JPH0131787B2 - - Google Patents

Info

Publication number
JPH0131787B2
JPH0131787B2 JP57081035A JP8103582A JPH0131787B2 JP H0131787 B2 JPH0131787 B2 JP H0131787B2 JP 57081035 A JP57081035 A JP 57081035A JP 8103582 A JP8103582 A JP 8103582A JP H0131787 B2 JPH0131787 B2 JP H0131787B2
Authority
JP
Japan
Prior art keywords
copper
antifouling
alloy
solubility
pigment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57081035A
Other languages
Japanese (ja)
Other versions
JPS58196269A (en
Inventor
Jun Oogushi
Isao Takemoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paint Co Ltd
Original Assignee
Nippon Paint Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paint Co Ltd filed Critical Nippon Paint Co Ltd
Priority to JP8103582A priority Critical patent/JPS58196269A/en
Publication of JPS58196269A publication Critical patent/JPS58196269A/en
Publication of JPH0131787B2 publication Critical patent/JPH0131787B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Paints Or Removers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は船舶、水中構造物等に汚損生物が付着
することを防止し、保護することを目的とする防
汚塗料に使用される防汚顔料に関する。 海中には動物分類学上脊椎動物の次に位置する
原索動物のホヤから、最も下等な原生動物のプロ
トゾアに至るまでの多種多様な汚損動物が生棲
し、さらに付着珪藻や海藻などの汚損植物が繁殖
している。 防汚塗料に使用される防汚剤は、これら多種多
様を汚損生物全般に対し顕著な防除効果を長期間
にわたつて発揮すると同時に、人体に対する毒性
が低く、環境衛生上の問題点の少ないことが要求
される。近年防汚剤としてトリアルキルすず化合
物、トリフエニルすず化合物、DDT、BHC等の
有機塩素化合物、テトラアルキルチウラムジサル
フアイド、ジンクジアルキルジチオカルバメート
等の有機イオウ化合物が防汚塗料に使用されてい
るが、これら有機防汚剤は一般に特定の汚損生物
のみに選択的に効力を発揮するが、その他の生物
に対しては全く効果を示さず、特に海藻類の付着
防止には多くを期待できない。またすべての汚損
生物全般に対し防汚効果を持たせるようにすれ
ば、人体に対する毒性も強くなるなど未だ実用上
問題点が多い。これに対し銅糸防汚剤の代表的な
亜酸化銅を例にとれば、本化合物はすべての汚損
生物に対し顕著な防汚効果を示す一方、人体に対
する毒性は低いので実用性の高い防汚剤として古
くから使用されて来た。しかし亜酸化銅すなわち
酸化第一銅は不安定で、海水中で酸化され次第に
2価の銅塩に変化し、防汚に必要な銅イオンの溶
出速度が10μg/cm2/dayを維持することができ
なくなり、塗膜中には銅化合物が存在するにも
かゝわらず、ついには防汚効果を失うことが認め
られる。これは亜酸化銅は1価の銅イオンとして
海水に溶けるが即ちに酸化されて2価の銅イオン
になり、さらに海水中に多量に存在する水酸イオ
ンや炭酸イオンと反応し、ついには塩基性炭酸銅
に変化するためであると考えられる。これを溶解
度の変化としてみれば、亜酸化銅の海水に対する
溶解度はPH8.2、温度20℃で5〜3×10-5モル/
であるのに対し、一方塩基性炭酸銅の溶解度
は、同一条件で4〜2×10-6モル/であるか
ら、その間に10倍もの開きがあることになる。 本発明者らは、海水中において1価の亜酸化銅
が2価の銅化合物に酸化されることを防止または
抑制する方法について研究し、1価の銅イオンま
たは2価のイオンは酸化還元電位が銅より下位に
ある金属、すなわちビスマス、すず、鉛、ニツケ
ル、バナジウム、コバルト、カドミウム、鉄、ガ
リウム、亜鉛、セレン、テルル、マンガン、ジウ
コニウム、ゲルマニウム、チタン、アルミニウ
ム、マグネシウム、ならびに非金属の性質を有す
る陽イオンを形成するアンチモン、ひ素、リン等
の物質により還元され、より低位のイオンまたは
金属銅にまで還元される性質に着目し、常に微ア
ルカリ性で酸化物質を多量に含む海水中で上記の
酸化還元反応が長期にわたり進行し、かつ環境衛
生上問題の少ない物質を探索した。これらの物質
は、前記酸化還元反応がアルカリ領域において長
期にわたり安定した速度を保ちながら進行する必
要があり、そのため酸化還元力が強く海水を加水
分解するマグネシウム、ナトリウム、海水中で急
速に消耗し持続性を失うリン、酸化還元反応によ
り生成される物質が相互に反応し不溶性の銅化合
物を形成するアルミニウム、コバルト、および環
境衛生上好ましくないカドミウム、ひ素などを除
き、すず、アンチモン、亜鉛、クロム、鉄、ニツ
ケル、鉛、チタンの単体または合金を少なくとも
1種添加することにより、亜酸化銅のみならず、
海水に対する溶解度が3×10-6モル/以下の水
酸化第二銅や塩基性炭酸銅などの難溶性銅化合物
の溶解を促進させることができることを知見し
た。 さらに検討を重ねた結果、防汚塗料の長期的防
汚性能維持のためには、防汚塗料組成物中に銅化
合物と還元性単体または合金の粒子がち密に、か
つ均一に分散される必要があるが、そのため両成
分を塗料製造時に別々に添加するよりも、還元性
単体または金を銅糸防汚剤の製造時にあらかじめ
添加し、このようにして製造された防汚顔料を防
汚塗料の製造に使用するのが一層効果的であるこ
とが判明した。すなわちこれにより銅化合物と還
元性単体または合金とのち密なかつ均一な分散が
達成できる結果、比較的少量の還元性単体または
合金の配合で長期間銅化合物の防汚性能を発揮
し、その上亜酸化銅の場合その貯蔵安定性、すな
わち一価の亜酸化銅が空気中で酸化されて二価の
酸化銅に変化し本来の溶解性が低下することを防
止する効果も達成される。 本発明の防汚顔料は、難溶性銅化合物防汚剤
に、該銅化合物より酸化還元電位が低くかつ水に
難溶性である還元性単体または合金を配合したこ
とを特徴とする。 こゝでいう難溶性銅化合物とは、PH8.2の海水
に対する溶解度が20℃において1×10-4モル/
以下の一般に不溶性といわれる銅化合物であり、
具体的には亜酸化銅およびロダン化銅である。還
元性単体または合金としては、すず、アンチモ
ン、亜鉛、クロム、鉄、ニツケル、鉛、チタンお
よびそれらの合金、特に亜鉛、アンチモン、す
ず、およびそれらの合金を用いることができる。 本発明において使用する銅化合物と還元性単体
または合金の組合せおよびその組成割合は、防汚
塗料の使用方法、使用目的によつて異なるが、一
般に化合物に対して30重量%以下の還元性単体ま
たは合金を配合するのが適当である。 還元性単体または合金の粒度は銅化合物とち密
にかつ均一に分散するため、一般に250メツシユ
より細かいものが好ましい。 本発明の防汚顔料は、防汚性銅化合物の製造時
に還元性単体または合金を添加することによつて
製造される。 周知のように、亜酸化銅の製造法には、 (イ) 塩化ナトリウム水溶液を電解液として用いる
銅極板の隔膜電解法 (ロ) 一価の銅化合物、例えば塩化第一銅の食塩水
溶液にアルカリ溶液を反応させる化成法 (ハ) 硫酸銅、酸化銅、金属銅粉等の加熱分解また
は加熱酸化による乾式法 がある。 ロダン化銅は硫酸銅溶液の2価の銅を還元剤で
還元しながらロダン塩と反応させて製造される。 いずれの場合も反応後熟成、洗浄、ロ過、乾
燥、粉砕等の工程を経て製品となり、包装して出
荷される。 本発明による銅化合物への還元性単体または合
金の配合は、前記製造法において、 (1) 洗浄工程において添加する (2) 表面処理工程において添加する (3) 乾燥工程において添加する (4) 粉砕工程において添加する (5) 製品とした後に混合する 等の手段によつて達成される。 防汚塗料の製造および塗装方法は、還元性単体
または合金を含まない銅系防汚顔料を使用する場
合と変りはない。 以下実施例により本発明を例証する。実施例中
部および%は、特に断らない限り重量による。 実施例 1 常法により電解法で生成させた亜酸化銅の沈殿
を結晶成長のため熟成を行い、可溶性塩素分が
0.1%以下になるまで水洗し、スラリー濃度が
Cu2Oとして500g/に調整した亜酸化銅500g
と、還元性単体として亜鉛末40gとを混合槽に仕
込み、2時間混合かくはんした後表面処理槽に移
し、グリセリン処理し、ロ過、乾燥、粉砕して防
汚顔料を製造した。 この顔料5gを500ml三角フラスコにとり、海
水300mlを加えかきまぜながら貯蔵する。貯蔵中
海水は毎週1回更新し、一定期間毎に試料の一部
を取り出しPH8.2、温度20℃に調整した海水に対
する溶解度を測定した。 実施例 2 実施例1と同様に電解法で生成させ、熟成、洗
浄、表面処理を行つて得た含水率30%のケーキ状
亜酸化銅800gをかくはん機つき真空乾燥機に装
入した後、還元性単体として亜鉛粉末50gを添加
し、80℃以下で5時間乾燥後取り出し、粉砕して
防汚顔料を製造し、銅の溶解度を測定した。 実施例 3および4 還元性単体として亜鉛にかえてアンチモンおよ
びすずを使用したほかは実施例1の操作をくり返
して防汚顔料を製造し、それぞれの銅の溶解度を
測定した。 実施例 5 硫酸銅CuSO4・5H2Oとして250g/水溶液
1に、二酸化イオウを通じながらロダン化カリ
ウムKSCNとして640g/の水溶液150mlを加
え、生成したロダン化銅の沈殿を熟成した後、水
洗して可溶液塩類を除去した。次にスラリー濃度
を200g/に調整したロダン化銅500gと、還元
性単体として亜鉛粉末60gを混合槽に仕込み、2
時間混合かくはんした後ロ過、乾燥、粉砕し、防
汚顔料を製造した。この実施例1と同様に溶解度
を測定した。 比較例 1 実施例1と同様に電解法により生成した亜酸化
銅の沈殿を亜鉛末を添加せずに処理し、防汚顔料
を製造し、銅の溶解度を測定した。 比較例 2 実施例5と同様に硫酸銅水溶液に二酸化イオウ
を通じつつロダン化カリウムを加えて生成したロ
ダン化銅を亜鉛末を添加せずに処理し、防汚顔料
を製造し、銅の溶解度を測定した。 実施例および比較例の顔料の銅の溶解度を表−
1に示す。
The present invention relates to an antifouling pigment used in an antifouling paint for the purpose of preventing and protecting ships, underwater structures, etc. from adhesion of fouling organisms. A wide variety of fouling animals live in the sea, from ascidians, which are protochordates ranked next to vertebrates in animal taxonomy, to protozoa, the lowest protozoa. Polluted plants are growing. The antifouling agents used in antifouling paints have a remarkable long-term control effect against a wide variety of fouling organisms, and at the same time, they have low toxicity to the human body and have few environmental health problems. is required. In recent years, trialkyltin compounds, triphenyltin compounds, organic chlorine compounds such as DDT and BHC, and organic sulfur compounds such as tetraalkylthiuram disulfides and zinc dialkyldithiocarbamates have been used in antifouling paints as antifouling agents. Generally, these organic antifouling agents are selectively effective only against specific fouling organisms, but are completely ineffective against other organisms, and cannot be expected to be particularly effective in preventing the adhesion of seaweed. Furthermore, there are still many problems in practical use, such as the fact that if it were to have an antifouling effect against all fouling organisms in general, it would become more toxic to the human body. On the other hand, taking cuprous oxide, a typical copper yarn antifouling agent, as an example, this compound shows a remarkable antifouling effect against all fouling organisms, while its toxicity to the human body is low, making it a highly practical antifouling agent. It has been used since ancient times as a staining agent. However, cuprous oxide, or cuprous oxide, is unstable and gradually changes to divalent copper salt when oxidized in seawater, and the elution rate of copper ions necessary for antifouling is maintained at 10 μg/cm 2 /day. However, despite the presence of copper compounds in the paint film, it is recognized that the antifouling effect is eventually lost. This is because cuprous oxide dissolves in seawater as a monovalent copper ion, but it is oxidized to become a divalent copper ion, which then reacts with hydroxide ions and carbonate ions, which are present in large amounts in seawater, and finally forms a base. This is thought to be due to the change to copper carbonate. Looking at this as a change in solubility, the solubility of cuprous oxide in seawater is 5 to 3 x 10 -5 mol/at a pH of 8.2 and a temperature of 20°C.
On the other hand, the solubility of basic copper carbonate is 4 to 2 x 10 -6 mol/under the same conditions, so there is a difference of 10 times. The present inventors researched a method for preventing or suppressing the oxidation of monovalent cuprous oxide into divalent copper compounds in seawater, and found that monovalent copper ions or divalent ions have a redox potential. Properties of metals that are subordinate to copper, namely bismuth, tin, lead, nickel, vanadium, cobalt, cadmium, iron, gallium, zinc, selenium, tellurium, manganese, diumconium, germanium, titanium, aluminum, and magnesium, as well as nonmetallic properties. Focusing on the property of being reduced by substances such as antimony, arsenic, and phosphorus that form cations with We searched for substances whose redox reactions proceed over a long period of time and which pose fewer problems in terms of environmental health. The redox reaction of these substances needs to proceed at a stable rate over a long period of time in an alkaline region. Therefore, magnesium and sodium, which have strong redox power and hydrolyze seawater, are quickly depleted in seawater and do not last long. Excluding phosphorus that loses its properties, aluminum and cobalt that react with each other to form insoluble copper compounds produced by redox reactions, and cadmium and arsenic, which are undesirable from an environmental standpoint, tin, antimony, zinc, chromium, By adding at least one element or alloy of iron, nickel, lead, and titanium, not only cuprous oxide but also
It has been found that the dissolution of sparingly soluble copper compounds such as cupric hydroxide and basic copper carbonate having a solubility in seawater of 3×10 -6 mol/or less can be promoted. As a result of further studies, in order to maintain the long-term antifouling performance of antifouling paints, particles of copper compounds and reducible elements or alloys must be densely and uniformly dispersed in antifouling paint compositions. Therefore, rather than adding both components separately during the production of paint, the reducing element or gold is added in advance during the production of the copper thread antifouling agent, and the antifouling pigment produced in this way is added to the antifouling paint. It has been found that it is more effective to use it in the production of In other words, as a result of this, it is possible to achieve a dense and uniform dispersion of the copper compound and the reducing element or alloy, and as a result, the antifouling performance of the copper compound can be exhibited for a long period of time with a relatively small amount of the reducing element or alloy. In the case of copper oxide, the storage stability is also achieved, that is, the effect of preventing monovalent cuprous oxide from being oxidized in the air and changing to divalent copper oxide, thereby reducing its original solubility. The antifouling pigment of the present invention is characterized in that a reducible element or alloy that has a lower redox potential than the copper compound and is sparingly soluble in water is blended into the sparsely soluble copper compound antifouling agent. The poorly soluble copper compound mentioned here has a solubility in seawater with a pH of 8.2 of 1 x 10 -4 mol/mole at 20°C.
The following copper compounds are generally said to be insoluble,
Specifically, they are cuprous oxide and copper rhodanide. As the reducible element or alloy, tin, antimony, zinc, chromium, iron, nickel, lead, titanium and alloys thereof, particularly zinc, antimony, tin, and alloys thereof can be used. The combination and composition ratio of the copper compound and the reducing element or alloy used in the present invention vary depending on the method and purpose of use of the antifouling paint, but generally the reducing element or alloy is 30% by weight or less based on the compound. It is appropriate to mix an alloy. Generally, the particle size of the reducible element or alloy is preferably finer than 250 mesh in order to disperse it closely and uniformly with the copper compound. The antifouling pigment of the present invention is produced by adding a reducible element or alloy during the production of an antifouling copper compound. As is well known, methods for producing cuprous oxide include (a) diaphragm electrolysis of copper electrode plates using an aqueous sodium chloride solution as the electrolyte; and (b) a monovalent copper compound, such as cuprous chloride, in an aqueous salt solution. Chemical conversion method in which an alkaline solution is reacted (c) There is a dry method using thermal decomposition or thermal oxidation of copper sulfate, copper oxide, metallic copper powder, etc. Copper rhodanide is produced by reacting divalent copper in a copper sulfate solution with rhodan salt while reducing it with a reducing agent. In either case, after the reaction, the product goes through processes such as aging, washing, filtration, drying, and pulverization, and is packaged and shipped. The reducible element or alloy is added to the copper compound according to the present invention in the above manufacturing method by: (1) Adding in the cleaning step, (2) Adding in the surface treatment step, (3) Adding in the drying step, and (4) Grinding. Adding in the process (5) Achieved by means such as mixing after making the product. The manufacturing and coating methods for antifouling paints are the same as when using copper-based antifouling pigments that do not contain reducible substances or alloys. The invention will be illustrated by the following examples. Examples and percentages are by weight unless otherwise specified. Example 1 A precipitate of cuprous oxide produced by an electrolytic method was aged for crystal growth, and the soluble chlorine content was reduced.
Rinse with water until the slurry concentration is 0.1% or less.
500 g of cuprous oxide adjusted to 500 g as Cu 2 O
and 40 g of zinc powder as a reducing element were placed in a mixing tank, mixed and stirred for 2 hours, transferred to a surface treatment tank, treated with glycerin, filtered, dried, and crushed to produce an antifouling pigment. Place 5 g of this pigment in a 500 ml Erlenmeyer flask, add 300 ml of seawater, and store while stirring. During storage, the seawater was refreshed once a week, and a portion of the sample was taken out at regular intervals and its solubility in seawater adjusted to pH 8.2 and temperature 20°C was measured. Example 2 800 g of cake-like cuprous oxide with a moisture content of 30%, which was produced by the electrolytic method as in Example 1 and subjected to aging, washing, and surface treatment, was charged into a vacuum dryer equipped with a stirrer. 50 g of zinc powder was added as a reducible element, dried at 80° C. or below for 5 hours, taken out and crushed to produce an antifouling pigment, and the solubility of copper was measured. Examples 3 and 4 Antifouling pigments were produced by repeating the procedure of Example 1, except that antimony and tin were used instead of zinc as the reducing element, and the solubility of copper in each was measured. Example 5 To 250 g/aqueous solution 1 of copper sulfate CuSO 4 5H 2 O, 150 ml of an aqueous solution of 640 g/potassium rhodanide KSCN was added while passing sulfur dioxide, and the resulting precipitate of copper rhodanide was aged and then washed with water. Soluble salts were removed. Next, 500 g of copper rhodanide with a slurry concentration adjusted to 200 g/2 and 60 g of zinc powder as a reducing element were placed in a mixing tank.
After mixing and stirring for a period of time, the mixture was filtered, dried, and crushed to produce an antifouling pigment. The solubility was measured in the same manner as in Example 1. Comparative Example 1 In the same manner as in Example 1, the cuprous oxide precipitate produced by the electrolytic method was treated without adding zinc powder to produce an antifouling pigment, and the solubility of copper was measured. Comparative Example 2 In the same manner as in Example 5, copper rhodanide was produced by adding potassium rhodanide to an aqueous copper sulfate solution while passing sulfur dioxide through it, without adding zinc powder, to produce an antifouling pigment, and to determine the solubility of copper. It was measured. Table shows the solubility of copper in pigments of Examples and Comparative Examples.
Shown in 1.

【表】 表−1から明らかなように、本発明により還元
性単体を配合した防汚顔料は、難溶性銅化合物の
溶解度を著しく高めることが判明した。 実施例 6ないし10 表−1の実施例および比較例の防汚顔料を表−
2の配合に従つて実際の防汚塗料を調製し、80〜
100ミクロンの厚さに塗装して岡山県玉野海域の
いかだに吊り下げ、一定期間毎に引き上げ、塗膜
から溶出する銅イオンの溶出速度を測定した。結
果を表−3に示す。
[Table] As is clear from Table 1, it has been found that the antifouling pigment containing a reducing element according to the present invention significantly increases the solubility of poorly soluble copper compounds. Examples 6 to 10 The antifouling pigments of Examples and Comparative Examples in Table 1 are shown in Table 1.
Prepare the actual antifouling paint according to the formulation in 2.
They painted it to a thickness of 100 microns and hung it on a raft in the Tamano waters of Okayama Prefecture, and pulled it up at regular intervals to measure the elution rate of copper ions eluted from the paint film. The results are shown in Table-3.

【表】【table】

【表】 本発明の防汚顔料を使用した防汚塗料は、比較
例に比べて溶出速度において顕著な結果を示し
た。特に長期(12ケ月以上)の溶出速度が高いの
は、顔料の製造還元性単体を配合したことによる
均一分散効果によるものと推察される。なお防汚
に必要な最低溶出速度は10μg/cm2/dayである。
本発明顔料の貯蔵安定性: 実施例1ないし4および比較例1の顔料を、底
部に水を満たしたガラス製デシケーターの棚の上
にガラス皿に広げて置き、室内に放置し、1ケ月
後試料を取り出して実施例1記載の条件で銅の溶
解度を測定し、貯蔵前の溶解度と比較した。結果
を表−4に示す。
[Table] The antifouling paint using the antifouling pigment of the present invention showed remarkable results in elution rate compared to the comparative example. The reason why the dissolution rate is especially high over a long period of time (12 months or more) is thought to be due to the uniform dispersion effect caused by the addition of the pigment manufacturing reducing element. The minimum elution rate required for antifouling is 10 μg/cm 2 /day.
Storage stability of the pigments of the present invention: The pigments of Examples 1 to 4 and Comparative Example 1 were spread in a glass dish on the shelf of a glass desiccator whose bottom was filled with water, and left indoors for one month. A sample was taken out and the solubility of copper was measured under the conditions described in Example 1, and compared with the solubility before storage. The results are shown in Table 4.

【表】 表わす。
表−4から明らかなように、本発明による防汚
顔料は、還元性単体を含まない顔料に比べて貯蔵
後も高い溶解度を保持することが判明した。
[Table] Represents.
As is clear from Table 4, it was found that the antifouling pigment according to the present invention maintains a higher solubility even after storage than a pigment that does not contain a reducing element.

Claims (1)

【特許請求の範囲】 1 亜酸化銅およびロダン化銅から選ばれた難溶
性銅化合物に、すず、アンチモン、亜鉛、クロ
ム、鉄、ニツケル、鉛、チタンおよびそれらの合
金から選ばれた該銅化合物より酸化還元電位が低
くかつ水に難溶性である還元性単体金属または合
金を配合したことを特徴とする防汚顔料。 2 還元性単体金属または合金が亜鉛、アンチモ
ン、すず、またはそれらの合金である特許請求の
範囲第1項の防汚顔料。 3 防汚顔料中の還元性単体金属または合金の銅
化合物に対する割合が30重量%以下である特許請
求の範囲第1項または第2項の防汚顔料。
[Claims] 1. A poorly soluble copper compound selected from cuprous oxide and copper rhodide, and a copper compound selected from tin, antimony, zinc, chromium, iron, nickel, lead, titanium, and alloys thereof. An antifouling pigment characterized by containing a reducing elemental metal or alloy that has a lower redox potential and is hardly soluble in water. 2. The antifouling pigment according to claim 1, wherein the reducible metal or alloy is zinc, antimony, tin, or an alloy thereof. 3. The antifouling pigment according to claim 1 or 2, wherein the proportion of the reducing elemental metal or alloy to the copper compound in the antifouling pigment is 30% by weight or less.
JP8103582A 1982-05-13 1982-05-13 Anti-fouling pigment Granted JPS58196269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8103582A JPS58196269A (en) 1982-05-13 1982-05-13 Anti-fouling pigment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8103582A JPS58196269A (en) 1982-05-13 1982-05-13 Anti-fouling pigment

Publications (2)

Publication Number Publication Date
JPS58196269A JPS58196269A (en) 1983-11-15
JPH0131787B2 true JPH0131787B2 (en) 1989-06-28

Family

ID=13735194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8103582A Granted JPS58196269A (en) 1982-05-13 1982-05-13 Anti-fouling pigment

Country Status (1)

Country Link
JP (1) JPS58196269A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012154766A1 (en) * 2011-05-10 2012-11-15 Ferro Corporation Copper containing infrared reflective pigment compositions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031032A (en) * 1973-07-27 1975-03-27
JPS5048035A (en) * 1973-08-29 1975-04-28
JPS5058224A (en) * 1973-09-25 1975-05-21
JPS56109262A (en) * 1980-01-31 1981-08-29 Yoshitomi Pharmaceut Ind Ltd Stable underwater antifouling paint

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5031032A (en) * 1973-07-27 1975-03-27
JPS5048035A (en) * 1973-08-29 1975-04-28
JPS5058224A (en) * 1973-09-25 1975-05-21
JPS56109262A (en) * 1980-01-31 1981-08-29 Yoshitomi Pharmaceut Ind Ltd Stable underwater antifouling paint

Also Published As

Publication number Publication date
JPS58196269A (en) 1983-11-15

Similar Documents

Publication Publication Date Title
JP4185526B2 (en) Novel pyrithione complex compound, its production method and its use
JP2615274B2 (en) Antibacterial calcium carbonate powder
DE2723910C2 (en) Additive mixture and its use for baths for the electrolytic deposition of gold or gold alloys
JP2006335757A (en) Highly dispersible composition containing finely particulate pyrithione complexed compound and optionally metal pyrithione and/or metal oxide
CN111887258A (en) Composite metal calcium phosphate antibacterial agent, preparation method thereof and inorganic artificial stone thereof
CN104365668B (en) Environment-friendly long-life is combined anti-fouling material
JPH0131787B2 (en)
US20190152796A1 (en) Preparation of Stable Copper(II) Hydroxide
KR101630560B1 (en) Copper pyrithione aggregate and use of same
EP1695963B1 (en) Pyrithione metal salts having defined particle size distribution and paint composition containing the same
DE2750932C3 (en) Cyanide-free bath for electroless gold plating and its use
KR20150126638A (en) Copper pyrithione aggregate and use of same
JPH0559308A (en) Antibacterial coating composition
JP2567719B2 (en) Antibacterial zeolite
DE60113305T2 (en) Disinfecting peroxosilicate compound with anti-scale effect, process for the preparation and use thereof
JPH08337507A (en) Porous calcium carbonate carrying antimicrobial metal fine particles
US3100718A (en) Copper borate antifouling pigment
JP2640270B2 (en) Algae-proof powder and method for producing the same
RU2579107C1 (en) Method of producing copper phosphate monohydrate (+2)-ammonium from production wastes
US2273643A (en) Electrolytic preparation of yellow cuprous oxide
JP2009023959A (en) Aqueous suspension of silver-supported sparingly soluble orthophosphoric acid double salt fine particles, method for producing the same, antibacterial aqueous paint composition and coated article having antibacterial function
AT235438B (en) Process for the stabilization of zinc sulfide pigments
US4514518A (en) Fluoride-substituted cobalt spinels
KR100386380B1 (en) Process for preparing cuprous oxide
JPS638997B2 (en)