KR20150028818A - 레거시 장치를 수반하는 소프트-셀 동작을 위한 방법 및 장치 - Google Patents

레거시 장치를 수반하는 소프트-셀 동작을 위한 방법 및 장치 Download PDF

Info

Publication number
KR20150028818A
KR20150028818A KR1020157001885A KR20157001885A KR20150028818A KR 20150028818 A KR20150028818 A KR 20150028818A KR 1020157001885 A KR1020157001885 A KR 1020157001885A KR 20157001885 A KR20157001885 A KR 20157001885A KR 20150028818 A KR20150028818 A KR 20150028818A
Authority
KR
South Korea
Prior art keywords
carriers
carrier
tdd
wireless communication
communication device
Prior art date
Application number
KR1020157001885A
Other languages
English (en)
Inventor
프레드릭 틸만
벤그트 린도프
크리스티안 베르글용
스테판 파크발
Original Assignee
텔레폰악티에볼라겟엘엠에릭슨(펍)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 텔레폰악티에볼라겟엘엠에릭슨(펍) filed Critical 텔레폰악티에볼라겟엘엠에릭슨(펍)
Publication of KR20150028818A publication Critical patent/KR20150028818A/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2643Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile using time-division multiple access [TDMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Abstract

본 명세서의 교시 내용은, 이에 제한하지 않지만, 캐리어 에그리게이션을 직접 지원하지 않는 레거시 장치들을 수반하는 서비스 시나리오에서의 소프트-셀 동작을 개선하는 것을 포함하는 다수의 장점을 제공한다-예를 들어 어떤 시간에 한 주파수 밴드에서만 송신 및 수신할 수 있는 장치. 다른 주파수 밴드에서 동작하는 2개의 캐리어를 가로질러 시간 분할 듀플렉스(TDD) 배열을 시행함으로써, 레거시 장치를 수반하는 스케줄된 전송이 2개의 캐리어 사이에서와 같이 상호 배타적이 된다. 바람직하게는, TDD 배열이 소프트-셀의 매크로- 및 낮은-파워 계층에서 사용된 제1 및 제2캐리어를 가로질러 시행되므로, 개별 캐리어가 주파수 분할 듀플렉스(FDD) 또는 TDD 캐리어, 또는 그 혼합으로서 구성되는지에 관계없이, 이들 캐리어들 사이에서 스케줄된 전송의 TDD-기반의 코디네이션을 시행한다.

Description

레거시 장치를 수반하는 소프트-셀 동작을 위한 방법 및 장치{METHOD AND APPARATUS FOR SOFT-CELL OPERATION INVOLVING LEGACY DEVICES}
본 발명은, 일반적으로 무선 통신 네트워크에 관한 것이고, 특히 캐리어 에그리게이션에 관한 것이다.
캐리어 에그리게이션과 함께, 다중 캐리어가 함께 사용되어, 노드, 예를 들어 무선 통신 장치에 대해서 서비스를 제공한다. 즉, 2 이상의 분리 무선 캐리어가 몇몇 기능적인 또는 동작적인 의미로 함께 "수집"된다. 에그리게이션의 방식 및 그 저변의 동작적인 세부 사항은 수반된 무선 네트워크 및/또는 서비스의 타입에 따라 변화한다. 진보된 LTE(Long Term Evolution) 표준인 LTE 또는 LTE-어드밴스드에 기반한 네트워크에 있어서, 캐리어 에그리게이션은 이용가능한 전송 대역폭을 증가시킨다.
대역폭 증가는 데이터 전송을 위해서 동시에(concurrently) 다중 캐리어를 사용하는 결과인데, 이는 LTE에서의 전송 대역폭을 20 MHz의 최대 단일-캐리어 대역폭을 넘어 효과적으로 증가시킨다. 다중 캐리어는 더 큰 스펙트럼 내에서 인접하게 될 수 있고, 또는 이들은 비-인접하게 될 수 있는데, 여기서 다른 스펙트럼 밴드로부터의 컴포넌트 캐리어가 에그리게이트된다. 전자의 경우는 "인트라-밴드" 에그리게이션으로 언급되는 한편, 후자의 경우는, "인터-밴드" 에그리게이션으로서 언급된다.
ERICSSON AB에 의해 도입된 "유연성 있는 셀" 개념은 캐리어 에그리게이션의 다른 예를 제공한다. 이 개념은, 헤테로지니어스("HetNet") 네트워크 콘텍스트에서의 "스프트-셀" 동작에 의존하는데, 여기서는 더 넓은-영역, 매크로 커버리지 영역이 각각의 낮은-파워 노드에 의해 제공된 하나 이상의 더 작은 커버리지 영역과 겹친다. 낮은-파워 노드는, 무선 커버리지의 개선 및/또는 그들의 커버리지 영역 내에서 동작하는 장치에 대한 더 높은-속도의 데이터 서비스를 위한 기회를 제공하는 것으로서 이해될 수 있다.
몇몇 HetNet 전개에 있어서, 매크로 노드는, 매크로 커버리지 영역 내에 위치된 대응하는 낮은-파워 노드에 의해 제공된 하나 이상의 낮은-파워 셀과 겹치는 매크로 셀을 제공한다. 매크로 및 낮은-파워 셀은 분리 셀들로서 동작하는데, 각각은 네트워크 내의 특정한 셀 식별자와 연관된다. 대조적으로, 소프트-셀 개념에 따라 구성된 HetNet에 있어서, 낮은-파워 셀 및 자체의 겹친 매크로 셀은 동일한 셀 식별자를 공유한다. 이 배열은 "셀"과 "전송 포인트" 간의 차이를 활용한다. 셀-특정 기준 시그널(CRS: Cell-specific references signals)은 네트워크 내의 특정한 셀 식별자에 기능적으로 의존하고, 네트워크 액세스에서 요구됨에 따라 장치가 셀-특정 제어 및 동기화 정보를 복조하기 위해서 네트워크 내에서 동작하게 허용한다. 이에 반해, 전송 포인트는 단순히 안테나 또는 안테나 엘리먼트를 나타내는데, 이로부터 장치는 "셀" 내의 데이터 전송을 수신할 수 있다. 셀 내의 각각의 데이터 전송 포인트로부터 전송된 "복조-특정 기준 시그널(DMRS: Demodulation-specific Reference Signals)은, 전송과 연관된 채널 및 처리를 결정하는 것을 가능하게 한다.
따라서, 소프트-셀 콘텍스트에 있어서, 매크로 셀 및 낮은-파워 셀은, 공유된 셀 내의 다른 전송 포인트를 나타내는 매크로 노드 및 낮은-파워 노드와 함께, "공유된" 셀로서 기능한다. 이 배열은, 예를 들어 소정 시스템 정보의 전송과 유저-플레인 데이터 간의 분할을 허용한다. 즉, 매크로 노드에 의해 제공된 매크로 계층은 소정 시스템 정보를 공유된 셀로 나타낸 더 넓은 커버리지 영역 내에서 동작하는 장치에 방송하기 위해 사용되는 한편, 낮은-파워 노드에 의해 제공된 낮은-파워 계층은 매크로-계층 커버리지 영역에 의해 겹쳐진 낮은-파워 커버리지 영역에서 동작하는 하나 이상의 장치에 대한 고속 데이터 서비스에 대해서 사용된다. 추가의 소프트-셀 세부 사항에 대해서, "LTE에서의 헤테로지니어스 네트워크 전개" Parkvall, et al., Ericsson Review(Feb. 2011)을 참조하는데, 이는 다중-주파수 캐리어 에그리게이션 능력을 갖는 장치에 대한, 리소스 구획 및 AB(Almost Blank Almost Blank Subframe) 시그널링을 위한 주파수 분할의 사용을 논의한다. 상기 소프트-셀 배열은 유저 데이터로부터 시스템 정보와 제어 플레인을 결합 해제시킨다. 가장 단순한 실행에 있어서, 매크로 노드에 의한 제어 플레인 전송 및 낮은-파워 노드에 의한 유저 데이터 전송은 동일한 캐리어 주파수를 사용하고, 전송에 수반된 어떤 노드로서만 소프트-셀 콘텍스트 내에서 "분리"된다. 그런데, 스펙트럼 최적화와 함께, 제어 정보는 매크로 노드에 의해 제1주파수 밴드에서 전송되고, 유저 데이터는 낮은-파워 노드(들)에 의해 제2주파수 밴드에서 전송된다. 셀룰러 무선 네트워크에서 사용된 예의 주파수 밴드는, 800 MHz, 900 MHz, 1800 MHz, 및 1900 MHz 밴드를 포함한다.
스펙트럼 최적화는, 다른 주파수 밴드의 사용이 모든 주파수 밴드에서의 동시 통신을 유지하도록 소프트-셀 내의 장치를 강제함에 따른, 복잡성의 대가이다. 다중 주파수 밴드에서 동시 통신을 유지하기 위한 요구 조건은 장치가 부가적인 또는 더 복잡한 무선 송수신기 회로를 갖도록 강제한다. 이 요구 조건은 캐리어 에그리게이션의 사용을 향한 일반적인 경향과 하모니를 이루는데, 이는 하나 이상의 주파수 밴드를 가로질러 동시 동작을 지원하기 위해 호환가능한 장치를 반듯이 요구하지만, 이는 어떤 시간에 한 주파수 밴드에서만 동작하기 위해 설계된 "레거시" 장치들의 경우에는 문제점을 나타낸다.
공지된 조정(accommodation)은 데이터 전송에 측정 갭을 도입함으로써 레거시-장치 문제를 해결한다. 이들 갭, 예를 들어, 40-100 ms마다 6 ms 갭은, 특히 어텐던트(attendant) 재전송 타이밍 및 잠재 이슈들 때문에, 데이터 전송에 대해서 유용하지 않지만, 이들은 작은 양의 제어 시그널링 동안 매크로-계층을 감시하기 위한 레거시 장치 시간을 허용한다. 그런데, 이러한 감시는 낮은-파워 계층에서 데이터 전송을 인터럽트한다. 40-100 ms 범위의 갭 주기성과 함께, 측정 갭의 사용은 낮은-파워 계층에서의 데이터 처리량을 유효하게 감소시킨다.
본 명세서의 교시 내용은, 이에 제한하지 않지만, 캐리어 에그리게이션을 직접 지원하지 않는 레거시 장치들을 수반하는 서비스 시나리오에서의 소프트-셀 동작을 개선하는 것을 포함하는 다수의 장점을 제공한다-예를 들어, 어떤 시간에 한 주파수 밴드에서만 송신 및 수신할 수 있는 장치. 다른 주파수 밴드에서 동작하는 2개의 캐리어를 가로질러 시간 분할 듀플렉스(TDD) 배열을 시행함으로써, 레거시 장치를 수반하는 스케줄된 전송이 2개의 캐리어 사이에서와 같이 상호 배타적이 된다. 바람직하게는, TDD 배열이 소프트-셀의 매크로- 및 낮은-파워 계층에서 사용된 제1 및 제2캐리어를 가로질러 시행되므로, 개별 캐리어가 주파수 분할 듀플렉스(FDD) 또는 TDD 캐리어, 또는 그 혼합으로서 구성되는지에 관계없이, 이들 캐리어들 사이에서 스케줄된 전송의 TDD-기반의 코디네이션을 시행한다.
한 예에 있어서는, 무선 통신 장치의 송수신기를 시간 내에 공유하도록 동기화된 제1 및 제2캐리어가 제1 및 제2주파수 밴드 각각에서 동작하게 허용하는 방법은, 2개의 캐리어에 대한 시간 분할 듀플렉스(TDD) 배열을 결정하는 단계를 포함한다. 여기서, TDD 배열를 결정하는 단계는 무선 통신 장치로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어 사이에서와 같이 시간 내에 상호 배타적이 되게, 2개의 캐리어 사이의 시간의 상보적 할당을 만드는 단계를 포함한다. 대응해서, 본 방법은, 2개의 캐리어 중 적어도 하나 상에서 업링크 및 다운링크 전송을 스케줄링하는데 책임이 있는 무선 통신 장치 및/또는 네트워크 노드에 TDD 배열을 가리키는 할당 정보를 송신하는 단계를 포함한다.
소프트-셀 콘텍스트에 적용됨에 따라 본 방법은, 매크로-계층 캐리어과 낮은-파워 계층 캐리어 사이에서 TDD 배열을 시행하는데, 여기서 주어진 인터벌 내의 몇몇 프레임은 매크로 계층 상에서 장치로 또는 이로부터의 전송을 스케줄링하는데 매크로 노드에 의해 사용하기 위해 할당되고, 인터벌 내의 다른 프레임은 낮은-파워 계층 상에서 장치로 또는 이로부터의 전송을 스케줄링하는데 낮은-파워 노드에 의해 사용하기 위해 할당된다. 매크로 노드는, TDD 배열을 결정하고, 낮은-파워 노드에 세부 사항을 통신하도록 구성될 수 있다. 대안적으로, 낮은-파워 노드는 TDD 배열을 결정하고, 매크로 노드에 세부 사항을 통신하도록 구성된다. 또 다른 대안으로서, 2개의 노드는 TDD 배열을 협동적으로 결정하도록 구성되고, 중앙화된 노드는 TDD 배열을 결정하도록 구성된다.
일례의 네트워크 노드는, 하나 이상의 통신 인터페이스를 포함하여 구성되고, 하나 이상의 통신 인터페이스와 동작적으로 연관된 처리 회로를 포함하여 구성된다. 이 할당 처리 회로는, 무선 통신 장치의 송수신기를 시간 내에 공유하도록 동기화된 제1 및 제2캐리어(22, 24)가 제1 및 제2주파수 밴드 각각에서 동작하게 허용하도록 구성된다.
이에 관해서, 할당 처리 회로는, 2개의 캐리어 사이의 시간의 상보적 할당을 만듦으로써, 2개의 캐리어에 대한 시간 분할 듀플렉스(TDD) 배열(30)을 결정하도록 구성된다. 따라서, TDD 배열은, 무선 통신 장치로의 또는 이로부터의 전송이, 캐리어가 주파수 분할 듀플렉스(FDD) 또는 TDD 캐리어 모두 또는 그 혼합으로서 구성되는지에 관계없이, 2개의 캐리어들 사이에서와 같이 시간 내에 상호 배타적이 되는 것을 의미한다. 할당 처리 회로는,-예를 들어, 하나 이상의 통신 인터페이스-를 통해서, 2개의 캐리어 중 적어도 하나 상에서 업링크 및 다운링크를 스케줄링하는데 책임이 있는 무선 통신 장치 및/또는 네트워크 노드에 TDD 배열을 가리키는 할당 정보를 송신하도록 더 구성된다.
대응하는 예의 구성에 있어서, 무선 통신 장치는, 주파수 듀플렉스 분할(FDD) 동작을 위해 구성된 통신 송수신기와; 통신 송수신기와 동작적으로 연관된 하나 이상의 처리 회로를 포함하고, 처리 회로는, 제1 및 제2주파수 밴드에서 각각 동작하는 (동기화된) 제1 및 제2캐리어 상에서 무선 통신 장치에 서비스를 제공하기 위해 사용되는 시간 분할 듀플렉스(TDD) 배열을 가리키는 네트워크로부터 할당 정보를 수신하도록 구성된다. 특히, TDD 배열은 2개의 캐리어 사이의 시간의 상보적 할당을 가리키므로, 무선 통신 장치로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어 사이에서와 같이 시간 내에 상호 배타적이 되게 한다.
이 지식에 기반해서, 장치의 처리 회로는, 가리켜진 TDD 배열에 따라서 제1과 제2주파수 밴드 사이에서 교대로 통신 송수신기를 동작하도록 구성된다. 결과적으로, 장치는 동일한 통신 송수신기를 사용해서 캐리어 모두 상에서 무선 통신 네트워크와 통신한다. 본 콘텍스트에 있어서, "동일한" 통신 송수신기는, 2개 이상의 다른 주파수 밴드에서의 동시 동작을 위해 다중 주파수 밴드에 동시에 동조될 수 있는 더 복잡한 송수신기와 비교함에 따라, 동시에 한 캐리어에 동조된 동일한 전송 및/또는 수신 체인의 재사용을 함축한다.
무선 통신 장치에서의 대응하는 예의 방법은, 제1 및 제2주파수 밴드 각각에서 동작하는 (동기화된) 제1 및 제2캐리어 상에서 장치에 서비스를 제공하기 위해 사용되는 시간 분할 듀플렉스(TDD) 배열을 가리키는 무선 통신 네트워크로부터의 할당 정보를 수신하는 단계를 포함한다. 이전과 같이, TDD 배열은 2개의 캐리어 사이의 시간의 상보적 할당을 가리키므로, 무선 통신 장치로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어 사이에서와 같이 시간 내에 상호 배타적이 된다. 대응해서, 본 방법은, 가리켜진 TDD 배열에 따라서 제1과 제2주파수 밴드 사이에서 교대로 통신 송수신기를 동작하는 단계를 포함한다. 결과적으로, 본 방법은, 어떤 시간에 한 주파수 밴드에 동조된 동일한 송수신기가, 2개의 캐리어 상에서 시간-교대하는 통신을 위해 사용되게 허용한다.
네트워크-측 및 장치-측 모두 상에서의 상기 예의 방법 및 장치는, HetNet 환경에서 동작하도록 TDD-기반의 캐리어 에그리게이션을 제공하고, 레거시 장치가 어떤 시간에 한 주파수 밴드에서만 동조할 수 있게 허용하는데, 여기서 매크로 셀은 제1주파수 밴드를 사용하고, 매크로 셀로 겹친 낮은-파워 셀은 제2주파수 밴드를 사용한다. 물론, 본 발명은 이러한 형태 및 장점에 제한되지 않는다. 실제로, 본 기술 분야의 당업자는 다음의 상세한 설명 및 첨부 도면을 참조로, 부가적인 형태 및 장점을 이식하게 된다.
도 1은 본 명세서에서 교시된 바와 같이 캐리어 에그리게이션을 위해 구성된 무선 통신 네트워크의 일실시형태의 부분적인 블록도.
도 2는 제1 및 제2주파수 밴드에서 각각 동작하는 제1 및 제2캐리어의 TDD-기반의 에그리게이션에 대해 결정된 것으로서의 일례의 시간 분할 듀플렉스(TDD) 배열의 도면.
도 3은 TDD-기반의 캐리어 에그리게이션의 다른 예의 도면.
도 4는 중앙화된 노드에서 또는, 에그리게이트된 캐리어를 통해 무선 통신 장치를 서빙하는데 수반된 기지국 중 하나에서 실시될 수 있는 것과 같은, 캐리어 에그리게이션 처리의 일실시형태의 방법의 논리 흐름도.
도 5는 캐리어 에그리게이션 처리를 수행하도록 구성된 네트워크 노드의 일실시형태의 블록도.
도 6은 유저 장비(UE) 또는 다른 무선 통신 장치에서 실시될 수 있는 것과 같은 에그리게이트된 캐리어와 함께 동작하는 방법의 일실시형태의 논리 흐름도.
도 7은 에그리게이트된 캐리어와 함께 동작하기 위해 구성된 일실시형태의 UE 또는 다른 무선 통신 장치의 블록도.
도 8은 도 4에서 도입된 방법을 위한 또 다른 예의 세부 사항을 도시하는 논리 흐름도.
도 1은 일례의 무선 통신 네트워크(10)를 도시한다. 네트워크(10)는, 본 명세서에서 낮은-파워 셀(14-1, 14-2, 및 14-3)로서 나타낸 하나 이상의 낮은-파워 셀(14)과 겹치는 하나 이상의 매크로 셀(12)을 갖는 헤테로지니어스 네트워크("HetNet")로서 구성된다. 간략하게, 이들 낮은-파워 셀(14)은, 마이크로 셀(12)에 의해 제공된 매크로 커버리지 영역과 비교해서 더 작은 커버리지 영역을 나타내기 위해서, 이후 "피코 셀(14)"로서 언급된다. 본 의미에서 "피코"는, 제한하지 않지만, 홈 eNBs 및 다른 거주 시설의 또는 개인의 기지국, 펨토(femto) 기지국, 중계 노드, 리피터(repeater) 등을 포함하는 일반적으로 다양한 타입의 낮은-파워 노드를 커버한다. 이 전문 용어와 함께, 매크로 기지국(16)은 매크로 셀(12)을 제어하고, 각각의 피코 기지국(18)은 피코 셀(14-1, 14-2 및 14-3)을 제어한다. 대응해서, 매크로-셀 및/또는 피코-셀 커버리지 영역 내에서 동작하는 일례의 수의 무선 통신 장치(20)("장치들(20)" 또는 "장치(20)")를 본다. 일례의 경우, 제1캐리어(22)에 의해 매크로 셀(12)에 접속 및 제2캐리어(24)에 의해 피코 셀(14-1)에 접속되도록 위치된 장치(20)를 본다. 다르게 표시하지 않으면, 용어 "캐리어"는 업링크와 다운링크 전송 사이의 시간 분할 듀플렉스(TDD) 교대로 단일 주파수에서 동작하는 업링크 및 다운링크로 또는, 주파수 분할 듀플렉스(FDD)로 동작하는 업링크 및 다운링크로 언급되는데, 동시 업링크 및 다운링크 전송이 단일 주파수 밴드 내의 오프셋 주파수에서만 일어날 수 있다.
몇몇 실시형태에 있어서, 네트워크(10)는 소프트-셀 구성에서 동작하는데, 여기서 매크로 셀(12) 및 피코 셀(14)은 네트워크(10) 내의 동일한 셀 식별자를 공유하여, 이들이 공유된 셀 내의 분리 전송 포인트로서 효과적으로 동작하게 만든다. 더욱이, 적어도 하나의 이러한 실시형태에 있어서, 매크로 셀(12)은, 적어도 주로, 시스템 정보(SI)와 같은 제어-플레인 시그널링을 전송하기 위해 사용되는 한편, 피코 셀(14)은 적어도 주로, 유저 데이터를 전송하기 위해 사용된다.
통상적인 HetNet 실행에 있어서, 장치(20)는 자체의 무선 송수신기를 2개의 다른 주파수 밴드에 동시에 동조하도록 강제하게 되고, 적어도 여기서 제1 및 제2캐리어(22, 24)는 다른 주파수 밴드에 있게 된다. 2개의 다른 주파수 밴드의 사용이 본 명세서에서 상정된다. 본 명세서의 교시 내용은 2개의 캐리어(22, 24)를 가로질러 바람직하게는 TDD 배열(30)(도 2 및 3의 예에 나타낸 바와 같은)을 시행하는데, 여기서 시간의 몇몇 규정된 인터벌에 걸친 세트의 프레임(또는 소정의 다른 규정된 스케줄링 인터벌)이, 장치(20)로 또는 이로부터의 스케줄된 전송을 만드는데 사용하기 위해, 제1 및 제2캐리어(22, 24)에 대한 상호 배타적인 서브세트로 할당된다. "배타성"은 동일한 방향으로 2개의 캐리어(22, 24) 상의 전송들 사이에이다. 즉, 상호 배타적인 할당은 장치(20)에 대한 동시 다운링크 전송이 2개의 캐리어(22, 24) 상에서 스케줄되는 것을 방지하고, 장치(20)로부터의 동시 업링크 전송이 2개의 캐리어(22, 24) 상에서 스케줄되는 것을 방지한다.
이에 관해서, TDD 배열(30)은 수반된 매크로 셀(12) 및 피코 셀(14) 내의 장치(20)로 또는 이로부터의 전송을 스케줄링하는데 책임에 있는 노드에 대해서 시행되는 할당 방안 또는 패턴으로서 이해될 수 있다. TDD 배열(30)은, 프레임이 장치(20)로 또는 이로부터의 전송을 스케줄링하기 위해 각각의 노드에서 사용될 수 있는, 이들 수반된 노드에 대해서 기술한다. 결과적으로, 장치(20)에 대한 스케줄된 다운링크 전송들이 어떤 시간에 한 캐리어(22 또는 24)에서만 일어남에 따라, 장치(20)는 자체의 수신기를 어떤 시간에 한 주파수 밴드에 대해서만 동조할 필요가 있다. 유사하게, 2개의 캐리어(22, 24)에 대한 스케줄링을 핸들링하는 노드에서 시행된 TDD 배열(30)의 결과로서, 장치에 대한 스케줄된 업링크 전송들이 어떤 시간에 한 캐리어(22 또는 24) 상에서만 일어남에 따라, 장치(20)는 자체의 송신기를 어떤 시간에 한 주파수 밴드에 대해서만 동조할 필요가 있다.
논의되는 장치(20)가 다중 주파수 밴드 상에서 동시에 동작할 수 없는 레거시 장치인 것으로 상정하면, TDD 배열(30)의 시행은 따라서 장치(20)가 HetNet 콘텍스트로 캐리어 에그리게이션의 TDD-기반의 형태로 동작하게 허용한다.
더 상세하게는, 도 2는 제1 및 제2캐리어(22 및 24)를 가로질러 시행된 일례의 TDD 배열(30)을 도시하는데, 여기서 제1캐리어(22)는 동시 업링크 및 다운링크 전송 시간을 갖는 FDD 캐리어이고 제2캐리어(24)는 업링크 및 다운링크에 대해서 교대하는 및 겹치지 않는 전송 및 수신 시간을 갖는 TDD 캐리어이다. 도면에서 "WCD"는 "무선 통신 장치"를 가리킨다.
TDD 배열(30)은 2개의 캐리어(22, 24) 사이의 시간의 상보적 할당을 시행하므로, 무선 통신 장치(20)로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어(22, 24) 사이에서와 같이 시간 내에 상호 배타적이 된다. 이들 시간의 상보적 할당은, 어떤 시간에 한 캐리어(22 또는 24)만이 주어진 "프레임(32)" 내에서 장치(20)로의 다운링크 전송을 위해 스케줄될 수 있고, 유사하게 어떤 시간에 한 캐리어(22 또는 24)만이 장치(20)부터 업링크 전송을 위해 스케줄될 수 있는 것을 의미한다.
장치(20)는 어떤 시간에 한 주파수 밴드에서 사용하도록 의도되지만 자체의 수신기가 한 주파수 밴드에 동조하는 한편 자체의 송신기가 다른 주파수 밴드에 동조하게 허용하는 다중밴드 송수신기를 가질 수 있는 것으로 상정할 수 있다. 도 2에 있어서, TDD 배열(30)은, 각각의 프레임(32) 내에 다운링크 방향을 2개의 캐리어(22 또는 24) 중 하나로 할당하는, 한편 동일한 프레임(32) 내에 업링크 방향을 2개의 캐리어(22 또는 24) 중 다른 하나로 할당함으로써, 처리량을 최대화하고 시간-소비하는 갭을 회피하기 위한 능력을 활용한다.
도 2의 바닥에서 "WCD 무선"에 대한 이 할당 패턴을 보는데, 여기서 "TX_P"는 피코 계층 상에서 장치(20)로부터의 스케줄된 업링크 전송을 만들기 위해 필요로 됨에 따라 사용을 위해 할당된 프레임(32)을 나타낸다. 유사하게, "RX_P"는 피코 계층 상에서 장치(20)로의 스케줄된 다운링크 전송을 만들기 위해 필요로 됨에 따라 사용을 위해 할당된 프레임(32)을 나타낸다. 동일한 맥락에서, "TX_M"은 매크로 계층 상에서 장치(20)로부터의 스케줄된 업링크 전송을 만들기 위해 필요로 됨에 따라 사용을 위해 할당된 프레임(32)을 나타낸다. 유사하게, "RX_M"은 매크로 계층 상에서 장치(20)로의 스케줄된 다운링크 전송을 만들기 위해 필요로 됨에 따라 사용을 위해 할당된 프레임(32)을 나타낸다.
특히, 도 2에서는, TDD 배열(30)의 시행이, 이 예에서 FDD-기반의 캐리어인 캐리어(22)에 대한 "재-스케줄링"을 일으키게 하는 것을 본다. 특히, 캐리어(22)의 FDD 특성은 TDD 배열(30)에 따라서 캐리어(24)와 시간-조화된 TDD 구조로 변환된다. 그런데, 본 명세서의 교시 내용은, 매크로 계층에서 사용된 캐리어(22) 및 피코 계층에서 사용된 캐리어(24)가 모두 TDD-기반의 캐리어인 경우와 같은 다른 경우에 직접 적용가능하다. 이 경우의 일례에 대해서 도 3을 참조하면, 피코 계층에 대한 캐리어(24)는 재-스케줄되거나 또는 그렇지 않으면 TDD 배열(30)의 시행에 의해 "재-시간화(re-timed)"된다. 다시, TDD 배열(30)에 의해 시행된 시간의 상보적 할당은 2개의 캐리어(22 및 24) 사이에서와 같이 상호 배타적인 장치(20)에 대한 스케줄된 다운링크 전송을 만들고, 2개의 캐리어(22 및 24) 사이에서와 같이 상호 배타적인 장치(20)로부터의 스케줄된 업링크 전송을 만든다. 이 의미의 TDD 배열(30)은, 2개의 캐리어(22 및 24) 사이에서 다운링크 및 업링크 전송 시간의 상호 배타적인 할당을 구현하는 할당 데이터로서 이해될 수 있다. 이와 같이, TDD 배열(30)는, 캐리어(22, 24) 중 어느 하나 또는 모두의 스케줄링에 수반된 장치(20) 및/또는 소정의 다른 노드(들)에 대한 TDD 배열을 결정하는 노드(들)로부터 송신된 할당 정보로서 시그널 될 수 있다.
이들 예를 고려해서, 도 4는 일례의 방법(400)을 도시하는데, 이 방법은 장치(20)의 송수신기를 시간 내에 "공유"하도록 각각의 제1 및 제2주파수 밴드에서 동작하는 동기화된 제1 및 제2캐리어(22, 24)를 허용한다. 따라서, 이 방법(400)은 장치(20)가 TDD 양식으로 캐리어(22, 24) 모두와 통신하게 허용한다.
본 방법(400)은 2개의 캐리어(22, 24) 사이의 시간의 상보적 할당을 만듦으로써 2개의 캐리어(22, 24)에 대한 TDD 배열을 결정하는 것을 포함하므로, 장치(20)로 또는 이로부터의 스케줄된 전송이 2개의 캐리어(22, 24) 사이에서와 같이 시간 내에 상호 배타적이 되고(블록 402) 및, 2개의 캐리어(22, 24) 중 적어도 하나 상에서 업링크 및 다운링크 전송을 스케줄링하는데 책임이 있는 장치(20) 및/또는 다른 네트워크 노드에 TDD 배열(30)을 가리키는 할당 정보를 송신하는 것을 더 포함한다(블록 404). 본 방법(400)은 네트워크(10) 내의 주어진 쌍의 매크로 및 피코 셀(12, 14)에 의해 서빙되는 각각의 장치(20)에 대해서 수행될 수 있다. 그런데, 동일한 TDD 배열(30)은, 주어진 TDD 배열(30)이 목표 장치(20)에 대한 실재의 스케줄링 결정을 나타내지 못하고, 장치(20)로의 또는 이로부터의 전송을 스케줄링하기 위해 허용가능한 시간의 할당을 나타내기 때문에, 하나 이상의 장치(20)에 대해서 사용될 수 있다. 이에 관해서, 주어진 쌍의 매크로 및 피코 셀(12, 14) 내에서 동작하는 다중 장치(20)에 속하는 TDD 배열(30)(들)에 의해 시행되는 제한들은, 이들 셀 내의 스케줄된 전송을 관리하는 진행 중인 스케줄링 프로세스들에 대한 다른 세트의 변수 입력을 나타낸다.
따라서, 주어진 장치(20)에 적용됨에 따라 주어진 TDD 배열(30)에 대해서, 본 방법(400)은, TDD 배열(30) 하에서 제1 또는 제2캐리어(22 또는 24)에 할당된 시간들에서만, 제1 또는 제2캐리어(22 또는 24) 상에서 무선 통신 장치(20)로 및 이로부터의 다운링크 및 업링크 전송을 스케줄링하는 것을 더 포함하여 구성된다. 본 방법(400)의 이 확장은, 예를 들어 TDD 배열(30)이 캐리어(22 및 24) 중 하나 또는 모두 상에서의 전송을 스케줄링하는데 책임이 있는 노드 내에서 결정되는 곳에서, 적용한다.
또한, 본 방법(400)은, 일련의 연속적인 할당 윈도우(34) 각각에서, 결정하는(블록 402) 및 송신하는(블록 404) 단계를 수행하는 것을 포함할 수 있다. 도 2 및 3의 콘텍스트에서 설명한 바와 같이, 각각의 할당 윈도우(34)는 다수의 프레임(32)들에 걸치므로, 제1캐리어와 제2캐리어 사이의 프레임(32)의 분할이, 제1 및 제2캐리어(22 및 24) 상에서 무선 통신 장치(20)에 대한 서비스 요구 조건을 변경하는 것에 응답해서 연속적인 할당 윈도우(34)에 걸쳐서 동적으로 갱신된다. 이 콘텍스트에 있어서, 제1 및 제2캐리어(22 및 24) 사이의 주어진 할당 윈도우(34) 내의 프레임(32)을 "분할하는" 것은, 상호 배타적인 다운링크 및 업링크 분할을 만드는 것으로서 이해될 수 있다-예를 들어, 소정의 주어진 프레임(32)이 다운링크 방향으로 캐리어(22 및 24) 중 하나에만 할당되고, 소정의 주어진 프레임(32)은 업링크 방향으로 캐리어(22 및 24) 중 하나에만 할당된다. 그런데, 동일한 프레임(32)이 다운링크 및 업링크 방향으로 동일한 캐리어(22 또는 24)에 할당되거나, 또는 동일한 프레임(32)이 2개의 캐리어(22 또는 24) 중 하나로 다운링크 방향으로 할당되고 2개의 캐리어(22 또는 24) 다른 하나로 업링크 방향으로 할당되는 것으로 될 수 있다.
특별한 할당 패턴은, 예를 들어 2개의 캐리어(22 및 24)에 걸쳐서 송신되는 시그널링 또는 데이터의 각각의 양에 의존한다. TDD 배열(30)은 2개의 캐리어(22 및 24) 사이에서 요구되는 로드 밸런싱, 예를 들어 매크로 계층 다운링크와 피코 계층 다운링크 간의 로드 밸런싱을, 시행하는 구조로 될 수 있다. 예를 들어, 몇몇 실시형태에 있어서, 제1캐리어(22)는 제2캐리어(24)로 서빙되는 아래 놓인 피코 셀(14)과의 소프트-셀 배열로 동작하는 매크로 셀(12)을 서빙한다. 여기서, TDD 배열(30)은 다운링크 및/또는 업링크 내의 피코 계층을 더 무겁게 로드하기 위해서 사용될 수 있다. 소정의 경우에 있어서, 본 방법(400)은 매크로 셀(12)에 대응하는 하나 또는 모두의 매크로 기지국(16) 및 피코 셀(14)에 대응하는 피코 기지국(18)에서 수행된다. 즉, 매크로 기지국(16)이 TDD 배열(30)을 결정하거나 또는 피코 기지국(18)이 TDD 배열(30)을 결정하거나 또는 이것이 매크로와 피코 기지국(16 및 18) 사이에서 협동적으로 결정된다. 더 일반적으로, 제1기지국이 2개의 캐리어(22 및 24) 중 하나를 제어하고 TDD 배열(30)을 결정하는 것으로 상정하면, 본 방법(400)은 TDD 배열(30)을 가리키는 시그널링을 2개의 캐리어(22 및 24) 중 다른 하나을 제어하는 제2기지국으로 송신하는 제1기지국을 포함한다.
부가적으로, 또는 대안적으로, 할당 패턴은 2개의 캐리어(22 및 24)가 FDD-기반의, TDD-기반의 또는 혼합의(한 TDD, 한 FDD) 것인지에 의존할 수 있다. 도 2는, 예를 들어 FDD-기반의 버전의 캐리어(22)가 일례의 TDD 배열(30)에 의해 시행된 TDD 구조에 따라서 재스케줄되는 것을 나타내는 한편, 도 3은 TDD-기반의 버전의 캐리어(24)가 다른 예의 TDD 배열(30)에 따라서 재시간화된다.
네트워크(10) 내의 노드 또는 노드들이 TDD 배열(30)을 결정하는 것과 관계없이, TDD 배열(30)은 제1 및 제2캐리어(22 및 24) 상에서 장치(20)를 서빙하기 위한 상대적인 서비스 요구 조건의 함수로서 결정될 수 있다. 이 접근과 함께, 장치(20)를 서빙하기 위한 더 높은 서비스 요구 조건을 갖는 캐리어(22 또는 24)가 다른 캐리어(22 또는 24)에 주어진 시간의 할당과 비교해서 시간의 더 큰 할당을 수신한다.
이에 관해서, 도 2 및 3은 비제한적인 예로서 이해되어야 한다-예를 들어, 10번째마다 프레임(32)은 2개의 캐리어(22 및 24) 중 하나에 다운링크(또는 업링크) 방향으로 할당될 수 있고, 나머지 9개의 프레임(32)은 2개의 캐리어(22 및 24) 중 다른 하나에 할당된다. 더 넓게는, 상보적인 나머지 부분이 제1 및 제2캐리어(22 및 24) 중 다른 하나에 할당되는 것과 함께, 시간의 몇몇 윈도우 내의 다운링크 및 업링크-스케줄링 인터벌의 어떤 부분이 제1 또는 제2캐리어(22 또는 24)에 할당되는지를 결정함에 따라, TDD 배열 생성을 볼 수 있다.
도 5는 소정 수의 장치(20)에 대해서 TDD 배열(30)을 결정하도록 구성된 노드(40)를 도시한다. 도 1에 나타낸 노드(40)는, 매크로 기지국(16) 및 피코 기지국(18)으로부터 분리될 수 있는 것을 점선으로 가리키는 것으로 이해한다. 예를 들어, 적어도 일실시형태에 있어서, 노드(40)는 매크로 및 피코 기지국(16 및 18)에 대해서 중앙화된다.
따라서, 중앙화된 예에서의 노드(40)는 TDD 배열(30)을 결정하고, 노드(40)가 수반된 캐리어 상에서 스케줄링을 수행하지 않더라도, 그 배열을 수반된 기지국으로 시그널할 수 있다. 그런데, 또한, 본 명세서에서는, 매크로 기지국(16)이 노드(40)로서 동작하도록 구성되거나, 또는 피코 기지국(18)이 노드(40)로서 동작하도록 구성되는 것으로 고려된다. 더욱이, 기능성은 매크로 및 피코 기지국(16 및 18)을 가로질러 분산될 수 있다.
이들 예를 고려해서, 노드(40)가 하나 이상의 통신 인터페이스(42) 및 하나 이상의 통신 인터페이스(42)와 동작적으로 연관된 할당 처리 회로(46)를 적어도 기능적으로 포함하는 하나 이상의 처리 회로(44)를 포함하는 것을 보게 된다. 할당 처리 회로(46)는, 장치(20)의 송수신기를 시간 내에 공유하도록 각각의 제1 및 제2주파수 밴드에서 동작하는 동기화된 제1 및 제2캐리어(22 및 24)를 허용하도록 구성된다. 하나 이상의 처리 회로(44)가 컴퓨터 회로, 예를 들어 하나 이상의 마이크로프로세서-기반의 회로, DSP-기반의 회로, 또는 다른 디지털 처리 회로를 포함하여 구성될 수 있는 것으로 이해된다. 할당 처리 회로(46)는, 2개의 캐리어(22, 24) 사이의 시간의 상보적 할당을 만듦으로써 2개의 캐리어(22, 24)에 대한 TDD 배열을 결정하도록 구성되므로, 무선 통신 장치(20)로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어(22 및 24) 사이에서와 같이 시간 내에 상호 배타적이 되고; 2개의 캐리어(22 및 24) 중 적어도 하나 상에서 업링크 및 다운링크 전송을 스케줄링하는데 책임이 있는 적어도 하나의 장치(20) 및 네트워크 노드에 대해서 TDD 배열(30)을 가리키는 할당 정보를 송신한다. 논의되는 할당은 2개의 캐리어(22 및 24) 상에서 동일한-방향 전송에 대해서 상보적인데, 예를 들어 장치(20)에 대한 스케줄된 다운링크 전송을 만들기 위해 할당된 시간은 2개의 캐리어(22 및 24) 사이에서와 같이 시간 내에서 겹치지 않고, 업링크 방향에 대해서도 참이다.
노드(40)가 주어진 쌍의 매크로 및 피코 기지국(16 및 18)으로부터 중앙화 및 분리되면, 노드는 할당 정보를 이러한 기지국들 모두에 송신할 수 있고, 또한 장치(20)에도 송신 가능하다. 매크로 기지국(16)이 노드(40)로서 동작하도록 구성되면, 매크로 기지국(16)은 할당 정보를 피코 노드(18) 및/또는 장치(20)에 송신할 수 있다. 역으로, 피코 노드(18)가 노드(40)로서 동작하도록 구성되면, 피코 노드(18)는 할당 정보를 매크로 노드(16) 및/또는 장치(20)로 송신할 수 있다. 모든 이러한 구성의 지원에 있어서, 주어진 장치(20)에 대한 TDD 배열(30)을 결정할 때 고려할 수 있는, 서비스 요구 조건 정보, 네트워크 로딩 정보 또는 다른 네트워크 조건들을 공유하기 위해서 노드 간 시그널링이 교환될 수 있는 것으로, 이해될 수 있다. 노드(40)가 매크로 및 피코 기지국(16 및 18) 중 하나인 경우, 일반적으로 노드는, TDD 배열(30) 하에서 제1 또는 제2캐리어(22 또는 24)에 할당된 시간에서만 제1 또는 제2캐리어(22 또는 24) 상에서 장치(20)로의 및 이로부터의 다운링크 및 업링크 전송을 스케줄하도록 구성된 스케줄링 회로(48)를 갖게 된다. 노드(40)가 복수의 장치(20)에서 각각의 하나에 대한 다중 TDD 배열(30)을 사용하는 정도까지, 스케줄링 회로(48)는 자체의 다중-유저 스케줄링 결정들 내로, 이들 장치(20)에 대한 TDD 배열(30)에 의해 규정된 할당을 통합시키게 되는 것으로 이해된다.
몇몇 실시형태에 있어서, 할당 처리 회로(46)는, 필요에 따라, 일련의 연속적인 할당 윈도우(34) 중 각각의 하나에서 TDD 배열(30)을 갱신하도록 구성된다. 부가적으로, 또는 대안적으로, 할당 처리 회로(46)는, 제1 및 제2캐리어(22 및 24) 상에서 장치(20)를 서빙하기 위한 상대적인 서비스 요구 조건의 함수으로서 TDD 배열(30)을 결정하도록 구성되므로, 장치(20)를 서빙하기 위한 더 높은 서비스 요구 조건을 갖는 캐리어는 다른 캐리어와 비교해서 더 큰 시간을 할당받는다.
도 6은 장치(20)에서 실행되는 방법(600)을 설명함으로써 일례의 장치-측 처리를 도시한다. 본 방법(600)은, 제1 및 제2주파수 밴드 각각에서 동작하는 제1 및 제2캐리어(22 및 24) 상에서 장치(20)에 서비스를 제공하기 위해 사용되는 TDD 배열(30)을 가리키는 무선 통신 네트워크(10)로부터 할당 정보를 수신하는 것을 포함한다(블록 602). TDD 배열(30)은 2개의 캐리어(22 및 24) 간의 시간의 상보적 할당을 장치에 가리키므로, 장치(20)로 또는 이로부터의 스케줄된 전송이 2개의 캐리어(22 및 24) 사이에서와 같이 시간 내에 상호 배타적이 된다.
대응해서, 본 방법(600)은 가리켜진 TDD 배열(30)에 따라서 제1과 제2주파수 밴드 사이에서 교대로 장치(20)의 통신 송수신기를 동작하는 것을 포함한다(블록 604). 여기서, 송수신기를 제1과 제2주파수 밴드 사이에서 교대로 동작시키는 것은, 제1 및 제2주파수 밴드 간의 일치로 수신기 및 송신기 부분 모두를 교대하는 것이므로, 하나의 시간에서 수신기 및 송신기 부분이 제1주파수 밴드로 다운링크 및 업링크로 동시에 동조하고, 및 다른 시간에 이들이 제2주파수 밴드로 다운링크 및 업링크로 모두 동조하는 것을 의미한다. 그런데, 다른 예에 있어서, 송수신기를 제1과 제2주파수 밴드 사이에서 교대로 동작시키는 것은, 제1과 제2주파수 밴드 사이에서 수신기 부분을 교대하고 제1과 제2주파수 밴드 사이에서 송신기 부분을 교대하지만, 여기서 소정의 주어진 시간에서 수신기 부분이 제1주파수 밴드로 다운링크로 동조할 수 있는 한편 송신기 부분이 제2주파수 밴드로 업링크로 동조하는 것을 의미한다. 따라서, 수신기 및 송신기 부분 모두가 2개의 밴드 사이에서 교대하는 한편, 이들은 한번에 동일한 밴드로 모두 동조할 필요는 없다.
적어도 몇몇 실시형태에 있어서, 장치(20)는 규정된 할당 윈도우(34)에 대해서 TDD 배열(30)을 사용하도록 구성된다. 동일한 또는 갱신된 TDD 배열(30)은 후속하는 할당 윈도우(34)에서 장치에 의해 사용될 수 있다. 더 넓게는, 적어도 일실시형태에서, 장치(20)는 갱신된 할당 정보를 수신하는 것에 응답해서 자체의 통신 송수신기의 동작을 조정하도록 구성되므로, 제1과 제2주파수 밴드 사이의 통신 송수신기의 교대가 갱신된 할당 정보에 따라서 수정된다.
도 7은 상기 방법(600)을 실행하도록 구성된 장치(20)를 위한 일례의 구성을 도시한다. FDD 동작을 위해 구성된 통신 송수신기(50)는, 자체의 수신기(52) 및 송신기(54)가 업링크 주파수로 동조된 수신기(52) 및 다운링크 주파수로 동조된 송신기(54)와 함께 동시에 동작될 수 있는 것을 의미한다. 동조(tuning)는 동조 제어기(56)에 의해 제어되는데, 이는, 예를 들어, 디지털 모뎀(58)으로부터의 제어 시그널링에 응답해서 수신기(52) 및 송신기(56)를 동조하는데 사용된 LO(Local Oscillator) 주파수를 설정한다. 또한, 연관된 프론트 엔드 모듈("FEM")(60)이 수신기(52) 및 송신기(54)의 FDD 동작을 지원하여, 하나 이상의 수신/전송 안테나(62)로부터의 시그널의 동시 수신 및 전송을 허용하도록 하는 것으로, 이해된다.
장치(20)는, 통신 송수신기(50)와 동작적으로 연관되고, 제1 및 제2주파수 밴드 각각에서 동작하는 제1 및 제2캐리어(22 및 24) 상에서 장치(20)에 서비스를 제공하기 위해 사용되는 TDD 배열(30)을 가리키는 무선 통신 네트워크(10)로부터 할당 정보를 수신하도록 구성된 하나 이상의 처리 회로(64)를 더 포함한다. TDD 배열(30)은 2개의 캐리어(22, 24) 사이의 시간의 상보적 할당을 가리키므로, 무선 통신 장치(20)로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어(22, 24) 사이에서와 같이 시간 내에 상호 배타적이 된다. 따라서, 하나 이상의 처리 회로(64)는, 가리켜진 TDD 배열(30)에 따라서 제1과 제2주파수 밴드 사이에서 교대로 통신 송수신기를 동작하도록 구성되므로, 장치(20)는 동일한 통신 송수신기(50)를 사용해서 모든 캐리어(22 및 24) 상에서 무선 통신 네트워크(10)와 통신한다. 한 예에 있어서, 하나 이상의 처리 회로(64)는 주파수 제어기(56)를 제어하므로, 수신기(52)는 TDD 배열(30)로 가리켜진 제1 및 제2캐리어(22 및 24)에 대한 다운링크 시간의 각각의 할당에 따라서, 제1캐리어(22)의 다운링크와 제2캐리어(24)의 다운링크 사이에서 교대로 동조된다. 유사하게, 하나 이상의 처리 회로(64)는 주파수 제어기(56)를 더 제어하게 되므로, 송신기(54)는, TDD 배열(30)로 가리켜진 제1 및 제2캐리어(22 및 24)에 대한 업링크 시간의 각각의 할당에 따라서, 제1캐리어(22)의 업링크와 제2캐리어(24)의 업링크 사이에서 교대로 동조한다.
하나 이상의 처리 회로(64)는 다수의 다른 방식으로 본 방법(600)을 수행하도록 구성될 수 있다. 하나 이상의 처리 회로(64)는 고정되거나 또는 프로그램가능하거나, 또는 고정된 및 프로그램가능한 회로 몇몇 혼합이 될 수 있다. 예를 들어, 장치(20) 내에 포함된 디지털 모뎀(66)은 하나 이상의 마이크로프로세서 회로, DSP 회로, 또는 다른 디지털 처리 회로를 포함하여 구성될 수 있는데, 이들은 디지털 모뎀(66) 내의 또는 이에 액세스가능한 메모리 내에 또는 다른 컴퓨터-판독가능한 매체 내에 기억된 컴퓨터 프로그램 명령들의 그들의 실행에 따라서 구성된다.
장치(20)는 하나 이상의 무선 통신 표준에 따라서 구성될 수 있다. 몇몇 실시형태에 있어서, 장치(20)는 LTE-기반의 무선 통신 네트워크에서의 동작을 위해 구성된 유저 장비(UE) 또는 다른 타입의 통신 장치를 포함하여 구성되고, 네트워크(10)는 LTE 네트워크와 같이 구성된다.
LTE 콘텍스트에서 또는 다른 네트워크 콘텍스트에서이든, TDD 배열(30)의 생성 및 사용은 다수의 서비스 시나리오, 특히 이들 중에서 소프트-셀 시나리오에 장점을 제공한다. 하나 이상의 피코 셀(14)이 더 큰 매크로 셀(12)로 겹쳐지는 유사 소프트-셀 시나리오에서, 제1캐리어(22)는 매크로 계층을 서빙하도록 사용되고 제2캐리어(24)는 피코 계층을 서빙하도록 사용되는데, 여기서 2개의 캐리어(22 및 24)는 매크로와 피코 계층 사이의 간섭을 최소화하기 위해서 다른 주파수 밴드에서 동작한다.
각각의 서비스 영역 내에서 더 작은 피코 셀(14)이 장치(20)에 대한 데이터 전송을 수행하게 됨에 따라, 이들 장치(20)에 대한 매크로 계층 내의 트래픽의 양은 매우 작게 된다(전형적으로, 제어 및 시스템 정보만이 이들 장치(20)에 대해서 매크로 계층 내에서 전송될 필요가 있게 된다). 네트워크(10) 내의 피코 계층에 대해서 전개된 제2캐리어(24)가 TDD-기반의 캐리어(예를 들어, 3.5 GHz 밴드의 LTE-어드밴스드 로컬 영역 TDD)인 것으로 상정하면, 그 링크의 하프-듀플렉스 특성은, 피코 계층에서의 동작을 수신 또는 전송하기 위한 장치의 송수신기 사용이 100 퍼센트 아래인 것을 의미한다. TDD 배열(30)은, 바람직하게는 매크로 계층에서 트래픽을 핸들링하기 위해 이들 사용되지 않은 시간을 사용한다. 물론, TDD 배열(30)은, 피코 및 매크로 계층 모두가 FDD-기반일 때, 또는 이들이 모두 TDD 기반인 곳에서, 사용될 수 있다.
도 8은, 도 4에서 도입된 본 방법(400)에 대한 또 다른 예의 세부 사항을 제공함에 따라 이해될 수 있는 다른 방법(800)을 도시한다. 네트워크(NW) 노드(40)는, 예를 들어 무선 리소스 제어(RRC: Radio Resource Control) 계층 또는 다른 프로토콜 계층에서 주파수 밴드 A 및 B 상에서 장치(20)에 접속된다(블록 802).
노드(40)는, 주파수 밴드 A에 대해서, 장치(20)로의 다운링크(DL) 전송을 위한 제1시간 및 장치(20)로부터의 업링크(UL) 전송을 위한 제2시간을 할당한다(블록 804). 계속해서, 노드(40)는, 주파수 밴드 B에 대해서, 장치(20)로의 다운링크(DL) 전송을 위한 제3시간 및 장치(20)로부터의 업링크(UL) 전송을 위한 제4시간을 할당한다(블록 806). 처리는, UL 및 DL 구성에 관해서 장치(20)에 통보하는 것으로 계속된다(블록 808). 즉, 노드(40)는 TDD 배열(30)을 가리키는 할당 정보를 장치(20)에 송신한다. 더욱이, 방법(800)은 할당된 UL 및 DL 시간에 따라서 장치(20)에 대한 UL 및 DL 전송을 스케줄링하는 것을 포함한다(블록 810). 이 "단계"는 2개의 캐리어(22 및 24) 상에서 스케줄링하는데 책임이 있는 노드 또는 노드들에 의해 수행되는 것으로 이해될 수 있다. 예를 들어, 매크로 기지국(12)은 TDD 배열(30)로 매크로 계층에 할당된 UL 및 DL 시간에 따라서 제1캐리어(22) 상에서 장치(20)에 대한 다운링크 및 업링크 전송의 자체의 스케줄링을 제한하게 된다. 유사하게, 수반된 피코 기지국(18)은 TDD 배열(30)로 피코 계층에 할당된 UL 및 DL 시간에 따라서 제2캐리어 상에서 장치(20)에 대한 다운링크 및 업링크 전송의 자체의 스케줄링을 제한하게 된다.
더욱이, 상기 제3시간은 제2 시간 내에 포함될 수 있고, 제4시간은 제1시간 내에 포함될 수 있다. 즉, 제1시간 및 제3시간은 주파수 밴드 A 및 B 모두에서 장치(20)로의 동시 다운링크 전송을 회피하기 위해서 상호 배타적이고, 제2 및 제4시간은 주파수 밴드 A 및 B 모두에서 장치에 의한 동시 업링크 전송을 회피하기 위해서 유사하게 상호 배타적이 된다. 2개의 캐리어(22 및 24) 상에서 장치(20)로의 다운링크 전송들 사이에서 허용되는 시간 겹침(overlap)은 없고, 유사하게 2개의 캐리어(22 및 24) 상에서 장치(20)로부터의 업링크 전송 사이에서 허용되는 시간 겹침은 없게 되지만, 주파수 밴드 A에서의 다운링크 전송은 주파수 밴드 B에서의 업링크 전송 및 반대와 겹칠 수 있다. 따라서, 장치의 송수신기(50)가 수신기(52)를 동시에 주파수 밴드 A 또는 B 중 하나에 동조시키는 것을 허용하는 것으로 상정하면, 제1시간은 제4시간과 상호 배타적일 필요가 없고, 제2시간은 제3시간과 상호 배타적일 필요가 없다.
이들 할당은 일례의 TDD 배열(30)로서 이해될 수 있고, 여기서 이슈의 "시간"은 LTE 서브프레임이 될 수 있다. 공지의 예로서, LTE FDD 모드는 10 ms의 LTE 프레임을 사용하는데, 여기서 각각의 LTE 프레임은 20개의 슬롯으로 분할된다.
LTE 서브프레임은 2개의 이러한 슬롯에 걸치고, 본 명세서에서 사용되는 용어 "프레임(32)" 및 "프레임들(32)"은, 스케줄링 인터벌에 대응하는 시간의 몇몇 양자의 시간을 식별하는 것을, 일반적인 의미로 하는 것으로 이해한다. 따라서, TDD 배열(30)에 의해 만들어지는 제1 및 제2캐리어(22 및 24) 사이의 상보적 시간의 할당이 몇몇 수의 LTE 서브프레임에 걸친 시간의 윈도우에 걸처서 LTE 서브프레임의 상보적 할당이 될 수 있다.
본 명세서의 교시 내용의 다른 측면에 있어서, 네트워크(10)와 장치(10) 사이의 통신의 "강건성"은 캐리어(22 및 24) 중 적어도 하나를 사용해서 장치(20)와 통신할 수 있는 네트워크(10)에 의존한다. 매크로 계층이 장치(20)에 대한 시스템 정보 및 다른 제어 시그널링을 제공하는 곳에서, 네트워크(10)가 장치(20)와의 자체의 매크로 계층 접속을 유지하는 것은 중요하다. 그러므로, TDD 배열(30)은, 매크로 계층이, 매크로 계층 상에서 네트워크(10)와 장치(20) 사이의 업링크 및/또는 다운링크 전송에 대해서 몇몇 최소 수의 시간을 할당하는 방식으로 생성될 수 있고, 개런티(guarantee)가 할당된 시간들 사이에서 허용된 최대 허용가능한 스케줄링 갭을 제어할 수도 있다. LTE 예에서, 이는, 소정 수를 개런티 및/또는 통신 강건성을 보장하기 위해서 매크로 계층에 대해서 할당된 LTE 서브프레임의 스페이싱(spacing)을 의미한다. 장치(20)가, 이것이 피코 계층 상의 접속이 손실된 것을 검출하면(장치가 소정의 피코 셀(14) 내에 있지 않을 때 일어남에 따라), 장치는, TDD 배열(30)을 현재 제어함에 따라서 피코 계층에 할당된 LTE 서브프레임에서도 매크로 계층 전송을 감시하도록 자체의 수신기(52)를 동조시킬 수 있다. 더욱이, 네트워크(10)는, 예를 들어 장치(20)로부터의 대응하는 ACK/NAK 또는 채널 상태 정보(CSI) 리포트의 부재에 의해, 이 상황을 검출할 수 있다. 피코 계층이 장치(20)에 대한 유저 트래픽을 전송하는데 우선 사용되고, 네트워크(10)가 장치(20)에 대한 접속의 손실을 검출하는 시나리오에 있어서, 네트워크(10)는 매크로 계층으로의 장치(20)의 유저 트래픽 전송을 스위칭할 수 있다.
넓게는, 본 명세서의 교시 내용은, 제1 및 제2주파수 밴드에서 동작하는 제1 및 제2캐리어(22 및 24) 상에서 장치(20)로의 다운링크 전송을 시간에 대해서(time-wise) 직교화하고, 유사하게 2개의 캐리어(22 및 24) 상에서 장치(20)로부터의 업링크 전송을 직교화하는 인텔리전트 시간 할당 및 스케줄링을 사용한다. 인텔리전트 시간 할당을 구현하는 TDD 배열(30)은, 장치(20) 내의 동일한 수신기(52)가 캐리어(22 및 24) 모두의 다운링크 상에서 전송들을 (다른 시간에) 수신하게 하는 한편, 장치(20)가 주파수 밴드 모두에서 동시에 수신되는 것을 요구하지 않는다. 유사하게, TDD 배열(30)은 장치(20) 내의 동일한 송신기(54)가 캐리어(22 및 24) 모두의 업링크 상에서 전송들을 (다른 시간에) 송신하게 하는 한편, 장치(20)가 주파수 밴드 모두에서 동시에 전송되는 것을 요구하지 않는다.
대응해서, TDD 배열(30)은 2개의 캐리어(22 및 24) 상에서 장치(20)로 또는 이로부터의 스케줄링 전송에 대해 책임에 있는 네트워크 노드에 공지되고, 이러한 노드 내에서 진행 중인 스케줄링 프로세스는 스케줄링 결정을 만들 때 TDD 배열(30)을 고려하도록 구성되므로, 각각의 캐리어(22 및 24) 상에서 스케줄된 전송 및 수신이 TDD 배열(30) 하에서 할당된 시간에서 일어나게 한다.
특히, 개시된 발명(들)의 수정 및 다른 실시형태는, 상기 상세한 설명 및 연관된 도면에 나타낸 교시 내용의 이득을 갖는 본 기술의 당업자에게 고려된다. 그러므로, 본 발명(들)은 개시된 특정 실시형태에 제한되지 않고, 이 수정 및 다른 실시형태가 본 개시 내용의 범위 내에 포함되는 것을 의도한다. 특정 용어가 본 명세서에서 채용되는데, 이들은 일반적인 및 설명의 의미로 사용되며, 제한의 목적으로 사용되지 않는다.
10 - 무선 통신 네트워크,
12 - 마이크로 셀,
14 - 파워 셀, 피코 셀,
16 - 매크로 기지국,
20 - 장치,
22, 24 - 제1 및 제2캐리어,
30 - TDD 배열.

Claims (24)

  1. 무선 통신 장치(20)의 송수신기(50)를 시간 내에 공유하도록 동기화된 제1 및 제2캐리어(22, 24)가 제1 및 제2주파수 밴드 각각에서 동작하게 허용하는 방법(400)으로서, 상기 방법은:
    무선 통신 장치(20)로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어(22, 24) 사이에서와 같이 시간 내에 상호 배타적이 되게, 2개의 캐리어(22, 24) 사이의 시간의 상보적 할당을 만듦으로써, 2개의 캐리어(22, 24)에 대한 시간 분할 듀플렉스(TDD) 배열(30)을 결정(402)하는 단계와;
    2개의 캐리어(22, 24) 중 적어도 하나 상에서 업링크 및 다운링크 전송을 스케줄링하는데 책임이 있는 무선 통신 장치(20) 및 네트워크 노드(16, 18) 중 적어도 하나에 TDD 배열(30)을 가리키는 할당 정보를 송신(404)하는 단계를 포함하여 구성되는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    TDD 배열(30) 하에서 제1 또는 제2캐리어(22, 24)에 할당된 시간에서만 제1 또는 제2캐리어(22, 24) 상에서 무선 통신 장치(20)로의 및 이로부터의 다운링크 및 업링크 전송을 스케줄하는 단계를 더 포함하여 구성되는 것을 특징으로 하는 방법.
  3. 제1항 또는 제2항에 있어서,
    결정(402)하는 단계 및 송신(404)하는 상기 단계는, 일련의 연속적인 할당 윈도우(34) 각각에서 수행되고, 각각의 상기 할당 윈도우(34)는 다수의 프레임(32)들에 걸치므로, 제1캐리어와 제2캐리어 사이의 프레임(32)의 분할이, 제1 및 제2캐리어(22, 24) 상에서 무선 통신 장치(20)에 대한 서비스 요구 조건을 변경하는 것에 응답해서 연속적인 할당 윈도우(34)에 걸쳐서 동적으로 갱신되는 것을 특징으로 하는 방법.
  4. 상기 항 중 어느 한 항에 있어서,
    제1캐리어(22)는 FDD 캐리어이고 제2캐리어(24)는 TDD 캐리어이며, TDD 배열(30)은 무선 통신 장치(20)에 대해서 FDD 캐리어(22)의 TDD-기반의 사용을 시행하는 것을 특징으로 하는 방법.
  5. 상기 항 중 어느 한 항에 있어서,
    제1캐리어(22)는, 제2캐리어(24)에 의해 서빙되는 아래 놓인 피코 셀(14)과 소프트-셀 배열로 동작하는 매크로 셀(12)을 서빙하고,
    본 방법은, 매크로 셀(12)에 대응하는 매크로 기지국(16) 및 피코 셀(14)에 대응하는 피코 기지국(18) 중 하나 또는 모두에서 수행되는 것을 특징으로 하는 방법.
  6. 상기 항 중 어느 한 항에 있어서,
    할당 정보를 송신(404)하는 상기 단계는, 제1캐리어(22)와 연관된 제1기지국(16)으로부터 제2캐리어(24)와 연관된 제2기지국(18)으로의 시그널링을 송신하는 단계를 포함하여 구성되고, 상기 시그널링은, 제1기지국(16)에 의해 결정됨에 따라, TDD 배열(30)을 가리키는 것을 특징으로 하는 방법.
  7. 상기 항 중 어느 한 항에 있어서,
    제1 및 제2캐리어(22, 24) 상에서 무선 통신 장치(20)를 서빙하기 위한 상대적인 서비스 요구 조건의 함수로서 TDD 배열(30)을 결정하는 단계를 더 포함하여 구성되므로, 무선 통신 장치(20)를 서빙하기 위한 더 높은 서비스 요구 조건을 갖는 캐리어가 다른 캐리어에 주어진 시간의 할당과 비교해서 시간의 더 큰 할당을 수신하는 것을 특징으로 하는 방법.
  8. 통신 서비스를 무선 통신 장치(20)에 제공하는 무선 통신 네트워크(10)에서 사용하기 위한 네트워크 노드(40)로서, 상기 네트워크 노드(40)는:
    하나 이상의 통신 인터페이스(42)와;
    하나 이상의 통신 인터페이스(42)와 동작적으로 연관되고, 무선 통신 장치(20)의 송수신기(50)를 시간 내에 공유하도록 동기화된 제1 및 제2캐리어(22, 24)가 제1 및 제2주파수 밴드 각각에서 동작하게 허용하도록 구성된 할당 처리 회로(46)를 포함하여 구성되고:
    무선 통신 장치(20)로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어(22, 24) 사이에서와 같이 시간 내에 상호 배타적이 되게, 2개의 캐리어(22, 24) 사이의 시간의 상보적 할당을 만듦으로써, 2개의 캐리어(22, 24)에 대한 시간 분할 듀플렉스(TDD) 배열(30)을 결정하고;
    2개의 캐리어(22, 24) 중 적어도 하나 상에서 업링크 및 다운링크 전송을 스케줄링하는데 책임이 있는 무선 통신 장치(20) 및 네트워크 노드(16, 18) 중 적어도 하나에 TDD 배열(30)을 가리키는 할당 정보를 송신하도록 구성된, 상기 할당 처리 회로(46)에 기반하는, 것을 특징으로 하는 네트워크 노드.
  9. 제8항에 있어서,
    TDD 배열(30) 하에서 제1 또는 제2캐리어(22, 24)에 할당된 시간에서만 제1 또는 제2캐리어(22, 24) 상에서 무선 통신 장치(20)로의 및 이로부터의 다운링크 및 업링크 전송을 스케줄하도록 구성된 스케줄링 회로(48)를 더 포함하여 구성되는 것을 특징으로 하는 네트워크 노드.
  10. 제8항 또는 제9항에 있어서,
    할당 처리 회로(46)는, 필요에 따라, 일련의 연속적인 할당 윈도우(34) 중 각각의 하나에서 TDD 배열(30)을 갱신하도록 구성되고, 각각의 상기 할당 윈도우(34)는 제1 및 제2캐리어 상에서 전송 시간을 규정하는 다수의 프레임(32)에 걸치므로, TDD 배열(30)이 제1과 제2캐리어 사이의 각각의 규정된 할당 윈도우(34) 내에서 프레임(32)을 분할하는 것을 특징으로 하는 네트워크 노드.
  11. 제8항 내지 제10항 중 어느 한 항에 있어서,
    제1캐리어(22)는, 제2캐리어(24)에 의해 서빙되는 겹친 피코 셀(14)과 소프트-셀 배열로 동작하는 매크로 셀(12)을 서빙하고,
    네트워크 노드(40)는:
    매크로 셀(12)과 연관된 매크로 기지국(16) 및 피코 셀(14)과 연관된 피코 기지국(18) 또는 매크로 또는 피코 기지국(16, 18)과 직접 또는 간접적으로 통신하기 위한 구성된 중앙화된 노드(40)를 포함하여 구성되는 것을 특징으로 하는 네트워크 노드.
  12. 제8항 내지 제11항 중 어느 한 항에 있어서,
    제1캐리어(22)는 FDD 캐리어이고, 제2캐리어(24)는 TDD 캐리어이며, TDD 배열(30)은 무선 통신 장치(20)에 대해서 FDD 캐리어(22)의 TDD-기반의 사용을 시행하는 것을 특징으로 하는 네트워크 노드.
  13. 제8항 내지 제12항 중 어느 한 항에 있어서,
    네트워크 노드(40)는 제1캐리어(22)와 연관된 제1기지국(16)을 포함하여 구성되고,
    할당 처리 회로(46)는, 제1기지국(16)으로부터 제2캐리어(24)와 연관된 제2기지국(18)으로 TDD 배열(30)을 가리키는 시그널링을 송신하도록 하나 이상의 통신 인터페이스(42)와 협동하도록 구성되는 것을 특징으로 하는 네트워크 노드.
  14. 제8항 내지 제13항 중 어느 한 항에 있어서,
    할당 처리 회로(46)는, 제1 및 제2캐리어(22, 24) 상에서 무선 통신 장치(20)를 서빙하기 위한 상대적인 서비스 요구 조건의 함수로서 TDD 배열(30)을 결정하도록 구성되므로, 무선 통신 장치(20)를 서빙하기 위한 더 높은 서비스 요구 조건을 갖는 캐리어가 다른 캐리어와 비교해서 더 큰 시간이 할당되는 것을 특징으로 하는 네트워크 노드.
  15. 무선 통신 장치(20)로서:
    주파수 듀플렉스 분할(FDD) 동작을 위해 구성된 통신 송수신기(50)와;
    통신 송수신기(50)와 동작적으로 연관된 하나 이상의 처리 회로(64)를 포함하여 구성되고, 처리 회로(64)는,
    제1 및 제2주파수 밴드에서 각각 동작하는 제1 및 제2캐리어(22, 24) 상에서 무선 통신 장치(20)에 서비스를 제공하기 위해 사용되는 시간 분할 듀플렉스(TDD) 배열(30)을 가리키는 무선 통신 네트워크(10)로부터 할당 정보를 수신하고, 여기서 TDD 배열(30)은 2개의 캐리어(22, 24) 사이의 시간의 상보적 할당을 가리키므로, 무선 통신 장치(20)로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어(22, 24) 사이에서와 같이 시간 내에 상호 배타적이 되고,
    가리켜진 TDD 배열(30)에 따라서 제1과 제2주파수 밴드 사이에서 교대로 통신 송수신기(50)를 동작하므로, 무선 통신 장치(20)가 동일한 통신 송수신기(50)를 사용해서 캐리어(22, 24) 모두 상에서 무선 통신 네트워크(10)와 통신하도록 구성되는 것을 특징으로 하는 무선 통신 장치.
  16. 제15항에 있어서,
    무선 통신 장치(20)는 LTE(Long Term Evolution) 기반의 무선 통신 네트워크에서 동작하기 위해 구성된 것을 특징으로 하는 무선 통신 장치.
  17. 제15항 또는 제16항에 있어서,
    하나 이상의 처리 회로(64)는 규정된 할당 윈도우(34)에 대해서 할당 정보를 사용하도록 구성되는 것을 특징으로 하는 무선 통신 장치.
  18. 제15항 내지 제17항 중 어느 한 항에 있어서,
    하나 이상의 처리 회로(64)는 갱신된 할당 정보를 수신하는 것에 응답해서 통신 송수신기(50)의 동작을 조정하도록 구성되므로, 제1과 제2주파수 밴드 사이의 통신 송수신기(50)의 교대가 갱신된 할당 정보에 따라서 조정되는 것을 특징으로 하는 무선 통신 장치.
  19. 제15항 내지 제18항 중 어느 한 항에 있어서,
    하나 이상의 처리 회로(64)는, 제1과 제2주파수 밴드 사이에서 교대로 상기 송수신기(50)를 동작하도록 구성되어, 송수신기(50)의 송신기(54) 및 수신기(52)가 제1과 제2주파수 밴드 사이의 시간 내에서 교대하도록 하므로, 소정의 주어진 시간에서, 수신기(52)가 주파수 밴드 중 하나에 동조하고, 송신기(54)가 주파수 밴드 중 다른 하나에 동조하는 것을 특징으로 하는 무선 통신 장치.
  20. 무선 통신 장치(20)를 동작하는 방법(400)으로서:
    제1 및 제2주파수 밴드 각각에서 동작하는 제1 및 제2캐리어(22, 24) 상에서 무선 통신 장치(20)에 서비스를 제공하기 위해 사용되는 시간 분할 듀플렉스(TDD) 배열(30)을 가리키는 무선 통신 네트워크(10)로부터의 할당 정보를 수신(402)하는 단계로서, TDD 배열(30)이 2개의 캐리어(22, 24) 사이의 시간의 상보적 할당을 가리키므로, 무선 통신 장치(20)로의 또는 이로부터의 스케줄된 전송이 2개의 캐리어(22, 24) 사이에서와 같이 시간 내에 상호 배타적이 되는, 수신(402)하는 단계와;
    가리켜진 TDD 배열(30)에 따라서 제1과 제2주파수 밴드 사이에서 교대로 통신 송수신기(50)를 동작하므로, 무선 통신 장치(20)가 동일한 통신 송수신기(50)를 사용해서 모든 캐리어(22, 24) 상에서 무선 통신 네트워크(10)와 통신하는, 동작(404)하는 단계를 포함하여 구성되는 것을 특징으로 하는 방법.
  21. 제20항에 있어서,
    무선 통신 장치(20)는 LTE(Long Term Evolution) 기반의 무선 통신 네트워크에서의 동작을 위해 구성되는 것을 특징으로 하는 방법.
  22. 제20항 또는 제21항에 있어서,
    규정된 할당 윈도우(34)에 대해서 할당 정보를 사용하는 단계를 더 포함하여 구성되는 것을 특징으로 하는 방법.
  23. 제19항 내지 제22항에 있어서,
    갱신된 할당 정보를 수신하는 것에 응답해서 통신 송수신기(50)의 동작을 조정하므로, 제1과 제2주파수 밴드 사이의 통신 송수신기(50)의 교대가 갱신된 할당 정보에 따라서 수정되는, 조정하는 단계를 더 포함하여 구성되는 것을 특징으로 하는 방법.
  24. 제20항 내지 제23항에 있어서,
    제1과 제2주파수 밴드 사이에서 교대로 송수신기(50)를 동작(404)하는 단계는, 제1주파수 밴드에서의 동작과 제2주파수 밴드에서의 동작 사이에서 송수신기(50)의 송신기(54) 및 수신기(52)를 교대하므로, 소정의 주어진 시간에서, 수신기(52)가 주파수 밴드 중 하나에 동조하고, 송신기(54)가 주파수 밴드 중 다른 하나에 동조하는, 교대하는 단계를 포함하여 구성되는 것을 특징으로 하는 방법.
KR1020157001885A 2012-07-05 2013-06-12 레거시 장치를 수반하는 소프트-셀 동작을 위한 방법 및 장치 KR20150028818A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US13/542,359 2012-07-05
US13/542,359 US9300395B2 (en) 2012-07-05 2012-07-05 Method and apparatus for carrier aggregation
PCT/EP2013/062104 WO2014005810A1 (en) 2012-07-05 2013-06-12 Method and apparatus for soft-cell operation involving legacy devices

Publications (1)

Publication Number Publication Date
KR20150028818A true KR20150028818A (ko) 2015-03-16

Family

ID=48613617

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020157001885A KR20150028818A (ko) 2012-07-05 2013-06-12 레거시 장치를 수반하는 소프트-셀 동작을 위한 방법 및 장치

Country Status (7)

Country Link
US (1) US9300395B2 (ko)
EP (1) EP2870707A1 (ko)
KR (1) KR20150028818A (ko)
CN (1) CN104471875B (ko)
BR (1) BR112014029890A2 (ko)
MY (1) MY167274A (ko)
WO (1) WO2014005810A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6429396B2 (ja) * 2012-06-08 2018-11-28 ▲ホア▼▲ウェイ▼技術有限公司Huawei Technologies Co.,Ltd. 基地局、ユーザ機器、および通信方法
KR20140032705A (ko) * 2012-09-07 2014-03-17 삼성전자주식회사 이종 복식 기지국간 주파수 집적 시스템에서 상향링크 신호 전송 방법 및 장치
US10326569B2 (en) 2013-02-12 2019-06-18 Altiostar Networks, Inc. Inter-site carrier aggregation with physical uplink control channel monitoring
EP2957141B1 (en) 2013-02-12 2019-01-02 Altiostar Networks, Inc. Long term evolution radio access network
JP6205174B2 (ja) * 2013-05-10 2017-09-27 株式会社Nttドコモ 移動通信システム、移動局、および無線基地局
US20150116162A1 (en) 2013-10-28 2015-04-30 Skycross, Inc. Antenna structures and methods thereof for determining a frequency offset based on a differential magnitude
KR102310991B1 (ko) * 2014-03-26 2021-10-13 삼성전자주식회사 무선 통신 시스템에서 시간 분할 복신 및 주파수 복신 반송파 집성을 위한 신호 교환 장치 및 방법
KR20150111798A (ko) * 2014-03-26 2015-10-06 삼성전자주식회사 반송파 결합을 지원하는 무선 통신 시스템에서 동기 획득 방법 및 장치
KR102218702B1 (ko) * 2014-03-26 2021-02-22 삼성전자주식회사 무선 통신 시스템에서 시간 분할 복신 및 주파수 복신 반송파 집성을 위한 장치 및 방법
KR102357413B1 (ko) * 2014-03-26 2022-01-28 삼성전자 주식회사 무선 통신 시스템에서 반송파 결합 통신 방법 및 장치
PL4170930T3 (pl) * 2014-03-26 2024-04-08 Samsung Electronics Co., Ltd. Sposób i urządzenie do prowadzenia łączności z agregacją nośnych w systemie łączności bezprzewodowej
US10917222B2 (en) * 2014-09-30 2021-02-09 Apple Inc. Simultaneous operation of multiple time division duplex links using a single transceiver
US10791481B2 (en) 2016-04-08 2020-09-29 Altiostar Networks, Inc. Dual connectivity
WO2017177224A1 (en) 2016-04-08 2017-10-12 Altiostar Networks, Inc. Wireless data priority services
US10624034B2 (en) 2016-12-13 2020-04-14 Altiostar Networks, Inc. Power control in wireless communications
US10951366B2 (en) * 2018-02-16 2021-03-16 Qualcomm Incorporated Uplink transmission collision management
WO2024011461A1 (zh) * 2022-07-13 2024-01-18 Oppo广东移动通信有限公司 一种基于多载波的通信方法及装置、终端设备、网络设备

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5515365A (en) * 1994-10-03 1996-05-07 Motorola, Inc. Method and apparatus for reducing interference in a time division duplex communication system
US6134227A (en) * 1995-12-04 2000-10-17 Advanced Micro Devices Secondary channel for radio frequency communications
GB9816207D0 (en) 1998-07-25 1998-09-23 Univ Edinburgh Technique to improve through input in a cellular communication system
JP4232879B2 (ja) * 1999-09-02 2009-03-04 パナソニック株式会社 通信装置
CN1694441A (zh) * 2005-05-25 2005-11-09 上海贝豪通讯电子有限公司 一种td-scdma系统兼容ofdm技术的方法
US20070286156A1 (en) * 2006-06-06 2007-12-13 Sr Telecom Inc Utilizing guard band between FDD and TDD wireless systems
CN101667946B (zh) * 2008-09-03 2013-01-16 中兴通讯股份有限公司 无线接入网、终端、频谱使用/复用方法、通信实现方法
US8160014B2 (en) * 2008-09-19 2012-04-17 Nokia Corporation Configuration of multi-periodicity semi-persistent scheduling for time division duplex operation in a packet-based wireless communication system
WO2010049587A1 (en) * 2008-10-31 2010-05-06 Nokia Corporation Dynamic allocation of subframe scheduling for time division duplex operation in a packet-based wireless communication system
US20100309876A1 (en) 2009-06-04 2010-12-09 Qualcomm Incorporated Partitioning of control resources for communication in a dominant interference scenario
US8194603B2 (en) * 2009-08-18 2012-06-05 Motorola Mobility, Inc. Subframe component reduction and notification in a heterogeneous wireless communication system
US8917659B2 (en) * 2009-10-29 2014-12-23 Lg Electronics Inc. Method of transmitting warning message in multiple component carrier system
US8804632B2 (en) * 2009-10-30 2014-08-12 Lg Electronics Inc. Method of performing random access procedure in multiple component carrier system
CN102118756B (zh) * 2009-12-31 2014-07-16 中兴通讯股份有限公司 一种载波聚合方法与频谱动态分配的方法
US9031010B2 (en) 2010-04-08 2015-05-12 Qualcomm Incorporated Separate resource partitioning management for uplink control and uplink data signals
KR20110113484A (ko) * 2010-04-09 2011-10-17 주식회사 팬택 다중 반송파 시스템에서 랜덤 액세스의 수행장치 및 방법
US20110268001A1 (en) * 2010-05-03 2011-11-03 Lee Jung A Method of providing acknowledgement feedback for aggregated carriers
GB2480086B (en) 2010-05-06 2012-12-12 Vodafone Group Services Ltd Telecommunication network and network management techniques
CN102959914A (zh) 2010-06-30 2013-03-06 瑞典爱立信有限公司 使用小区特定参考符号进行信道估计的方法
US9413500B2 (en) 2010-09-15 2016-08-09 Interdigital Patent Holdings, Inc. Method and apparatus for dynamic bandwidth provisioning in frequency division duplex systems
WO2012112104A1 (en) * 2011-02-15 2012-08-23 Telefonaktiebolaget L M Ericsson (Publ) Methods and systems for enabling user activity-aware positioning
KR20120103400A (ko) * 2011-03-11 2012-09-19 삼성전자주식회사 통신시스템에서 하이브리드 자동재전송요구 지원 방법 및 장치
US8605615B2 (en) * 2011-03-18 2013-12-10 Motorola Mobility Llc Method and apparatus for multi-radio coexistence with a system on an adjacent frequency band having a time-dependent configuration
US20120314652A1 (en) * 2011-06-09 2012-12-13 Pantech Co., Ltd. Apparatus and method for performing random access in wireless communication system
US8582527B2 (en) * 2011-07-01 2013-11-12 Ofinno Technologies, Llc Hybrid automatic repeat request in multicarrier systems
KR101875253B1 (ko) * 2011-08-12 2018-07-05 텔레호낙티에볼라게트 엘엠 에릭슨(피유비엘) 다중 셀 통신 네트워크에서의 제어 타이밍 구성 할당을 위한 기지국, 사용자 장비 및 이들에서의 방법
US8705556B2 (en) * 2011-08-15 2014-04-22 Blackberry Limited Notifying a UL/DL configuration in LTE TDD systems
CN102378185B (zh) 2011-10-17 2014-07-02 北京理工大学 一种多小区异构网络中的动态频谱共享方法
US8774217B2 (en) * 2011-11-03 2014-07-08 Cisco Technology, Inc. Time domain duplex between CMTS and cable modems
US9526091B2 (en) * 2012-03-16 2016-12-20 Intel Corporation Method and apparatus for coordination of self-optimization functions in a wireless network
US20130242881A1 (en) * 2012-03-16 2013-09-19 Yiping Wang Explicit indication of uplink control channel resources in carrier aggregation systems

Also Published As

Publication number Publication date
MY167274A (en) 2018-08-15
US9300395B2 (en) 2016-03-29
BR112014029890A2 (pt) 2017-06-27
CN104471875B (zh) 2018-10-09
US20140010125A1 (en) 2014-01-09
EP2870707A1 (en) 2015-05-13
WO2014005810A1 (en) 2014-01-09
CN104471875A (zh) 2015-03-25

Similar Documents

Publication Publication Date Title
KR20150028818A (ko) 레거시 장치를 수반하는 소프트-셀 동작을 위한 방법 및 장치
AU2017305148B2 (en) Dynamic resource allocation in a wireless network with wireless backhaul
TWI790247B (zh) 用於經由多層穿隧和集中控制在多跳無線網路中進行轉發的技術和裝置
JP6047491B2 (ja) ハンドオーバ制御方法、無線通信端末及び無線通信装置
CN103814532B (zh) 混合带内/带外中继
JP6098850B2 (ja) 通信システム
EP2774436B1 (en) Mechanisms addressing dynamic component carrier change in relay systems
RU2540891C2 (ru) Способы, обеспечивающие синхронизацию сигналов, и соответствующие сети и устройства
CN109891814A (zh) 同步栅和信道栅的解耦
US10440722B2 (en) Mobile communications network, methods, base station, relay node and communications terminal
KR20170127443A (ko) 밀리미터파 네트워크들에서의 무선 백홀과 액세스 통신들 사이의 리소스 파티셔닝
CN112425255A (zh) 电子装置、无线通信方法和计算机可读介质
CN115243361B (zh) 系统信息速率匹配
US9503174B2 (en) Divide-and-conquer approach to mitigating relay-to-relay interference
CN112771953A (zh) 用于资源分配的方法和装置
US11671862B2 (en) Techniques to reduce base station to base station interference in semi-synchronous time division duplex operations
WO2012079241A1 (en) Dynamic configuration of relay nodes in a cellular communication system
US20170230989A1 (en) Method and communication node of scheduling radio resources
WO2010100558A2 (en) Frame structure shifting and interference control to enhance backhaul link capacity in long term evolution (lte) time division duplex (tdd)
CN115836565A (zh) 多个活动带宽部分的基于定时器的切换
US20240137754A1 (en) Concurrent sidelink and downlink reception for multi-transmit receive point user equipment
Silard et al. Frequency Reuse in IAB-based 5G Networks using Graph Coloring Methods
KR20140037693A (ko) 통신 방법, 무선 프레임 구조 배치 방법 및 무선 프레임 설정 장치

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E601 Decision to refuse application