기 광원의 여기광 강도의 총합의 시간 평균값의 함수인 것을 특징으로 하는 레이저 장치.
  10. 제 9항에 있어서,
    상기 제어부는, 상기 각 여기 광원에 공급된 상기 보정 전류값의 누적값을 기억하는 기억부와, 상기 기억된 누적값을 독출하여 상기 여기광 강도의 총합의 시간 평균값을 연산하는 연산부를 가지는 것을 특징으로 하는 레이저 장치.
  11. 제 1항 내지 제 10항 중 어느 한 항에 있어서,
    상기 제어부는, 상기 보정 계수에 교정 계수를 곱함으로써, 상기 보정 계수를 교정하는 것을 특징으로 하는 레이저 장치.
  12. 제 1항 내지 제 11항 중 어느 한 항에 있어서,
    상기 제어부는, 상기 보정 계수가 상한값을 넘으면, 상기 각 여기 광원으로의 구동 전류의 공급의 정지 및 알람의 발생의 적어도 어느 일방을 행하는 것을 특징으로 하는 레이저 장치.
KR1020157009692A 2012-10-16 2013-10-15 레이저 장치 KR101726334B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012228990A JP6077263B2 (ja) 2012-10-16 2012-10-16 レーザ装置
JPJP-P-2012-228990 2012-10-16
PCT/JP2013/077975 WO2014061662A1 (ja) 2012-10-16 2013-10-15 レーザ装置

Publications (2)

Publication Number Publication Date
KR20150058358A true KR20150058358A (ko) 2015-05-28
KR101726334B1 KR101726334B1 (ko) 2017-04-12

Family

ID=50488223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157009692A KR101726334B1 (ko) 2012-10-16 2013-10-15 레이저 장치

Country Status (5)

Country Link
US (1) US9343865B2 (ko)
JP (1) JP6077263B2 (ko)
KR (1) KR101726334B1 (ko)
CN (1) CN104737391A (ko)
WO (1) WO2014061662A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6461647B2 (ja) * 2015-03-04 2019-01-30 株式会社フジクラ 光パワーモニタ装置およびファイバレーザ装置
JP6259435B2 (ja) * 2015-10-28 2018-01-10 ファナック株式会社 レーザ光を合波して出力するレーザ発振器
JP6101775B1 (ja) * 2015-11-17 2017-03-22 株式会社フジクラ ファイバレーザシステム及びレーザ光出力方法
US10522967B2 (en) * 2016-01-26 2019-12-31 Fujikura Ltd. Fiber laser system, fiber laser system production method, and processing method
WO2018078730A1 (ja) * 2016-10-25 2018-05-03 三菱電機株式会社 レーザ加工機及びレーザ加工機の演算装置
CN111149262B (zh) * 2017-09-29 2021-09-28 株式会社藤仓 光纤激光系统及其控制方法
US10447423B2 (en) * 2017-11-03 2019-10-15 The Boeing Company Bidirectional, multi-wavelength gigabit optical fiber network
WO2019178284A1 (en) * 2018-03-13 2019-09-19 Nufern Optical fiber amplifier system and methods of using same
JP6640920B2 (ja) * 2018-06-12 2020-02-05 株式会社フジクラ ファイバレーザシステム、及び、その制御方法
EP3772216B1 (en) 2019-07-30 2023-01-18 Ricoh Company, Ltd. Output control device, laser output device, image recording device, output control method, and output control program
JP7086922B2 (ja) * 2019-12-26 2022-06-20 株式会社フジクラ ファイバレーザシステム、及び、その制御方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321935A (ja) * 1997-05-22 1998-12-04 Sharp Corp 発光素子駆動回路
JPH11261146A (ja) 1998-03-11 1999-09-24 Sumitomo Heavy Ind Ltd レーザパワー安定化装置
JP2003295092A (ja) * 2003-02-24 2003-10-15 Fuji Xerox Co Ltd 光走査装置
JP2007114335A (ja) 2005-10-19 2007-05-10 Fujikura Ltd 光増幅用光ファイバの出力低下抑制方法、光増幅用光ファイバ、光ファイバ増幅器及び光ファイバレーザ
JP2007134626A (ja) 2005-11-14 2007-05-31 Fujikura Ltd ダブルクラッドファイバ、光ファイバ増幅器及びファイバレーザ
JP2007190566A (ja) 2006-01-17 2007-08-02 Miyachi Technos Corp ファイバレーザ加工装置
JP2010263188A (ja) * 2009-04-10 2010-11-18 Fujikura Ltd ファイバ出力安定化装置
JP2011187825A (ja) * 2010-03-10 2011-09-22 Furukawa Electric Co Ltd:The ファイバレーザ装置およびファイバレーザ装置の制御方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690508B2 (en) * 2002-03-26 2004-02-10 Fujitsu Network Communications, Inc. Control system and method for an optical amplifier
JP4294459B2 (ja) * 2003-12-12 2009-07-15 富士通株式会社 光増幅器
CN101517848B (zh) * 2006-05-11 2011-05-11 Spi激光器英国有限公司 用于提供光辐射的设备
JP5260097B2 (ja) * 2008-03-18 2013-08-14 ミヤチテクノス株式会社 レーザ加工装置
JP2013197332A (ja) * 2012-03-21 2013-09-30 Fujikura Ltd 光回路装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10321935A (ja) * 1997-05-22 1998-12-04 Sharp Corp 発光素子駆動回路
JPH11261146A (ja) 1998-03-11 1999-09-24 Sumitomo Heavy Ind Ltd レーザパワー安定化装置
JP2003295092A (ja) * 2003-02-24 2003-10-15 Fuji Xerox Co Ltd 光走査装置
JP2007114335A (ja) 2005-10-19 2007-05-10 Fujikura Ltd 光増幅用光ファイバの出力低下抑制方法、光増幅用光ファイバ、光ファイバ増幅器及び光ファイバレーザ
JP2007134626A (ja) 2005-11-14 2007-05-31 Fujikura Ltd ダブルクラッドファイバ、光ファイバ増幅器及びファイバレーザ
JP2007190566A (ja) 2006-01-17 2007-08-02 Miyachi Technos Corp ファイバレーザ加工装置
JP2010263188A (ja) * 2009-04-10 2010-11-18 Fujikura Ltd ファイバ出力安定化装置
JP2011187825A (ja) * 2010-03-10 2011-09-22 Furukawa Electric Co Ltd:The ファイバレーザ装置およびファイバレーザ装置の制御方法

Also Published As

Publication number Publication date
JP6077263B2 (ja) 2017-02-08
WO2014061662A1 (ja) 2014-04-24
US20150229095A1 (en) 2015-08-13
CN104737391A (zh) 2015-06-24
KR101726334B1 (ko) 2017-04-12
US9343865B2 (en) 2016-05-17
JP2014082307A (ja) 2014-05-08

Similar Documents

Publication Publication Date Title
KR101726334B1 (ko) 레이저 장치
JP5863669B2 (ja) ファイバレーザ装置およびファイバレーザ装置の異常検出方法
US9985407B2 (en) Fiber laser apparatus and method of detecting failure of fiber laser apparatus
EP3460926A1 (en) Optical power monitoring device, laser device, and laser system
US8548013B2 (en) Fiber laser
US9397465B2 (en) Fiber laser device
JP5260097B2 (ja) レーザ加工装置
US8693514B2 (en) Pulse generation method and laser light source apparatus
JP5064777B2 (ja) レーザ装置
JP2011187825A (ja) ファイバレーザ装置およびファイバレーザ装置の制御方法
EP2385593B1 (en) Fibre laser device
JP2013197332A (ja) 光回路装置
JP2007027511A (ja) 蛍光性ガラス、光導波路、光ファイバ、光コヒーレンストモグラフィ装置、及び光ファイバレーザ
WO2017073609A1 (ja) ファイバレーザシステム、その耐反射性評価方法および耐反射性向上方法、ならびにファイバレーザ
US20210050702A1 (en) Laser apparatus and monitoring method
JP2019029509A (ja) レーザ装置
US20220285903A1 (en) Optical amplification apparatus
CN109075522B (zh) 用于大芯光纤的超短脉冲光纤前置放大器系统
Morasse et al. Enhanced pulseshaping capabilities and reduction of non-linear effects in all-fiber MOPA pulsed system
Kuhn et al. Towards monolithic single-mode Yb-doped fiber amplifiers with> 4 kW average power
Koponen et al. Benchmarking and measuring photodarkening in Yb doped fibers
JP2012186333A (ja) レーザ装置
EP4220872A1 (en) Fiber laser device
JP2014216497A (ja) 光回路装置
Lin et al. Experimental and theoretical study of single-mode 1018 nm ytterbium-doped fiber laser with 100 W output power

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
X091 Application refused [patent]
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant