JP5594619B2 - Copper pyrithione aggregate and use thereof - Google Patents

Copper pyrithione aggregate and use thereof Download PDF

Info

Publication number
JP5594619B2
JP5594619B2 JP2014514961A JP2014514961A JP5594619B2 JP 5594619 B2 JP5594619 B2 JP 5594619B2 JP 2014514961 A JP2014514961 A JP 2014514961A JP 2014514961 A JP2014514961 A JP 2014514961A JP 5594619 B2 JP5594619 B2 JP 5594619B2
Authority
JP
Japan
Prior art keywords
copper
pyrithione
salt
ammonium
aggregate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014514961A
Other languages
Japanese (ja)
Other versions
JPWO2014042117A1 (en
Inventor
靖浩 日高
Original Assignee
有限会社 ワイエイチエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社 ワイエイチエス filed Critical 有限会社 ワイエイチエス
Priority to JP2014514961A priority Critical patent/JP5594619B2/en
Application granted granted Critical
Publication of JP5594619B2 publication Critical patent/JP5594619B2/en
Publication of JPWO2014042117A1 publication Critical patent/JPWO2014042117A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/89Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to the ring nitrogen atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1625Non-macromolecular compounds organic

Description

本発明は、銅ピリチオン集合体及びその用途に関する。詳しくは、水可溶性金属ピリチオン又はアンモニウムピリチオンと、無機銅(II)塩と無機アンモニウム塩との複合塩をpH1−4の水媒体中で反応させて製せられる銅ピリチオン集合体及びその用途に関する。さらに詳しくは、水可溶性金属ピリチオン又はアンモニウムピリチオンと、無機銅(II)塩と無機アンモニウム塩との複合塩をpH1−4の水媒体中で反応させて製せられる銅ピリチオン集合体の粒子径がメジアン径で9−13μmの範囲にある船底塗料用防汚剤に関する。 The present invention relates to a copper pyrithione aggregate and its use. More specifically, the present invention relates to a copper pyrithione aggregate produced by reacting a water-soluble metal pyrithione or ammonium pyrithione with a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt in an aqueous medium of pH1-4, and use thereof. More specifically, the particle size of a copper pyrithione aggregate produced by reacting a water-soluble metal pyrithione or ammonium pyrithione with a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt in an aqueous medium of pH 1-4. The present invention relates to an antifouling agent for ship bottom paint having a median diameter of 9-13 μm.

日本特許第3062825号には、銅ピリチオンの製造にあたり、製造工程で起こるゲル化を防止し、反応を促進する目的で界面活性剤を添加する方法が開示されている。本特許の請求範囲に記載されているpH3−8の条件下でピリチオンアルカリ金属塩水溶液に無機銅(II)塩を加えると、銅ピリチオンが生成する前に、先ず塩基性銅塩の微細結晶が沈殿する。これがゲル化と言われる現象の実態である。銅ピリチオンは、微溶性の塩基性銅塩とピリチオンアルカリ金属塩との反応によって得られるが、生成物の結晶は小さく、平均粒子径が5μmを超えることはない。また銅ピリチオン製品中に不純物として残存する塩基性銅塩は、船底防汚塗料に配合されたとき、塗料の貯蔵時にゲル化を引き起こす原因となりうる。
日本特許第3532500号には、pH1.6〜3.2の範囲でピリチオン金属塩水溶液と無機銅(II)塩水溶液を高温下で反応させ、次いで無機銅(II)塩を追加し、加熱処理を行うという銅ピリチオンの製造法が開示されている。本方法の第1工程では、低pH・高温下で長時間反応させるという製造条件から、ピリチオン酸の酸化によるビスピリチオン(2量体)ができやすく、第2工程でビスピリチオンを熱分解させ、同時に無機銅(II)塩を補充することにより、銅ピチオンの純度を高めるという手法が取られている。従い、第2工程においては、生成量は限られているものの、先ずは上述のように塩基性銅塩が沈殿する。本特許の製造法で得られる銅ピリチオンの平均粒子径は、生成する塩基性銅塩が少ないため、上記日本特許第3062825号の製造法で得られる銅ピリチオンの平均粒子径より格段に大きくなるが、それでも特許請求範囲に示されるように、5μmを超えない。
日本特許第3062825号公報 日本特許第3532500号公報
Japanese Patent No. 3062825 discloses a method of adding a surfactant for the purpose of preventing the gelation that occurs in the production process and promoting the reaction in the production of copper pyrithione. When inorganic copper (II) salt is added to an aqueous solution of pyrithione alkali metal salt under the conditions of pH 3-8 described in the claims of the present patent, before the copper pyrithione is formed, first, fine crystals of the basic copper salt are formed. Precipitate. This is the actual state of the phenomenon called gelation. Copper pyrithione is obtained by the reaction of a slightly soluble basic copper salt and a pyrithione alkali metal salt, but the crystals of the product are small and the average particle diameter does not exceed 5 μm. Further, the basic copper salt remaining as an impurity in the copper pyrithione product can cause gelation when the paint is stored when it is blended in a ship bottom antifouling paint.
In Japanese Patent No. 3532500, a pyrithione metal salt aqueous solution and an inorganic copper (II) salt aqueous solution are reacted at a high temperature in the range of pH 1.6 to 3.2, and then an inorganic copper (II) salt is added, followed by heat treatment A process for producing copper pyrithione is disclosed. In the first step of this method, bispyrithione (dimer) is easily formed by oxidation of pyrithionic acid from the production conditions of reacting for a long time at low pH and high temperature, and in the second step, bispyrithione is thermally decomposed, At the same time, a method of increasing the purity of copper pithione by replenishing inorganic copper (II) salt has been taken. Therefore, in the second step, although the production amount is limited, first, the basic copper salt is precipitated as described above. The average particle size of copper pyrithione obtained by the production method of this patent is much larger than the average particle size of copper pyrithione obtained by the production method of the above Japanese Patent No. 3062825, because the basic copper salt produced is small. Still, it does not exceed 5 μm, as indicated in the claims.
Japanese Patent No. 3062825 Japanese Patent No. 3532500

銅ピリチオンが船底塗料に配合されたとき、その防汚効果を左右する最大要因は、海水への溶出速度、即ち水に対する溶解度であり、粒子の表面積によって決まる。寒帯海域では、日本特許第3062825号で得られる銅ピリチオンの平均粒子径が適しており、温帯海域では日本特許第3532500号で得られる銅ピリチオンの平均粒子径が適していると考えられる。しかし、熱帯海域では日本特許第3532500号で得られる銅ピリチオンでも海水への溶出が速すぎると考えられており、もっと海水への溶出を遅くするため、さらに大きな平均粒子径を有する銅ピリチオンの開発が求められていた。また、これまでの銅ピリチオン製品は作業現場で粉立ちしやすく、いったん肺に吸入されると、その針状結晶の故に、健康への懸念が示されていた。   When copper pyrithione is blended in ship bottom paint, the greatest factor that affects its antifouling effect is the dissolution rate in seawater, that is, its solubility in water, and is determined by the surface area of the particles. It is considered that the average particle size of copper pyrithione obtained in Japanese Patent No. 3062825 is suitable in the cold zone, and the average particle size of copper pyrithione obtained in Japanese Patent No. 3532500 is suitable in the temperate zone. However, copper pyrithione obtained in Japanese Patent No. 3532500 is considered to be too fast to be dissolved in seawater in the tropical sea area, and development of copper pyrithione with a larger average particle size is required to make the dissolution into seawater slower. Was demanded. Also, conventional copper pyrithione products are easily powdered at the work site, and once inhaled into the lungs, health concerns have been shown due to their needle-like crystals.

本発明者は、小さい粒子の銅ピリチオンを集合体化する製造法を見出し、銅ピリチオンを平均粒子径9−13μmの粒状集合体にすることによって、上記二つの課題を同時に解決することに成功した。
即ち、本発明は、
(1)一般式(I)

Figure 0005594619
又は一般式(I’)
Figure 0005594619
(式中Mは1価又は2価の金属、又はアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を表す。)
で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと
一般式(II)
Figure 0005594619
(式中Xは、Cl、1/2SO4、またはNO3のいずれかの陰イオンを表す。)
で示される無機銅(II)塩と無機アンモニウム塩との複合塩をpH1−4の水媒体中で反応させて製せられる銅ピリチオン集合体。
(2)一般式(I)
Figure 0005594619
又は一般式(I’)
Figure 0005594619
(式中Mは1価又は2価の金属、またはアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を表す。)
で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと
一般式(II)
Figure 0005594619
(式中Xは、Cl、1/2SO4、またはNO3のいずれかの陰イオンを表す。)
で示される無機銅(II)塩と無機アンモニウム塩との複合塩をpH1−4の水媒体中で反応させて製せられることを特徴とする、銅ピリチオン集合体の製造方法。
(3)Mは、ナトリウム、カリウム、カルシウム及びマグネシウムからなる金属から選ばれるものである、(1)に記載の銅ピリチオン集合体。
(4)Mは、ナトリウム、カリウム、カルシウム及びマグネシウムからなる金属から選ばれるものである、(2)に記載の銅ピリチオン集合体の製造方法。
(5)無機銅(II)塩は、塩化銅(II)又は硫酸銅(II)であり、無機アンモニウム塩は、塩化アンモニウム又は硫酸アンモニウムである、(1)又は(3)に記載の銅ピリチオン集合体。
(6)無機銅(II)塩は、塩化銅(II)又は硫酸銅(II)であり、無機アンモニウム塩は、塩化アンモニウム又は硫酸アンモニウムである、(2)又は(4)に記載の銅ピリチオン集合体の製造方法。
(7)銅ピリチオン集合体粒子のメジアン径が、粒度分布の主要部分が正規分布を示すことを前提条件として、9−13μmの範囲にある、(1)、(3)又は(5)に記載の銅ピリチオン集合体。
(8)銅ピリチオン集合体粒子のメジアン径が、粒度分布の主要部分が正規分布を示すことを前提条件として、9−13μmの範囲にある、(2)、(4)又は(6)に記載の銅ピリチオン集合体の製造方法。
(9)(1)の銅ピリチオン集合体を含有する船底塗料用防汚剤。
(10)銅ピリチオン集合体の粒子のメジアン径が、粒度分布の主要部分が正規分布を示すことを前提条件として、9−13μmの範囲にある、(9)に記載の船底塗料用防汚剤。The present inventor found a production method for aggregating copper pyrithione of small particles, and succeeded in solving the above two problems at the same time by making copper pyrithione into a granular aggregate having an average particle diameter of 9-13 μm. .
That is, the present invention
(1) General formula (I)
Figure 0005594619
Or general formula (I ')
Figure 0005594619
(In the formula, M represents a monovalent or divalent metal or ammonium, and Py represents a 2-pyridylthio-N-oxide group.)
Water-soluble metal pyrithione or ammonium pyrithione represented by the general formula (II)
Figure 0005594619
(In the formula, X represents an anion of Cl, 1 / 2SO 4 , or NO 3. )
A copper pyrithione aggregate produced by reacting a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt represented by the above in an aqueous medium having a pH of 1-4.
(2) General formula (I)
Figure 0005594619
Or general formula (I ')
Figure 0005594619
(In the formula, M represents a monovalent or divalent metal or ammonium, and Py represents a 2-pyridylthio-N-oxide group.)
Water-soluble metal pyrithione or ammonium pyrithione represented by the general formula (II)
Figure 0005594619
(In the formula, X represents an anion of Cl, 1 / 2SO 4 , or NO 3. )
A method for producing a copper pyrithione aggregate, which is produced by reacting a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt represented by the formula (1) in an aqueous medium of pH 1-4.
(3) The copper pyrithione aggregate according to (1), wherein M is selected from metals consisting of sodium, potassium, calcium and magnesium.
(4) The process for producing a copper pyrithione aggregate according to (2), wherein M is selected from metals consisting of sodium, potassium, calcium and magnesium.
(5) The copper pyrithione assembly according to (1) or (3), wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, and the inorganic ammonium salt is ammonium chloride or ammonium sulfate. body.
(6) The copper pyrithione assembly according to (2) or (4), wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, and the inorganic ammonium salt is ammonium chloride or ammonium sulfate. Body manufacturing method.
(7) The median diameter of the copper pyrithione aggregate particles is in the range of 9-13 μm, assuming that the main part of the particle size distribution shows a normal distribution, as described in (1), (3) or (5) Of copper pyrithione.
(8) The median diameter of the copper pyrithione aggregate particles is in the range of 9-13 μm, assuming that the main part of the particle size distribution shows a normal distribution, as described in (2), (4) or (6) Of producing a copper pyrithione aggregate.
(9) An antifouling agent for ship bottom paint containing the copper pyrithione aggregate of (1).
(10) The antifouling agent for ship bottom paint according to (9), wherein the median diameter of the particles of the copper pyrithione aggregate is in the range of 9-13 μm on the premise that the main part of the particle size distribution shows a normal distribution. .

Mは1価又は2価の金属を表す。例えば、1価の金属としてナトリウム、カリウム、2価の金属としてカルシウム、マグネシウムが挙げられる。好ましくは1価のナトリウムである。 M represents a monovalent or divalent metal. For example, sodium, potassium as the monovalent metal, and calcium and magnesium as the divalent metal. Monovalent sodium is preferred.

本発明の銅ピリチオン粒状集合体を製造するときに用いられる無機銅(II)塩としては、塩化銅(II)又は硫酸銅(II)であり、本発明の銅ピリチオン粒状集合体を製造するときに用いられる無機アンモニウム塩としては、塩化アンモニウム又は硫酸アンモニウムが挙げられる。本発明の銅ピリチオン粒状集合体を製造するときに用いられる無機銅(II)塩と無機アンモニウム塩との複合塩としては、塩化銅と塩化アンモニウムとの複合塩(例えばCuCl2・2(NH4)Cl)、硫酸銅と硫酸アンモニウムとの複合塩(例えばCuSO4・(NH4)2SO4)、硝酸銅と硝酸アンモニウムとの複合塩である(例えばCu(NO3)2・2(NH4)NO3、)及びこれらの複合塩の水和物が挙げられる。好ましくは、塩化銅と塩化アンモニウムとの複合塩(例えばCuCl2・2(NH4)Cl)、硫酸銅と硫酸アンモニウムとの複合塩(例えばCuSO4・(NH4)2SO4)及びこれらの複合塩の水和物である。例えば染料固定剤として市販されているCuCl2・2(NH4)Cl・2H2Oを使用することもできるが、計算量の塩化銅(II)と塩化アンモニウムの塩酸酸性水溶液を濃縮して得られた結晶を用いてもよい。同様に計算量の硫酸銅(II)と硫酸アンモニウムの硫酸酸性溶液を濃縮することにより、CuSO4・(NH4)2SO4・6H2Oの青色結晶を得ることができる。あるいは効率的に、上記の濃縮液から結晶を取り出すことなく、そのまま本発明の銅ピリチオン粒状集合体の製造原料水溶液として、ピリチオン金属塩水溶液との反応に供してもよい。When inorganic copper (II) salt used when manufacturing the copper pyrithione granular aggregate of the present invention is copper chloride (II) or copper (II) sulfate, when manufacturing the copper pyrithione granular aggregate of the present invention Examples of the inorganic ammonium salt used in the above include ammonium chloride or ammonium sulfate. As a composite salt of inorganic copper (II) salt and inorganic ammonium salt used for producing the copper pyrithione granular aggregate of the present invention, a composite salt of copper chloride and ammonium chloride (for example, CuCl 2 · 2 (NH 4 ) Cl), a composite salt of copper sulfate and ammonium sulfate (for example, CuSO 4 · (NH 4 ) 2 SO 4 ), a composite salt of copper nitrate and ammonium nitrate (for example, Cu (NO 3 ) 2 · 2 (NH 4 ) NO 3 )) and hydrates of these complex salts. Preferably, a composite salt of copper chloride and ammonium chloride (eg, CuCl 2 · 2 (NH 4 ) Cl), a composite salt of copper sulfate and ammonium sulfate (eg, CuSO 4 · (NH 4 ) 2 SO 4 ), and a composite thereof It is a salt hydrate. For example, the commercially available CuCl 2 · 2 (NH 4 ) Cl · 2H 2 O can be used as a dye fixing agent, but it is obtained by concentrating a calculated amount of copper (II) chloride and ammonium chloride acidic aqueous solution. The obtained crystal may be used. Similarly, by concentrating a calculated amount of sulfuric acid solution of copper (II) sulfate and ammonium sulfate, CuSO 4 · (NH 4 ) 2 SO 4 · 6H 2 O blue crystals can be obtained. Or you may use for reaction with pyrithione metal salt aqueous solution as it is as a manufacturing raw material aqueous solution of the copper pyrithione granular aggregate of this invention as it is, without taking out a crystal | crystallization from said concentrate efficiently.

複合塩の無機銅塩と無機アンモニウム塩の使用量はモル比で、1対2であり、複合塩とナトリウムピリチオンの使用量はモル比で1対2である。無機銅(II)塩と無機アンモニウム塩との複合塩の生成、また本発明の無機銅(II)・アンモニウム複合塩とピリチオン金属塩との反応は、pH1−4の範囲で好適に行われる。また反応温度は10−30℃の常温が好適である。反応温度が高温の場合、銅ピリチオンの一次粒子が長く伸びすぎ、集合体がうまく形成されない。本発明の方法による反応後の集合体は、平均粒子径が数100μmの粒状集合体を形成しているので、従来の銅ピリチオンと比べ、ろ過性が非常によい。
平均粒子径が9μm未満になるよう粉砕すると、粉砕時0.1−1.0μmの単粒子が無視できないほどできやすく、本発明の銅ピリチオン集合体の海水への溶出性に影響を与えやすい。また平均粒子径が13μmを超えるよう粉砕すると、50μm以上の粗大粒子の比率が10%以上になる可能性があり、塗料の塗膜性能に影響を与えるおそれがある。従って、このものを平均粒子径が9−13μmになるよう粉砕し(図1及び図6)、船底塗料用防汚剤として用いるのが適当である。平均粒子径が9−13μmの範囲にあれば、粒度分布は正規分布を示すので、この正規分布がメジアン径測定の前提条件となる。このものを平均粒子径が9−13μmになるよう粉砕し(図1)、船底塗料用防汚剤として用いる。
The amount of inorganic copper salt and inorganic ammonium salt used in the composite salt is 1 to 2 in molar ratio, and the amount of composite salt and sodium pyrithione used is 1 to 2 in molar ratio. The formation of a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt, and the reaction of the inorganic copper (II) / ammonium composite salt of the present invention with a pyrithione metal salt are preferably carried out in the range of pH 1-4. Moreover, the normal temperature of 10-30 degreeC is suitable for reaction temperature. When the reaction temperature is high, the primary particles of copper pyrithione extend too long and the aggregates are not formed well. Since the aggregate after the reaction by the method of the present invention forms a granular aggregate having an average particle diameter of several hundreds of μm, the filterability is very good as compared with the conventional copper pyrithione.
When the average particle size is pulverized to be less than 9 μm, it is easy to produce 0.1-1.0 μm single particles at the time of pulverization, and the elution into the seawater of the copper pyrithione aggregate of the present invention is likely to be affected. Further, when the average particle diameter is pulverized to exceed 13 μm, the ratio of coarse particles of 50 μm or more may be 10% or more, which may affect the coating film performance of the paint. Therefore, it is appropriate to pulverize this product so as to have an average particle size of 9-13 μm (FIGS. 1 and 6) and use it as an antifouling agent for ship bottom paint. If the average particle size is in the range of 9-13 μm, the particle size distribution shows a normal distribution, and this normal distribution is a precondition for the median diameter measurement. This product is pulverized so as to have an average particle size of 9-13 μm (FIG. 1) and used as an antifouling agent for ship bottom paint.

本発明の粒状集合体(平均粒子径約10μm)を水に分散させ、80℃で30分加熱すると、かすかなアンモニア臭を発し、集合体は数10%程度壊れる。これから集合体の実体は銅ピリチオンと無機アンモニウム塩との複合体である可能性が考えられる。一方集合体のSEM写真(図2及び3)では銅ピリチオンの形状しか認められず、またX線回折分析のチャート(図4及び5)でも従来の銅ピリチオンと同じピークしか認められない。以上の知見を総合して判断すると、本発明の集合体の実体は、銅ピリチオンと微量の無機アンモニウム塩との複合体であると推定される。即ち反応時解離した無機アンモニウム塩の大部分は反応液中で溶解し、水洗によって除去される。   When the granular aggregate of the present invention (average particle diameter of about 10 μm) is dispersed in water and heated at 80 ° C. for 30 minutes, a faint ammonia odor is emitted and the aggregate is broken by several tens of percent. From this, it is considered that the aggregate entity may be a complex of copper pyrithione and an inorganic ammonium salt. On the other hand, only the shape of copper pyrithione is recognized in the SEM photograph of the aggregate (FIGS. 2 and 3), and only the same peak as that of the conventional copper pyrithione is recognized in the charts of X-ray diffraction analysis (FIGS. 4 and 5). Judging from the above findings, it is presumed that the aggregate of the present invention is a complex of copper pyrithione and a trace amount of inorganic ammonium salt. That is, most of the inorganic ammonium salt dissociated during the reaction is dissolved in the reaction solution and removed by washing with water.

これまで銅ピリチオンが粉末状で取り扱われた場合、作業現場では粉立ちによる吸入のため健康を損ねる懸念があった。特に銅ピリチオンが比較的硬い針状結晶である点が問題視され、粒子を粗大化する方法、樹脂状物質で被覆する方法等が提案されてきた。これらの方法は効果的であるが、コストアップが避けられない。本発明の粒状集合体は、粒子が大きく、しかも流動性があるため、粉立ちしにくいだけでなく、針状結晶による問題がないことから、このような特別の処置を要せず、粉末状で取り扱われるとしても、従来と比べ健康被害のリスクはおおいに軽減される。   In the past, when copper pyrithione was handled in the form of powder, there was a concern that it would harm health at the work site due to inhalation by powdering. In particular, copper pyrithione is considered to be a relatively hard needle crystal, and a method of coarsening particles, a method of coating with a resinous substance, and the like have been proposed. Although these methods are effective, an increase in cost is inevitable. Since the granular aggregate of the present invention has large particles and fluidity, it is not only difficult to powder, but also has no problem due to needle-like crystals. However, the risk of health damage is greatly reduced compared to the conventional case.

船底塗料塗膜から溶出する銅ピリチオンの溶出速度は、銅ピリチオンの表面積、海水温度に加え、塗膜の性質、船の航行速度、汚損生物の付着状況等の要因が関係する。単純に表面積の比率だけで、その差を論ずることはできないが、本発明のメジアン径が9−13μmの銅ピリチオン粒状集合体の表面積は、市販銅ピリチオンの表面積より2−6倍大きくなる結果、海水に対する溶出速度が大幅に遅くなると考えられ、熱帯海域のような高水温条件下での防汚効果持続性が改良されるだけでなく、海洋への銅ピリチオン排出量を減らすことができるため、環境保護の見地からも好ましい。
本発明の銅ピリチオン粒状集合体は、シリルアクリル樹脂、亜鉛アクリル樹脂、銅アクリル樹脂及びこれらの共重合樹脂を基材とする船底防汚塗料に配合され、通常亜酸化銅とともに処方される。
The elution rate of copper pyrithione eluted from the ship bottom paint film is related to factors such as the surface properties of copper pyrithione and seawater temperature, the nature of the film, the navigation speed of the ship, and the adherence of fouling organisms. Although the difference cannot be discussed simply by the ratio of the surface area, the surface area of the copper pyrithione granular aggregate having a median diameter of 9-13 μm of the present invention is 2-6 times larger than the surface area of the commercial copper pyrithione, The elution rate for seawater is thought to be significantly slower, not only improving the antifouling effect sustainability under high water temperature conditions like in tropical waters, but also reducing copper pyrithione emissions into the ocean, It is also preferable from the viewpoint of environmental protection.
The copper pyrithione granular aggregate of this invention is mix | blended with the ship bottom antifouling paint which uses silyl acrylic resin, zinc acrylic resin, copper acrylic resin, and these copolymer resins as a base material, and is normally prescribed | regulated with cuprous oxide.

本発明の製造法で得られる銅ピリチオンは、従来の銅ピリチオンがメジアン粒子径5μm以下の針状結晶であるのに対し、メジアン粒子径が9−13μmと大きく、長さの短い小粒子の粒状集合体であるため、作業現場での吸入の危険性が大幅に軽減されるとともに、船底塗料用防汚剤として使用するとき、海水への溶出が大幅に低減され、防汚効果の持続性が改善される。   The copper pyrithione obtained by the production method of the present invention is a needle-like crystal having a median particle diameter of 5 μm or less, whereas the conventional copper pyrithione has a large median particle diameter of 9-13 μm and is a small particle having a short length. Because it is an assembly, the risk of inhalation at the work site is greatly reduced, and when used as an antifouling agent for ship bottom paint, elution into seawater is greatly reduced, and the antifouling effect is sustained. Improved.

は、実施例1で得られた銅ピリチオン集合体粒子のメジアン径を示すチャートである。(レーザ回折式粒度分布装置、堀場製作所「LA-920」、超音波処理なし。)These are the charts which show the median diameter of the copper pyrithione aggregate particle obtained in Example 1. (Laser diffraction particle size distribution device, HORIBA "LA-920", no ultrasonic treatment.) は、実施例1で得られた銅ピリチオン集合体の電子顕微鏡写真(6000倍)である。These are the electron micrographs (6000 times) of the copper pyrithione aggregate obtained in Example 1. は、実施例1で得られた銅ピリチオン集合体の電子顕微鏡写真(30000倍)である。These are the electron micrographs (30000 times) of the copper pyrithione aggregate obtained in Example 1. は、実施例1で得られた銅ピリチオン集合体のX線回折パターンを示すチャートである。FIG. 3 is a chart showing an X-ray diffraction pattern of the copper pyrithione aggregate obtained in Example 1. FIG. は、市販銅ピリチオン粉末(Kolon生命科学社製)のX線回折パターンを示すチャートである。These are charts showing an X-ray diffraction pattern of commercially available copper pyrithione powder (manufactured by Kolon Life Science). は、実施例2で得られた銅ピリチオン集合体粒子のメジアン径を示すチャートである(レーザ回折式粒度分布装置、堀場製作所LA-920」、超音波処理1分間)。These are the charts which show the median diameter of the copper pyrithione aggregate particles obtained in Example 2 (Laser diffraction type particle size distribution apparatus, Horiba LA-920, ultrasonic treatment for 1 minute).

以下に実施例を挙げて、本発明を具体的に説明する。以下の実施例は例示のためのものであって、本発明の範囲を限定するものではない。   The present invention will be specifically described below with reference to examples. The following examples are for illustrative purposes and are not intended to limit the scope of the invention.

ビーカーに入れた40mLの水に硫酸銅(II)5水和物3.0gと硫酸アンモニウム1.5gを加え、さらに5%硫酸を加えてpHを2に調節した硫酸銅(II)・硫酸アンモニウム複合塩水溶液(A)を調製した。次いでビーカーに入れた50mLの水にナトリウムピリチオン40%水溶液(比重1.20)8.85gを加え、ナトリウムピリチオン希釈水溶液(B)を調製した。25℃に保って、(A)に(B)を30分かけて撹拌しながら滴下した。この間pHが3を超えないよう適宜5%硫酸を加えた。得られた緑色の銅ピリチオンスラリーをろ過し、ろ過残を100mLの水に戻し、撹拌後次いでろ過を行うという操作を3回繰り返した後、得られた固体を乾燥し、乳鉢で粉砕して3.6gの緑色粒状物を得た。
この緑色粒状物を0.1%デモールN(花王株式会社)水溶液に分散させたもののメジアン粒子径は、レーザ回折式粒度分布測定装置、堀場製作所「LA-920」で測定した結果、10.6μmであった(図1)。またこの装置の超音波機能を1分間作動させたときのメジアン径は、9.5μmであった。この超音波作動時間の増加により、数値が低下する傾向は、市販銅ピリチオンの場合と同様である。
粒子の内部の状態を観察するため、電子顕微鏡を用いて、6000倍(図2)、及び30000倍(図3)の写真を撮影した。その結果、内部は0.1〜1.0μmの長さを有する楕円球状、棒状の銅ピリチオンと思われる物質の集合体であることが判明した。
次に集合体の化学成分を調べるため、X線回折分析を行った。その結果この緑色粒状集合体と市販銅ピリチオン(Kolon生命科学社製)のチャート(図4及び5)上で認められるピーク位置は全く同一であることから、緑色粒状集合体の本質は銅ピリチオンであることを確認した。
さらにこの銅ピリチオン粒状集合体を水に分散させ、80℃で30分撹拌したところ、かすかなアンモニア臭があり、集合体は数10%程度壊れた。このことは、集合体に水可溶性のアンモニア化合物が含まれていることを示しており、硫酸銅(II)・硫酸アンモニウム複合塩とナトリウムピリチオンから銅ピリチオンが生成した経緯を考えると、反応時解離した硫酸アンモニウムが銅ピリチオンに吸着され、銅ピリチオン同士を結びつけたと推測される。即ち複合体が形成されたと考えられる。ただX線回折チャート上ではその形跡が認められないことから、硫酸アンモニウムの含量は微量であると推定される。
Copper (II) sulfate / ammonium sulfate complex salt, in which 3.0 g of copper (II) sulfate pentahydrate and 1.5 g of ammonium sulfate were added to 40 mL of water in a beaker, and 5% sulfuric acid was added to adjust the pH to 2. An aqueous solution (A) was prepared. Next, 8.85 g of a 40% aqueous solution of sodium pyrithione (specific gravity 1.20) was added to 50 mL of water in a beaker to prepare a dilute aqueous solution of sodium pyrithione (B). While maintaining at 25 ° C., (B) was added dropwise to (A) with stirring over 30 minutes. During this time, 5% sulfuric acid was appropriately added so that the pH did not exceed 3. The obtained green copper pyrithione slurry was filtered, and the filtration residue was returned to 100 mL of water. After stirring, the filtration was repeated three times, and then the obtained solid was dried and pulverized in a mortar. 0.6 g of green granular material was obtained.
The median particle diameter of this green granular material dispersed in a 0.1% demole N (Kao Corporation) aqueous solution was measured with a laser diffraction particle size distribution analyzer, “Horiba Seisakusho“ LA-920 ”. (FIG. 1). The median diameter when the ultrasonic function of this apparatus was operated for 1 minute was 9.5 μm. The tendency for the numerical value to decrease due to the increase in the ultrasonic operation time is the same as in the case of commercially available copper pyrithione.
In order to observe the internal state of the particles, photographs of 6000 times (FIG. 2) and 30000 times (FIG. 3) were taken using an electron microscope. As a result, it was found that the inside was an aggregate of substances that seemed to be elliptical and rod-shaped copper pyrithione having a length of 0.1 to 1.0 μm.
Next, X-ray diffraction analysis was performed to examine the chemical composition of the aggregate. As a result, since the peak positions observed on the charts (FIGS. 4 and 5) of this green granular aggregate and commercial copper pyrithione (Kolon Life Science Co., Ltd.) are exactly the same, the essence of the green granular aggregate is copper pyrithione. I confirmed that there was.
Further, when this copper pyrithione granular aggregate was dispersed in water and stirred at 80 ° C. for 30 minutes, there was a faint ammonia odor and the aggregate broke about several tens of percent. This indicates that the aggregate contains a water-soluble ammonia compound, and it was dissociated during the reaction, considering the formation of copper pyrithione from copper (II) sulfate / ammonium sulfate complex salt and sodium pyrithione. It is presumed that ammonium sulfate was adsorbed on copper pyrithione and bound copper pyrithione. That is, it is considered that a complex was formed. However, since the trace is not recognized on the X-ray diffraction chart, the content of ammonium sulfate is estimated to be very small.

ビーカーに入れた50mLの水に塩化アンモニウム0.05モル(2.7g)、塩化銅
(II)2水和物0.025モル(4.3g)を加え(pH3)、さらに2N塩酸を加えてpH2の塩化銅・塩化アンモニウム複合塩水溶液(A)を調製した。別のビーカーに入れた40mLの水にナトリウムピリチオン40%水溶液18.6gを加え、ナトリウムピリチオンの0.05モル水溶液(B)を調製した。室温(20℃)で(A)に(B)を10分かけて撹拌しながら滴下した。この間適宜2N塩酸を加え、反応終点のpHが3になるよう調整した。さらに30分間室温で撹拌を続けた。得られた緑色スラリーをろ過し、ろ過残を100mLの水に戻し、10分間撹拌後次いでろ過を行うという操作を3回繰り返した後、得られた固体を乾燥し、乳鉢で粉砕して7.6gの銅ピリチオン粒状集合体を得た。
この緑色粒状物を0.1%デモールN(花王株式会社)水溶液に分散させたもののメジアン粒子径は、レーザ回折式粒度分布測定装置、堀場製作所「LA-920」で測定した結果、この装置の超音波機能を1分間作動させたときのメジアン径は、12.1μmであった(図6)。
To 50 mL of water in a beaker, 0.05 mol (2.7 g) of ammonium chloride and 0.025 mol (4.3 g) of copper (II) chloride dihydrate (pH 3) were added, and 2N hydrochloric acid was added. A copper chloride / ammonium chloride composite salt aqueous solution (A) having a pH of 2 was prepared. 18.6 g of a 40% aqueous solution of sodium pyrithione was added to 40 mL of water in another beaker to prepare a 0.05 molar aqueous solution of sodium pyrithione (B). At room temperature (20 ° C.), (B) was added dropwise to (A) over 10 minutes with stirring. During this period, 2N hydrochloric acid was appropriately added to adjust the pH of the reaction end point to 3. Stirring was continued for another 30 minutes at room temperature. The obtained green slurry was filtered, the filtration residue was returned to 100 mL of water, the operation of stirring for 10 minutes and then filtration was repeated 3 times, and then the obtained solid was dried and crushed in a mortar. 6 g of a copper pyrithione granular aggregate was obtained.
The median particle size of this green granular material dispersed in a 0.1% demole N (Kao Corporation) aqueous solution was measured with a laser diffraction particle size distribution measuring device, “Horiba Seisakusho“ LA-920 ”. The median diameter when the ultrasonic function was operated for 1 minute was 12.1 μm (FIG. 6).

比較例1Comparative Example 1

実施例1で得られた銅ピリチオン粒状集合体を水で湿らせ、乳鉢でさらに強くすりつぶして細かく粉砕した後、このもののメジアン径を実施例2と同様に測定して、5.0μm(超音波処理なし)、3.3μm(超音波処理1分間)の値を有する微細化粒子集合体を得た。   The copper pyrithione granular aggregate obtained in Example 1 was moistened with water, ground further strongly in a mortar and finely pulverized. No treatment) A fine particle aggregate having a value of 3.3 μm (sonication for 1 minute) was obtained.

比較例2Comparative Example 2

実施例2で得られた銅ピリチオン粒状集合体について、比較例1と同様に微細化し、このもののメジアン径を同様に測定した結果、4.3μm(超音波処理なし)、3.1μm(超音波処理1分間)の値を得た。   The copper pyrithione granular aggregate obtained in Example 2 was refined in the same manner as in Comparative Example 1, and the median diameter was measured in the same manner. As a result, 4.3 μm (no sonication), 3.1 μm (ultrasound A value of 1 minute of treatment) was obtained.

実施例1、実施例2、比較例1、比較例2で得られた銅ピリチオン粒状集合体について、水に対する溶解度を測定した。
1.試料調製
各試料0.05gをそれぞれ超純水250mLに分散させたものを、室温で24時間撹拌した。次に5Cのろ紙、続いて平均穴径0.45μmメンブランフィルタを用いてろ過した後、ろ液に0.1モル/Lになるよう硝酸を添加した溶液を測定に供した。
2.測定方法
ICP発光分光分析(機器;島津製作所「ICPS-2000」)
測定結果を表1に示す。
For the copper pyrithione granular aggregates obtained in Example 1, Example 2, Comparative Example 1, and Comparative Example 2, the solubility in water was measured.
1. Sample Preparation A sample in which 0.05 g of each sample was dispersed in 250 mL of ultrapure water was stirred at room temperature for 24 hours. Next, the mixture was filtered using a 5C filter paper, and subsequently with an average pore diameter of 0.45 μm membrane filter, and then a solution in which nitric acid was added to the filtrate to 0.1 mol / L was subjected to measurement.
2. Measuring method
ICP emission spectroscopic analysis (Instrument: Shimadzu Corporation “ICPS-2000”)
The measurement results are shown in Table 1.

Figure 0005594619
表1の結果から、実施例1及び実施例2の銅ピリチオン集合体の水に対する溶解度は、比較例1及び比較例2の銅ピリチオン集合体のそれよりも2/3〜1/2であった。
Figure 0005594619
From the results of Table 1, the solubility of the copper pyrithione aggregates of Example 1 and Example 2 in water was 2/3 to 1/2 than that of the copper pyrithione aggregates of Comparative Example 1 and Comparative Example 2. .

下記成分を均一に混合して、船底塗料を得た。
メチルメタクリレートとトリイソプロピルシリルアクリレートの2:3共重合体(50%キシレン溶液) 36重量%
亜酸化銅 32重量%
亜鉛華 4重量%
実施例2の銅ピリチオン粒状集合体 3重量%
チタン白 2重量%
弁柄 2重量%
脂肪酸アマイドワックス(20%) 2重量%
キシレン 19重量%
合計 100重量%
塗料調製時また半年後もゲル化等の異常は認められなかった。
The following components were uniformly mixed to obtain a ship bottom paint.
2: 3 copolymer of methyl methacrylate and triisopropylsilyl acrylate (50% xylene solution) 36% by weight
Cuprous oxide 32% by weight
4% by weight of zinc white
3% by weight of the copper pyrithione granular aggregate of Example 2
Titanium white 2% by weight
2% by weight
Fatty acid amide wax (20%) 2% by weight
19% by weight of xylene
Total 100% by weight
Abnormalities such as gelation were not observed at the time of preparing the paint or half a year later.

本発明の銅ピリチオン粒状集合体は、従来の市販銅ピリチオンでは得られないメジアン径で9〜13μmの大きな粒子径を有しているので、船底塗料の塗膜からの溶出速度が低減される結果、特に熱帯海域において長期防汚性能を発揮する防汚剤として、また環境への排出量の少ない防汚剤として有用である可能性がある。
The copper pyrithione granular aggregate of the present invention has a large median diameter of 9 to 13 μm, which is a median diameter that cannot be obtained with conventional commercially available copper pyrithione, so that the dissolution rate from the paint film of the bottom paint is reduced. In particular, it may be useful as an antifouling agent exhibiting long-term antifouling performance in a tropical sea area and as an antifouling agent with a small amount of discharge to the environment.

Claims (10)

一般式(I)
Figure 0005594619
又は一般式(I’)
Figure 0005594619
(式中Mは1価又は2価の金属、又はアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を表す。)
で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと
一般式(II)
Figure 0005594619
(式中Xは、Cl、1/2SO4、またはNO3のいずれかの陰イオンを表す。)
で示される無機銅(II)塩と無機アンモニウム塩との複合塩をpH1−4の水媒体中で反応させて製せられる銅ピリチオン集合体。
Formula (I)
Figure 0005594619
Or general formula (I ')
Figure 0005594619
(In the formula, M represents a monovalent or divalent metal or ammonium, and Py represents a 2-pyridylthio-N-oxide group.)
Water-soluble metal pyrithione or ammonium pyrithione represented by the general formula (II)
Figure 0005594619
(In the formula, X represents an anion of Cl, 1 / 2SO 4 , or NO 3. )
A copper pyrithione aggregate produced by reacting a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt represented by the above in an aqueous medium having a pH of 1-4.
一般式(I)
Figure 0005594619
又は一般式(I’)
Figure 0005594619
(式中Mは1価又は2価の金属、またはアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を表す。)
で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと
一般式(II)
Figure 0005594619
(式中Xは、Cl、1/2SO4、またはNO3のいずれかの陰イオンを表す。)
で示される無機銅(II)塩と無機アンモニウム塩との複合塩をpH1−4の水媒体中で反応させて製せられることを特徴とする、銅ピリチオン集合体の製造方法。
Formula (I)
Figure 0005594619
Or general formula (I ')
Figure 0005594619
(In the formula, M represents a monovalent or divalent metal or ammonium, and Py represents a 2-pyridylthio-N-oxide group.)
Water-soluble metal pyrithione or ammonium pyrithione represented by the general formula (II)
Figure 0005594619
(In the formula, X represents an anion of Cl, 1 / 2SO 4 , or NO 3. )
A method for producing a copper pyrithione aggregate, which is produced by reacting a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt represented by the formula (1) in an aqueous medium of pH 1-4.
Mは、ナトリウム、カリウム、カルシウム及びマグネシウムからなる金属から選ばれるものである、請求項1に記載の銅ピリチオン集合体。 The copper pyrithione aggregate according to claim 1, wherein M is selected from metals consisting of sodium, potassium, calcium and magnesium. Mは、ナトリウム、カリウム、カルシウム及びマグネシウムからなる金属から選ばれるものである、請求項2に記載の銅ピリチオン集合体の製造方法。 M is a manufacturing method of the copper pyrithione aggregate | assembly of Claim 2 which is chosen from the metal which consists of sodium, potassium, calcium, and magnesium. 無機銅(II)塩は、塩化銅(II)又は硫酸銅(II)であり、無機アンモニウム塩は、塩化アンモニウム又は硫酸アンモニウムである、請求項1又は請求項3に記載の銅ピリチオン集合体。 The copper pyrithione aggregate according to claim 1 or 3, wherein the inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, and the inorganic ammonium salt is ammonium chloride or ammonium sulfate. 無機銅(II)塩は、塩化銅(II)又は硫酸銅(II)であり、無機アンモニウム塩は、塩化アンモニウム又は硫酸アンモニウムである、請求項2又は請求項4に記載の銅ピリチオン集合体の製造方法。 The inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, and the inorganic ammonium salt is ammonium chloride or ammonium sulfate, according to claim 2 or 4, wherein the copper pyrithione aggregate is produced. Method. 銅ピリチオン集合体粒子のメジアン径が、粒度分布の主要部分が正規分布を示すことを前提条件として、9−13μmの範囲にある、請求項1、3又は5に記載の銅ピリチオン集合体。 The copper pyrithione aggregate according to claim 1, 3 or 5, wherein the median diameter of the copper pyrithione aggregate particles is in the range of 9-13 µm on the precondition that the main part of the particle size distribution shows a normal distribution. 銅ピリチオン集合体粒子のメジアン径が、粒度分布の主要部分が正規分布を示すことを前提条件として、9−13μmの範囲にある、請求項2、4又は6に記載の銅ピリチオン集合体の製造方法。 The production of copper pyrithione aggregates according to claim 2, 4 or 6, wherein the median diameter of the copper pyrithione aggregate particles is in the range of 9-13 µm, assuming that the main part of the particle size distribution shows a normal distribution. Method. 請求項1の銅ピリチオン集合体を含有する船底塗料用防汚剤。 An antifouling agent for ship bottom paint containing the copper pyrithione aggregate of claim 1. 銅ピリチオン集合体の粒子のメジアン径が、粒度分布の主要部分が正規分布を示すことを前提条件として、9−13μmの範囲にある、請求項9に記載の船底塗料用防汚剤。










The antifouling agent for ship bottom paint according to claim 9, wherein the median diameter of the particles of the copper pyrithione aggregate is in the range of 9-13 µm on the precondition that the main part of the particle size distribution shows a normal distribution.










JP2014514961A 2012-09-12 2013-09-09 Copper pyrithione aggregate and use thereof Active JP5594619B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014514961A JP5594619B2 (en) 2012-09-12 2013-09-09 Copper pyrithione aggregate and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012219791 2012-09-12
JP2012219791 2012-09-12
PCT/JP2013/074216 WO2014042117A1 (en) 2012-09-12 2013-09-09 Copper pyrithione aggregate and use of same
JP2014514961A JP5594619B2 (en) 2012-09-12 2013-09-09 Copper pyrithione aggregate and use thereof

Publications (2)

Publication Number Publication Date
JP5594619B2 true JP5594619B2 (en) 2014-09-24
JPWO2014042117A1 JPWO2014042117A1 (en) 2016-08-18

Family

ID=50278228

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014514961A Active JP5594619B2 (en) 2012-09-12 2013-09-09 Copper pyrithione aggregate and use thereof

Country Status (6)

Country Link
JP (1) JP5594619B2 (en)
KR (1) KR101630560B1 (en)
CN (1) CN104203917B (en)
MY (1) MY165739A (en)
SG (1) SG11201407771RA (en)
WO (1) WO2014042117A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5732639B1 (en) * 2014-03-06 2015-06-10 有限会社 ワイエイチエス Copper pyrithione aggregate and use thereof
JP7093914B2 (en) * 2020-02-03 2022-07-01 有限会社 ワイエイチエス Method for manufacturing copper pyrithione aggregate
WO2023121171A1 (en) * 2021-12-23 2023-06-29 코오롱생명과학주식회사 Antifouling paint composition

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5540860A (en) 1994-02-28 1996-07-30 Olin Corporation Process for preparing copper pyrithione
JP3532500B2 (en) * 1999-05-31 2004-05-31 キクチカラー株式会社 Antifouling agent for ship bottom paint and method for producing high purity copper pyrithione used therefor
US7659397B2 (en) * 2003-10-24 2010-02-09 Yhs Ltd. Pyrithione complex compound, process for producing the same and use thereof
JP2006335757A (en) 2005-01-12 2006-12-14 Yhs:Kk Highly dispersible composition containing finely particulate pyrithione complexed compound and optionally metal pyrithione and/or metal oxide
KR100529159B1 (en) * 2005-02-22 2005-11-17 주식회사 코오롱 Pyrithione salts having a defined crystallite size distribution and paint composition comprising it
JP2009155316A (en) * 2007-12-26 2009-07-16 Yhs:Kk Method for producing metal pyrithion-metal oxide complex compound and/or metal pyrithion-metal hydroxide complex compound
KR20110117269A (en) * 2008-05-30 2011-10-26 유겐가이샤 와이에이치에스 New crystalline pyrithione/zinc oxide composite and physiologic/antibiotic composition containing the same

Also Published As

Publication number Publication date
CN104203917B (en) 2016-08-24
SG11201407771RA (en) 2015-01-29
WO2014042117A1 (en) 2014-03-20
MY165739A (en) 2018-04-20
KR20140131980A (en) 2014-11-14
KR101630560B1 (en) 2016-06-14
JPWO2014042117A1 (en) 2016-08-18
CN104203917A (en) 2014-12-10

Similar Documents

Publication Publication Date Title
JP5594619B2 (en) Copper pyrithione aggregate and use thereof
JP2014149886A5 (en)
JP2015151304A5 (en)
KR101801455B1 (en) Copper pyrithione aggregate and use of same
JP6582356B2 (en) Chemical heat storage material
JP2009203484A (en) Method for synthesizing wire-shaped metal particle
TW592638B (en) Aluminosilicate antibacterial agents
JP4372654B2 (en) Method for producing rod-shaped conductive tin-containing indium oxide fine powder
US8673261B2 (en) Process for preparing magnetite (Fe3O4) and derivatives thereof
JP2020015975A (en) Method for producing cuprous oxide powder, cuprous oxide powder, method for producing copper powder, and copper powder
JPWO2010026884A1 (en) Method for producing an aqueous solution containing a chromium (III) source
JP2006232808A (en) Pyrithione metal salt having specific particle size distribution, and, coating composition
RU2572418C1 (en) Method of producing magnetoactive compound
JP5113315B2 (en) Agricultural crop mineral supplement and method for producing the same
JPH0426514A (en) Production of plate-like conductive zinc oxide
JP5966719B2 (en) Method for producing trimanganese tetraoxide
KR101379772B1 (en) Manufacturing method for simonkolleite and thereby made simonkolleite
JP7467798B2 (en) Manufacturing method of natural water fertilizer and natural water fertilizer
Tamilselvan Metal Hydrazine Cinnamates: Synthesis and Characterization
JP4502258B2 (en) Soil solidifying agent and method for producing the same
CN105440815A (en) Preparation method of antirust emulsion paint
JP2021046353A (en) Highly basic aluminum chloride and its production method
JP2008044865A (en) Trace mineral agent
UA52531U (en) Ultrapure aqueous solution of metal carboxylate
JPS63265966A (en) Production of novel iron oxide-coated flaky pigment

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140724

R150 Certificate of patent or registration of utility model

Ref document number: 5594619

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370