JP5732639B1 - Copper pyrithione aggregate and use thereof - Google Patents

Copper pyrithione aggregate and use thereof Download PDF

Info

Publication number
JP5732639B1
JP5732639B1 JP2014551443A JP2014551443A JP5732639B1 JP 5732639 B1 JP5732639 B1 JP 5732639B1 JP 2014551443 A JP2014551443 A JP 2014551443A JP 2014551443 A JP2014551443 A JP 2014551443A JP 5732639 B1 JP5732639 B1 JP 5732639B1
Authority
JP
Japan
Prior art keywords
copper
salt
pyrithione
ammonium
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014551443A
Other languages
Japanese (ja)
Other versions
JPWO2015132992A1 (en
Inventor
日高 靖浩
靖浩 日高
Original Assignee
有限会社 ワイエイチエス
有限会社 ワイエイチエス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 有限会社 ワイエイチエス, 有限会社 ワイエイチエス filed Critical 有限会社 ワイエイチエス
Priority to JP2014551443A priority Critical patent/JP5732639B1/en
Application granted granted Critical
Publication of JP5732639B1 publication Critical patent/JP5732639B1/en
Publication of JPWO2015132992A1 publication Critical patent/JPWO2015132992A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/89Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members with hetero atoms directly attached to the ring nitrogen atom
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • A01N59/20Copper
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1606Antifouling paints; Underwater paints characterised by the anti-fouling agent
    • C09D5/1612Non-macromolecular compounds
    • C09D5/1618Non-macromolecular compounds inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/30Sulfur-, selenium- or tellurium-containing compounds
    • C08K2003/3045Sulfates
    • C08K2003/3054Ammonium sulfates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • C08K3/11Compounds containing metals of Groups 4 to 10 or of Groups 14 to 16 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • C08K5/3725Sulfides, e.g. R-(S)x-R' containing nitrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Agronomy & Crop Science (AREA)
  • Dentistry (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Toxicology (AREA)
  • Pyridine Compounds (AREA)
  • Polymers With Sulfur, Phosphorus Or Metals In The Main Chain (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】主要な船底塗料用防汚剤として、世界的に認知されてきた銅ピリチオンの今後の課題としては、海環境保護の観点から、いかに塗膜からの溶出を制御して、防汚効力の持続期間を長くする形状の製品を開発するか、また作業現場での安全性を高めるため、いかに粉立ちの少ない粒子の製品を開発するかという二つがあった。【解決手段】本発明者は、銅ピリチオン従来製法の原料である無機銅(II)塩の代わりに、無機銅(II)塩と無機アンモニウム塩との複合塩を用いることにより、従来の銅ピリチオンの針状結晶と異なる小さい円柱状、平板状粒子からなる銅ピリチオン集合体を得ることに成功した。この結果、主として球形、楕円球形を有する5.5−9μm未満の範囲の平均粒子径の銅ピリチオン集合体粒子が船底防汚塗膜から海水への溶出を制御できること、また作業現場での粉塵吸入のリスクを軽減できることを見出し、上記課題を解決した。[PROBLEMS] The future issue of copper pyrithione, which has been recognized worldwide as the main antifouling agent for ship bottom paint, is to control the elution from the coating film from the viewpoint of protecting the marine environment. There were two ways to develop a product with a shape that would increase the duration of the product and how to develop a product with less dusting in order to improve safety at the work site. The present inventor uses conventional composite copper pyrithione by using a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt in place of the inorganic copper (II) salt that is a raw material of the conventional copper pyrithione production method. We succeeded in obtaining copper pyrithione aggregates composed of small cylindrical and tabular grains different from the needle-like crystals. As a result, copper pyrithione aggregate particles having an average particle size in the range of less than 5.5-9 μm, which are mainly spherical and elliptical, can control the elution of the ship bottom antifouling coating film into seawater, and dust inhalation at work sites The above problem was solved by finding that the risk of the risk could be reduced.

Description

本発明は、銅ピリチオン集合体及びその用途に関する。詳しくは、水可溶性金属ピリチオン又はアンモニウムピリチオンと無機銅(II)塩と無機アンモニウム塩との複合塩、又は無機アンモニウム塩の一部を無機アルカリ金属塩に代替した複合塩をpH4超−9未満の水媒体中で、反応させて製せられる銅ピリチオン集合体及びその製造法に関する。加えて、水可溶性金属ピリチオン又はアンモニウムピリチオンと無機銅(II)塩と無機アンモニウム塩との複合塩、又は無機アンモニウム塩の一部を無機アルカリ金属塩に代替した複合塩をpH1−9未満の水媒体中で、反応させて製せられる銅ピリチオン集合体の粒子が1ピークの粒度範囲を有することを前提に5.5−9μm未満の範囲にある水中防汚剤に関する。   The present invention relates to a copper pyrithione aggregate and its use. Specifically, a water-soluble metal pyrithione or a composite salt of ammonium pyrithione, an inorganic copper (II) salt and an inorganic ammonium salt, or a composite salt obtained by substituting a part of the inorganic ammonium salt with an inorganic alkali metal salt has a pH of more than 4 and less than -9 The present invention relates to a copper pyrithione aggregate produced by reacting in an aqueous medium and a method for producing the same. In addition, a water-soluble metal pyrithione or a complex salt of ammonium pyrithione, an inorganic copper (II) salt and an inorganic ammonium salt, or a complex salt obtained by substituting a part of the inorganic ammonium salt with an inorganic alkali metal salt for water having a pH of less than 1-9 The present invention relates to an underwater antifouling agent in a range of less than 5.5-9 μm on the assumption that particles of a copper pyrithione aggregate produced by reaction in a medium have a particle size range of 1 peak.

特許文献1には、銅ピリチオンの製造にあたり、製造工程上で起こるゲル化を防止し、反応を促進する目的で界面活性剤を添加する方法が開示されている。本特許の請求範囲に記載されているpH3−8の条件下でピリチオンアルカリ金属塩水溶液に無機銅(II)塩を加えると、銅ピリチオンが生成する前に、先ず塩基性銅塩の微細結晶が沈殿する。銅ピリチオンは、微溶性の塩基性銅塩沈殿物とピリチオンアルカリ金属塩との反応によって得られるが、非常に高粘度の液性になる。これがゲル化といわれる現象の実態である。界面活性剤を添加することにより、反応は進むが、生成した銅ピリチオンの粒子は数ミクロン程度と小さく、ろ過性が良くないという欠点を有する。また銅ピリチオン製品中に不純物として残存する塩基性銅塩は、船底塗料に配合されたとき、塗料の貯蔵時にゲル化を引き起こす原因となりうる。   Patent Document 1 discloses a method of adding a surfactant for the purpose of preventing gelation occurring in the production process and promoting the reaction in producing copper pyrithione. When inorganic copper (II) salt is added to an aqueous solution of pyrithione alkali metal salt under the conditions of pH 3-8 described in the claims of the present patent, before copper pyrithione is formed, first, fine crystals of the basic copper salt are formed. Precipitate. Copper pyrithione is obtained by the reaction of a slightly soluble basic copper salt precipitate and a pyrithione alkali metal salt, but it becomes a highly viscous liquid. This is the actual state of the phenomenon called gelation. Although the reaction proceeds by adding a surfactant, the produced copper pyrithione particles are as small as several microns, and have the disadvantage of poor filterability. Further, the basic copper salt remaining as an impurity in the copper pyrithione product can cause gelation when the paint is stored when it is blended in the ship bottom paint.

特許文献2には、pH1.6〜3.2の範囲で、ピリチオン金属塩水溶液と無機銅(II)塩水溶液を高温下で反応させ、次いで無機銅(II)塩を追加し、加熱処理を行うという銅ピリチオンの製造法が開示されている。本方法の第1工程では、低pH・高温下で長時間反応させるという製造条件から、ピリチオン酸の酸化によるビスピリチオン(2量体)ができやすく、第2工程でビスピリチオンを熱分解させ、同時に無機銅(II)塩を補充することにより、銅ピリチオンの純度を高めるという手法が取られている。高純度銅ピリチオンは得られるが、工程が増えることにより、製造コストが高くなるという欠点を有する。また第2工程では、生成量は限られるものの、上述のような塩基性銅塩の生成が避けられない。本特許の製造法で得られる銅ピリチオンの平均粒子径は、生成する塩基性銅塩が少ないため、上記特許文献1の製造法で得られる銅ピリチオンの平均粒子径より格段に大きくなるが、それでも実施例で示されているように、遠心式粒度分布測定装置「CAPA500」(堀場製作所)を使用した場合、5μmを超えない。   In Patent Document 2, a pyrithione metal salt aqueous solution and an inorganic copper (II) salt aqueous solution are reacted at a high temperature in the range of pH 1.6 to 3.2, then an inorganic copper (II) salt is added, and heat treatment is performed. A process for producing copper pyrithione is disclosed. In the first step of this method, bispyrithione (dimer) is easily formed by oxidation of pyrithionic acid from the production conditions of reacting at low pH and high temperature for a long time, and in the second step, bispyrithione is thermally decomposed, At the same time, a method of increasing the purity of copper pyrithione by replenishing inorganic copper (II) salt has been taken. Although high-purity copper pyrithione can be obtained, it has the disadvantage that the production cost increases due to an increase in the number of steps. In the second step, although the amount of production is limited, the production of the basic copper salt as described above is unavoidable. The average particle size of copper pyrithione obtained by the production method of this patent is much larger than the average particle size of copper pyrithione obtained by the production method of Patent Document 1 because there are few basic copper salts to be produced. As shown in the Examples, when the centrifugal particle size distribution measuring device “CAPA500” (Horiba Seisakusho) is used, it does not exceed 5 μm.

特許文献3には、一定の粒子径範囲を構成要素とし、その比率の範囲を定めたピリチオン金属塩を防汚有効成分とする防汚組成物が開示されている。ピリチオン金属塩のうち銅ピリチオンについては、実施例及び比較例でメジアン値を示すD(0.5)が4例示されている。内訳は粉砕品が1例、湿式ろ過物1例、粉砕品と未粉砕品の混合物が1例、未粉砕品が1例(比較例)である。粉砕品と湿式ろ過物の測定値が2−3μmであるのに対し、粉砕品と未粉砕品の混合物は、5μm以上を示している。しかし銅ピリチオン製品は、前出の特許文献2の実施例1記載の如く、乾燥ブロックを粉砕して得られる。製造工程において、水洗濾過後得られるウエットケーキは乾燥工程で必ず固化し乾燥ブロックを形成する。当然未粉砕品は製品とはなり得ない。製品レベルの平均粒子径を有する未乾燥品を得る方法は、少量のサンプルにより実験室で製品化を前提としない特別の処置を行う場合に限られる。またウエットケーキをそのまま水分散液として粒度分布測定に供する方法も可能である。しかしこの方法は実験室的には採用できるとしても、船底防汚塗料及び漁網防汚製剤が油性系の製品であり、水分を極端に嫌うことから考えて、この方法で得られた測定値は銅ピリチオン製品の測定値を反映していないと言える。従って粉砕品と未粉砕品の混合物の測定値5.8μm、未粉砕品の測定値8.3μmは、銅ピリチオン製品の平均粒子径としては不適当な測定値であり、産業上利用の可能性の観点から粉砕品の測定値のみが参照されるべきである。   Patent Document 3 discloses an antifouling composition containing a pyrithione metal salt having a certain particle size range as a constituent element and a range of the ratio as an antifouling active ingredient. Among copper pyrithione among pyrithione metal salts, four examples of D (0.5) showing median values are shown in Examples and Comparative Examples. The breakdown includes one example of a pulverized product, one example of a wet filtered product, one example of a mixture of a pulverized product and an unground product, and one example of a non-ground product (comparative example). The measured value of the pulverized product and the wet filtered product is 2-3 μm, whereas the mixture of the pulverized product and the unground product shows 5 μm or more. However, the copper pyrithione product can be obtained by pulverizing a dry block as described in Example 1 of Patent Document 2 mentioned above. In the production process, the wet cake obtained after washing and filtering is always solidified in the drying process to form a dry block. Of course, an unground product cannot be a product. The method of obtaining an undried product having an average particle size of a product level is limited to a case where a special treatment not premised on commercialization is performed in a laboratory with a small amount of sample. A method of subjecting the wet cake to an aqueous dispersion as it is for particle size distribution measurement is also possible. However, even though this method can be adopted in the laboratory, the measured values obtained by this method are considered to be because the bottom antifouling paint and fishing net antifouling preparation are oil-based products and they dislike water very much. It can be said that it does not reflect the measured values of copper pyrithione products. Therefore, the measured value of 5.8 μm for the mixture of the pulverized product and the unground product and the measured value of 8.3 μm for the unground product are inappropriate values for the average particle size of the copper pyrithione product and may be used industrially. From this point of view, only the measured value of the ground product should be referred to.

日本特許第3062825号公報Japanese Patent No. 3062825 日本特許第3532500号公報Japanese Patent No. 3532500 日本特許第4653642号公報Japanese Patent No. 4563642 日本特許第5594619号公報Japanese Patent No. 5594619

主要な船底塗料用防汚剤として、世界的に認知されてきた銅ピリチオンの今後の課題としては、海環境保護の観点から、いかに塗膜からの溶出を制御して、防汚効力の持続期間を長くできる形状の製品を開発するか、また作業現場での安全性を高めるため、いかに粉立ちの少ない粒子の製品を開発するかという二つがあった。   The future challenge for copper pyrithione, which has been recognized globally as the main antifouling agent for ship bottom paint, is to control the elution from the coating film and maintain the antifouling effect from the viewpoint of protecting the sea environment. There were two ways to develop a product with a shape that can extend the length of the product, and how to develop a product with less dusting in order to increase safety at the work site.

本発明者は、銅ピリチオン従来製法の原料である無機銅(II)塩の代わりに、無機銅(II)塩と無機アンモニウム塩との複合塩を用いることにより、従来の銅ピリチオンの針状結晶と異なる小さい円柱状、平板状粒子からなる銅ピリチオン集合体を得ることに成功した。この結果、主として球形、楕円球形を有する5.5−9μm未満の範囲の平均粒子径の銅ピリチオン集合体粒子が船底防汚塗膜から海水への溶出を制御できること、また作業現場での粉塵吸入のリスクを軽減できることを見出し、上記課題を解決した。
即ち、本発明は、
(1)一般式(I):
(式中Mは1価又は2価の金属、又はアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を、nは1又は2を表す。)で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと、
一般式(II):
(式中Xは、Cl、1/2SO4又はNO3 のいずれかの陰イオンを、M’はアンモニウム又はアルカリ金属を表す。)で示される無機銅(II)塩と無機アンモニウム塩との複合塩、又は無機アンモニウム塩の一部を無機アルカリ金属塩に代替した複合塩をpH4超−9未満の水媒体中で反応させて製せられる銅ピリチオン集合体、
(2)一般式(I):
(式中Mは1価又は2価の金属、又はアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を、nは1又は2を表す。)で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと、
一般式(II):
(式中Xは、Cl、1/2SO4又はNO3 のいずれかの陰イオンを、M’はアンモニウム又はアルカリ金属を表す。)で示される無機銅(II)塩と無機アンモニウム塩との複合塩、又は無機アンモニウム塩の一部を無機アルカリ金属塩に代替した複合塩をpH4超−9未満の水媒体中で反応させて製せられることを特徴とする、銅ピリチオン集合体の製造方法、
(3)一般式(I):
(式中Mは1価又は2価の金属、又はアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を、nは1又は2を表す。)で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと、
一般式(II):
(式中Xは、Cl、1/2SO4又はNO3 のいずれかの陰イオンを、M’はアンモニウム又はアルカリ金属を表す。)で示される無機銅(II)塩と無機アンモニウム塩との複合塩、又は無機アンモニウム塩の一部を無機アルカリ金属塩に代替した複合塩をpH1−9未満の水媒体中で反応させて製せられる銅ピリチオン集合体粒子のメジアン径が、粒度分布において一つのピークを有することを前提条件として、5.5−9μm未満の範囲にある銅ピリチオン集合体、
(4)Mは、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群から選ばれる金属である、上記(1)又は(3)に記載の銅ピリチオン集合体、
(5)Mは、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群から選ばれる金属である、上記(2)に記載の銅ピリチオン集合体の製造方法、
(6)無機銅(II)塩は、塩化銅(II)又は硫酸銅(II)であり、無機アンモニウム塩は塩化アンモニウム又は硫酸アンモニウムであり、無機アルカリ金属塩は、塩化ナトリウム又は硫酸ナトリウムである、上記(1)、(3)又は(4)に記載の銅ピリチオン集合体、
(7)無機銅(II)塩は、塩化銅(II)又は硫酸銅(II)であり、無機アンモニウム塩は塩化アンモニウム又は硫酸アンモニウムであり、無機アルカリ金属塩は、塩化ナトリウム又は硫酸ナトリウムである、上記(2)又は(5)に記載の銅ピリチオン集合体の製造方法、
(8)銅ピリチオン集合体粒子のメジアン径が、微粉砕機を用いることを前提として5.5−9μm未満の範囲にある上記(3)の銅ピリチオン集合体、
(9)上記(1)の銅ピリチオン集合体を含有する水中防汚剤、
(10)上記(3)又は(8)の銅ピリチオン集合体を含有する水中防汚剤、および
(11)水中防汚剤が船底塗料用防汚剤又は漁網用防汚剤である上記(9)又は(10)の水中防汚剤、を提供する。
The present inventor uses a composite salt of an inorganic copper (II) salt and an inorganic ammonium salt in place of the inorganic copper (II) salt, which is a raw material of the conventional copper pyrithione production method, to thereby form a conventional needle crystal of copper pyrithione. We have succeeded in obtaining copper pyrithione aggregates composed of small cylindrical and tabular grains. As a result, copper pyrithione aggregate particles having an average particle size in the range of less than 5.5-9 μm, which are mainly spherical and elliptical, can control the elution of the ship bottom antifouling coating film into seawater, and dust inhalation at work sites The above problem was solved by finding that the risk of the risk could be reduced.
That is, the present invention
(1) General formula (I):
(Wherein M represents a monovalent or divalent metal or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water-soluble metal pyrithione or ammonium pyrithione,
General formula (II):
(Wherein X represents an anion of Cl, 1 / 2SO 4 or NO 3 , M ′ represents ammonium or an alkali metal) and a composite of an inorganic copper (II) salt and an inorganic ammonium salt A copper pyrithione aggregate produced by reacting a salt or a composite salt in which a part of the inorganic ammonium salt is replaced with an inorganic alkali metal salt in an aqueous medium having a pH of more than 4 and less than -9,
(2) General formula (I):
(Wherein M represents a monovalent or divalent metal or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water-soluble metal pyrithione or ammonium pyrithione,
General formula (II):
(Wherein X represents an anion of Cl, 1 / 2SO 4 or NO 3 , M ′ represents ammonium or an alkali metal) and a composite of an inorganic copper (II) salt and an inorganic ammonium salt A method for producing a copper pyrithione aggregate, characterized by being produced by reacting a salt, or a composite salt obtained by substituting a part of an inorganic ammonium salt with an inorganic alkali metal salt in an aqueous medium having a pH of more than 4 and less than -9,
(3) General formula (I):
(Wherein M represents a monovalent or divalent metal or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water-soluble metal pyrithione or ammonium pyrithione,
General formula (II):
(Wherein X represents an anion of Cl, 1 / 2SO 4 or NO 3 , M ′ represents ammonium or an alkali metal) and a composite of an inorganic copper (II) salt and an inorganic ammonium salt The median diameter of copper pyrithione aggregate particles produced by reacting a salt or a composite salt obtained by substituting a part of the inorganic ammonium salt with an inorganic alkali metal salt in an aqueous medium having a pH of less than 1-9 has one particle size distribution. A copper pyrithione aggregate in the range of less than 5.5-9 μm, provided that it has a peak,
(4) M is a copper pyrithione assembly according to (1) or (3) above, which is a metal selected from the group consisting of sodium, potassium, calcium and magnesium,
(5) The method for producing a copper pyrithione aggregate according to (2) above, wherein M is a metal selected from the group consisting of sodium, potassium, calcium and magnesium,
(6) The inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, the inorganic ammonium salt is ammonium chloride or ammonium sulfate, and the inorganic alkali metal salt is sodium chloride or sodium sulfate. The copper pyrithione aggregate according to (1), (3) or (4) above,
(7) The inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, the inorganic ammonium salt is ammonium chloride or ammonium sulfate, and the inorganic alkali metal salt is sodium chloride or sodium sulfate. A method for producing a copper pyrithione aggregate according to (2) or (5) above,
(8) The copper pyrithione aggregate according to (3) above, wherein the median diameter of the copper pyrithione aggregate particles is in the range of less than 5.5-9 μm on the premise that a pulverizer is used.
(9) An underwater antifouling agent containing the copper pyrithione aggregate of (1) above,
(10) The underwater antifouling agent containing the copper pyrithione aggregate of (3) or (8) above, and (11) The above (9) wherein the underwater antifouling agent is an antifouling agent for ship bottom paints or an antifouling agent for fishing nets. Or an underwater antifouling agent according to (10).

本発明の銅ピリチオン集合体を製造するときに用いられる好ましい金属ピリチオンとしては、ナトリウムピリチオンが、好ましい無機銅(II)塩としては、硫酸銅(II)又は塩化銅(II)が、好ましい無機アンモニウム塩としては硫酸アンモニウム又は塩化アンモニウムが、好ましい無機アルカリ金属塩としては、硫酸ナトリウム又は塩化ナトリウムが挙げられる。   As a preferable metal pyrithione used when producing the copper pyrithione aggregate of the present invention, sodium pyrithione is preferable, and as a preferable inorganic copper (II) salt, copper (II) sulfate or copper (II) chloride is preferable inorganic ammonium. Examples of the salt include ammonium sulfate and ammonium chloride, and preferable inorganic alkali metal salts include sodium sulfate and sodium chloride.

本発明に用いられる無機銅(II)塩と無機アンモニウム塩との複合塩としては、例えば塩化銅と塩化アンモニウムとの複合塩(CuCl2・2(NH4)Cl・2H2O)、硫酸銅と硫酸アンモニウムとの複合塩(CuSO4・(NH4)2 SO4・6H2O)、無機銅(II)塩と無機アルカリ金属塩との複合塩としては、例えば硫酸銅と硫酸ナトリウムの複合塩(CuSO4・Na2SO4・2H2O)、硫酸銅と硫酸カリウムの複合塩(CuSO4・K2SO4・6H2O)が挙げられる。これらの複合塩は、一般に計算量の無機銅(II)塩と無機アルカリ金属塩又は無機アンモニウム塩の硫酸又は塩酸水溶液を濃縮することにより結晶として得られる。しかし上記の濃縮液から結晶を取り出すことなく、そのまま本発明の銅ピリチオン集合体の製造原料水溶液として、金属ピリチオン水溶液との反応に供することが効率的であり、好ましい。
無機アンモニウム塩の一部を無機アルカリ金属塩に代替して用いるときの無機アルカリ金属塩の比率は、10−90%、好ましくは30−70%である。10%未満では代替効果がなく、90%を超えるとアンモニウムによる集合体形成が得られない。無機アンモニウム塩の一部を無機アルカリ金属塩に代替して用いるメリットは、高いpH域、また比較的高温下で反応させる場合に得られる。このような反応条件下では、無機アンモニウムから発生するアンモニア量を制御し、且つ撹拌をより円滑にする効果が期待できる。しかし得られた銅ピリチオン集合体に含まれる無機アルカリ金属塩不純物の除去が容易でないため、この不純物の含量が増大しやすく、また粒子の形状が細長くなるため、得られた銅ピリチオン集合体の品質、粒度制御に悪影響を与えかねない。従って低いpH域、低い温度で反応させる場合、即ちアンモニウムの発生が殆どない場合は、無機アルカリ金属塩は用いず、無機アンモニウム塩のみ用いることが推奨される。いずれを選択するかは、製造条件、製造規模、そして製造設備による。
Examples of the composite salt of inorganic copper (II) salt and inorganic ammonium salt used in the present invention include a composite salt of copper chloride and ammonium chloride (CuCl 2 · 2 (NH 4 ) Cl · 2H 2 O), copper sulfate As a composite salt of copper sulfate and ammonium sulfate (CuSO 4 · (NH 4 ) 2 SO 4 · 6H 2 O), inorganic copper (II) salt and inorganic alkali metal salt, for example, composite salt of copper sulfate and sodium sulfate (CuSO 4 · Na 2 SO 4 · 2H 2 O), and a composite salt of copper sulfate and potassium sulfate (CuSO 4 · K 2 SO 4 · 6H 2 O). These composite salts are generally obtained as crystals by concentrating a calculated amount of an inorganic copper (II) salt and an aqueous sulfuric acid or hydrochloric acid solution of an inorganic alkali metal salt or an inorganic ammonium salt. However, it is efficient and preferable to use it as it is as a raw material aqueous solution for producing the copper pyrithione aggregate of the present invention as it is, without taking out crystals from the concentrated liquid, for the reaction with the aqueous metal pyrithione solution.
When a part of the inorganic ammonium salt is used instead of the inorganic alkali metal salt, the ratio of the inorganic alkali metal salt is 10 to 90%, preferably 30 to 70%. If it is less than 10%, there is no substitute effect, and if it exceeds 90%, aggregate formation by ammonium cannot be obtained. The merit of using a part of the inorganic ammonium salt in place of the inorganic alkali metal salt is obtained when the reaction is performed in a high pH range or at a relatively high temperature. Under such reaction conditions, the effect of controlling the amount of ammonia generated from inorganic ammonium and smoothing the stirring can be expected. However, since removal of inorganic alkali metal salt impurities contained in the obtained copper pyrithione aggregate is not easy, the content of this impurity tends to increase and the shape of the particles becomes elongated, so the quality of the obtained copper pyrithione aggregate May adversely affect particle size control. Accordingly, when the reaction is carried out at a low pH range and at a low temperature, that is, when there is almost no generation of ammonium, it is recommended to use only an inorganic ammonium salt without using an inorganic alkali metal salt. Which one is selected depends on manufacturing conditions, manufacturing scale, and manufacturing equipment.

従来の金属ピリチオン水溶液と無機銅(II)塩水溶液を反応させて銅ピリチオンを得る方法では、pH4−8においては銅ピリチオンが生成する前に塩基性銅塩(例えば塩基性硫酸銅、CuSO4・Cu(OH)2))が生成するため、固―液反応になる結果、反応効率が悪くなるだけでなく、粘度が高くなり、前出の特許文献1に記載されている如く、界面活性剤を用いない限り反応が進まない。しかし本発明の金属ピリチオン水溶液と無機銅(II)塩と無機アンモニウム塩との複合塩水溶液、又は無機アンモニウム塩の一部を無機アルカリ金属塩に代替した複合塩水溶液を反応させる場合は、水酸化銅よりも結合力の強い無機アンモニウム塩、無機アルカリ金属塩が無機銅(II)塩と結合しているため、塩基性銅塩は生成せず、液―液反応が維持される。そのため反応は円滑に進み、pH4−8条件下の反応において界面活性剤添加の必要性がないという利点を有する。本発明の銅ピリチオン集合体を製造するのに好適なpH範囲は1−9未満である。pH1−4の範囲については、すでに本発明者により先に特許出願されている(特許文献4)。pHが9を超えると、必須原料である無機アンモニウム塩が無機アルカリ塩に置き換わって集合体形成を妨げるのみならず、アンモニアを発生して臭いの問題を引き起こす。In the conventional method of obtaining copper pyrithione by reacting an aqueous solution of metal pyrithione and an aqueous solution of inorganic copper (II) salt, a basic copper salt (for example, basic copper sulfate, CuSO 4. Since Cu (OH) 2 )) is generated, the reaction becomes solid-liquid reaction, resulting in not only poor reaction efficiency but also high viscosity. As described in Patent Document 1 mentioned above, a surfactant is used. The reaction will not proceed unless is used. However, when the metal pyrithione aqueous solution of the present invention, a composite salt aqueous solution of an inorganic copper (II) salt and an inorganic ammonium salt, or a composite salt aqueous solution in which a part of the inorganic ammonium salt is replaced with an inorganic alkali metal salt is reacted, Since an inorganic ammonium salt or inorganic alkali metal salt having a stronger binding strength than copper is bonded to an inorganic copper (II) salt, a basic copper salt is not generated, and a liquid-liquid reaction is maintained. Therefore, the reaction proceeds smoothly, and there is an advantage that there is no need to add a surfactant in the reaction under pH 4-8 conditions. The pH range suitable for producing the copper pyrithione aggregate of the present invention is less than 1-9. Regarding the range of pH 1-4, a patent application has already been filed by the present inventor (Patent Document 4). When the pH exceeds 9, the inorganic ammonium salt, which is an essential raw material, is replaced with an inorganic alkali salt to prevent aggregate formation, and ammonia is generated to cause a problem of odor.

従来の金属ピリチオン水溶液と無機銅(II)塩水溶液を反応させて銅ピリチオンを得る方法では、反応は70℃以上の高温下で行われる。一方本発明の金属ピリチオン水溶液と無機銅(II)塩と無機アンモニウム塩との複合塩水溶液、又は無機アンモニウム塩の一部を無機アルカリ金属塩に代替した複合塩水溶液を反応させる方法では、反応温度は10−40℃、好ましくは15−30℃の常温下で行われる。高温下で反応させると、粒子が大きくなって、好ましい集合体が得られず、また臭いの発生の問題が起こりうる。   In the conventional method of obtaining copper pyrithione by reacting an aqueous metal pyrithione aqueous solution with an inorganic copper (II) salt aqueous solution, the reaction is carried out at a high temperature of 70 ° C. or higher. On the other hand, in the method of reacting a metal pyrithione aqueous solution, a composite salt aqueous solution of an inorganic copper (II) salt and an inorganic ammonium salt, or a composite salt aqueous solution in which a part of the inorganic ammonium salt is replaced with an inorganic alkali metal salt, Is carried out at room temperature of 10-40 ° C, preferably 15-30 ° C. When the reaction is carried out at a high temperature, the particles become large, a preferable aggregate cannot be obtained, and a problem of odor generation may occur.

本発明の銅ピリチオン集合体の製造法に基づき、ナトリウムピリチオン、硫酸銅(II)と硫酸アンモニウムとの複合塩を原料として得られた銅ピリチオン集合体を平均粒子径約10μm程度の粒子に粉砕して水に分散させ、80℃で30分加熱すると、かすかなアンモニア臭を発し、集合体は数10%程度壊れる。これから銅ピリチオン集合体の形成に与っている物質は、銅と親和力があるアンモニウムイオンと考えられるが、X線回折分析では硫酸アンモニウムの存在は認められず、このものを物質として特定できなかった。銅ピリチオンのX線回折分析チャートと比較して、相違が認められないことから、アンモニウムは銅ピリチオンに密着していて、非晶質であると考えられる。Na含量を1ppm以下にまで十分に水洗した銅ピリチオン集合体のHPLCによる銅ピリチオン純度は、98.2−98.6%であった。これから銅ピリチオン集合体中のアンモニウム含量は1.4%程度と推定される。一方硫酸ナトリウムが銅ピリチオン集合体の形成に与っている可能性については、銅ピリチオン集合体を十分に水洗すれば、実施例2で示される如く、Na含量が0.1ppm程度であり、集合体中に保持されていないことは明白であるから、その可能性はないと判断される。   Based on the method for producing a copper pyrithione aggregate of the present invention, a copper pyrithione aggregate obtained by using a composite salt of sodium pyrithione, copper sulfate (II) and ammonium sulfate as a raw material is pulverized into particles having an average particle diameter of about 10 μm. When dispersed in water and heated at 80 ° C. for 30 minutes, it emits a faint ammonia odor and breaks the aggregate by several tens of percent. From this, it is considered that the substance that contributes to the formation of the copper pyrithione aggregate is an ammonium ion having an affinity for copper. However, the presence of ammonium sulfate was not recognized by X-ray diffraction analysis, and this substance could not be specified as a substance. Compared to the X-ray diffraction analysis chart of copper pyrithione, no difference is observed, so ammonium is considered to be in close contact with copper pyrithione and amorphous. The copper pyrithione purity by HPLC of the copper pyrithione aggregate sufficiently washed with Na to 1 ppm or less was 98.2-98.6%. From this, the ammonium content in the copper pyrithione aggregate is estimated to be about 1.4%. On the other hand, regarding the possibility that sodium sulfate contributes to the formation of copper pyrithione aggregates, if the copper pyrithione aggregates are sufficiently washed with water, as shown in Example 2, the Na content is about 0.1 ppm. Since it is clear that it is not held in the body, it is judged that there is no possibility.

本発明の銅ピリチオン集合体の製造法に基づき、反応生成物を水洗ろ過し、乾燥した固体は、数100μmの径を有する集合体粗大粒子である。この粗大粒子にせん断応力を、例えば乳鉢で擦るような力を加えて粉砕すると、一部が微小粒子となり、粒度分布で微小粒子域と大粒子域に二つのピークを生じる(特許文献4参照)。しかし、表面に押圧力を加えて粉砕した場合、例えば微粉砕機であるボールミルにより粉砕した場合、正規分布又はそれに近い一つのピークの粒度分布を得ることができる。このような粒度分布の様態は、レーザ回折式の粒度分布測定装置、例えばLA-920(堀場製作所)によって確認される。本発明の粉砕方法で得られた銅ピリチオン集合体は、実質的に微小粒子を含まないため、上記微小粒子域と大粒子域を有する集合体粒子に比べ、船底防汚塗料又は漁網防汚製剤の塗膜からの溶出制御機能に優れる。船底防汚塗料用又は漁網防汚製剤用防汚剤として好ましい粒子径範囲は、1−30μm、メジアン値は5.5−9μm未満である。ただし下限の5.5μmは、遠心式粒度分布装置、CAPA-500(堀場製作所)によって、測定された値であることが前提条件となる。なぜなら特許文献2の特許請求範囲である1−5μmの平均粒子径は、CAPA-500によって測定された値であるからである。   Based on the manufacturing method of the copper pyrithione aggregate of the present invention, the solid obtained by washing and filtering the reaction product and drying is aggregate coarse particles having a diameter of several hundred μm. When this coarse particle is pulverized by applying a shearing force, for example, a force such as rubbing with a mortar, a part of the particle becomes a fine particle, and two peaks appear in the fine particle region and the large particle region in the particle size distribution (see Patent Document 4). . However, when the surface is pulverized by applying a pressing force, for example, when pulverized by a ball mill as a fine pulverizer, a normal distribution or a particle size distribution of one peak close thereto can be obtained. Such a state of the particle size distribution is confirmed by a laser diffraction type particle size distribution measuring apparatus, for example, LA-920 (Horiba Seisakusho). Since the copper pyrithione aggregate obtained by the pulverization method of the present invention does not substantially contain microparticles, it is compared with the aggregate particles having the above-mentioned microparticle region and large particle region, and the ship bottom antifouling paint or fishing net antifouling preparation Excellent elution control function from coating film. A preferable particle size range for the antifouling agent for ship bottom antifouling paints or fishing net antifouling preparations is 1-30 μm, and the median value is less than 5.5-9 μm. However, it is a precondition that the lower limit of 5.5 μm is a value measured by a centrifugal particle size distribution device, CAPA-500 (Horiba Seisakusho). This is because the average particle diameter of 1-5 μm, which is the claim of Patent Document 2, is a value measured by CAPA-500.

これまで銅ピリチオンが粉末状で取り扱われた場合、作業現場では粉立ちによる吸入のため健康を損ねる懸念があった。特に従来の銅ピリチオンが比較的固い針状結晶である点が問題視され、界面活性剤等を用いて粒子を粗大化する方法、油性樹脂状物質で被覆してペースト化する方法等が提案されてきた。これらの方法は効果的であるが、銅ピリチオン粉末を二次処理するため、コストアップが避けられない。本発明の銅ピリチオン集合体は、粒子が大きく、しかも流動性があるため、取扱い易くて粉立ちしにくいだけでなく、針状結晶による問題がないことから、このような二次処理を必要とせず、粉末状で取り扱われるとしても、従来と比べ健康被害のリスクはおおいに軽減されるという利点を有する。   In the past, when copper pyrithione was handled in the form of powder, there was a concern that it would harm health at the work site due to inhalation by powdering. In particular, the problem that conventional copper pyrithione is a relatively hard needle-like crystal is regarded as a problem, and a method of coarsening particles using a surfactant or the like, a method of coating with an oil-based resinous material, and the like are proposed. I came. Although these methods are effective, since the copper pyrithione powder is secondarily treated, an increase in cost is inevitable. Since the copper pyrithione aggregate of the present invention is large in particle size and fluid, it is not only easy to handle and difficult to dust, but also has no problems due to needle-like crystals. Even if it is handled in powder form, it has the advantage that the risk of health damage is greatly reduced compared to the prior art.

船底塗料や漁網防汚製剤の塗膜から溶出する銅ピリチオンの溶出速度は、銅ピリチオンの表面積、海水温度に加え、塗膜の性質、船の航行速度又は海流速度、汚損生物の付着状況等の要因が関係する。単純に銅ピリチオンの表面積の比率だけで、その差を論ずることはできないが、平均粒子径(メジアン値)5.5−9μm未満を有する本発明の銅ピリチオン集合体の表面積は、市販銅ピリチオンの表面積より1.5−4倍大きく、また集合体形成物質の介在により、銅ピリチオン集合体に溶出遅延効果が生まれるので、従来の銅ピリチオンと比べ、海水への溶出速度が大幅に遅くなる。この結果熱帯海域のような高水温条件下での防汚効果持続性が改良されるだけでなく、海洋への銅ピリチオン排出量を減らすことができるため、海環境保護の見地からも好ましい。
本発明の銅ピリチオン集合体は、シリルアクリル樹脂、亜鉛アクリル樹脂、銅アクリル樹脂及びこれらの共重合樹脂を基材とする船底防汚塗料に、またアクリル樹脂等の可撓性樹脂を基材とする漁網防汚製剤に配合される。船底防汚塗料、漁網防汚製剤いずれの場合も通常亜酸化銅とともに処方される。
The elution rate of copper pyrithione eluted from the paint film of ship bottom paints and fishing net antifouling preparations includes the surface area of copper pyrithione, seawater temperature, the nature of the paint film, the ship's navigation speed or ocean current speed, and the status of fouling organisms. Factors are involved. The surface area of the copper pyrithione assembly of the present invention having an average particle size (median value) of less than 5.5-9 μm is not limited by the ratio of the copper pyrithione surface area. It is 1.5-4 times larger than the surface area, and the elution delay effect is produced in the copper pyrithione aggregate due to the inclusion of the aggregate-forming substance, so that the elution rate into seawater is significantly slower than that of conventional copper pyrithione. As a result, not only the durability of the antifouling effect under high water temperature conditions such as in tropical waters is improved, but also the amount of copper pyrithione discharged into the ocean can be reduced, which is preferable from the viewpoint of protecting the sea environment.
The copper pyrithione aggregate of the present invention is a ship bottom antifouling paint based on a silyl acrylic resin, a zinc acrylic resin, a copper acrylic resin and a copolymer resin thereof, and a flexible resin such as an acrylic resin as a base material. It is added to the fishing net antifouling preparation. Both ship bottom antifouling paints and fishing net antifouling preparations are usually formulated with cuprous oxide.

本発明の銅ピリチオン集合体は、従来の銅ピリチオンがメジアン径5μm以下の針状結晶であるのに対し、メジアン径が5.5−9μm未満と大きく、また長さの短い小粒子の粒状集合体であるため、流動性がよく、作業現場での吸入の危険性が大幅に軽減されるとともに、船底防汚塗料用及び漁網防汚製剤用防汚剤として使用するとき、海水への溶出が大幅に低減され、防汚効果の持続性が改善される。   In the copper pyrithione aggregate of the present invention, the conventional copper pyrithione is a needle-like crystal having a median diameter of 5 μm or less, whereas the median diameter is large as less than 5.5-9 μm, and a granular aggregate of small particles having a short length Because it is a body, it has good fluidity, greatly reducing the risk of inhalation at the work site, and when used as an antifouling agent for ship bottom antifouling paints and fishing net antifouling preparations, It is greatly reduced and the durability of the antifouling effect is improved.

は、実施例1で得られた銅ピリチオン集合体のX線回折分析による回折パターンを示すチャートである。These are the charts which show the diffraction pattern by the X-ray diffraction analysis of the copper pyrithione aggregate | assembly obtained in Example 1. FIG. は、市販銅ピリチオンのX線回折分析による回折パターンを示すチャートである。These are the charts which show the diffraction pattern by the X-ray diffraction analysis of commercial copper pyrithione. は、実施例1で得られた銅ピリチオン集合体のDTA/TGAにおける発熱ピーク温度を示すチャートである。These are the charts which show the exothermic peak temperature in DTA / TGA of the copper pyrithione aggregate obtained in Example 1. は、実施例1で得られた銅ピリチオン集合体の粒度分布からメジアン値(50%)を示すチャートである。(遠心式「CAPA-500」(堀場製作所))These are charts which show a median value (50%) from the particle size distribution of the copper pyrithione aggregate obtained in Example 1. (Centrifuge type “CAPA-500” (Horiba)) は、実施例1で得られた銅ピリチオン集合体の粒度分布からメジアン値(50%)を示すチャートである。(レーザ回折式「LA-920」(堀場製作所))These are charts which show a median value (50%) from the particle size distribution of the copper pyrithione aggregate obtained in Example 1. (Laser diffraction type “LA-920” (Horiba)) は、実施例1で得られた銅ピリチオン集合体の電子顕微鏡写真である。These are the electron micrographs of the copper pyrithione aggregate obtained in Example 1. は、実施例2で得られた銅ピリチオン集合体の粒度分布からメジアン値(50%)を示すチャートである。(レーザ回折式の「LA-920」(堀場製作所))These are charts which show a median value (50%) from the particle size distribution of the copper pyrithione aggregate obtained in Example 2. (Laser diffraction type "LA-920" (Horiba)) は、実施例3で得られた銅ピリチオン集合体の粒度分布からメジアン値(50%)を示すチャートである。(レーザ回折式の「LA-920」(堀場製作所))These are charts which show a median value (50%) from the particle size distribution of the copper pyrithione aggregate obtained in Example 3. (Laser diffraction type "LA-920" (Horiba)) は、実施例3で得られた銅ピリチオン集合体の電子顕微鏡写真である。These are the electron micrographs of the copper pyrithione aggregate obtained in Example 3. は、実施例4で得られた銅ピリチオン集合体のX線回折分析による回折パターンを示すチャートである。These are the charts which show the diffraction pattern by the X-ray diffraction analysis of the copper pyrithione aggregate | assembly obtained in Example 4. FIG. は、実施例4で得られた銅ピリチオン集合体の粒度分布からメジアン値(50%)を示すチャートである。(遠心式の「CAPA-500」(堀場製作所))These are charts which show a median value (50%) from the particle size distribution of the copper pyrithione aggregate obtained in Example 4. (Centrifuge type “CAPA-500” (Horiba)) は、実施例4で得られた銅ピリチオン集合体の電子顕微鏡写真である。These are the electron micrographs of the copper pyrithione aggregate obtained in Example 4.

以下に実施例を挙げて、本発明を具体的に説明する。   The present invention will be specifically described below with reference to examples.

5Lの反応器に硫酸銅5水和物125g(0.5モル)と硫酸アンモニウム66g(0.5モル)を入れて1.8Lの水溶液とした後、10%硫酸20mLを加えて、pHを2に調整した。次いでナトリウムピリチオン40%水溶液(比重1.22)300mLを水で希釈して、1.2Lの水溶液とした。硫酸銅・硫酸アンモニウム水溶液1.8Lにナトリウムピリチオン水溶液1.2Lを撹拌下に2時間掛けて20℃で滴下した。得られた銅ピリチオン集合体スラリー液3Lを減圧下で吸引濾過した。濾過後残った固体をもう一度もとの容器に移して、水を加えて再び3Lの銅ピリチオン集合体スラリー液とし、撹拌後再度吸引濾過を行った。この操作を2回繰り返した。得られた固体を80℃で一晩乾燥器に入れて乾燥し、小片に砕いた後40分かけてボールミルで粉砕した。収量は約150gであった。
このなかから少量を取って、X線回折分析を行ったところ、市販銅ピリチオン(KOLON生命科学社製)の回折パターンと全く同一のパターンを示した(図1、図2)。またDTA/TGAの発熱ピーク温度の値は280℃であり、不純物の含有を示す吸熱、発熱ピークは全く認められなかった(図3)。銅ピリチオン再結晶精製品の発熱ピーク温度は276℃、市販銅ピリチオンの発熱ピーク温度は282−285℃なので、本実施例で得られた銅ピリチオン集合体は、微量の結合性アンモニウムを含んでいるにもかかわらず、純度の高いものであることを示しており、事実HPLC純度は98.2%であった。また平均粒子径は、遠心式の「CAPA-500」(堀場製作所)で5.9μm(図4)、レーザ回折式の「LA-920」(堀場製作所)で6.48μm(図5)(それぞれメジアン値、分散媒:0.2%デモールN水溶液)であった。また本実施例で得られた銅ピリチオン集合体は、SEM写真によってアスペクト比の小さな円柱状又は平板状の粒子の集合体であることが確認された(図6)。
Into a 5 L reactor, 125 g (0.5 mol) of copper sulfate pentahydrate and 66 g (0.5 mol) of ammonium sulfate were added to make a 1.8 L aqueous solution, and then 20 mL of 10% sulfuric acid was added to adjust the pH to 2. Adjusted. Next, 300 mL of a 40% aqueous solution of sodium pyrithione (specific gravity 1.22) was diluted with water to obtain a 1.2 L aqueous solution. To 1.8 L of copper sulfate / ammonium sulfate aqueous solution, 1.2 L of sodium pyrithione aqueous solution was added dropwise at 20 ° C. over 2 hours with stirring. 3 L of the obtained copper pyrithione assembly slurry liquid was subjected to suction filtration under reduced pressure. The solid remaining after the filtration was once again transferred to the original container, and water was added to make 3 L of copper pyrithione aggregate slurry again. After stirring, suction filtration was performed again. This operation was repeated twice. The obtained solid was put in a dryer at 80 ° C. overnight, dried, crushed into small pieces, and crushed with a ball mill over 40 minutes. Yield was about 150 g.
A small amount of the sample was taken and subjected to X-ray diffraction analysis. As a result, the same diffraction pattern as that of commercially available copper pyrithione (manufactured by KOLON Life Science Co., Ltd.) was shown (FIGS. 1 and 2). Further, the value of the exothermic peak temperature of DTA / TGA was 280 ° C., and no endothermic or exothermic peak indicating the inclusion of impurities was observed (FIG. 3). The exothermic peak temperature of the copper pyrithione recrystallized product is 276 ° C., and the exothermic peak temperature of commercially available copper pyrithione is 282-285 ° C. Therefore, the copper pyrithione aggregate obtained in this example contains a trace amount of bound ammonium. Nevertheless, it was shown to be highly pure, and in fact the HPLC purity was 98.2%. The average particle size is 5.9 μm (Fig. 4) for the centrifugal “CAPA-500” (Horiba Seisakusho), and 6.48 μm (FIG. 5) for the laser diffraction type “LA-920” (Horiba Seisakusho) (respectively). Median value, dispersion medium: 0.2% demole N aqueous solution). Moreover, it was confirmed by the SEM photograph that the copper pyrithione aggregate obtained in this example was an aggregate of columnar or tabular grains having a small aspect ratio (FIG. 6).

実施例1と同様に合成を行い、得られた銅ピリチオン集合体スラリー液を500mLビーカーに分取して、18cm径の5A濾紙を用いて水洗濾過を行った。濾過残を再びビーカーに移して水を加え、撹拌後、5A濾紙を用いて水洗濾過を行う操作を3回繰り返した。水を絞った固体を乾燥器に入れ、60℃で6時間乾燥し、得られた小片を40分間ボールミルで粉砕した。このなかから少量を取って、X線回折分析を行ったところ、銅ピリチオンの回折パターンと全く同一のパターンを示した。また平均粒子径は、レーザ回折式の「LA-920」(堀場製作所)で5.79μm(図7)(メジアン値、分散媒:0.2%デモールN水溶液)であった。さらにこのもののナトリウム含量を原子吸光分析により求めたところ、0.09μg/mgであり、副生物の硫酸ナトリウムはほとんど残存していなかった。   The synthesis was carried out in the same manner as in Example 1, and the obtained copper pyrithione aggregate slurry was dispensed into a 500 mL beaker and filtered with water washing using 18 cm diameter 5A filter paper. The filtration residue was again transferred to a beaker, water was added, and after stirring, the operation of washing and filtering with 5A filter paper was repeated three times. The solid from which water was squeezed was put into a drier, dried at 60 ° C. for 6 hours, and the obtained small piece was pulverized by a ball mill for 40 minutes. A small amount of the sample was taken and subjected to X-ray diffraction analysis. As a result, the same pattern as that of copper pyrithione was shown. The average particle size was 5.79 μm (FIG. 7) (median value, dispersion medium: 0.2% demole N aqueous solution) of laser diffraction type “LA-920” (Horiba Seisakusho). Furthermore, when the sodium content of this product was determined by atomic absorption analysis, it was 0.09 μg / mg and almost no by-product sodium sulfate remained.

1Lのビーカーに硫酸銅5水和物12.5gと硫酸アンモニウム6.6を合わせ、360mLの水溶液とした後、1%水酸化ナトリウム水溶液でpHを4.1に調整した。次いでナトリウムピリチオン40%水溶液(比重1.22)30mLを水で希釈して、240mLの水溶液とした。塩基性硫酸銅の生成は認められなかった。硫酸銅・硫酸アンモニウム水溶液360mLにナトリウムピリチオン水溶液240mLを撹拌下に30分掛けて26℃で滴下した。反応終了後のpHは、7.3であった。反応後の銅ピリチオン集合体スラリー液600mLを一晩放置し、5A濾紙を用いて水洗濾過を行った。濾紙上に残った液状固体をもう一度ビーカーに移し、水を加えて撹拌後再度濾過を行った。この操作を2回繰り返した。水を絞った固体を乾燥器に入れ、60℃で6時間乾燥し、得られた小片を30分間ボールミルで粉砕した。収量は約150gであった。またHPLC純度は98.6%であった。
このなかから少量を取って、X線回折分析を行ったところ、銅ピリチオンの回折パターンと全く同一のパターンを示した。また平均粒子径は、レーザ回折式の「LA-920」(堀場製作所)で粉砕30分の場合7.43μm(図8)(それぞれメジアン値、分散媒:0.2%デモールN水溶液)であった。また本実施例で得られた銅ピリチオン集合体は、SEM写真によってアスペクト比の小さな円柱状又は平板状の粒子の集合体であることが確認された(図9)。
In a 1 L beaker, 12.5 g of copper sulfate pentahydrate and 6.6 ammonium sulfate were combined to form a 360 mL aqueous solution, and then the pH was adjusted to 4.1 with a 1% aqueous sodium hydroxide solution. Next, 30 mL of a 40% aqueous solution of sodium pyrithione (specific gravity 1.22) was diluted with water to obtain a 240 mL aqueous solution. Formation of basic copper sulfate was not observed. To 360 mL of copper sulfate / ammonium sulfate aqueous solution, 240 mL of sodium pyrithione aqueous solution was added dropwise at 26 ° C. over 30 minutes with stirring. The pH after completion of the reaction was 7.3. After the reaction, 600 mL of the copper pyrithione assembly slurry liquid was left overnight and washed with water using 5A filter paper. The liquid solid remaining on the filter paper was once again transferred to a beaker, water was added, and the mixture was stirred and filtered again. This operation was repeated twice. The solid from which water was squeezed was put into a drier, dried at 60 ° C. for 6 hours, and the obtained small piece was pulverized with a ball mill for 30 minutes. Yield was about 150 g. The HPLC purity was 98.6%.
A small amount of the sample was taken and subjected to X-ray diffraction analysis. As a result, the same pattern as that of copper pyrithione was shown. The average particle diameter was 7.43 μm (FIG. 8) (median value, dispersion medium: 0.2% demole N aqueous solution) when pulverized with a laser diffraction type “LA-920” (Horiba Seisakusho) for 30 minutes. It was. The copper pyrithione aggregate obtained in this example was confirmed to be an aggregate of cylindrical or tabular grains having a small aspect ratio by SEM photography (FIG. 9).

実施例3の硫酸アンモニウム6.6gを硫酸アンモニウム3.3gと硫酸ナトリウム3.6gに代え、1%水酸化ナトリウム水溶液でpHを6.4に調整し、30℃で実施例3と同様に反応させた。反応終了後のpHは、7.8だった。アンモニア臭は感知できなかった。反応後の銅ピリチオン集合体スラリー液を、実施例3と同様にして、水洗濾過を行い、乾燥して得た小片をボールミルで15分間粉砕した。このなかから少量を取って、X線回折分析を行ったところ、銅ピリチオンの回折パターンと全く同一のパターンを示した(図10)。また平均粒子径は、遠心式の「CAPA-500」(堀場製作所)で8.5μm(図11)(メジアン値、分散媒:0.2%デモールN水溶液)であった。また本実施例で得られた銅ピリチオンは、SEM写真によってアスペクト比の小さな円柱状の粒子の集合体であることが確認された(図12)。   6.6 g of ammonium sulfate in Example 3 was replaced with 3.3 g of ammonium sulfate and 3.6 g of sodium sulfate, and the pH was adjusted to 6.4 with a 1% aqueous sodium hydroxide solution and reacted at 30 ° C. in the same manner as in Example 3. . The pH after completion of the reaction was 7.8. The ammonia odor was not perceivable. The copper pyrithione aggregate slurry after the reaction was washed with water and filtered in the same manner as in Example 3, and the small pieces obtained by drying were pulverized with a ball mill for 15 minutes. A small amount of the sample was taken and subjected to X-ray diffraction analysis. As a result, the same pattern as that of copper pyrithione was shown (FIG. 10). The average particle size was 8.5 μm (FIG. 11) (median value, dispersion medium: 0.2% demole N aqueous solution) by centrifugal “CAPA-500” (Horiba Seisakusho). Moreover, it was confirmed by the SEM photograph that the copper pyrithione obtained in this example was an aggregate of cylindrical particles having a small aspect ratio (FIG. 12).

漁網防汚製剤塗膜からの防汚剤の溶出性を調べるため、溶出性に影響を及ぼす恐れのある他成分を除いた下記組成の成分を均一に混合し、漁網防汚製剤を得た。
注:市販銅ピリチオン;A社製銅ピリチオン(針状結晶) 平均粒子径4.8μm(CAPA-500)
ポリエチレン製無結節網(6節、400デニール、6本)を上記処方I及びIIの漁網防汚製剤に浸漬し、乾燥した。漁網防汚製剤組成中の銅ピリチオン集合体及び銅ピリチオンがそれぞれどのような速さで水中に溶出するか、溶出銅濃度を経時的に測定することにより、調査した。
試料調製
実施例6の処方I及びIIの漁網防汚製剤に浸漬し、乾燥したポリエチレン製無結節網を防汚剤の塗布量が1gになるよう切り取った。各試料をそれぞれ超純水250mLに浸漬したものを室温で1日、4日、7日間撹拌した(計6試料)。次に5Cの濾紙、続いて平均穴径0.45μmメンブランフィルターを用いて濾過した後、濾液に0.1モル/Lになるよう硝酸を添加した溶液を測定に供した。
また比較のため、処方Iの銅ピリチオン集合体及び処方IIの銅ピリチオンの水に対する溶解度(溶解銅)を同様の方法で24時間撹拌し測定した。
測定方法
ICP発光分光分析(機器;島津製作所「ICPS-2000」)
測定結果を表1に示す。
In order to examine the dissolution property of the antifouling agent from the fishing net antifouling preparation coating film, the components of the following composition except for other components that might affect the dissolution property were uniformly mixed to obtain a fishing net antifouling preparation.
Note: Commercially available copper pyrithione; copper pyrithione (needle crystal) manufactured by Company A Average particle size 4.8 μm (CAPA-500)
A knotless net made of polyethylene (6 sections, 400 denier, 6 pieces) was immersed in the anti-fouling preparations of the above-mentioned formulas I and II and dried. The speed of elution of the copper pyrithione aggregate and copper pyrithione in the fishing net antifouling preparation composition into the water was investigated by measuring the elution copper concentration over time.
The sample was immersed in a fishing net antifouling preparation of Formulation I and II of Example 6 and the dried polyethylene knotless net was cut off so that the application amount of the antifouling agent was 1 g. Each sample immersed in 250 mL of ultrapure water was stirred at room temperature for 1 day, 4 days, and 7 days (total 6 samples). Next, the mixture was filtered using a 5C filter paper and then a membrane filter having an average pore diameter of 0.45 μm, and then a solution in which nitric acid was added to the filtrate to 0.1 mol / L was subjected to measurement.
For comparison, the solubility (dissolved copper) of copper pyrithione aggregate of formulation I and copper pyrithione of formulation II in water was measured by stirring for 24 hours in the same manner.
Measuring method
ICP emission spectroscopic analysis (Instrument: Shimadzu Corporation ICPS-2000)
The measurement results are shown in Table 1.

第1表 溶出銅成分濃度(mg/L)
試料 I.実施例1の銅ピリチオン集合体 平均粒子径;5.9μm(CAPA-500)
II. A社製銅ピリチオン 平均粒子径;4.8μm(CAPA-500)
上表の結果は、本発明の銅ピリチオン集合体は、市販銅ピリチオンと比べ、漁網防汚製剤塗膜からの水中への溶出が銅ピリチオンとの平均粒子径の差以上に遅いことを示している。即ち集合体という形状が寄与している可能性がある。船底防汚塗料塗膜からの水中への溶出性については、船底防汚塗料が通常亜酸化銅とともに処方されるため、本測定法を適用することはできない。しかし船底防汚塗料に使用される樹脂がアクリル樹脂であるという漁網防汚製剤との類似性を考えれば、本実施例の結果が船底防汚塗料の場合についても同様あるいは近似の傾向を示すであろうことが推測される。
Table 1 Concentration of eluted copper components (mg / L)
Sample I. Copper pyrithione aggregate of Example 1 Average particle size; 5.9 μm (CAPA-500)
II. Copper pyrithione average particle size manufactured by Company A: 4.8 μm (CAPA-500)
The results in the above table indicate that the copper pyrithione aggregate of the present invention has a slower elution into the water from the fishing net antifouling preparation coating film than the difference in the average particle diameter with copper pyrithione compared to the commercially available copper pyrithione. Yes. In other words, the shape of the aggregate may have contributed. As for the dissolution property of the ship bottom antifouling paint film into water, this measurement method cannot be applied because the ship bottom antifouling paint is usually formulated together with cuprous oxide. However, considering the similarity to the fishing net antifouling preparation that the resin used for the ship bottom antifouling paint is an acrylic resin, the results of this example show a similar or similar tendency for the bottom antifouling paint. I guess it will be.

下記成分を均一に混合して、船底塗料を得た。
塗料調製時また3ヶ月後もゲル化等の異常は認められなかった。
The following components were uniformly mixed to obtain a ship bottom paint.
No abnormalities such as gelation were observed at the time of preparing the paint and after 3 months.

本発明の銅ピリチオン集合体は、従来の市販銅ピリチオンと比べて、作業時粉立ちが少ないため取扱い易く、またメジアン径で5.5−9未満μmの大きな平均粒子径を有しているので、船底防汚塗料及び漁網防汚製剤の塗膜からの溶出が遅延する結果、特に熱帯海域において長期防汚性能を発揮する防汚剤として、また環境への排出量の少ない防汚剤として有用である可能性がある。
The copper pyrithione aggregate of the present invention is easy to handle because it has less powdering during operation than the conventional commercially available copper pyrithione, and has a large average particle diameter of less than 5.5-9 μm in median diameter. As a result of delaying elution of ship bottom antifouling paints and fishing net antifouling preparations from paint films, it is useful as an antifouling agent that exhibits long-term antifouling performance, particularly in tropical seas, and as an antifouling agent with low environmental emissions. There is a possibility.

Claims (11)

一般式(I):
(式中Mは1価又は2価の金属、又はアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を、nは1又は2を表す。)で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと、
一般式(II):
(式中Xは、Cl、1/2SO4又はNO3 のいずれかの陰イオンを、M’はアンモニウムを表す。)で示される無機銅(II)塩と無機アンモニウム塩との複合塩を、pH4超−9未満の水媒体中で反応させて製せられる銅ピリチオン集合体。
Formula (I):
(Wherein M represents a monovalent or divalent metal or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water-soluble metal pyrithione or ammonium pyrithione,
General formula (II):
(Wherein X is, Cl, 1 / 2SO 4 or one of the anions of NO 3, M 'represents. The ammonium beam) complex salts with inorganic copper (II) salt and an inorganic ammonium salt represented by Copper pyrithione aggregate produced by reacting in an aqueous medium having a pH of more than 4 and less than -9.
一般式(I):
(式中Mは1価又は2価の金属、又はアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を、nは1又は2を表す。)で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと、
一般式(II):
(式中Xは、Cl、1/2SO4又はNO3 のいずれかの陰イオンを、M’はアンモニウムを表す。)で示される無機銅(II)塩と無機アンモニウム塩との複合塩を、pH4超−9未満の水媒体中で反応させて製せられることを特徴とする、銅ピリチオン集合体の製造方法。
Formula (I):
(Wherein M represents a monovalent or divalent metal or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water-soluble metal pyrithione or ammonium pyrithione,
General formula (II):
(Wherein X is, Cl, 1 / 2SO 4 or one of the anions of NO 3, M 'represents. The ammonium beam) complex salts with inorganic copper (II) salt and an inorganic ammonium salt represented by A process for producing a copper pyrithione aggregate, wherein the copper pyrithione aggregate is produced by reacting in an aqueous medium having a pH of more than 4 and less than -9.
一般式(I):
(式中Mは1価又は2価の金属、又はアンモニウムを、Pyは2−ピリジルチオ−N−オキサイド基を、nは1又は2を表す。)で示される水可溶性金属ピリチオン又はアンモニウムピリチオンと、
一般式(II):
(式中Xは、Cl、1/2SO4又はNO3 のいずれかの陰イオンを、M’はアンモニウムを表す。)で示される無機銅(II)塩と無機アンモニウム塩との複合塩を、pH1−9未満の水媒体中で反応させて製せられる銅ピリチオン集合体粒子のメジアン径が、粒度分布において一つのピークを有することを前提条件として、5.5−9μm未満の範囲にある銅ピリチオン集合体。
Formula (I):
(Wherein M represents a monovalent or divalent metal or ammonium, Py represents a 2-pyridylthio-N-oxide group, and n represents 1 or 2), and a water-soluble metal pyrithione or ammonium pyrithione,
General formula (II):
(Wherein X is, Cl, 1 / 2SO 4 or one of the anions of NO 3, M 'represents. The ammonium beam) complex salts with inorganic copper (II) salt and an inorganic ammonium salt represented by the median diameter of the copper pyrithione aggregate particles are Seise by reacting in an aqueous medium of less than pH1-9 is, as a prerequisite to have one peak in the particle size distribution is in the range of less than 5.5-9μm Copper pyrithione aggregate.
Mは、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群から選ばれる金属である、請求項1又は請求項3に記載の銅ピリチオン集合体。   The copper pyrithione aggregate according to claim 1 or 3, wherein M is a metal selected from the group consisting of sodium, potassium, calcium, and magnesium. Mは、ナトリウム、カリウム、カルシウム及びマグネシウムからなる群から選ばれる金属である、請求項2に記載の銅ピリチオン集合体の製造方法。 The method for producing a copper pyrithione aggregate according to claim 2, wherein M is a metal selected from the group consisting of sodium, potassium, calcium and magnesium. 無機銅(II)塩は、塩化銅(II)又は硫酸銅(II)であり、無機アンモニウム塩は塩化アンモニウム又は硫酸アンモニウムであり、無機アルカリ金属塩は、塩化ナトリウム又は硫酸ナトリウムである、請求項1、請求項3又は請求項4に記載の銅ピリチオン集合体。 The inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, the inorganic ammonium salt is ammonium chloride or ammonium sulfate, and the inorganic alkali metal salt is sodium chloride or sodium sulfate. The copper pyrithione aggregate according to claim 3 or claim 4. 無機銅(II)塩は、塩化銅(II)又は硫酸銅(II)であり、無機アンモニウム塩は塩化アンモニウム又は硫酸アンモニウムであり、無機アルカリ金属塩は、塩化ナトリウム又は硫酸ナトリウムである、請求項2又は請求項5に記載の銅ピリチオン集合体の製造方法。 The inorganic copper (II) salt is copper (II) chloride or copper (II) sulfate, the inorganic ammonium salt is ammonium chloride or ammonium sulfate, and the inorganic alkali metal salt is sodium chloride or sodium sulfate. Or the manufacturing method of the copper pyrithione aggregate | assembly of Claim 5. 銅ピリチオン集合体粒子のメジアン径が、微粉砕機を用いることを前提として5.5−9μm未満の範囲にある請求項3の銅ピリチオン集合体。   4. The copper pyrithione aggregate according to claim 3, wherein the median diameter of the copper pyrithione aggregate particles is in the range of less than 5.5-9 [mu] m on the assumption that a fine pulverizer is used. 請求項1の銅ピリチオン集合体を含有する水中防汚剤。   An underwater antifouling agent containing the copper pyrithione aggregate of claim 1. 請求項3又は請求項8の銅ピリチオン集合体を含有する水中防汚剤。   An underwater antifouling agent comprising the copper pyrithione aggregate according to claim 3 or 8. 水中防汚剤が船底塗料用防汚剤又は漁網用防汚剤である請求項9又は請求項10の水中防汚剤。   The underwater antifouling agent according to claim 9 or 10, wherein the underwater antifouling agent is a ship bottom paint antifouling agent or a fishing net antifouling agent.
JP2014551443A 2014-03-06 2014-09-25 Copper pyrithione aggregate and use thereof Active JP5732639B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014551443A JP5732639B1 (en) 2014-03-06 2014-09-25 Copper pyrithione aggregate and use thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014064675 2014-03-06
JP2014064675 2014-03-06
PCT/JP2014/075341 WO2015132992A1 (en) 2014-03-06 2014-09-25 Copper pyrithione assembly and use thereof
JP2014551443A JP5732639B1 (en) 2014-03-06 2014-09-25 Copper pyrithione aggregate and use thereof

Publications (2)

Publication Number Publication Date
JP5732639B1 true JP5732639B1 (en) 2015-06-10
JPWO2015132992A1 JPWO2015132992A1 (en) 2017-04-06

Family

ID=54054818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014551443A Active JP5732639B1 (en) 2014-03-06 2014-09-25 Copper pyrithione aggregate and use thereof

Country Status (6)

Country Link
JP (1) JP5732639B1 (en)
KR (1) KR101801455B1 (en)
CN (1) CN105263908B (en)
MY (1) MY169990A (en)
SG (1) SG11201507048WA (en)
WO (1) WO2015132992A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225674A1 (en) 2019-05-03 2020-11-12 Lonza Llc Method and composition for treatment of nets for aquaculture

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102405516B1 (en) * 2017-06-20 2022-06-03 코오롱생명과학 주식회사 Method for preparing pyrithion salt and pyrithion salt prepared by using the same
JP7093914B2 (en) * 2020-02-03 2022-07-01 有限会社 ワイエイチエス Method for manufacturing copper pyrithione aggregate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506903A (en) * 1994-02-28 1997-07-08 オリン コーポレイション Method for producing copper pyrithione
JP2001048884A (en) * 1999-05-31 2001-02-20 Kikuchi Color Kk High-purity copper pyrithione and its production
US6462102B1 (en) * 1999-09-21 2002-10-08 Nippon Paint Co., Ltd. Resin for use in an antifouling coating and antifouling coating
WO2005040122A1 (en) * 2003-10-24 2005-05-06 Yhs Ltd. Novel pyrithione complex compound, process for producing the same and use thereof
JP2006232808A (en) * 2005-02-22 2006-09-07 Kolon Ind Inc Pyrithione metal salt having specific particle size distribution, and, coating composition
JP2009155316A (en) * 2007-12-26 2009-07-16 Yhs:Kk Method for producing metal pyrithion-metal oxide complex compound and/or metal pyrithion-metal hydroxide complex compound
CN102702094A (en) * 2012-06-29 2012-10-03 南通醋酸化工股份有限公司 Synthesis method of copper pyrithione
WO2014042117A1 (en) * 2012-09-12 2014-03-20 有限会社ワイエイチエス Copper pyrithione aggregate and use of same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09506903A (en) * 1994-02-28 1997-07-08 オリン コーポレイション Method for producing copper pyrithione
JP2001048884A (en) * 1999-05-31 2001-02-20 Kikuchi Color Kk High-purity copper pyrithione and its production
US6462102B1 (en) * 1999-09-21 2002-10-08 Nippon Paint Co., Ltd. Resin for use in an antifouling coating and antifouling coating
WO2005040122A1 (en) * 2003-10-24 2005-05-06 Yhs Ltd. Novel pyrithione complex compound, process for producing the same and use thereof
JP2006232808A (en) * 2005-02-22 2006-09-07 Kolon Ind Inc Pyrithione metal salt having specific particle size distribution, and, coating composition
JP2009155316A (en) * 2007-12-26 2009-07-16 Yhs:Kk Method for producing metal pyrithion-metal oxide complex compound and/or metal pyrithion-metal hydroxide complex compound
CN102702094A (en) * 2012-06-29 2012-10-03 南通醋酸化工股份有限公司 Synthesis method of copper pyrithione
WO2014042117A1 (en) * 2012-09-12 2014-03-20 有限会社ワイエイチエス Copper pyrithione aggregate and use of same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014053016; Tuliao Gongye 37, 2007, 11-12,20 *
JPN6014053017; J. Inorg. Nucl. Chem. 26, 1964, 1277-1281 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020225674A1 (en) 2019-05-03 2020-11-12 Lonza Llc Method and composition for treatment of nets for aquaculture
CN113747789A (en) * 2019-05-03 2021-12-03 隆萨有限责任公司 Method and composition for treating aquaculture nets

Also Published As

Publication number Publication date
JPWO2015132992A1 (en) 2017-04-06
SG11201507048WA (en) 2015-10-29
MY169990A (en) 2019-06-19
CN105263908A (en) 2016-01-20
WO2015132992A1 (en) 2015-09-11
KR101801455B1 (en) 2017-11-24
KR20150126638A (en) 2015-11-12
CN105263908B (en) 2017-02-08

Similar Documents

Publication Publication Date Title
JP5064379B2 (en) Method for producing copper powder, method for producing metal powder, and method for producing nickel powder
Henrist et al. Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis
JP5732639B1 (en) Copper pyrithione aggregate and use thereof
JP4288452B2 (en) Method for producing Mg-Al hydrotalcite-type particle powder, chlorine-containing resin stabilizer and chlorine-containing resin composition
CN104445334B (en) A kind of lamella stacks cubic micron order calcium carbonate preparation method
TW201831496A (en) Metal complexes
JP4099620B2 (en) Method for producing Mg-Al hydrotalcite-type particle powder, chlorine-containing resin stabilizer and chlorine-containing resin composition
JP6194618B2 (en) Trimanganese tetraoxide and method for producing the same
JP6582356B2 (en) Chemical heat storage material
JP4338470B2 (en) Hydrotalcite particles and method for producing the same
JP5594619B2 (en) Copper pyrithione aggregate and use thereof
JP4845188B2 (en) Waste water treatment agent and method for reducing fluorine ions in waste water
JP5048556B2 (en) Method for producing particulate copper powder
JPWO2018110384A1 (en) Alumina powder
JP2004059378A (en) Method for producing basic magnesium carbonate, and composition or structure containing the basic magnesium carbonate
JP6924657B2 (en) Method for Producing Transition Metal Composite Hydroxide Particles Used in Positive Electrode Active Material for Batteries
TW592638B (en) Aluminosilicate antibacterial agents
JP4079983B1 (en) Method for producing fine particle platinum powder
US8673261B2 (en) Process for preparing magnetite (Fe3O4) and derivatives thereof
JP5424479B2 (en) Water-dispersed colloidal solution and method for producing the same
JP2675465B2 (en) Hydrous calcium carbonate and method for producing the same
WO2010058774A1 (en) Solid heavy metal processing agent, method for producing same and use of same
JP4273069B2 (en) Method for producing normal magnesium carbonate particles and basic magnesium carbonate particles
JP7093914B2 (en) Method for manufacturing copper pyrithione aggregate
JP6694115B2 (en) Silver oxalate

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150310

R150 Certificate of patent or registration of utility model

Ref document number: 5732639

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250