KR20140131980A - Copper pyrithione aggregate and use of same - Google Patents

Copper pyrithione aggregate and use of same Download PDF

Info

Publication number
KR20140131980A
KR20140131980A KR1020147027375A KR20147027375A KR20140131980A KR 20140131980 A KR20140131980 A KR 20140131980A KR 1020147027375 A KR1020147027375 A KR 1020147027375A KR 20147027375 A KR20147027375 A KR 20147027375A KR 20140131980 A KR20140131980 A KR 20140131980A
Authority
KR
South Korea
Prior art keywords
copper
pyrithione
salt
ammonium
inorganic
Prior art date
Application number
KR1020147027375A
Other languages
Korean (ko)
Other versions
KR101630560B1 (en
Inventor
야스히로 히다카
Original Assignee
유겐가이샤 와이에이치에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 유겐가이샤 와이에이치에스 filed Critical 유겐가이샤 와이에이치에스
Publication of KR20140131980A publication Critical patent/KR20140131980A/en
Application granted granted Critical
Publication of KR101630560B1 publication Critical patent/KR101630560B1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/89Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1625Non-macromolecular compounds organic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Materials Engineering (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pyridine Compounds (AREA)

Abstract

종래의 구리 피리티온 제품은 열대해역에서는 해수에의 용출이 너무 빠르다고 생각되어왔고, 해수에의 용출을 더 느리게 하도록 하기 위해, 또한 큰 평균입자직경을 갖는 구리 피리티온의 개발이 요구되어 왔다. 또한, 지금까지의 구리피리티온제품은 작업현장에서 가루되기 쉬어, 일단 폐로 흡입되면 그 침상결정때문에 건강에의 불안이 나타나고 있었다. 종래의 제조원료인 무기구리(II)염의 대신에 무기구리(II)·무기암모늄복합염을 이용해서, 생성한 작은 입자의 구리피리티온을 평균입자 직경 9-13μm의 큰 입상집합체로 하는 것에 의해, 상기 두 과제를 동시에 해결하였다. Conventional copper pyrithione products have been considered to be too fast to dissolve in seawater in tropical waters, and the development of copper pyrithione having a large average particle diameter has also been required in order to make the dissolution into seawater slower. In addition, until now, copper pyrithione products are likely to be powdered at the worksite, and once inhaled into the lungs, the bedding crystals have been anxious about their health. By using the inorganic copper (II) -inorganic ammonium complex salt instead of the inorganic copper (II) salt as a conventional raw material for production, the resulting small particles of copper pyrithione are made into a large granular aggregate having an average particle diameter of 9-13 μm , Both of which were solved simultaneously.

Description

구리피리티온 집합체 및 그 용도 {Copper pyrithione aggregate and use of same}Copper pyrithione aggregates and their uses {Copper pyrithione aggregate and use of same}

본 발명은 구리피리티온 집합체 및 그 용도에 관한 것이다. 자세히는, 수용성 금속피리티온 또는 암모늄피리티온과, 무기구리(II)염과 무기암모늄염과의 복합염을 pH 1-4의 물 매질 중에서 반응시켜 만들어내는 구리피리티온 집합체 및 그 용도에 관한 것이다. 더 상세하기로는 수용성 금속피리티온 도는 암모늄피리티온과, 무기구리(II)염과 무기암모늄염과의 복합염을 pH 1-4의 물 매질 중에서 반응시켜 제조되는 구리피리티온 집합체의 입자 직경이 중간값 직경이 9-13μm의 범위에 있는 선저도료용방오제에 관한 것이다. The present invention relates to copper pyrithione aggregates and uses thereof. More specifically, the present invention relates to a copper pyrithione aggregate produced by reacting a water-soluble metal pyrithione or ammonium pyrithione, a complex salt of an inorganic copper (II) salt and an inorganic ammonium salt in a water medium at pH 1-4, and a use thereof. More specifically, the water-soluble metal pyrithione or ammonium pyrithione and a complex salt of an inorganic copper (II) salt and an inorganic ammonium salt are reacted in a water medium of pH 1-4 to prepare a copper pyrithione aggregate, And having a diameter in the range of 9 to 13 占 퐉.

일본 특허 제3062825호에는 구리피리티온의 제조에 있어서 제조공정에서 일어나는 겔화(gelation)를 방지하고, 반응을 촉진하기 위해 계면 활성제를 첨가하는 방법이 개시되어있다. 본 특허의 청구범위에 기재되어있는 pH3-8 조건하에서 피리티온 알칼리 금속염 수용액에 무기구리(II)염을 더하면, 구리피리티온을 생성하기 전에, 먼저 염기성구리염의 미세결정이 침전된다. 이것이 겔화(gelation)로 불리는 현상의 실태이다. 구리피리티온은, 미용성(微溶性)의 염기성구리염과 피리티온 알칼리 금속염과의 반응에 의해 얻을 수 있지만, 생성물의 결정이 작고, 평균 입자 직경이 5μm를 초과하지 않는다. 또한 구리피리티온 제품 중에 불순물로서 잔존하는 염기성구리염은, 선저방오도료에 배합된 때, 도료의 저장시에 겔화(gelation)를 일으키는 원인이 된다. Japanese Patent No. 3062825 discloses a method of preventing the gelation occurring in the production process in the production of copper pyrithione and adding a surfactant to accelerate the reaction. When an inorganic copper (II) salt is added to an aqueous solution of an alkali metal pyrithione under the condition of pH 3 to 8 described in the claims of this patent, microcrystals of the basic copper salt are precipitated before the copper pyrithione is produced. This is the actual phenomenon called gelation. Copper pyrithione can be obtained by reacting a basic copper salt with a poorly soluble basicity and an alkali metal pyrithione, but the crystal of the product is small and the average particle diameter does not exceed 5 탆. Further, the basic copper salt remaining as an impurity in the copper pyrithione product causes gelation at the time of storage of the paint when incorporated into the bottom antifouling paint.

일본 특허 제3532500호에는, pH1.6~3.2의 범위에서 피리티온 금속염 수용액과 무기구리(II)염 수용액을 고온하에서 반응시켜, 이어서 무기구리(II)염을 추가하고, 가열처리를 행하는, 구리피리티온의 제조법이 게시되어 있다. 본 방법의 제 1 공정에서는, 저pH·고온하에서 장시간 반응시키는 제조조건에서, 피리티온 산(酸)의 산화에 의한 비스피리티온(2량체)가 생기기 쉬워, 제 2공정에서 비스피리티온을 열분해시켜, 동시에 무기구리(II)염을 보충함으로써, 구리피리티온의 순도를 높이는 수법이 취해지고있다. 따라서, 제 2공정에 있어서는, 생성량은 한정되어 있지만, 우선은 상술한 바와 같이 염기성구리염이 침전한다. 본 특허 제조법으로 얻은 구리 피리티온의 평균 입자 직경은, 생성하는 염기성구리염이 적기 때문에, 상기 일본 특허 제3062825호 제조 방법에서 얻어지는 구리 피리티온의 평균 입자 직경보다 훨씬 커지지만, 그래도 특허청구범위에 나타낸 바와 같이, 5μm를 초과하지 않는다.Japanese Patent No. 3532500 discloses a process for producing copper (II) salt by reacting an aqueous solution of a pyrithione metal salt and an aqueous solution of an inorganic copper (II) salt at a pH in the range of 1.6 to 3.2, A method for producing pyrithione is disclosed. In the first step of the present method, bispyrithione (dimer) is easily formed due to oxidation of pyrithione acid (acid) in a production condition under which the reaction is carried out for a long time at a low pH and a high temperature. In the second step, pyrethion And at the same time, an inorganic copper (II) salt is supplemented to increase the purity of the copper pyrithione. Therefore, in the second step, the amount of formation is limited, but the basic copper salt precipitates first as described above. The average particle diameter of the copper pyrithione obtained by the present patented production method is much larger than the average particle diameter of the copper pyrithione obtained by the method of the Japanese Patent No. 3062825 because the amount of the basic copper salt to be produced is small, As shown, it does not exceed 5 탆.

특허 문헌 1 : 일본 특허 제 3062825 호 공보Patent Document 1: Japanese Patent No. 3062825 특허 문헌 2 : 일본 특허 제 3532500 호 공보Patent Document 2: Japanese Patent No. 3532500

구리피리티온이 선저도료에 배합된 때, 그 방오효과를 좌우하는 최대 요인은, 해수에의 용출속도, 즉 물에 대한 용해도이며, 입자의 표면적에 따라서 정해진다. 한대 해역에서는, 일본 특허 제3062825호에서 얻어지는 구리피리티온의 평균 입자 직경이 적합하며, 온대해역에서는 일본 특허 제3532500호에서 얻을 수 있는 구리피리티온의 평균 입자 직경이 적합하다고 생각된다. 그러나 열대해역에서는 일본 특허 제3532500호에서 얻을 수 있는 구리피리티온도 해수의 용출이 너무 빠르다고 생각되고 있으며, 해수에의 용출을 더욱 늦추기 위해, 더 큰 평균 입자 직경을 갖는 구리피리티온의 개발이 요구되고 있었다. 또한 지금까지의 구리피리티온 제품은 작업 현장에서 가루되기 쉽고, 일단 폐에 흡입되면, 그 침상결정때문에, 건강에 대한 우려가 나타나고 있다. When the copper pyrithione is incorporated into the bottom coating, the maximum factor that determines the antifouling effect is the rate of dissolution to sea water, that is, its solubility in water, and is determined according to the surface area of the particles. In one sea area, the average particle diameter of copper pyrithione obtained in Japanese Patent No. 3062825 is suitable, and in the temperate region, the average particle diameter of copper pyrithione obtained in Japanese Patent No. 3532500 is considered to be suitable. However, in the tropical waters, copper pyrithione, which can be obtained from Japanese Patent No. 3532500, is thought to be too fast for sea water, and in order to further delay the release into seawater, the development of copper pyrithione having a larger average particle diameter is required . Also, the copper pyrithione products so far tend to be powdered at the work site, and once they are inhaled into the lungs, there are concerns about their health due to the needle crystals.

본 발명자는, 작은 입자의 구리피리티온을 집합체화하는 제조법을 발견하여, 구리 피리티온을 평균 입자 직경 9-13μm의 입상집합체로하여, 상기 두개의 과제를 동시에 해결하는 것에 성공하였다.The inventors of the present invention have discovered a process for collecting small particles of copper pyrithione and succeeded in simultaneously solving the above two problems by using copper pyrithione as a granular aggregate having an average particle diameter of 9-13 μm.

즉, 본 발명은, That is,

(1) 일반식 (I)(1) General formula (I)

Figure pct00001
Figure pct00001

또는 일반식 (I')Or a compound represented by the general formula (I '):

Figure pct00002
Figure pct00002

(식 중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를 나타낸다.)(Wherein M represents a monovalent or divalent metal or ammonium, and Py represents a 2-pyridylthio-N-oxide group).

로 표시되는 수용성 금속피리티온 또는 암모늄피리티온과Soluble metal pyrithione or ammonium pyrithione represented by the formula

일반식 (II)In general formula (II)

Figure pct00003
Figure pct00003

(식중 X는, Cl, 1/2S04, 또는 N03 중 어느 하나의 음이온을 나타낸다.)(Wherein X represents any one of Cl, 1 / 2SO 4, and NO 3 ).

로 표시되는 무기구리(II)염과 무기암모늄염과의 복합염을 pHl-4의 물 매질 중에서 반응시켜 만들어지는 구리피리티온 집합체.(II) salt and an inorganic ammonium salt represented by the general formula (I) in a pH-4 aqueous medium.

(2) 일반식 (I)(2) General formula (I)

Figure pct00004
Figure pct00004

또는 일반식 (I')Or a compound represented by the general formula (I '):

Figure pct00005
Figure pct00005

(식중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를 나타낸다.)(Wherein M represents a monovalent or divalent metal, or ammonium, and Py represents a 2-pyridylthio-N-oxide group.)

로 표시되는 수용성 금속피리티온 또는 암모늄피리티온과,A water-soluble metal pyrithione or ammonium pyrithione represented by the general formula

일반식 (II)In general formula (II)

Figure pct00006
Figure pct00006

(식중 X는, Cl, 1/2S04, 또는 N03 중 어느 하나의 음이온을 나타낸다.)(Wherein X represents any one of Cl, 1 / 2SO 4 , and NO 3 ).

로 표시되는 무기구리(II)염과 무기암모늄염과의 복합염을 pH1-4의 물 매질중에서 반응시켜 만들어지는 것을 특징으로 하는, 구리피리티온 집합체의 제조방법.And a complex salt of an inorganic copper (II) salt and an inorganic ammonium salt represented by the general formula (I) in a water medium having a pH of 1-4.

(3) M은, 나트륨, 칼륨, 칼슘 및 마그네슘으로 이루어진 금속으로부터 선택되는,(1)에 기재된 구리피리티온 집합체.(3) The copper pyrithione aggregate according to (1), wherein M is selected from metals consisting of sodium, potassium, calcium and magnesium.

(4) M은, 나트륨, 칼륨, 칼슘 및 마그네슘으로 이루어진 금속으로부터 선택되는, (2)에 기재된 구리피리티온 집합체의 제조 방법.(4) The method for producing a copper pyrithione aggregate according to (2), wherein M is selected from metals consisting of sodium, potassium, calcium and magnesium.

(5) 무기구리(II)염은, 염화구리(II)또는 황산구리(II)이며, 무기암모늄염은, 염화 암모늄 또는 황산암모늄인, (1) 또는 (3)에 기재된 구리피리티온 집합체.(5) The copper pyrithione aggregate according to (1) or (3), wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) chloride and the inorganic ammonium salt is ammonium chloride or ammonium sulfate.

(6) 무기구리(II)염은 염화구리(II)또는 황산구리(II)이며, 무기암모늄염은, 염화 암모늄 또는 황산암모늄인, (2)또는 (4)에 기재된 구리피리티온 집합체의 제조방법.(6) The process for producing a copper pyrithione aggregate according to (2) or (4), wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) chloride and the inorganic ammonium salt is ammonium chloride or ammonium sulfate.

(7) 구리피리티온 집합체 입자의 중앙값 직경이, 입도분포의 주요부분이 정규분포를 나타내는 것을 전제조건으로 하여, 9-13μm의 범위에 있는, (1), (3)또는 (5)에 기재된 구리피리티온 집합체.(7) The method according to (1), (3) or (5), wherein the median diameter of the copper pyrithione aggregate particles is in the range of 9 to 13 μm on condition that the major part of the particle size distribution exhibits a normal distribution Copper pyrithione aggregate.

(8) 구리피리티온 집합체 입자의 중앙값 직경이, 입도분포의 주요부분이 정규분포를 나타내는 것을 전제조건으로, 9-13μm의 범위에있는, (2), (4)또는 (6)에 기재된 구리피리티온 집합체의 제조방법.(8) The copper-pyrithione aggregate particles according to (2), (4) or (6), wherein the median diameter of the copper pyrithione aggregate particles is in the range of 9 to 13 μm on condition that the major part of the particle size distribution exhibits a normal distribution Gt; pyrithione < / RTI >

(9) (1)의 구리피리티온 집합체를 함유하는 선저도료용방오제. (9) A bottom coat paint containing a copper pyrithione aggregate of (1).

(10) 구리피리티온 집합체 입자의 중앙값 직경이, 입도분포의 주요부분이 정규분포를 보여주는 것을 전제조건으로 하여, 9-13μm의 범위에 있는, (9)에 기재된 선저도료용방오제.(10) The bottom coat paint according to (9), wherein the median diameter of the copper pyrithione aggregate particles is in the range of 9 to 13 μm on condition that a major part of the particle size distribution shows a normal distribution.

M은 1가 또는 2가의 금속을 나타낸다. 예를 들어, 1가의 금속으로 나트륨, 칼륨, 2 가의 금속으로 칼슘, 마그네슘을 들 수 있다. 바람직하기로는 1가의 나트륨이다. M represents a monovalent or divalent metal. For example, monovalent metals such as sodium and potassium, and bivalent metals such as calcium and magnesium. Preferably monovalent sodium.

본 발명의 구리피리티온 입상집합체를 제조할 때 사용되는 무기구리(II)염으로는, 염화구리(II)또는 황산구리(II)가 있으며, 본 발명의 구리피리티온 입상집합체를 제조할 때 사용되는 무기암모늄염으로는, 염화암모늄 또는 황산암모늄을 들 수 있다. 본 발명의 구리피리티온 입상집합체를 제조할 때 사용되는 무기구리(II)염과 무기암모늄염의 복합염으로는, 염화구리와 염화암모늄과의 복합염 (예를 들면 CuCl2·2(NH4)Cl), 황산구리와 황산암모늄과의 복합염 (예를 들면 CuS04 ·(NH4)2S04), 질산구리와 질산암모늄과의 복합염(예를 들면 Cu(NO3)2·2 (NH4)N03), 및 이들의 복합염의 수화물을 들 수 있다. 바람직하기로는, 염화구리 및 염화암모늄과의 복합염 (예를 들면 CuCl2·2(NH4)Cl), 황산구리와 황산암모늄과의 복합염 (예를 들면 CuS04·(NH4)2S04) 및 이들의 복합염의 수화물이다. 예를 들면 염료고정제로서 시판되고 있는 CuCl2·2(NH4)Cl·2H20를 사용할 수도 있지만, 계산량의 염화구리(II)와 염화암모늄의 염산산성수용액을 농축하여 얻어진 결정을 사용해도 좋다. 마찬가지로 계산량의 황산구리(II)와 황산암모늄의 황산산성용액을 농축하여, CuS04·(NH4)2S04·6H20의 청색결정을 얻을 수있다. 또는 효율적으로. 상기의 농축액에서 결정을 꺼낼 필요없이, 그대로 본 발명의 구리피리티온 입상집합체의 제조 원료 수용액으로 하여, 피리티온 금속염 수용액과의 반응에 제공해도 좋다. 복합염의 무기구리염과 무기암모늄염의 사용량은 몰비로, 1 대 2이며, 복합염과 나트륨 피리티온의 사용량은 몰비로 1 대 2이다. 무기구리(II)염과 무기암모늄염과의 복합염의 생성, 또 본 발명의 무기구리(II)·암모늄복합염과 피리티온 금속염과의 반응은, pHl-4의 범위에서 바람직하게 진행된다. 또한 반응 온도는 10-30℃의 상온이 바람직하다. 반응온도가 고온의 경우, 구리피리티온의 일차 입자가 너무 길게 뻗어, 집합체가 잘 형성되지 않는다. 본 발명의 방법에 의한 반응 후의 집합체는, 평균 입자 직경이 수100μm의 입상집합체를 형성하고 있기 때문에, 기존의 구리피리티온에 비해, 여과성이 아주 좋다. 평균 입자 직경이 9μm 미만이 되도록 분쇄하면, 분쇄시 0.1-1.0μm의 단입자가 무시할 수 없을 정도로 쉽게 생겨, 본 발명의 구리 피리티온 집합체의 해수에의 용출에 영향을 주기 쉽다. 또한 평균 입자 직경이 13μm를 초과하도록 분쇄하면, 50μm 이상의 대형입자의 비율이 10% 이상이 될 가능성이 있으며, 도료의 도막성능에 영향을 미칠 우려가 있다. 따라서, 이것을 평균 입자 직경이 9-13μm이 되도록 분쇄하고 (도1 및 도6), 선저도료용방오제로서 사용하는 것이 적당하다. 평균 입자 직경이 9-13μm의 범위에 있으면, 입도분포는 정규분포를 나타내기 때문에, 이 정규분포가 중앙값 직경 측정의 전제조건이 된다. 이것을 평균 입자 직경이 9-13μm가되도록 분쇄하여 (도1), 선저도료용방오제로서 사용한다.As the inorganic copper (II) salt used in producing the copper pyrithione granular aggregate of the present invention, there are copper (II) chloride or copper (II) sulfate, and used in the production of the copper pyrithione granular aggregate of the present invention Examples of the inorganic ammonium salt include ammonium chloride or ammonium sulfate. As the composite salt of the inorganic copper (II) salt and the inorganic ammonium salt used in producing the copper pyrithione granular aggregate of the present invention, a complex salt of copper chloride and ammonium chloride (for example, CuCl 2 .2 (NH 4 ) Cl), a complex salt of copper sulfate and ammonium sulfate (e.g. CuSO 4. (NH 4 ) 2 SO 4 ), a complex salt of copper nitrate and ammonium nitrate (for example, Cu (NO 3 ) 4 ) NO 3 ), and hydrates of the complex salts thereof. Preferably, a complex salt of copper chloride and ammonium chloride (for example, CuCl 2揃 2 (NH 4 ) Cl), a complex salt of copper sulfate and ammonium sulfate (for example, CuSO 4揃 (NH 4 ) 2 SO 4 ) And hydrates of the complex salts thereof. For example, CuCl 2 · 2 (NH 4 ) Cl · 2H 2 O which is commercially available as a dye fixing agent can be used. However, even when a crystal obtained by concentrating a hydrochloric acid aqueous solution of calculated amounts of copper (II) chloride and ammonium chloride good. Similarly, a sulfuric acid acidic solution of a calculated amount of copper sulfate (II) and ammonium sulfate can be concentrated to obtain blue crystals of CuSO 4. (NH 4 ) 2 SO 4 .6H 2 O. Or efficiently. The crystals may be directly supplied to the reaction with the aqueous pyrithione metal salt solution as the raw material aqueous solution for producing the copper pyrithione granular aggregate of the present invention without the necessity of taking out crystals from the concentrated liquid. The amount of the inorganic copper salt and the inorganic ammonium salt of the composite salt is 1: 2 by molar ratio, and the amount of the complex salt and sodium pyrithione is 1: 2 by molar ratio. The formation of a complex salt of an inorganic copper (II) salt with an inorganic ammonium salt and the reaction of the inorganic copper (II) -ammonium complex salt of the present invention with a pyrithione metal salt preferably proceeds in the range of pHI-4. The reaction temperature is preferably room temperature of 10 to 30 占 폚. When the reaction temperature is high, the primary particles of the copper pyrithione are stretched too long, and aggregates are not formed well. Since the aggregates after the reaction by the method of the present invention form a granular aggregate having an average particle diameter of several hundreds of micrometers, the filtration properties are much better than those of the conventional copper pyrithione. When crushed to have an average particle diameter of less than 9 mu m, single particles of 0.1 to 1.0 mu m at the time of crushing easily occur so as not to be negligible, and it is easy to affect the elution of the copper pyrithione aggregate of the present invention into seawater. When the average particle diameter is more than 13 占 퐉, the proportion of large particles of 50 占 퐉 or more may be 10% or more, which may affect the paint film performance of the paint. Therefore, it is appropriate to use this powder as an antifogging agent for bottom paints (FIG. 1 and FIG. 6) so as to have an average particle diameter of 9 to 13 μm. When the average particle diameter is in the range of 9 to 13 占 퐉, the particle size distribution exhibits a normal distribution, and this normal distribution is a prerequisite for the median diameter measurement. This was pulverized to have an average particle diameter of 9 to 13 占 퐉 (Fig. 1), and used as a solvent for the bottom paint.

본 발명의 입상집합체 (평균 입자 직경 약 10μm)를 물에 분산시키고, 80℃에서 30분 가열하면, 희미한 암모니아 냄새를 발하고, 집합체는 수10%정도 망가진다. 이로부터 집합체의 실체는 구리피리티온과 무기암모늄염과의 복합체일 가능성이 고려되어진다. 한편 집합체의 SEM사진 (도2 및 3)에서는 구리피리티온 형상밖에 인정되지 않고, 또한 X선회절분석의 차트 (도4 및 5)에서도 종래의 구리피리티온과 같은 피크 밖에 인정되지 않는다. 이상의 연구결과를 종합하여 판단하면, 본 발명의 집합체의 실체는, 구리피리티온과 미량의 무기암모늄염과의 복합체인 것으로 추정된다. 즉 반응시 해리된 무기암모늄염의 대부분은 반응액 중으로 용해하고, 물 세정(水洗)에 의해 제거된다.When the granular aggregates (average particle diameter of about 10 占 퐉) of the present invention are dispersed in water and heated at 80 占 폚 for 30 minutes, a faint ammonia odor is emitted and aggregates are broken by several 10%. From this, the entity of the aggregate is considered to be a complex of copper pyrithione with an inorganic ammonium salt. On the other hand, SEM photographs (FIG. 2 and FIG. 3) of the aggregate show only a copper pyrithione form, and in the chart of the X-ray diffraction analysis (FIGS. 4 and 5), only the same peak as the conventional copper pyrithione is observed. Judging from the above results, it is assumed that the substance of the aggregate of the present invention is a complex of copper pyrithione and a trace amount of an inorganic ammonium salt. That is, most of the inorganic ammonium salt dissociated in the reaction is dissolved in the reaction solution and removed by water washing.

지금까지 구리피리티온이 분말상으로 취급된 경우, 작업현장에서는 가루에 의한 흡입때문에 건강을 해칠 우려가 있었다. 특히 구리피리티온이 비교적 딱딱한 침상 결정인 점이 문제시되고, 입자를 대형화하는 방법, 수지상물질로 피복하는 방법 등이 제안되어왔다. 이들 방법은 효과적이지만, 비용 상승이 불가피하다. 본 발명의 입상집합체는 입자가 크고, 게다가 유동성이 있기 때문에, 가루로 만들기 어려울뿐만 아니라 침상결정이 될 문제가 없기 때문에, 이러한 특별한 처리를 필요로 하지 않고, 분말상으로 취급된다하더라도, 기존에 비해 건강피해의 위험은 매우 경감된다.When copper pyrithione is handled in powder form, there has been a risk of harm to health due to inhalation by powder at the work site. Particularly, it has been pointed out that copper pyrithione is a relatively hard needle-like crystal, and a method of enlarging the particle size, a method of coating with a resinous material, and the like have been proposed. These methods are effective, but cost increases are inevitable. Since the granular aggregates of the present invention are large in particle size and have fluidity, they are not only difficult to be powdered but also have no problem of needle bed crystals, so that even if they are handled in powder form without requiring such special treatment, The risk of damage is greatly reduced.

선저도료도막에서 용출되는 구리피리티온의 용출속도는, 구리피리티온의 표면적, 해수온도에 더해, 도막의 성질, 배의 항행속도, 오손생물의 부착상황 등의 요인이 관계한다. 단순히 표면적의 비율만으로, 그 차이를 논할 수 없지만, 본 발명의 중앙값 직경이 9-13μm의 구리피리티온 입상집합체의 표면적은, 시판 구리피리티온의 표면적보다 2-6 배 커지는 결과, 해수에 대한 용출속도가 크게 느려질 것으로 간주되어, 열대해역와 같은 높은 수온조건에서의 방오효과지속성이 개량될 뿐만 아니라 해양에의 구리피리티온 배출량을 줄일 수 있기 때문에, 환경보호의 관점에서도 바람직하다.The elution rate of the copper pyrithione eluted from the bottom coating film depends on factors such as the surface area of the copper pyrithione and the sea water temperature as well as the properties of the coating film, the speed of the ship, and the adherence status of contaminated organisms. The surface area of the copper pyrithione granular aggregate having a median diameter of 9-13 탆 according to the present invention is 2-6 times larger than the surface area of commercially available copper pyrithione as a result of the elution on seawater It is considered that the speed is considerably slowed, which not only improves the sustainability of the antifouling effect at high temperature conditions such as the tropical waters, but also reduces the copper pyrithione emission to the ocean, which is also preferable from the viewpoint of environmental protection.

본 발명의 구리피리티온 입상집합체는, 시릴아크릴수지, 아연아크릴수지, 구리아크릴수지 및 이들의 공중합수지를 기재로하는 선저방오도료에 배합되어, 통상 아산화구리와 함께 처방된다.The copper pyrithione granular aggregate of the present invention is mixed with a bottom antifouling paint based on a silyl acrylic resin, a zinc acrylic resin, a copper acrylic resin and a copolymer resin thereof, and is ordinarily formulated together with copper oxide.

본 발명의 제조법에서 얻어진 구리피리티온은, 기존의 구리피리티온이 중앙값 입자 직경 5μm 이하의 침상결정인 반면, 중앙값 입자 직경이 9-13μm으로 크고, 길이가 짧은 소입자의 입상집합체이기 때문에, 작업현장에서 흡입의 위험성이 크게 감경되는 동시에, 선저도료용방오제로서 사용할 때, 해수에의 용출이 크게 저감되고 방오효과의 지속성이 개선된다.Since the copper pyrithione obtained in the present invention is a granular aggregate of small particles having a median particle diameter of 9 to 13 占 퐉 and a relatively small median particle diameter of not more than 5 占 퐉, The risk of inhalation on site is greatly reduced, and when it is used as a base paints for use as bottom paints, the dissolution into seawater is greatly reduced and the durability of the antifouling effect is improved.

[도 1]은, 실시예 1에서 얻어진 구리피리티온 집합체 입자의 중앙값 직경을 나타내는 차트이다. (레이저회절식입도분포장치, 호리바제작소「LA-920」, 초음파 처리 없음.)
[도 2]는, 실시예 1에서 얻어진 구리피리티온 집합체의 전자현미경사진 (600O배)이다.
[도 3]은, 실시예 1에서 얻어진 구리피리티온 집합체의 전자현미경사진 (3000O배)이다.
[도 4]은, 실시예 1에서 얻어진 구리피리티온 집합체의 X선회절패턴을 나타내는 차트이다.
[도 5]는, 시판 구리피리티온 분말 (Kolon생명과학사제)의 X선회절패턴을 나타내는 차트이다.
[도 6]은, 실시예 2에서 얻어진 구리피리티온 집합체 입자의 중앙값 직경을 나타내는 차트이다 (레이저회절식입도분포장치, 호리바제작소「LA-920」, 초음파 처리 1분간).
Fig. 1 is a chart showing the median diameter of the copper pyrithione aggregate particles obtained in Example 1. Fig. (Laser diffraction particle size distribution device, HORIBA, Inc. LA-920, without ultrasonic treatment)
Fig. 2 is an electron micrograph (600O times) of the copper pyrithione aggregate obtained in Example 1. Fig.
3 is an electron micrograph (3000O times) of the copper pyrithione aggregate obtained in Example 1. Fig.
4 is a chart showing an X-ray diffraction pattern of the copper pyrithione aggregate obtained in Example 1. Fig.
5 is a chart showing an X-ray diffraction pattern of commercially available copper pyrithione powder (manufactured by Kolon Life Science).
6 is a chart showing the median diameter of the copper pyrithione aggregate particles obtained in Example 2 (laser diffraction particle size distribution apparatus, Horiba Works, LA-920, ultrasonic treatment for 1 minute).

이하에 실시예를 들어, 본 발명을 구체적으로 설명한다. 이하의 실시예는 예시를 위한 것이며, 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail by way of examples. The following examples are for illustrative purposes only and are not intended to limit the scope of the invention.

실시예 1Example 1

비커에 넣은 40mL의 물에 황산구리(II) 5수화물 3.0g과 황산암모늄 1.5g를 더하고, 거기에 5% 황산을 가하여 pH를 2로 조절한 황산구리(II)·황산암모늄복합염 수용액(A)를 제조하였다. 이어서 비커에 넣은 50mL의 물에 나트륨피리티온 40% 수용액(비중 1.20) 8.85g를 더해, 나트륨피리티온 희석수용액(B)를 제조하였다. 25℃로 유지하고, (A)에 (B)를 30분 동안 교반(攪拌)하면서 적하하였다. 그 사이 pH가 3을 초과하지 않도록 적당히 5% 황산을 더했다. 3.0 g of copper sulfate (II) pentahydrate and 1.5 g of ammonium sulfate were added to 40 mL of water contained in the beaker, and an aqueous copper sulfate (II) sulfate complex salt aqueous solution (A) adjusted to pH 2 with 5% . Subsequently, 8.85 g of a 40% aqueous solution of sodium pyrithione (specific gravity 1.20) was added to 50 mL of water in a beaker to prepare an aqueous solution (B) of diluted sodium pyrithione. The mixture was maintained at 25 占 폚, and (A) and (B) were added dropwise with stirring (stirring) for 30 minutes. Meanwhile, 5% sulfuric acid was appropriately added so that the pH did not exceed 3.

얻어진 녹색 구리피리티온 슬러리(slurry)를 여과하고, 여과잔류를 100mL의 물에 녹이고, 교반(攪拌)후 이어서 여과를 실시하는 조작을 3회 반복 한 후, 얻어진 고체를 건조하고, 막자사발(乳鉢)로 분쇄하여 3.6g의 녹색입상물을 얻었다.The resulting green copper pyrithione slurry was filtered, and the filtration residue was dissolved in 100 mL of water. After stirring (stirring) and then filtration was repeated three times, the obtained solid was dried, ) To obtain 3.6 g of a green particulate material.

이 녹색입상물을 0.1% 데몰N(DEMOL N)(카오주식회사) 수용액에 분산시킨 것의 중앙값 입자 직경은, 레이저회절식입도분포측정장치, 호리바제작소「LA-920」으로 측정 한 결과, 10.6μm였다 (도1). 또한 이 장치의 초음파 기능을 1분 동안 작동 시켰을 때의 중앙값 직경은, 9.5μm였다. 이 초음파 작동 시간의 증가로 인해, 수치가 저하되는 경향은, 시판 구리피리티온의 경우와 마찬가지이다.The median particle diameter of this green particulate material dispersed in an aqueous solution of 0.1% demol N (Kao Corporation) was 10.6 μm as measured by a laser diffraction particle size distribution analyzer, Horiba Corp. "LA-920" (Fig. 1). The median diameter when the ultrasonic function of this device was operated for 1 minute was 9.5 mu m. The tendency that the numerical value is lowered due to the increase of the ultrasonic operating time is the same as in the case of the commercial copper pyrithione.

입자의 내부 상태를 관찰하기 위해, 전자 현미경을 사용하여, 6000배(도2), 및 30000배(도3)의 사진을 촬영했다. 그 결과, 내부는 O.1~1.0μm의 길이를 갖는 타원 구형, 막대 모양의 구리피리티온으로 생각되는 물질의 집합체인 것을 판명하였다.In order to observe the internal state of the particles, photographs were taken at 6000 times (FIG. 2) and 30,000 times (FIG. 3) using an electron microscope. As a result, it was found that the inside was a collection of materials considered as elliptical spherical, rod-shaped copper pyrithione having a length of 0.1 to 1.0 μm.

이어서 집합체의 화학 성분을 알아보기 위해, X선회절분석을 실시했다. 그 결과 이 녹색 입상집합체와 시판 구리피리티온 (Kolon생명과학사제)의 차트 (도4 및 5)상에서 인정되는 피크 위치는 완전히 동일한 점에서, 녹색 입상집합체의 본질은 구리피리티온에 있다는 것을 확인했다.Then, X-ray diffraction analysis was carried out to examine the chemical composition of the aggregate. As a result, it was confirmed that the peak position recognized on this chart of the green granular aggregate and the commercial copper pyrithione (Kolon Life Science Co.) (FIGS. 4 and 5) was at the very same point that the nature of the green granular aggregate was in the copper pyrithione .

또한 이 구리피리티온 입상집합체를 물에 분산시키고, 80℃에서 30분 교반(攪拌)했을 때, 희미한 암모니아 냄새가 있고, 집합체는 수10% 정도 부서졌다. When this copper pyrithione granular aggregate was dispersed in water and stirred (stirred) at 80 캜 for 30 minutes, there was a slight ammonia odor, and the aggregate was broken by several 10%.

이것은, 집합체에 수용성 암모니아 화합물이 포함되어 있다는 것을 나타내며, 황산 구리(II)·황산암모늄복합염과 나트륨피리티온에서 구리피리티온이 생성된 경위를 생각하면, 반응시 해리한 황산암모늄이 구리피리티온에 흡착되어, 구리피리티온끼리 묶은 것으로 추측된다. 즉 복합체가 형성되었다고 생각된다. 단지 X선회절차트상에서는 그 흔적이 판단되지 않는 것으로부터, 황산암모늄의 함량은 미량인 것으로 추정된다. This indicates that the water-soluble ammonia compound is contained in the aggregate. Considering the situation in which copper pyrithione is generated from the copper (II) sulfate ammonium complex sulfate salt and sodium pyrithione, the ammonium sulfate dissociated during the reaction becomes copper pyrithione And it is presumed that copper pyrithione is bound to each other. That is, a complex has been formed. Since the trace is not judged on the X-ray diffraction chart, the content of ammonium sulfate is estimated to be very small.

실시예2Example 2

비커에 넣은 50mL의 물에 염화암모늄 0.05 몰(2.7g), 염화구리(II) 2수화물 0.025몰(4.3g)을 더하여 (pH3), 거기에 2N염산을 가하여 pH2의 염화구리·염화암모늄 복합염 수용액(A)를 제조하였다. To the beaker, 50 mL of water was added 0.05 mmol (2.7 g) of ammonium chloride and 0.025 mol (4.3 g) of copper (II) chloride dihydrate (pH 3) and 2N hydrochloric acid was added thereto to prepare a copper chloride ammonium chloride complex salt To prepare an aqueous solution (A).

다른 비커에 넣은 40mL의 물에 나트륨피리티온 40% 수용액 18.6g를 더해, 나트륨 피리티온의 0.05몰 수용액(B)를 제조하였다. 실온(2O℃)에서 (A)에 (B)를 10분 동안 교반(攪拌)하면서 적하하였다. 이 사이 적절히 2N염산을 가하고, 반응종점의 pH가 3이 되도록 조정했다. 또한 3O분간 실온에서 교반(攪拌)을 계속했다. 얻어진 녹색 슬러리(slurry)를 여과하고 여과잔류를 10omL의 물에 되돌려, 다시 10분간 교반(攪拌) 후 이어서 여과를 실시하는 조작을 3회 반복 한 후, 얻어진 고체를 건조하고, 막자사발(乳鉢)로 분쇄하여 7.6g의 구리피리티온 입상집합체를 얻었다.To 40 mL of water in another beaker was added 18.6 g of a 40% aqueous solution of sodium pyrithione to prepare 0.05 molar aqueous solution (B) of sodium pyrithione. (A) and (B) were added dropwise at room temperature (20 占 폚) while stirring (stirring) for 10 minutes. During this time, 2N hydrochloric acid was added appropriately and the pH of the reaction end point was adjusted to 3. Stirring (stirring) continued at room temperature for 30 minutes. The obtained green slurry was filtered, and the filtration residue was returned to 10 mlL of water. After stirring for 10 minutes again, filtration was repeated three times. The obtained solid was dried, To obtain 7.6 g of a copper pyrithione granular aggregate.

이 녹색 입상물을 0.1% 데몰N(DEMOL N)(카오주식회사) 수용액에 분산시킨 것의 중앙값 입자 직경은, 레이저회절식입도분포측정장치, 호리바제작소「LA-920」으로 측정 한 결과, 이 장치의 초음파 기능을 1분동안 작동시켰을 때의 중앙값 직경은, 12.1μm였다(도6).The median particle diameter of this green particulate material dispersed in an aqueous solution of 0.1% of DEMOL N (Kao Co., Ltd.) was measured with a laser diffraction particle size distribution analyzer, Horiba Laboratories "LA-920" The median diameter when operating the ultrasound function for 1 minute was 12.1 m (Fig. 6).

비교예1Comparative Example 1

실시예 1에서 얻어진 구리피리티온 입상집합체를 물에 적셔서, 막자사발(乳鉢)로 더 강하게 갈아서 잘게 분쇄 한 후, 이것의 중앙값 직경을 실시예2와 동일하게 측정하여, 5.0μm (초음파 처리 없음), 3.3μm (초음파 처리 1분간)의 값을 갖는 미세화 입자 집합체를 얻었다.The copper pyrithione granular aggregate obtained in Example 1 was immersed in water, ground more finely with a pestle mortar and finely pulverized, and its median diameter was measured in the same manner as in Example 2 to find that 5.0 μm (without ultrasonic treatment) , 3.3 μm (ultrasonic treatment for 1 minute).

비교예2Comparative Example 2

실시 예 2에서 얻어진 구리피리티온 입상집합체에 대하여, 비교예1과 동일하게 미세화하고, 이것의 중앙값 직경을 동일하게 측정한 결과, 4.3μm (초음파 처리 없음), 3.1μm (초음파 처리 1 분간)의 값을 얻었다.The copper pyrithione granular aggregate obtained in Example 2 was made finer in the same manner as in Comparative Example 1 and its median diameter was measured in the same manner. As a result, it was found that 4.3 μm (without ultrasonic treatment) and 3.1 μm Value.

실시예3Example 3

실시예1, 실시예2, 비교예1, 비교예 2에서 얻어진 구리피리티온 입상집합체에 대하여, 물에 대한 용해도를 측정했다. The solubility of the copper pyrithione granular aggregates obtained in Example 1, Example 2, Comparative Example 1 and Comparative Example 2 in water was measured.

1. 시료 조제 1. Sample Preparation

각 시료 0.05g을 각각 초순수 250mL에 분산시킨 것을, 실온에서 24시간 교반(攪拌)했다. 다음으로 5C의 여과지, 이어서 평균 구멍 직경 0.45μm 멤브레인필터를 이용하여 여과 한 후, 여액에 O.1몰/L이 되도록 질산을 첨가한 용액을 측정에 사용하였다. 0.05 g of each sample was dispersed in 250 mL of ultrapure water, and the mixture was stirred (stirred) at room temperature for 24 hours. Next, the filtrate was filtered using a filter paper of 5C, followed by an average pore diameter of 0.45 μm membrane filter, and then a solution in which nitric acid was added so as to be 0.1 mol / L in the filtrate was used for the measurement.

2. 측정방법 2. Measuring method

ICP 발광분광분석 (기기; 시마즈 제작소「ICPS-2000」) ICP emission spectroscopic analysis (instrument; Shimadzu Corporation "ICPS-2000")

측정결과를 표1에 나타낸다.The measurement results are shown in Table 1.

표 1 물에 대한 용해도Table 1 Solubility in water 시료sample 구리측정치(mg/L)Copper Measurements (mg / L) 구리피리티온 환산치(mg/L)Concentration in terms of copper pyrithione (mg / L) 실시예 1의 구리 피리티온 집합체The copper pyrithione aggregate of Example 1 <0.05&Lt; 0.05 <0.25<0.25 실시예 2의 구리 피리티온 집합체The copper pyrithione aggregate of Example 2 <0.05&Lt; 0.05 <0.25<0.25 비교예 1의 구리 피리티온 집합체The copper pyrithione aggregate of Comparative Example 1 0.080.08 0.400.40 비교예 2의 구리 피리티온 집합체The copper pyrithione aggregate of Comparative Example 2 0.090.09 0.450.45

표1의 결과에서, 실시예 1및 실시예 2의 구리피리티온 집합체의 물에 대한 용해도는, 비교예 1 및 비교예 2의 구리피리티온 집합체의 그것보다도 2/3~1/2에 있다.In the results of Table 1, the solubility of the copper pyrithione aggregates of Examples 1 and 2 in water is 2/3 to 1/2 of that of the copper pyrithione aggregates of Comparative Examples 1 and 2.

실시예4Example 4

하기성분을 균일하게 혼합하여, 선저도료를 얻었다.The following components were uniformly mixed to obtain a bottom coating.

메틸메타크리레이트와 트리소프로필시릴아크릴레이트의 2:3 공중합체 (50%크실렌용액) 36중량%36% by weight of a 2: 3 copolymer of methyl methacrylate and triisopropylsilyl acrylate (50% xylene solution)

아산화구리 32중량%32% by weight of copper oxide

아연가루 4중량%Zinc powder 4 weight%

실시예 2의 구리피리티온 입상집합체 3중량%3% by weight of the copper pyrithione granular aggregate of Example 2

티탄백 2중량%Titanium bag 2 wt%

뱅갈라(bengala) 2중량%2% by weight of bengala

지방산아미드왁스(20%) 2중량%Fatty acid amide wax (20%) 2%

크실렌 19중량%Xylene 19 wt%

합계 100중량%100 weight%

도료조제시 다시 반년 후에도 겔화(gelation)등의 이상은 발견되지 않았다.No abnormality such as gelation was found even after half a year at the time of coating preparation.

본 발명의 구리피리티온 입상집합체는, 기존의 시판 구리피리티온에서는 얻을 수 없는 중앙값 직경에서 9~13μm의 큰 입자 직경을 가지고 있기 때문에, 선저도료의 도막에서의 용출속도가 저감되는 결과, 특히 열대해역에 있어 장기방오성능을 발휘하는 방오제로서, 또한 환경에의 배출량이 적은 방오제로서 유용할 가능성이 있다.
Since the copper pyrithione granular aggregate of the present invention has a large particle diameter of 9 to 13 占 퐉 at the median diameter which can not be obtained by conventional commercial copper pyrithione, the rate of elution of the bottom paints in the coating film is reduced, There is a possibility of being useful as an antifouling agent exhibiting long-term antifouling performance in the sea area and also as an antifouling agent having a small emission amount to the environment.

Claims (10)

일반식(I)
[화학식 7]
Figure pct00007

또는 일반식(I')
[화학식 8]
Figure pct00008

(식중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를 나타낸다.)
로 표시되는 수용성 금속피리티온 또는 암모늄피리티온과
일반식(Ⅱ)
[화학식 9]
Figure pct00009

(식중 X는, Cl, 1/2S04 또는 N03 중 어느 하나의 음이온을 나타낸다.)
로 표시되는 무기구리(II)염과 무기암모늄염과의 복합염을 pH1-4의 물 매질 중에서 반응시켜 만들어지는 구리피리티온 집합체.
The compound of formula (I)
(7)
Figure pct00007

Or a compound represented by the general formula (I '):
[Chemical Formula 8]
Figure pct00008

(Wherein M represents a monovalent or divalent metal, or ammonium, and Py represents a 2-pyridylthio-N-oxide group.)
Soluble metal pyrithione or ammonium pyrithione represented by the formula
In general formula (II)
[Chemical Formula 9]
Figure pct00009

(Wherein X represents any one of the anion of Cl, 1 / 2S0 4 or N0 3.)
(II) salt with an inorganic ammonium salt in a water medium having a pH of 1-4, thereby producing a copper pyrithione aggregate.
일반식(I)
[화학식 10]
Figure pct00010

또는 일반식(I')
[화학식 11]
Figure pct00011

(식 중 M은 1가 또는 2가의 금속, 또는 암모늄을, Py는 2-피리딜티오-N-옥사이드기를 나타낸다.)
로 표시되는 수용성 금속피리티온 또는 암모늄피리티온과
일반식(Ⅱ)
[화학식 12]
Figure pct00012

(식중 X는, Cl, 1/2S04 또는 N03 중 어느 하나의 음이온을 나타낸다.)
로 표시되는 무기구리(II)염과 무기암모늄염과의 복합염을 pH1-4의 물 매질 중에서 반응시켜 만들어지는 것을 특징으로 하는, 구리피리티온 집합체의 제조방법.
The compound of formula (I)
[Chemical formula 10]
Figure pct00010

Or a compound represented by the general formula (I '):
(11)
Figure pct00011

(Wherein M represents a monovalent or divalent metal or ammonium, and Py represents a 2-pyridylthio-N-oxide group).
Soluble metal pyrithione or ammonium pyrithione represented by the formula
In general formula (II)
[Chemical Formula 12]
Figure pct00012

(Wherein X represents any one of the anion of Cl, 1 / 2S0 4 or N0 3.)
And a complex salt of an inorganic copper (II) salt and an inorganic ammonium salt represented by the general formula (I) in a water medium having a pH of 1-4.
제 1항에 있어서,
M은, 나트륨, 칼륨, 칼슘 및 마그네슘으로 이루어진 금속으로부터 선택되는, 구리피리티온 집합체.
The method according to claim 1,
M is selected from metals consisting of sodium, potassium, calcium and magnesium.
제 2항에 있어서,
M은 나트륨, 칼륨, 칼슘 및 마그네슘으로 이루어진 금속으로부터 선택되는, 구리 피리티온 집합체의 제조 방법.
3. The method of claim 2,
And M is selected from metals consisting of sodium, potassium, calcium and magnesium.
제 1항 또는 제 3항에 있어서,
무기구리(II)염은 염화구리(II) 또는 황산구리(II)이며, 무기암모늄염은, 염화암모늄 또는 황산암모늄인, 구리피리티온 집합체.
The method according to claim 1 or 3,
Wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, and the inorganic ammonium salt is ammonium chloride or ammonium sulfate.
제 2항 또는 제 4항에 있어서,
무기구리(II)염은 염화구리(II)또는 황산구리(II)이며, 무기암모늄염은 염화암모늄 또는 황산암모늄인, 구리피리티온 집합체의 제조방법.
The method according to claim 2 or 4,
Wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, and the inorganic ammonium salt is ammonium chloride or ammonium sulfate.
제 1항, 제3항 또는 제 5항에 있어서,
구리피리티온 집합체 입자의 중앙값 직경이, 입도분포의 주요부분이 정규분포를 보여주는 것을 전제조건으로 하여, 9-13μm의 범위에 있는, 구리피리티온 집합체.
The method according to claim 1, 3, or 5,
Wherein the median diameter of the copper pyrithione aggregate particles is in the range of 9-13 占 퐉, provided that the major part of the particle size distribution exhibits a normal distribution.
제 2항, 제4항, 또는 제 6항에 있어서,
구리피리티온 집합체 입자의 중앙값 직경이, 입도분포의 주요부분이 정규분포를 보여주는 것을 전제조건으로 하여, 9-13μm의 범위에 있는, 구리피리티온 집합체 제조방법.
The method according to claim 2, 4, or 6,
Wherein the median diameter of the copper pyrithione aggregate particles is in the range of 9-13 μm, provided that the major part of the particle size distribution exhibits a normal distribution.
제 1항의 구리피리티온 집합체를 함유하는 선저도료용방오제.A bottom coat paint containing the copper pyrithione aggregate of claim 1. 제 9항에 있어서,
구리피리티온 집합체 입자의 중앙값 직경이, 입도분포의 주요부분이 정규분포를 보여주는 것을 전제 조건으로 하여, 9-13μm의 범위에 있는, 선저도료용방오제.






10. The method of claim 9,
The median diameter of the copper pyrithione aggregate particles is in the range of 9-13 μm, assuming that the major part of the particle size distribution shows a normal distribution.






KR1020147027375A 2012-09-12 2013-09-09 Copper pyrithione aggregate and use of same KR101630560B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012219791 2012-09-12
JPJP-P-2012-219791 2012-09-12
PCT/JP2013/074216 WO2014042117A1 (en) 2012-09-12 2013-09-09 Copper pyrithione aggregate and use of same

Publications (2)

Publication Number Publication Date
KR20140131980A true KR20140131980A (en) 2014-11-14
KR101630560B1 KR101630560B1 (en) 2016-06-14

Family

ID=50278228

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020147027375A KR101630560B1 (en) 2012-09-12 2013-09-09 Copper pyrithione aggregate and use of same

Country Status (6)

Country Link
JP (1) JP5594619B2 (en)
KR (1) KR101630560B1 (en)
CN (1) CN104203917B (en)
MY (1) MY165739A (en)
SG (1) SG11201407771RA (en)
WO (1) WO2014042117A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121171A1 (en) * 2021-12-23 2023-06-29 코오롱생명과학주식회사 Antifouling paint composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101801455B1 (en) * 2014-03-06 2017-11-24 유겐가이샤 와이에이치에스 Copper pyrithione aggregate and use of same
JP7093914B2 (en) * 2020-02-03 2022-07-01 有限会社 ワイエイチエス Method for manufacturing copper pyrithione aggregate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062825B2 (en) 1994-02-28 2000-07-12 オリン コーポレイション Method for producing copper pyrithione
JP3532500B2 (en) 1999-05-31 2004-05-31 キクチカラー株式会社 Antifouling agent for ship bottom paint and method for producing high purity copper pyrithione used therefor
JP2006335757A (en) * 2005-01-12 2006-12-14 Yhs:Kk Highly dispersible composition containing finely particulate pyrithione complexed compound and optionally metal pyrithione and/or metal oxide
KR20070015357A (en) * 2003-10-24 2007-02-02 유겐가이샤 와이에이치에스 Novel pyrithione complex compound, process for producing the same and use thereof
JP2009155316A (en) * 2007-12-26 2009-07-16 Yhs:Kk Method for producing metal pyrithion-metal oxide complex compound and/or metal pyrithion-metal hydroxide complex compound
KR20110002886A (en) * 2008-05-30 2011-01-10 유겐가이샤 와이에이치에스 New crystalline pyrithione/zinc oxide composite and physiologic/antibiotic composition containing the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100529159B1 (en) * 2005-02-22 2005-11-17 주식회사 코오롱 Pyrithione salts having a defined crystallite size distribution and paint composition comprising it

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062825B2 (en) 1994-02-28 2000-07-12 オリン コーポレイション Method for producing copper pyrithione
JP3532500B2 (en) 1999-05-31 2004-05-31 キクチカラー株式会社 Antifouling agent for ship bottom paint and method for producing high purity copper pyrithione used therefor
KR20070015357A (en) * 2003-10-24 2007-02-02 유겐가이샤 와이에이치에스 Novel pyrithione complex compound, process for producing the same and use thereof
JP2006335757A (en) * 2005-01-12 2006-12-14 Yhs:Kk Highly dispersible composition containing finely particulate pyrithione complexed compound and optionally metal pyrithione and/or metal oxide
JP2009155316A (en) * 2007-12-26 2009-07-16 Yhs:Kk Method for producing metal pyrithion-metal oxide complex compound and/or metal pyrithion-metal hydroxide complex compound
KR20110002886A (en) * 2008-05-30 2011-01-10 유겐가이샤 와이에이치에스 New crystalline pyrithione/zinc oxide composite and physiologic/antibiotic composition containing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023121171A1 (en) * 2021-12-23 2023-06-29 코오롱생명과학주식회사 Antifouling paint composition

Also Published As

Publication number Publication date
CN104203917A (en) 2014-12-10
MY165739A (en) 2018-04-20
SG11201407771RA (en) 2015-01-29
WO2014042117A1 (en) 2014-03-20
JPWO2014042117A1 (en) 2016-08-18
KR101630560B1 (en) 2016-06-14
CN104203917B (en) 2016-08-24
JP5594619B2 (en) 2014-09-24

Similar Documents

Publication Publication Date Title
KR101630560B1 (en) Copper pyrithione aggregate and use of same
JP4576456B2 (en) Chromium hydroxide, production method thereof, trivalent chromium-containing liquid using the same, and chromium plating method
Gatemala et al. 3D AgCl microstructures selectively fabricated via Cl−-induced precipitation from [Ag (NH 3) 2]+
JP2006335757A (en) Highly dispersible composition containing finely particulate pyrithione complexed compound and optionally metal pyrithione and/or metal oxide
KR101801455B1 (en) Copper pyrithione aggregate and use of same
JP5724578B2 (en) Method for producing layered zirconium phosphate
JP2015531432A (en) Low temperature dispersion synthesis of silver and silver products produced thereby
JP2017121616A (en) Absorbent
JP7057738B2 (en) Manufacturing method of copper sulfide powder and copper sulfide powder
US8673261B2 (en) Process for preparing magnetite (Fe3O4) and derivatives thereof
JP2009155316A (en) Method for producing metal pyrithion-metal oxide complex compound and/or metal pyrithion-metal hydroxide complex compound
KR101107553B1 (en) Preparation method of oil-soluble particle by surface modification of hydroxide based precursors composed of two or more metal atoms
CN105419795B (en) A kind of nano red fluorescent powder of strontium titanates and preparation method for adulterating praseodymium or praseodymium zinc
RU2572418C1 (en) Method of producing magnetoactive compound
JP2006511665A (en) Small particle copper pyrithione
TW200715390A (en) Manufacturing methods of fine cerium oxide particles and its slurry for shallow trench isolation process of semiconductor
JP5113315B2 (en) Agricultural crop mineral supplement and method for producing the same
JP4502258B2 (en) Soil solidifying agent and method for producing the same
JP5684773B2 (en) How to collect heavy metal ions
Tamilselvan Metal Hydrazine Cinnamates: Synthesis and Characterization
JP2004083350A (en) Method for manufacturing rare earth oxide fine powder having 100 nm or less primary particle size, and rare earth oxide fine powder
TWI597113B (en) Method for producing fine silver particles
JPH0131787B2 (en)
JP2008044865A (en) Trace mineral agent
JP2021046353A (en) Highly basic aluminum chloride and its production method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190515

Year of fee payment: 4