KR20150042308A - 세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍 - Google Patents

세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍 Download PDF

Info

Publication number
KR20150042308A
KR20150042308A KR20130119898A KR20130119898A KR20150042308A KR 20150042308 A KR20150042308 A KR 20150042308A KR 20130119898 A KR20130119898 A KR 20130119898A KR 20130119898 A KR20130119898 A KR 20130119898A KR 20150042308 A KR20150042308 A KR 20150042308A
Authority
KR
South Korea
Prior art keywords
tau
amino acid
acid sequence
gly
lys
Prior art date
Application number
KR20130119898A
Other languages
English (en)
Other versions
KR101546485B1 (ko
Inventor
김윤경
김동진
박기덕
탁혜진
그레일 레지스
민선준
배애님
김영수
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Priority to KR1020130119898A priority Critical patent/KR101546485B1/ko
Priority to PCT/KR2014/001214 priority patent/WO2015053439A1/ko
Publication of KR20150042308A publication Critical patent/KR20150042308A/ko
Application granted granted Critical
Publication of KR101546485B1 publication Critical patent/KR101546485B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • C07K14/4701Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
    • C07K14/4711Alzheimer's disease; Amyloid plaque core protein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • G01N33/6809Determination of free amino acids involving fluorescent derivatizing reagents reacting non-specifically with all amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/60Fusion polypeptide containing spectroscopic/fluorescent detection, e.g. green fluorescent protein [GFP]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/70Fusion polypeptide containing domain for protein-protein interaction

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Wood Science & Technology (AREA)
  • Urology & Nephrology (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Plant Pathology (AREA)
  • Pathology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Neurology (AREA)
  • Peptides Or Proteins (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 살아있는 세포 내에서 타우 단백질 사이의 상호작용을 모니터링하기 위한 단백질 쌍, 이를 암호화하는 염기서열 쌍, 이를 포함하는 벡터 쌍, 상기 벡터 쌍에 의해서 형질전환된 세포주, 및 상기 세포주를 이용하여 살아있는 세포들에서 타우-타우 상호작용을 모니터링하는 방법에 관한 것으로서, 더욱 구체적으로는, 세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍으로서, 전장 인간 타우 아미노산 서열의 C-말단에 비너스 아미노산 서열의 N-말단 서열이 결합된 제1 형광 상보성 아미노산 서열; 및 전장 인간 타우 아미노산 서열의 C-말단에 비너스 아미노산 서열의 C-말단 서열이 결합된 제2 형광 상보성 아미노산 서열로 이루어지는 이분자 형광 상보성 아미노산 서열 쌍, 이를 암호화하는 염기서열 쌍, 이를 포함하는 벡터 쌍, 상기 벡터 쌍에 의해서 형질전환된 세포주 및 상기 세포주를 이용하여 살아있는 세포들에서 타우-타우 상호작용을 모니터링하는 방법에 관한 것이다.
본 발명에 따르면, 살아있는 세포들에서 타우-타우 상호작용을 직접적으로 가시화할 수 있게 함으로써 타우 올리고머화 과정을 모니터링하고 정량할 수 있으며, 따라서 타우가 관여하는 질병의 발생을 연구하고 그 올리고머화 과정을 방지하고 되돌리기 위한 방법을 개발하는데 있어서 유용한 수단으로 활용될 수 있다.

Description

세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍 {A pair of amino acid sequences for monitoring tau-tau interaction in living cells via bimolecular fluorescence complementation}
본 발명은 살아있는 세포 내에서 타우 단백질 사이의 상호작용을 모니터링하기 위한 단백질 쌍, 이를 암호화하는 염기서열 쌍, 이를 포함하는 벡터 쌍, 상기 벡터 쌍에 의해서 형질전환된 세포주, 및 상기 세포주를 이용하여 살아있는 세포들에서 타우-타우 상호작용을 모니터링하는 방법에 관한 것이다.
비정상적인 타우 (tau)의 응집은 알츠하이머병 (Alzheimer's disease, AD) 및 다른 여러 신경퇴행성 질병들 (집합적으로, 타우오패씨 (tauopathies)라 부름)에 있어서 주된 특징이다 (Brandt R, Hundelt M, Shahani N (2005) Tau alteration and neuronal degeneration in tauopathies: mechanisms and models. Biochimica. et biophysica. acta. 1739: 331-354). 건강한 신경에서, 타우는 축색돌기 (axon)로부터의 성장 및 신경 세포 분극화 (polarization)를 촉진함으로써 마이크로세관 (microtubules)을 안정화한다. 병리학적으로 과다인산화 (hyperphosphorylation)되는 경우에, 타우는 마이크로세관으로부터 분리되어 불용성 응집물을 생성한다 (Gendron TF, Petrucelli L (2009) The role of tau in neurodegeneration. Mol. Neurodegener. 4: 13).
여러 해에 걸쳐서, 타우 응집에 대한 구조적 골격이 제안된 바 있으며, 10개의 가용성 모노머들로부터 불용성 필라멘트가 형성되고, 이러한 필라멘트가 신경섬유매듭 (neurofibrillary tangles, NFTs)이라 불리우는 고차원 구조로 결합된다는 증거들이 제안된 바 있다. 그러나, 아직까지도 타우오패씨에 있어서 NFT들의 병리생리학적 중요성, 이러한 과정을 유발하는 원인 및 분자적 메카니즘에 대해서는 그다지 알려진 바가 없는데, 이는 생리학적 조건 하에서 타우 응집을 모니터링하기 위한 신뢰성 있는 방법이 존재하지 않는다는 점 때문이다. 타우 응집에 대한 대부분의 연구들은 정제된 타우 또는 타우 단편을 사용하여 비생리학적 조건 하에서 수행되었다. 더 나아가, 타우는 용해도가 극히 높기 때문에, 타우 응집은 헤파린과 같은 보조인자를 첨가함으로써 인위적으로 유도될 필요성이 있다. 이러한 연유로, 살아있는 세포들 내에서 타우 어셈블리를 모니터링할 수 있는 세포 기반 모델은 타우 병리학을 연구하고 그 과정을 방지 및 되돌릴 수 있는 방법들을 개발하는데 유용한 도구가 될 수 있다.
인간의 전장 타우는 4개의 보존된 서열 반복으로 구성되는 마이크로세관 결합 도메인을 포함한다. 이러한 서열 반복 중의 양으로 대전된 잔기들은 높은 정도로 음으로 대전된 마이크로세관 (αβ-튜불린 다이머 당 20-30개 전자들)과 결합하는데 중요한 기능을 한다 (Minoura I, Muto E (2006) Dielectric measurement of individual microtubules using the 5 electroorientation method. Biophys. J. 90: 3739-3748.; Mukrasch MD, Biernat J, von Bergen M, Griesinger C, Mandelkow E, et al. (2005) Sites of tau important for aggregation populate {beta}-structure and bind to microtubules and polyanions. J. Biol. Chem. 280: 24978-24986). 타우의 마이크로세관에 대한 결합 친화도는 또한 인산화에 의해서 능동적으로 조절되는데, 이와 같은 인산화에 의해서 마이크로세관 네트워크의 동적 재배열이 야기된다. 타우가 비정상적으로 과도하게 인산화되는 경우에는 이러한 동적 재배열의 균형을 방해하고, 마이크로세관에 대한 친화도를 급격하게 감소시킨다 (Drewes G, Trinczek B, Illenberger S, Biernat J, Schmitt-Ulms G, et al. (1995) Microtubule-associated protein/microtubule affinity-regulating kinase (p110mark). A novel protein kinase that regulates tau-microtubule interactions and dynamic instability by phosphorylation at the Alzheimer-specific site serine 262. J. Biol. Chem. 270: 7679-7688.; Biernat J, Gustke N, Drewes G, Mandelkow EM, Mandelkow E (1993) Phosphorylation of Ser262 strongly reduces binding of tau to microtubules: distinction between PHF-like immunoreactivity and microtubule binding. Neuron 11: 153-163).
알츠하이머병을 앓고 있는 뇌들에서 비정상적으로 과도하게 인산화된 타우 및 그 응집체들이 발병원으로서 관찰된다. 따라서, 과도한 인산화는 일반적으로 타우 응집의 원인으로 간주된다. 그러나, 이러한 관계는 과도하게 인산화된 타우가 매우 높은 용해도를 갖기 때문에 아직까지도 완전히 설명된 바가 없다. 자발적인 과다 인산화인지 또는 유도된 과다 인산화인지에 관계없이, 과발현된 타우는 대부분의 세포주에서 응집하는 경향을 내재적으로 나타내는 것은 아니다 (Guo JL, Lee VM (2011) Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J. Biol. Chem. 286: 15317-15331.; Jenkins SM, Johnson GV (1999) Modulation of tau phosphorylation within its microtubule-binding domain by cellular thiols. J. Neurochem. 73: 1843-1850.; Chun W, Johnson GV (2007) Activation of glycogen synthase kinase 3beta promotes the intermolecular association of tau. The use of fluorescence resonance energy transfer microscopy. J. Biol. Chem. 282: 23410-23417).
타우 인산화와 응집 사이의 연결고리를 연구하기 위해서는, 타우 응집체의 가용성 형태에 대해서 연구할 필요성이 있으며, 최근 연구들에서는 가용성 타우 올리고머들이 기억 감퇴 및 신경 퇴행을 유도한다는 가설이 제기된 바 있고 (Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Clos AL, Jackson GR, et al. (2011) Tau oligomers impair memory and induce synaptic and mitochondrial dysfunction in wild-type mice. Mol. Neurodegener. 6: 39.; Brunden KR, Trojanowski JQ, Lee VM (2008) Evidence that non-fibrillar tau causes pathology linked to neurodegeneration and behavioral impairments. J. Alzheimers Dis. 14: 393-399), 가용성 올리고머들이 실제로 신경 세포들에 독성을 나타낼 수도 있다는 것으로 널리 받아들여지고 있다.
한편, BiFC (이분자 형광 상보성; bimolecular fluorescence complementation)는 관심 대상이 되는 단백질에 부착된 비형광성 구성요소로부터 형광 단백질 복합체를 형성하는 기술에 기반을 둔 단백질-단백질 상호작용을 가시화하기 위한 방법이다 (Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu. Rev. Biophys. 37: 465-487). 종래에, 분할 녹색 형광 단백질 (green fluorescent protein, GFP) 상보 기법이 타우 응집을 정량화하는데 사용되었다 (Chun W, Waldo GS, Johnson GV (2011) Split GFP complementation assay for quantitative measurement of tau aggregation in situ. Methods Mol. Biol. 670: 109-123.; Chun W, Waldo GS, Johnson GV (2007) Split GFP complementation assay: a novel approach to quantitatively measure aggregation of tau in situ: effects of GSK3beta activation and caspase 3 cleavage. J. Neurochem. 103: 2529-2539). 이러한 분석 방법들에서는, 타우를 더 작은 GFP 단편들에 융합시키고 (GFP 11), 더 큰 GFP 단편 (GFP 1-10)을 갖는 세포들에서 발현시켰다. 타우가 모노머 또는 작은 응집체로 존재하는 경우에는, 큰 GFP 단편이 타우에 융합된 작은 GFP 단편에 접근할 수 있으며, 이로 인해서 형광 활성을 갖는 GFP의 결합이 이루어진다. 그러나, 타우가 응집하는 경우에는 활성 GFP의 재구성이 억제되고, 세포들에서 GFP 형광이 감소하게 된다. 응집을 정량화하는 방법으로서 상기 분할-GFP 분석법이 각광을 받아 왔지만, 그 범위가 제한적이고, 분해능이 낮다는 점 때문에 타우 올리고머를 모니터링하는데에는 한계가 있었다.
따라서, 본 발명에서는 헤파린 등과 같은 인위적인 보조인자의 첨가 없이도 살아있는 세포의 생리적 조건 하에서 타우 상호작용을 모니터링하기 위한 신뢰성 있는 시스템으로서, 종래의 녹색 형광 단백질 상보 기법이 갖는 단점, 즉 제한적 적용 범위 및 낮은 분해능 문제를 해결한 새로운 타우 상호작용 모니터링 시스템을 제공하고자 한다.
본 발명은 상기 과제를 달성하기 위해서,
세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍으로서,
전장 인간 타우 아미노산 서열의 C-말단에 비너스 아미노산 서열의 N-말단 서열이 결합된 제1 형광 상보성 아미노산 서열; 및
전장 인간 타우 아미노산 서열의 C-말단에 비너스 아미노산 서열의 C-말단 서열이 결합된 제2 형광 상보성 아미노산 서열로 이루어지는 이분자 형광 상보성 아미노산 서열 쌍을 제공한다.
본 발명의 일 실시예에 따르면, 상기 제1 형광 상보성 아미노산 서열은 서열번호 1로 표시되는 아미노산 서열이고, 상기 제2 형광 상보성 아미노산 서열은 서열번호 2로 표시되는 아미노산 서열일 수 있다.
또한, 본 발명은 상기 과제를 달성하기 위해서,
상기 제1 형광 상보성 아미노산 서열을 암호화하는 제1 염기서열; 및
상기 제2 형광 상보성 아미노산 서열을 암호화하는 제2 염기서열로 이루어지는 이분자 형광 상보성 아미노산 서열 쌍을 암호화하는 염기서열 쌍을 제공한다.
본 발명의 일 실시예에 따르면, 상기 제1 염기서열은 서열번호 3으로 표시되는 염기서열이고, 상기 제2 염기서열은 서열번호 4로 표시되는 염기서열일 수 있다.
또한, 본 발명은 상기 과제를 달성하기 위해서,
상기 제1 염기서열을 포함하는 제1 pCMV 벡터; 및
상기 제2 염기서열을 포함하는 제2 pCMV 벡터로 이루어지는 형질전환용 벡터 쌍을 제공한다.
또한, 본 발명은 상기 형질전환용 벡터 쌍에 의해서 형질전환된 세포주를 제공한다.
본 발명의 일 실시예에 따르면, 상기 세포주는 상기 벡터 쌍에 의해서 형질전환된 HEK293 세포주일 수 있다.
마지막으로, 본 발명은, 상기 형질전환된 세포주에 타우 단백질의 과인산화를 유도하는 물질을 처리하고 처리된 세포주를 배양하는 단계; 및 상기 세포주에 대해서 면역블롯 분석을 수행하는 단계를 포함하는 살아있는 세포들에서 타우-타우 상호작용을 모니터링하는 방법을 제공한다.
본 발명의 일 실시예에 따르면, 상기 타우 단백질의 과인산화를 유도하는 물질은 포스콜린 또는 오카다산일 수 있다.
본 발명에 따르면, 살아있는 세포들에서 타우-타우 상호작용을 직접적으로 가시화할 수 있게 함으로써 타우 올리고머화 과정을 모니터링하고 정량할 수 있으며, 따라서 타우가 관여하는 질병의 발생을 연구하고 그 올리고머화 과정을 방지하고 되돌리기 위한 방법을 개발하는데 있어서 유용한 수단으로 활용될 수 있다.
도 1a는 비너스 단백질의 N-말단 및 C-말단 부위가 전장 타우에 융합된 본 발명에 따른 단백질 구조체 쌍에 대한 개략도이고, 1b는 타우-GFP 및 타우-BiFC 세포주에 대한 기저 형광 강도를 나타낸 사진이고, 1c는 타우-GFP 및 타우-BiFC 세포주의 발현 및 기저 인산화 수준을 측정하기 위한 면역블롯 결과를 도시한 사진으로서, 항-타우 (ser 262) 항체를 사용한 면역블롯은 전체 타우 발현의 수준을, 항-타우 인산화 (ser 396) 항체를 사용한 면역블롯은 인산화된 타우의 기저 수준을 나타내며, 항-액틴은 로딩 대조군을 의미한다.
도 2a는 타우-GFP의 세포 분포를, 2b는 타우-BiFC의 세포 분포를 나타낸 사진이며, 세포들은 노코다졸 또는 빈블라스틴 (3 μM)과 함께 30분 동안 배양되어 형광 사진을 찍었다.
도 3a는 타우 인산화에 따라서 BiFC가 성숙화하는 과정에 대한 개략도이고, 3b는 오카다산 (30 nM) 및 포스콜린 (20 μM)과 함께 24시간 동안 타우-BiFC 세포들을 배양한 후에 찍은 사진이며, 3c는 다양한 시간대에서의 BiFC-형광 증가를 정량화한 그래프이고, 3d-f는 타우-BiFC 세포들을 도시된 각 화합물들과 함께 24시간 동안 배양하여 세포 용해액을 제조한 다음 면역블롯을 수행한 결과를 도시한 사진으로서, 흑색 화살표는 전장 타우를 나타내고, 적색 화살표는 타우 다이머를 나타내며, 청색 화살표는 타우 단편을 나타낸다.
도 4는 타우-BiFC 형광의 세포 분포를 나타낸 사진으로서, 4a는 타우-GFP 대조군을, 4b는 타우-BiFC 세포들을 각 화합물과 함께 24시간 동안 배양한 다음 관찰한 사진이다.
도 5는 FACS에 의해서 타우-BiFC 세포를 분류하는 것에 관한 도면이며, 5a는 HEK293 세포들 및 타우-BiFC 서열을 발현하는 HEK293 세포들을 유동 세포계수 분석법 (flow cytometry analysis)에 대한 결과 그래프로서, 먼저 제네티신을 사용하여 트랜스펙션된 세포들을 선택하고, 이어서 BiFC-형광을 나타내는 세포들 (그래프에서 P2 영역의 녹색 점들)을 FACS를 사용하여 더욱 분류한 그래프이고, 5b는 FACS 분류 이전 및 이후의 타우-BiFC 세포들에 대한 형광 영상들로서, 기저 BiFC-형광을 나타내는 타우-BiFC 세포들은 분류 이후에 크게 증가된 것을 알 수 있다.
본 발명에서는 올리고머 수준에서 타우-타우 상호작용을 가시화하기 위해서, 타우-BiFC 세포 모델을 완성하였다. 본 발명에 따른 세포 모델은 종래 분할-GFP 분석법의 좁은 응용범위 및 낮은 분해능 문제를 해결할 수 있는 바, 구체적으로는, 비너스 단백질 (Venus protein)의 N-말단 및 C-말단 비형광 부분들을 타우에 융합시킨, 비너스 단백질 기반의 BiFC 방법을 채용하여 상기 종래기술의 문제점들을 해결하고자 하였다. 형광 "턴-온 (turn-on)" 접근방법으로서, 본 발명에 따른 모델은 타우가 모노머로 존재하는 경우에는 형광이 관찰되지 않으나, 타우가 함께 결합되는 경우에는 비너스 형광이 관찰된다. 따라서, 모노머 타우로부터 야기되는 배경 노이즈를 제거함으로써, 외래 분자로 염색시키지 않고서도 살아있는 세포들 중에서의 타우 다이머화 및 올리고머화를 시공간적으로 분석할 수 있다.
이하, 실시예를 통해서 본 발명을 더욱 상세하게 설명하기로 하되, 하기 실시예는 본 발명의 이해를 돕기 위한 것일 뿐, 본 발명의 범위를 제한하는 것은 아니다.
타우 - BiFC 센서의 제작
타우-BiFC 센서를 제작하기 위해서, 본 발명에서는 비너스 (Venus) 기반의 BiFC 시스템을 사용하였다. 비너스 단백질은 황색 형광 단백질 (yellow fluorescence protein, YFP)의 일종으로서, 타우 결합을 시공간적으로 분석하기에 매우 적합한데, 이는 (i) 비너스 단백질이 빠르고 효과적으로 성숙되고 (matuartion), (ii) 그 자가-조립 (self-assembly) 속도가 다른 BiFC 쌍들에 비해서 낮으며, (iii) 비너스계 BiFC의 형광 강도가 EYFP계 BiFC의 형광 강도보다 10배 더 높기 때문이다 (Shyu YJ, Liu H, Deng X, Hu CD (2006) Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40: 61-66.; Kodama Y, Hu CD (2010) An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. Biotechniques 49: 793-805).
비너스계 타우-BiFC 센서를 제작하기 위해서, 전장 인간 타우 (441 a.a.)를 비너스의 N-말단 단편 (1-172 a.a., VN173) 및 C-말단 단편 (155-238 a.a., VC155)에 융합시켰다. 구체적으로, 포유류 발현 벡터 pCMV6-hTau40-GFP를 미국 OriGene Technologies Inc. (Rockville, MD)로부터 구입하였다. GFP를 BiFC 부분으로 치환하기 위해서, pBiFC-VN173 및 pBiFC-VC155를 Addgene (Cambridge, MA)으로부터 구입한 다음, XhoI/PmeI 제한효소 서열을 갖는 PCR 프라이머를 사용하여 증폭시켰다. 각각의 전방 및 후방 프라이머 서열은 하기와 같다:
(VC155-F) 5'-AATTCGGTCG ACCGAGATCT CTCGAGGTAC-3'
(VC155-R) 5'-CTAGTTGTGG TTTGTTTAAA CTCATCAATG TATC-3'
(VN173-F) 5'-ATGACGACAA GCTCGAGGCC GCGAATTCAT CG-3'
(VN173-R) 5'-CTAGTTGTGG TTTGTTTAAA CTCATCAATG TATC-3'
pCMV6-hTau40-GFP 및 PCR 증폭된 인써어트를 XhoI/PmeI를 사용하여 절단하고 접합시킴으로써 본 발명에 따른 pCMV6-hTau40-VN173 및 pCMV6-hTau-VC155를 제작하였다.
이어서, 상기와 같이 제작된 타우-BiFC의 2개 DNA 서열들을 HEK293 세포들 내에서 안정적으로 발현시켰다 (도 1a). 구체적으로, HEK293 세포는 ATCC (Manassas, VA)로부터 구입하였으며, 10% 우태아 혈청 및 10,000 유닛/mL의 페니실린을 함유하는 Dulbecco's modified eagle 배지 및 10,000 μg/mL의 스트렙토마이신과 함께 37 ℃, 5% CO2 함유 가습 대기 조건 하에서 배양하였다. 트랜스펙션 전날에, HEK-293 세포들을 OPTI-MEM 배지 (Invitrogen - Gibco, Carlsbad, CA)와 함께 12-well 플레이트 상에 플레이팅하였다. 한편, 대조군으로서 타우-GFP 세포주를 제작하기 위해서, 제조업체의 가이드라인에 따라서 Lipofectamine2000 시약 (Invitrogen, Carlsbad, CA)을 사용하여 세포들을 pCMV6-hTau40-GFP로 트랜스펙션시켰다. 또한, 타우-BiFC 세포주를 제작하기 위해서는, 동일한 과정에 의해서 세포들을 pCMV6-hTau40-VN173 및 pCMV6-hTau40-VC155로 함께 트랜스펙션시켰다. 안정적인 세포주를 구축하기 위해서, 세포들을 400 ng/mL 제넥티신 (Genecticin)을 포함하는 배양 배지 중에서 선택하고 보관하였다.
이어서, 타우-BiFC 세포들을 형광 세포계수법 (fluorescence cytometry)을 사용하여 세포들을 분류함으로써 2가지 BiFC 구조체들 모두를 발현하는 세포들을 선택하였다 (도 5a 및 5b). 구체적으로는, 형광 세포들을 FACSAria (BD Bioscience, San Jose, CA)를 사용하여 분류하였다. 한편, 비교를 위해서 타우-GFP 세포주 역시 제조하였다. 재조합 타우의 발현 수준을 비교하기 위해서, 세포 용해액을 제조하였으며, 이에 대해서 SDS-PAGE 분석을 수행하였다. 구체적으로는, 형광 영상 분석을 위해서 세포들을 96-웰 플레이트 중에서 성장시켰으며, 타우-BiFC 세포들을 다양한 농도의 오카다산 또는 포스콜린으로 처리하고 37℃에서 24시간 동안 배양하였다. 형광 영상들은 Operetta (PerkinElmer)를 사용하여 획득 및 분석하였다.
타우 항체들을 사용하여 세포 단백질 추출물에 대해서 면역블롯 분석을 수행한 결과, 85 kD 근방에서 타우-BiFC 세포들에 대한 2개의 밴드들이 나타났고, ~100 kD에서 타우-GFP 세포들에 대한 1개의 밴드가 나타났다 (도 1c). 구체적으로는, 상기와 같이 배양된 세포들을 단백질분해효소 및 포스파타아제 억제 칵테일을 포함하는 세포 용해 시약인 CelLytic M (Sigma, St.Louis, MO)로 용해시켰다. 단백질 농도는 Bradford (Thermo scientific, Waltham, MA) 분석법을 사용하여 측정하였으며, 단백질 샘플들을 10% SDS PAGE 젤에 로딩하고 PVDF 멤브레인으로 옮겼다. 타우 항체들은 abcam (Cambridge, MA)으로부터 구입하였다: pSer199 + Ser202 (abcam, ab4864), pSer396 (abcam, ab64193) 및 Ser262 (abcam, ab32057).
주목할 점은, HEK293가 내생적 타우의 발현을 일으키지 않았다는 점인데, 이러한 내생적 타우는 타우-BiFC 성숙화의 효율성을 감소시킬 수 있다. 이에 더해서, 인산화-타우 항체 (phospho-Ser396)를 사용한 면역블롯 분석의 결과 2개의 세포주들 모두에서 타우 인산화의 기저 수준이 관찰되었다 (도 1c). 예상한 바대로, 비슷한 수준의 발현에도 불구하고, 타우-BiFC 세포들의 형광 강도는 타우-GFP 세포들의 형광 강도보다 현저하게 낮았다 (도 1b). 이러한 사실은 HEK293에서 발현되는 타우 분자들의 대다수가 기저 조건 하에서 모노머로 존재한다는 것을 의미한다. 그러므로, 타우-접합된 BiFC 부분들은 BiFC 상보화를 유도할 정도로 근접할 수가 없다.
타우 - BiFC 및 마이크로세관과의 결합
다음으로, 타우-BiFC 형광의 세포 분포 패턴을 조사하였다. 타우-GFP 세포들의 경우에, GFP-형광은 마이크로세관과의 특별한 관련성 없이 세포질 전반에 걸쳐서 풍부하게 관찰되었다 (도 2a). 이와는 대조적으로, BiFC-형광은, 비록 매우 약한 정도이지만, 마이크로세관과 명확한 관련성을 보여주었다 (도 2b). 이러한 결과는 매우 높게 과발현된 타우가 마이크로세관과 충분히 밀접하게 결합함으로써 마이크로세관 상에서 BiFC 성숙화를 유도한다는 것을 의미한다; BiFC 성숙화는 2개의 부분들이 근접하는 경우에만 발생된다 (10 nm 미만) (Shyu YJ, Liu H, Deng X, Hu CD (2006) Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques 40: 61-66.; Kodama Y, Hu CD (2010) An improved bimolecular fluorescence complementation assay with a high signal-to-noise ratio. Biotechniques 49: 793-805).
더욱이, 타우-GFP 세포들의 세포질에서는 강한 형광이 관찰되었지만, 타우-BiFC 세포들에서는 그렇지 않았다. 이는 세포질에서 발현된 과량의 타우들이 모노머 상태로 존재한다는 것을 의미한다. 타우와 마이크로세관 사이의 상호작용을 더욱 조사하기 위해서, 세포들을 마이크로세관을 불안정화시키는 작은 분자들로 처리하였다. 마이크로세관들을 분해시키는 노코다졸 (nocodazole)로 처리한 경우, 마이크로세관-관련된 BiFC 형광은 거의 사라졌다. 마이크로세관을 침전시키는 빈블라스틴 (vinblastine)으로 처리한 경우, BiFC 형광은 로드형 (load-shaped) 침전물에서 매우 높은 정도로 향상되었다. 상기 결과들은 BiFC 부분들의 융합에 의해서 타우와 마이크로세관 사이의 상호작용이 방해를 받지는 않는다는 사실을 명확히 보여준다.
타우 과다 인산화에 따른 타우 - BiFC 성숙화
타우-BiFC를 타우 어셈블리의 지표로 사용할 수 있는지의 가능성 여부를 타진하기 위해서, 타우-BiFC 세포들을 포스콜린 (forskolin) 및 오카다산 (okadaic acid)으로 처리하였으며, 상기 물질들은 타우의 과인산화를 유도하는 것으로 알려져 있다. 전장 타우는 79개의 추정 세린 및 쓰레오닌 잔기들을 갖는다. 이러한 잔기들에 대한 인산화는 단백질 키나아제 및 포스파타아제에 의해서 정밀하게 조절됨으로써 신경 유연성에 대해서 요구되는 마이크로세관의 역학을 유지한다. 이러한 조절 효소들 중에서도, 인간 뇌의 주된 타우 포스파타아제는 단백질 포스파타아제 2A (PP2A)로서, 이는 타우를 인산화하는 몇몇 단백질 키나아제들의 활성을 조절한다. 오카다산은 PP2A의 저해능을 갖고, 쥐의 뇌에서 알츠하이머와 유사한 타우 인산화를 유도하는 것으로 알려져 있다 (Arias C, Sharma N, Davies P, Shafit-Zagardo B (1993) Okadaic acid induces early changes in microtubule-associated protein 2 and tau phosphorylation prior to neurodegeneration in cultured cortical neurons. J. Neurochem. 61: 673-682.; Zhang Z, Simpkins JW (2010) Okadaic acid induces tau phosphorylation in SH-SY5Y cells in an estrogen-preventable manner. Brain Res. 1345: 176-181). 포스콜린에 의한 단백질 키나아제 A (PKA)의 활성화는 타우의 과인산화 및 기억 감퇴를 유도하는 것으로 알려져 있다 (Liu SJ, Zhang JY, Li HL, Fang ZY, Wang Q, et al. (2004) Tau becomes a more favorable substrate for GSK-3 when it is prephosphorylated by PKA in rat brain. J. Biol. Chem. 279: 50078-50088.; Tian Q, Zhang JX, Zhang Y, Wu F, Tang Q, et al. (2009) Biphasic effects of forskolin on tau phosphorylation and spatial memory in rats. J. Alzheimers Dis. 17: 631-642). 예상한 바대로, 타우-BiFC 세포들이 오카다산 및 포스콜린과 함께 24시간 동안 배양된 경우에는, BiFC 형광이 각각 2.2배 및 1.9배만큼 크게 증가하였다 (도 3b, c). BiFC 형광의 증가는 해당 세포들에서 타우-타우 상호작용의 수준이 증가하였다는 것을 직접적으로 의미한다.
면역블롯 분석 결과, 오카다산 (30 nM) 처리에 따라서 전장 타우 및 몇몇 타우 단편들의 Ser199 및 Ser202에서 인산화 수준이 증가하였으며 (도 3f), 이는 오카다산이 타우의 과인산화를 유도한다는 것을 의미한다. 또한, 일부 타우 단편들은 Ser396에서 강한 인산화 현상을 나타낸 반면에 (도 3e의 청색 화살표로 표시), 전장 타우의 경우에는 그렇지 않았으며 (도 3e), 이는 타우의 절단된 단편들이 다른 단백질 키나아제에 대해서 취약한 기질이 된다는 것을 의미한다. 더욱 중요하게는, Ser199, Ser202, 및 Ser396에서 인산화된 타우 다이머의 밴드가 150 kD 근방 (도 3e, f의 적색 화살표로 표시)에서 관찰되었다. 이러한 결과들은 오카다산 처리가 비정상적인 타우 과인산화, 단편화, 및 다이머화라는 특징을 갖는 타우 병증을 개시한다는 사실을 의미한다. 더욱이, 실 형태의 타우-BiFC 응집 현상이 오카다산 처리된 세포들에서 관찰된다는 사실은, 오카다산에 의해서 유도되는 타우 병증 발생 현상을 강하게 뒷받침하는 것이다 (도 4).
이와는 대조적으로, 포스콜린 (20 μM) 처리도 Ser396에서의 타우 인산화를 유도한 반면에, 면역블롯 상에서는 타우 단편화 또는 다이머화가 관찰되지 않았다 (도 3e). 비록 포스콜린이 타우 인산화 및 어셈블리를 유도하였지만, 이러한 효과들은 오카다산 처리에서 보여진 바와 같은 타우 병증 발생을 촉진하기에는 충분하지 않을 수 있다. 아데닐 싸이클레이즈의 활성화인자로서, 포스콜린은 싸이클릭 AMP (cAMP) 의존성 신호 전달 경로를 자극하며, 상기 경로는 전사, 대사, 세포 싸이클 진전 및 아폽토시스를 포함하는 다양한 세포 과정에 관여한다. 특히 신경 세포들에서, 포스콜린-유도된 cAMP 활성화가 신경 분화 및 신경돌기 (neurite)의 성장을 촉진한다는 사실은 잘 알려져 있다 (Richter-Landsberg C, Jastorff B (1986) The role of cAMP in nerve growth factor-promoted neurite outgrowth in PC12 cells. J. Cell Biol. 102: 821-829.; Cheng HC, Shih HM, Chern Y (2002) Essential role of cAMP-response element-binding protein activation by A2A adenosine receptors in rescuing the nerve growth factor-induced neurite outgrowth impaired by blockage of the MAPK cascade. J. Biol. Chem. 277: 33930-33942.; Hansen T, Rehfeld JF, Nielsen FC (2003) KCl potentiates forskolin-induced PC12 cell neurite outgrowth via protein kinase A and extracellular signal-regulated kinase signaling pathways. Neurosci. Lett. 347: 57-61). 심지어 타우 BiFC 세포들에서도, 포스콜린 처리에 의해서 HEK293 세포들 상에서 신경돌기형 구조들이 뚜렷하게 증가하였다 (도 4a). 포스콜린 및 오카다산은 타우 인산화를 유도하기 위해서 통상적으로 사용되는 작은 분자들이지만, 그들이 타우 응집에 기여하는 바는 아직까지 명확하게 밝혀진 바가 없다. 따라서, 본 발명에서는 타우-타우 상호작용을 가시화함으로써, 살아있는 세포들에서 타우 어셈블리에 작은 분자들이 미치는 영향을 직접적으로 모니터링하고 정량화할 수 있다.
알츠하이머병을 앓는 환자 뇌의 신경에서 비정상적인 섬유량이 존재한다는 사실이 발견된 이래로, 신경섬유매듭은 타우의 병리적 구조인 것으로 여겨져 왔다. 그러나, 최근의 증거들은 더 작은, 가용성 타우 올리고머들이 독성 응집체들로서, 신경퇴행 및 기억 감퇴와 밀접하게 연관된 것임을 말해준다. 큰 덩어리들은 아마도 독성 올리고머들을 격리함으로써 신경 세포들을 보호하기 위한 생존 전략일 수도 있다. 따라서, 타우 올리고머화를 방지하는 것은 타우와 관련된 신경퇴행성 질환들을 치료하는데 효과적인 전략이 될 수 있다. 타우 응집의 원인 및 분자적 메카니즘을 확인하고, 이러한 과정을 되돌리기 위해서는 타우 올리고머화 과정을 모니터링할 수 있는 신뢰성 있는 시스템이 필요하다.
본 발명에 따른 타우-BiFC 시스템은 살아있는 세포들에서 타우-타우 상호작용을 직접적으로 가시화할 수 있게 함으로써 타우 올리고머화 과정을 모니터링하고 정량할 수 있는 수단을 제공한다. 따라서, 본 발명에 따른 타우-BiFC 센서는 타우가 관여하는 질병의 발생을 연구하고 그 올리고머화 과정을 방지하고 되돌리기 위한 방법을 개발하는데 있어서 유용한 수단이 될 것이다.
<110> Korea Institute of Scienc and Technology <120> A pair of amino acid sequences for monitoring tau-tau interaction in living cells via bimolecular fluorescence complementation <130> HPC4394 <160> 4 <170> KopatentIn 2.0 <210> 1 <211> 643 <212> PRT <213> Artificial Sequence <220> <223> Tau-VN173 <400> 1 Met Ala Glu Pro Arg Gln Glu Phe Glu Val Met Glu Asp His Ala Gly 1 5 10 15 Thr Tyr Gly Leu Gly Asp Arg Lys Asp Gln Gly Gly Tyr Thr Met His 20 25 30 Gln Asp Gln Glu Gly Asp Thr Asp Ala Gly Leu Lys Glu Ser Pro Leu 35 40 45 Gln Thr Pro Thr Glu Asp Gly Ser Glu Glu Pro Gly Ser Glu Thr Ser 50 55 60 Asp Ala Lys Ser Thr Pro Thr Ala Glu Asp Val Thr Ala Pro Leu Val 65 70 75 80 Asp Glu Gly Ala Pro Gly Lys Gln Ala Ala Ala Gln Pro His Thr Glu 85 90 95 Ile Pro Glu Gly Thr Thr Ala Glu Glu Ala Gly Ile Gly Asp Thr Pro 100 105 110 Ser Leu Glu Asp Glu Ala Ala Gly His Val Thr Gln Ala Arg Met Val 115 120 125 Ser Lys Ser Lys Asp Gly Thr Gly Ser Asp Asp Lys Lys Ala Lys Gly 130 135 140 Ala Asp Gly Lys Thr Lys Ile Ala Thr Pro Arg Gly Ala Ala Pro Pro 145 150 155 160 Gly Gln Lys Gly Gln Ala Asn Ala Thr Arg Ile Pro Ala Lys Thr Pro 165 170 175 Pro Ala Pro Lys Thr Pro Pro Ser Ser Gly Glu Pro Pro Lys Ser Gly 180 185 190 Asp Arg Ser Gly Tyr Ser Ser Pro Gly Ser Pro Gly Thr Pro Gly Ser 195 200 205 Arg Ser Arg Thr Pro Ser Leu Pro Thr Pro Pro Thr Arg Glu Pro Lys 210 215 220 Lys Val Ala Val Val Arg Thr Pro Pro Lys Ser Pro Ser Ser Ala Lys 225 230 235 240 Ser Arg Leu Gln Thr Ala Pro Val Pro Met Pro Asp Leu Lys Asn Val 245 250 255 Lys Ser Lys Ile Gly Ser Thr Glu Asn Leu Lys His Gln Pro Gly Gly 260 265 270 Gly Lys Val Gln Ile Ile Asn Lys Lys Leu Asp Leu Ser Asn Val Gln 275 280 285 Ser Lys Cys Gly Ser Lys Asp Asn Ile Lys His Val Pro Gly Gly Gly 290 295 300 Ser Val Gln Ile Val Tyr Lys Pro Val Asp Leu Ser Lys Val Thr Ser 305 310 315 320 Lys Cys Gly Ser Leu Gly Asn Ile His His Lys Pro Gly Gly Gly Gln 325 330 335 Val Glu Val Lys Ser Glu Lys Leu Asp Phe Lys Asp Arg Val Gln Ser 340 345 350 Lys Ile Gly Ser Leu Asp Asn Ile Thr His Val Pro Gly Gly Gly Asn 355 360 365 Lys Lys Ile Glu Thr His Lys Leu Thr Phe Arg Glu Asn Ala Lys Ala 370 375 380 Lys Thr Asp His Gly Ala Glu Ile Val Tyr Lys Ser Pro Val Val Ser 385 390 395 400 Gly Asp Thr Ser Pro Arg His Leu Ser Asn Val Ser Ser Thr Gly Ser 405 410 415 Ile Asp Met Val Asp Ser Pro Gln Leu Ala Thr Leu Ala Asp Glu Val 420 425 430 Ser Ala Ser Leu Ala Lys Gln Gly Leu Val Asp Ser Arg Arg Ser Ile 435 440 445 Ala Thr Met Val Ser Lys Gly Glu Glu Leu Phe Thr Gly Val Val Pro 450 455 460 Ile Leu Val Glu Leu Asp Gly Asp Val Asn Gly His Lys Phe Ser Val 465 470 475 480 Ser Gly Glu Gly Glu Gly Asp Ala Thr Tyr Gly Lys Leu Thr Leu Lys 485 490 495 Leu Ile Cys Thr Thr Gly Lys Leu Pro Val Pro Trp Pro Thr Leu Val 500 505 510 Thr Thr Leu Gly Tyr Gly Leu Gln Cys Phe Ala Arg Tyr Pro Asp His 515 520 525 Met Lys Gln His Asp Phe Phe Lys Ser Ala Met Pro Glu Gly Tyr Val 530 535 540 Gln Glu Arg Thr Ile Phe Phe Lys Asp Asp Gly Asn Tyr Lys Thr Arg 545 550 555 560 Ala Glu Val Lys Phe Glu Gly Asp Thr Leu Val Asn Arg Ile Glu Leu 565 570 575 Lys Gly Ile Asp Phe Lys Glu Asp Gly Asn Ile Leu Gly His Lys Leu 580 585 590 Glu Tyr Asn Tyr Asn Ser His Asn Val Tyr Ile Thr Ala Asp Lys Gln 595 600 605 Lys Asn Gly Ile Lys Ala Asn Phe Lys Ile Arg His Asn Ile Glu Gly 610 615 620 Ser Arg Val Ala Ser Leu Pro Leu Pro Ser Ala Ser Pro Gly Pro Gly 625 630 635 640 Ser Cys His <210> 2 <211> 523 <212> PRT <213> Artificial Sequence <220> <223> Tau-VC155 <400> 2 Met Ala Glu Pro Arg Gln Glu Phe Glu Val Met Glu Asp His Ala Gly 1 5 10 15 Thr Tyr Gly Leu Gly Asp Arg Lys Asp Gln Gly Gly Tyr Thr Met His 20 25 30 Gln Asp Gln Glu Gly Asp Thr Asp Ala Gly Leu Lys Glu Ser Pro Leu 35 40 45 Gln Thr Pro Thr Glu Asp Gly Ser Glu Glu Pro Gly Ser Glu Thr Ser 50 55 60 Asp Ala Lys Ser Thr Pro Thr Ala Glu Asp Val Thr Ala Pro Leu Val 65 70 75 80 Asp Glu Gly Ala Pro Gly Lys Gln Ala Ala Ala Gln Pro His Thr Glu 85 90 95 Ile Pro Glu Gly Thr Thr Ala Glu Glu Ala Gly Ile Gly Asp Thr Pro 100 105 110 Ser Leu Glu Asp Glu Ala Ala Gly His Val Thr Gln Ala Arg Met Val 115 120 125 Ser Lys Ser Lys Asp Gly Thr Gly Ser Asp Asp Lys Lys Ala Lys Gly 130 135 140 Ala Asp Gly Lys Thr Lys Ile Ala Thr Pro Arg Gly Ala Ala Pro Pro 145 150 155 160 Gly Gln Lys Gly Gln Ala Asn Ala Thr Arg Ile Pro Ala Lys Thr Pro 165 170 175 Pro Ala Pro Lys Thr Pro Pro Ser Ser Gly Glu Pro Pro Lys Ser Gly 180 185 190 Asp Arg Ser Gly Tyr Ser Ser Pro Gly Ser Pro Gly Thr Pro Gly Ser 195 200 205 Arg Ser Arg Thr Pro Ser Leu Pro Thr Pro Pro Thr Arg Glu Pro Lys 210 215 220 Lys Val Ala Val Val Arg Thr Pro Pro Lys Ser Pro Ser Ser Ala Lys 225 230 235 240 Ser Arg Leu Gln Thr Ala Pro Val Pro Met Pro Asp Leu Lys Asn Val 245 250 255 Lys Ser Lys Ile Gly Ser Thr Glu Asn Leu Lys His Gln Pro Gly Gly 260 265 270 Gly Lys Val Gln Ile Ile Asn Lys Lys Leu Asp Leu Ser Asn Val Gln 275 280 285 Ser Lys Cys Gly Ser Lys Asp Asn Ile Lys His Val Pro Gly Gly Gly 290 295 300 Ser Val Gln Ile Val Tyr Lys Pro Val Asp Leu Ser Lys Val Thr Ser 305 310 315 320 Lys Cys Gly Ser Leu Gly Asn Ile His His Lys Pro Gly Gly Gly Gln 325 330 335 Val Glu Val Lys Ser Glu Lys Leu Asp Phe Lys Asp Arg Val Gln Ser 340 345 350 Lys Ile Gly Ser Leu Asp Asn Ile Thr His Val Pro Gly Gly Gly Asn 355 360 365 Lys Lys Ile Glu Thr His Lys Leu Thr Phe Arg Glu Asn Ala Lys Ala 370 375 380 Lys Thr Asp His Gly Ala Glu Ile Val Tyr Lys Ser Pro Val Val Ser 385 390 395 400 Gly Asp Thr Ser Pro Arg His Leu Ser Asn Val Ser Ser Thr Gly Ser 405 410 415 Ile Asp Met Val Asp Ser Pro Gln Leu Ala Thr Leu Ala Asp Glu Val 420 425 430 Ser Ala Ser Leu Ala Lys Gln Gly Leu Gln Lys Asn Gly Ile Lys Ala 435 440 445 Asn Phe Lys Ile Arg His Asn Ile Glu Asp Gly Gly Val Gln Leu Ala 450 455 460 Asp His Tyr Gln Gln Asn Thr Pro Ile Gly Asp Gly Pro Val Leu Leu 465 470 475 480 Pro Asp Asn His Tyr Leu Ser Tyr Gln Ser Lys Leu Ser Lys Asp Pro 485 490 495 Asn Glu Lys Arg Asp His Met Val Leu Leu Glu Phe Val Thr Ala Ala 500 505 510 Gly Ile Thr Leu Gly Met Asp Glu Leu Tyr Lys 515 520 <210> 3 <211> 1935 <212> DNA <213> Artificial Sequence <220> <223> Tau-VN173 <400> 3 atggctgagc cccgccagga gttcgaagtg atggaagatc acgctgggac gtacgggttg 60 ggggacagga aagatcaggg gggctacacc atgcaccaag accaagaggg tgacacggac 120 gctggcctga aagaatctcc cctgcagacc cccactgagg acggatctga ggaaccgggc 180 tctgaaacct ctgatgctaa gagcactcca acagcggaag atgtgacagc acccttagtg 240 gatgagggag ctcccggcaa gcaggctgcc gcgcagcccc acacggagat cccagaagga 300 accacagctg aagaagcagg cattggagac acccccagcc tggaagacga agctgctggt 360 cacgtgaccc aagctcgcat ggtcagtaaa agcaaagacg ggactggaag cgatgacaaa 420 aaagccaagg gggctgatgg taaaacgaag atcgccacac cgcggggagc agcccctcca 480 ggccagaagg gccaggccaa cgccaccagg attccagcaa aaaccccgcc cgctccaaag 540 acaccaccca gctctggtga acctccaaaa tcaggggatc gcagcggcta cagcagcccc 600 ggctccccag gcactcccgg cagccgctcc cgcaccccgt cccttccaac cccacccacc 660 cgggagccca agaaggtggc agtggtccgt actccaccca agtcgccgtc ttccgccaag 720 agccgcctgc agacagcccc cgtgcccatg ccagacctga agaatgtcaa gtccaagatc 780 ggctccactg agaacctgaa gcaccagccg ggaggcggga aggtgcagat aattaataag 840 aagctggatc ttagcaacgt ccagtccaag tgtggctcaa aggataatat caaacacgtc 900 ccgggaggcg gcagtgtgca aatagtctac aaaccagttg acctgagcaa ggtgacctcc 960 aagtgtggct cattaggcaa catccatcat aaaccaggag gtggccaggt ggaagtaaaa 1020 tctgagaagc ttgacttcaa ggacagagtc cagtcgaaga ttgggtccct ggacaatatc 1080 acccacgtcc ctggcggagg aaataaaaag attgaaaccc acaagctgac cttccgcgag 1140 aacgccaaag ccaagacaga ccacggggcg gagatcgtgt acaagtcgcc agtggtgtct 1200 ggggacacgt ctccacggca tctcagcaat gtctcctcca ccggcagcat cgacatggta 1260 gactcgcccc agctcgccac gctagctgac gaggtgtctg cctccctggc caagcagggt 1320 ttggtcgact ctagaagatc catcgccacc atggtgagca agggcgagga gctgttcacc 1380 ggggtggtgc ccatcctggt cgagctggac ggcgacgtaa acggccacaa gttcagcgtg 1440 tccggcgagg gcgagggcga tgccacctac ggcaagctga ccctgaagct gatctgcacc 1500 accggcaagc tgcccgtgcc ctggcccacc ctcgtgacca ccctgggcta cggcctgcag 1560 tgcttcgccc gctaccccga ccacatgaag cagcacgact tcttcaagtc cgccatgccc 1620 gaaggctacg tccaggagcg caccatcttc ttcaaggacg acggcaacta caagacccgc 1680 gccgaggtga agttcgaggg cgacaccctg gtgaaccgca tcgagctgaa gggcatcgac 1740 ttcaaggagg acggcaacat cctggggcac aagctggagt acaactacaa cagccacaac 1800 gtctatatca ccgccgacaa gcagaagaac ggcatcaagg ccaacttcaa gatccgccac 1860 aacatcgagt agggatcccg ggtggcatcc ctgtgacccc tccccagtgc ctctcctggc 1920 cctggaagtt gccac 1935 <210> 4 <211> 1572 <212> DNA <213> Artificial Sequence <220> <223> Tau-VC155 <400> 4 atggctgagc cccgccagga gttcgaagtg atggaagatc acgctgggac gtacgggttg 60 ggggacagga aagatcaggg gggctacacc atgcaccaag accaagaggg tgacacggac 120 gctggcctga aagaatctcc cctgcagacc cccactgagg acggatctga ggaaccgggc 180 tctgaaacct ctgatgctaa gagcactcca acagcggaag atgtgacagc acccttagtg 240 gatgagggag ctcccggcaa gcaggctgcc gcgcagcccc acacggagat cccagaagga 300 accacagctg aagaagcagg cattggagac acccccagcc tggaagacga agctgctggt 360 cacgtgaccc aagctcgcat ggtcagtaaa agcaaagacg ggactggaag cgatgacaaa 420 aaagccaagg gggctgatgg taaaacgaag atcgccacac cgcggggagc agcccctcca 480 ggccagaagg gccaggccaa cgccaccagg attccagcaa aaaccccgcc cgctccaaag 540 acaccaccca gctctggtga acctccaaaa tcaggggatc gcagcggcta cagcagcccc 600 ggctccccag gcactcccgg cagccgctcc cgcaccccgt cccttccaac cccacccacc 660 cgggagccca agaaggtggc agtggtccgt actccaccca agtcgccgtc ttccgccaag 720 agccgcctgc agacagcccc cgtgcccatg ccagacctga agaatgtcaa gtccaagatc 780 ggctccactg agaacctgaa gcaccagccg ggaggcggga aggtgcagat aattaataag 840 aagctggatc ttagcaacgt ccagtccaag tgtggctcaa aggataatat caaacacgtc 900 ccgggaggcg gcagtgtgca aatagtctac aaaccagttg acctgagcaa ggtgacctcc 960 aagtgtggct cattaggcaa catccatcat aaaccaggag gtggccaggt ggaagtaaaa 1020 tctgagaagc ttgacttcaa ggacagagtc cagtcgaaga ttgggtccct ggacaatatc 1080 acccacgtcc ctggcggagg aaataaaaag attgaaaccc acaagctgac cttccgcgag 1140 aacgccaaag ccaagacaga ccacggggcg gagatcgtgt acaagtcgcc agtggtgtct 1200 ggggacacgt ctccacggca tctcagcaat gtctcctcca ccggcagcat cgacatggta 1260 gactcgcccc agctcgccac gctagctgac gaggtgtctg cctccctggc caagcagggt 1320 ttgcagaaga acggcatcaa ggccaacttc aagatccgcc acaacatcga ggacggcggc 1380 gtgcagctcg ccgaccacta ccagcagaac acccccatcg gcgacggccc cgtgctgctg 1440 cccgacaacc actacctgag ctaccagtcc aaactgagca aagaccccaa cgagaagcgc 1500 gatcacatgg tcctgctgga gttcgtgacc gccgccggga tcactctcgg catggacgag 1560 ctgtacaagt aa 1572

Claims (9)

  1. 세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍으로서,
    전장 인간 타우 아미노산 서열의 C-말단에 비너스 아미노산 서열의 N-말단 서열이 결합된 제1 형광 상보성 아미노산 서열; 및
    전장 인간 타우 아미노산 서열의 C-말단에 비너스 아미노산 서열의 C-말단 서열이 결합된 제2 형광 상보성 아미노산 서열로 이루어지는 이분자 형광 상보성 아미노산 서열 쌍.
  2. 제1항에 있어서, 상기 제1 형광 상보성 아미노산 서열은 서열번호 1로 표시되는 아미노산 서열이고, 상기 제2 형광 상보성 아미노산 서열은 서열번호 2로 표시되는 아미노산 서열인 것을 특징으로 하는 아미노산 서열 쌍.
  3. 제1항에 따른 아미노산 서열 쌍을 암호화하는 염기서열 쌍으로서,
    상기 제1 형광 상보성 아미노산 서열을 암호화하는 제1 염기서열; 및
    상기 제2 형광 상보성 아미노산 서열을 암호화하는 제2 염기서열로 이루어지는 이분자 형광 상보성 아미노산 서열 쌍을 암호화하는 염기서열 쌍.
  4. 제3항에 있어서, 상기 제1 염기서열은 서열번호 3으로 표시되는 염기서열이고, 상기 제2 염기서열은 서열번호 4로 표시되는 염기서열인 것을 특징으로 하는 염기서열 쌍.
  5. 제3항에 따른 제1 염기서열을 포함하는 제1 pCMV 벡터; 및
    제3항에 따른 제2 염기서열을 포함하는 제2 pCMV 벡터로 이루어지는 형질전환용 벡터 쌍.
  6. 제5항에 따른 형질전환용 벡터 쌍에 의해서 형질전환된 세포주.
  7. 제6항에 있어서, 상기 세포주는 상기 벡터 쌍에 의해서 형질전환된 HEK293 세포주인 것을 특징으로 하는 형질전환된 세포주.
  8. 제6항에 따른 세포주에 타우 단백질의 과인산화를 유도하는 물질을 처리하고 처리된 세포주를 배양하는 단계; 및
    상기 세포주에 대해서 면역블롯 분석을 수행하는 단계
    를 포함하는 살아있는 세포들에서 타우-타우 상호작용을 모니터링하는 방법.
  9. 제8항에 있어서, 상기 타우 단백질의 과인산화를 유도하는 물질은 포스콜린 또는 오카다산인 것을 특징으로 하는 살아있는 세포들에서 타우-타우 상호작용을 모니터링하는 방법.
KR1020130119898A 2013-10-08 2013-10-08 세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍 KR101546485B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020130119898A KR101546485B1 (ko) 2013-10-08 2013-10-08 세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍
PCT/KR2014/001214 WO2015053439A1 (ko) 2013-10-08 2014-02-14 세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130119898A KR101546485B1 (ko) 2013-10-08 2013-10-08 세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍

Publications (2)

Publication Number Publication Date
KR20150042308A true KR20150042308A (ko) 2015-04-21
KR101546485B1 KR101546485B1 (ko) 2015-08-26

Family

ID=52813246

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130119898A KR101546485B1 (ko) 2013-10-08 2013-10-08 세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍

Country Status (2)

Country Link
KR (1) KR101546485B1 (ko)
WO (1) WO2015053439A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034093A (ko) 2015-09-18 2017-03-28 한국과학기술연구원 아크릴로니트릴 화합물 및 이를 포함하는 약학 조성물
KR20200037522A (ko) * 2018-10-01 2020-04-09 한국과학기술연구원 세포내 타우-튜불린의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍
KR20200125850A (ko) * 2019-04-26 2020-11-05 한국과학기술연구원 세포 내 티디피 43의 올리고머 형성을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍
CN113667694A (zh) * 2021-07-30 2021-11-19 中国科学院深圳先进技术研究院 基于光敏色素蛋白miRFP670nano的双分子荧光互补系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876423B1 (ko) * 2016-10-10 2018-07-09 한국과학기술연구원 치매 모델 형질전환 마우스 및 이를 이용한 스크리닝 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101050669B1 (ko) * 2008-09-25 2011-07-19 재단법인서울대학교산학협력재단 이분자 형광 상보 기법을 이용하여 단백질의 수모화를 분석하는 방법 및 그에 사용되는 벡터들
KR101499312B1 (ko) * 2012-02-07 2015-03-06 (주)나노몰 타우 단백질 응집현상 검출 시스템

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170034093A (ko) 2015-09-18 2017-03-28 한국과학기술연구원 아크릴로니트릴 화합물 및 이를 포함하는 약학 조성물
KR20200037522A (ko) * 2018-10-01 2020-04-09 한국과학기술연구원 세포내 타우-튜불린의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍
KR20200125850A (ko) * 2019-04-26 2020-11-05 한국과학기술연구원 세포 내 티디피 43의 올리고머 형성을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍
US11421237B2 (en) 2019-04-26 2022-08-23 Korea Institute Of Science And Technology Pair of amino acid sequences for monitoring formation of TDP-43 oligomer in living cells via bimolecular fluorescence complementation
CN113667694A (zh) * 2021-07-30 2021-11-19 中国科学院深圳先进技术研究院 基于光敏色素蛋白miRFP670nano的双分子荧光互补系统

Also Published As

Publication number Publication date
KR101546485B1 (ko) 2015-08-26
WO2015053439A1 (ko) 2015-04-16

Similar Documents

Publication Publication Date Title
Tak et al. Bimolecular fluorescence complementation; lighting-up tau-tau interaction in living cells
Cuchillo‐Ibanez et al. Phosphorylation of tau regulates its axonal transport by controlling its binding to kinesin
Hervas et al. Molecular basis of Orb2 amyloidogenesis and blockade of memory consolidation
Ryan et al. Tyrosine phosphorylation regulates hnRNPA2 granule protein partitioning and reduces neurodegeneration
Chua et al. Phosphorylation-regulated axonal dependent transport of syntaxin 1 is mediated by a Kinesin-1 adapter
KR101546485B1 (ko) 세포내 타우 단백질의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍
JP6824158B2 (ja) アポリポタンパク質eを発現する細胞及びその使用
Schulte et al. DMob4/Phocein regulates synapse formation, axonal transport, and microtubule organization
Kukharsky et al. Calcium-responsive transactivator (CREST) protein shares a set of structural and functional traits with other proteins associated with amyotrophic lateral sclerosis
Kim et al. Prion-like domain mutations in hnRNPs cause multisystem proteinopathy and ALS
Hong et al. TRPC5 channel instability induced by depalmitoylation protects striatal neurons against oxidative stress in Huntington's disease
Mizumaru et al. Suppression of APP‐containing vesicle trafficking and production of β‐amyloid by AID/DHHC‐12 protein
Lin et al. An extensive allelic series of Drosophila kae1 mutants reveals diverse and tissue-specific requirements for t6A biogenesis
Huang et al. A complete catalog of wild-type Sup35 prion variants and their protein-only propagation
KR101499312B1 (ko) 타우 단백질 응집현상 검출 시스템
JP6033844B2 (ja) タウタンパク質の多重突然変異体およびヒトタウオパチーを再現するためのその使用
Subramanian et al. Calsyntenin-3 interacts with the sodium-dependent vitamin C transporter-2 to regulate vitamin C uptake
Galvan et al. Interaction of ASK1 and the β-amyloid precursor protein in a stress-signaling complex
CA3221254A1 (en) Methods and materials for treating proteinopathies
Niewiadomska et al. Cytoskeletal transport in the aging brain: focus on the cholinergic system
KR102147576B1 (ko) 세포내 타우-튜불린의 상호작용을 모니터링하기 위한 이분자 형광 상보성 아미노산 서열 쌍
Känel et al. The tobacco phosphatidylethanolamine-binding protein NtFT4 increases the lifespan of Drosophila melanogaster by interacting with the proteostasis network
Hadad et al. Drosophila spoonbill encodes a dual-specificity A-kinase anchor protein essential for oogenesis
Bocanegra et al. MYO19 interacts weakly with Miro2 GTPases on the mitochondrial outer membrane
Zhang et al. Identification and functional characterization of an aggregation domain in long myosin light chain kinase

Legal Events

Date Code Title Description
E701 Decision to grant or registration of patent right
GRNT Written decision to grant