JP5424479B2 - Water-dispersed colloidal solution and method for producing the same - Google Patents

Water-dispersed colloidal solution and method for producing the same Download PDF

Info

Publication number
JP5424479B2
JP5424479B2 JP2009278323A JP2009278323A JP5424479B2 JP 5424479 B2 JP5424479 B2 JP 5424479B2 JP 2009278323 A JP2009278323 A JP 2009278323A JP 2009278323 A JP2009278323 A JP 2009278323A JP 5424479 B2 JP5424479 B2 JP 5424479B2
Authority
JP
Japan
Prior art keywords
colloidal solution
water
dispersed colloidal
layered double
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009278323A
Other languages
Japanese (ja)
Other versions
JP2011121786A (en
Inventor
英和 上田
裕之 井筒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taki Kasei Co Ltd
Original Assignee
Taki Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taki Kasei Co Ltd filed Critical Taki Kasei Co Ltd
Priority to JP2009278323A priority Critical patent/JP5424479B2/en
Publication of JP2011121786A publication Critical patent/JP2011121786A/en
Application granted granted Critical
Publication of JP5424479B2 publication Critical patent/JP5424479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Description

本発明は、層状複水酸化物を水分散させることにより得られる水分散型コロイド溶液、更に詳しくは、実質的に一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物と1価の無機陰イオンのみからなり、1価の無機陰イオンが当該化合物に対してモル比で0.1〜0.4の範囲である水分散型コロイド溶液及びその製造方法に関する。 The present invention relates to a water-dispersed colloidal solution obtained by dispersing a layered double hydroxide in water, and more specifically, substantially having the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + The present invention relates to a water-dispersed colloidal solution comprising only the compound shown and a monovalent inorganic anion, wherein the monovalent inorganic anion is in a molar ratio of 0.1 to 0.4 with respect to the compound, and a method for producing the same.

層状複水酸化物は、ハイドロタルサイト様物質とも称され、一般式[M2+ 1-xM3+ x(OH)2] [An− x/n・mH2O]で表される化合物である。ここで、M2+は2価の金属イオン、M3+は3価の金属イオン、An−はn価の陰イオンを示し、xは1未満の正の実数
、nは正の整数、mは正の実数を示す。層状複水酸化物の構造は、一般式[M2+ 1-xM3+ x(OH)2]x+で表される正の電荷を持つ金属水酸化物層(基本層)と、その層間に一般式[An− x/n・mH2O]n−で表される陰イオンと水分子からなる中間層とが交互に積み重なって層状化合物を構成することに特徴を有する。
The layered double hydroxide is also called a hydrotalcite-like substance and is represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] [A n− x / n · mH 2 O] A compound. Here, M 2+ is a divalent metal ion, M 3+ is a trivalent metal ion, A n-represents an n-valent anion, x is less than one positive real number, n is a positive integer, m represents a positive real number. The structure of the layered double hydroxide consists of a metal hydroxide layer (base layer) with a positive charge represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + , and its interlayer In addition, an anion represented by the general formula [A n− x / n · mH 2 O] n− and an intermediate layer composed of water molecules are alternately stacked to form a layered compound.

この層状複水酸化物は、触媒担体として、これを焼成して得られた複酸化物は触媒として、またプラスチック分野に於いては安定化剤、難燃剤、保湿性改良剤として、医薬品分野に於いては制酸剤として利用されている。また、近年ドラッグデリバリーシステム、薬効持続を目的とするコントロールドリリースへの応用研究も盛んに行われている。更にまた、環境分野においては、吸着剤としての検討も進められている。しかし、層状複水酸化物の状態では、樹脂とのなじみ、分散性が悪く、この改良のため精力的に研究が行われ、他の分野に於いても、さらなる高性能化、高機能化を目的としてナノサイズ化の検討がされている。   This layered double hydroxide is used as a catalyst carrier, and the double oxide obtained by calcination of the layered double hydroxide as a catalyst. In the plastic field, it is used as a stabilizer, a flame retardant, and a moisture retention improver. It is used as an antacid. In recent years, research on application to drug delivery systems and controlled releases for the purpose of sustained drug efficacy has also been actively conducted. Furthermore, in the environmental field, studies as an adsorbent are also being made. However, in the state of the layered double hydroxide, it is not compatible with the resin and dispersibility is bad, and intensive research has been conducted for this improvement, and in other fields, further improvement in performance and functionality will be achieved. Nano-size is being studied for the purpose.

その1つは、層状複水酸化物を有機溶媒中で基本層にまで剥離し、コロイドの分散状態にする方法である。例えば、中間層にグリシン(特許文献1)やフッ素系イミド(特許文献2)を含有した層状複水酸化物を作成し、これを有機溶媒、例えばホルムアミドやアルコールによってコロイドの分散状態とする方法である。しかし、有機溶媒の使用は環境への有害性の問題があることから、無害な水を溶媒とする、層状複水酸化物を剥離した水分散型のコロイド溶液の開発が望まれている。
このような水分散型のコロイド溶液としては、乳酸等のカルボン酸(特許文献3、非特許文献1)や乳酸マグネシウム(特許文献4)等の有機化合物を中間層に含有する層状複水酸化物を、水溶媒中で剥離することで、水分散型のコロイド溶液が得られることが開示されている。しかしながら、これら開示技術によって得られるコロイド溶液は層状複水酸化物の中間層に由来する有機物を必ず含有するため、例えば、有機合成反応における触媒用途においては、該有機物が副反応を引き起こす等の問題があり、また、これを各種基材にコーティングし乾燥、焼成する場合、依然ガス発生の問題を内包すると共に透明性の高いコーティング膜を得ることは困難である。
このため、とりわけ触媒等高機能を要求される分野において有機物を含まない、即ち実質的に無機物のみで構成された水分散型コロイド溶液が強く要請されている。
One of them is a method in which a layered double hydroxide is exfoliated to an elementary layer in an organic solvent to form a colloidal dispersion state. For example, a layered double hydroxide containing glycine (Patent Document 1) or fluorine-based imide (Patent Document 2) in the intermediate layer is prepared, and this is made into a colloidal dispersion state with an organic solvent such as formamide or alcohol. is there. However, since the use of an organic solvent has a problem of harm to the environment, it is desired to develop a water-dispersed colloidal solution from which layered double hydroxide is peeled off using harmless water as a solvent.
As such a water-dispersed colloidal solution, a layered double hydroxide containing an organic compound such as carboxylic acid such as lactic acid (Patent Literature 3, Non-Patent Literature 1) or magnesium lactate (Patent Literature 4) in an intermediate layer. It is disclosed that a water-dispersed colloidal solution can be obtained by exfoliating in a water solvent. However, since the colloidal solution obtained by these disclosed techniques necessarily contains an organic substance derived from the intermediate layer of the layered double hydroxide, for example, in a catalyst application in an organic synthesis reaction, the organic substance causes a side reaction. In addition, when this is coated on various substrates, dried, and fired, it is still difficult to obtain a coating film having high gas transparency and still containing the problem of gas generation.
For this reason, there is a strong demand for a water-dispersed colloidal solution that does not contain organic substances, that is, is composed essentially of only inorganic substances, particularly in fields that require high functionality such as catalysts.

特開2003-221226号公報JP2003-221226 特開2005-272323号公報JP 2005-272323 A 特開2006-052114号公報JP 2006-052114 A 特開2008-214127号公報JP 2008-214127 A

T. Hibino, M. Kobayashi, “Delamination of layered double hydroxides in water”, J. Mater. Chem., 2005, Vol.15, p.653-656T. Hibino, M. Kobayashi, “Delamination of layered double hydroxides in water”, J. Mater. Chem., 2005, Vol.15, p.653-656

本発明者等は要請課題を解決せんと鋭意検討を行う中で、偶然にも、1価の無機陰イオンのみを中間層に含有する層状複水酸化物が、水中に分散することを発見し、係る知見に基づき本発明を完成したものであって、実質的に無機物のみからなる金属水酸化物の水分散型コロイド溶液、及びその製造方法を提供せんとするものである。   While the present inventors are diligently studying to solve the required problem, it was discovered by chance that a layered double hydroxide containing only a monovalent inorganic anion in the intermediate layer is dispersed in water. The present invention has been completed on the basis of such findings, and an object is to provide a water-dispersed colloidal solution of a metal hydroxide substantially consisting of an inorganic substance and a method for producing the same.

即ち、本発明は、実質的に、一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物と1価の無機陰イオンのみからなり、1価の無機陰イオンが当該化合物に対してモル比で0.1〜0.4の範囲である水分散型コロイド溶液
(但し、
(i)一般式[M2+ 1-xM3+ x(OH)2]x+中のM2+は2価の金属イオン、M3+は3価の金属イオンを示す。
(ii)一般式[M2+ 1-xM3+ x(OH)2]x+中のxは、0.13<x<0.28の範囲である。)に関する。
That is, the present invention substantially consists of a compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + and a monovalent inorganic anion, and the monovalent inorganic anion Is a water-dispersed colloidal solution having a molar ratio of 0.1 to 0.4 with respect to the compound (provided that
(i) In the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + , M 2+ represents a divalent metal ion, and M 3+ represents a trivalent metal ion.
(ii) x in the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + is in the range of 0.13 <x <0.28. )

更に本発明は、2価の金属イオンと1価の無機陰イオンからなる2価の金属塩と3価の金属イオンと1価の無機陰イオンからなる3価の金属塩との混合水溶液と、アルカリ水溶液とを中性からアルカリ性の条件下で反応させ、2価の金属成分と3価の金属成分を共沈殿させることにより層状複水酸化物を合成、洗浄し、これを水中に分散させることを特徴とする上記の水分散型コロイド溶液の製造方法に関する。   Furthermore, the present invention provides a mixed aqueous solution of a divalent metal salt composed of a divalent metal ion and a monovalent inorganic anion, and a trivalent metal salt composed of a trivalent metal ion and a monovalent inorganic anion, Reacting with alkaline aqueous solution under neutral to alkaline conditions, co-precipitating divalent metal component and trivalent metal component to synthesize and wash layered double hydroxide, and disperse it in water And a method for producing the water-dispersed colloidal solution.

前記の通り本発明の水分散型コロイド溶液は、実質的に有機物を含まない、基本層と1価の無機陰イオンのみで構成されているから、これまで有機物含有に起因していた種々の制約を回避することができ、その用途は格段に広範なものとなる。更に本発明の水分散型コロイド溶液は、低粘度で、高度に分散、ナノサイズ化されているから高い透明性を有する。従って本発明の水分散型コロイド溶液は、高機能を要求される触媒を始め、高い透明性を要求されるコーティング剤、高度の分散性を要求される化粧品や樹脂配合剤、光機能材料など幅広い用途展開が期待できる。   As described above, the water-dispersed colloidal solution of the present invention is composed of only a basic layer and a monovalent inorganic anion that does not substantially contain an organic substance. Can be avoided, and its use is remarkably wide. Furthermore, since the water-dispersed colloidal solution of the present invention has a low viscosity and is highly dispersed and nanosized, it has high transparency. Accordingly, the water-dispersed colloidal solution of the present invention includes a wide range of applications including catalysts requiring high functionality, coating agents requiring high transparency, cosmetics and resin compounding agents requiring high dispersibility, and optical functional materials. Applications can be expected.

本発明の水分散型コロイド溶液は、実質的に、一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物と、1価の無機陰イオンのみからなる水分散型コロイド溶液である。
ここで、実質的とは、本発明の水分散型コロイド溶液の製造において、原料中の不純物に由来する有機物を除けば、本発明の水分散型コロイド溶液には有機物を含有しないことを意味する。
The water-dispersed colloidal solution of the present invention is an aqueous dispersion substantially consisting of a compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + and a monovalent inorganic anion. Type colloidal solution.
Here, “substantially” means that the water-dispersed colloidal solution of the present invention does not contain any organic substance except for organic substances derived from impurities in the raw material in the production of the water-dispersed colloidal solution of the present invention. .

さて、一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物とは、周知の通り、2価の金属イオンM2+と3価の金属イオンM3+が水酸基の酸素原子によって架橋されることで形成されたシート状の化合物であり、層状複水酸化物から剥離した金属水酸化物層、即ち基本層である。ここで、層状複水酸化物とは、一般式[M2+ 1-xM3+ x(OH)2] [An− x/n・mH2O]で示される化合物であり、M2+は2価の金属イオン、M3+は3価の金属イオン、An−はn価の陰イオンを示し、xは1未満の正の実数
、nは正の整数、mは正の実数を示す。層状複水酸化物の構造は、一般式[M2+ 1-xM3+ x(OH)2]x+で表される金属水酸化物層と、その層間に一般式[An− x/n・mH2O]n−で表される陰イオンと水分子からなる中間層とが交互に積み重なったものである。
As is well known, the compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + is a divalent metal ion M 2+ and a trivalent metal ion M 3+. It is a sheet-like compound formed by crosslinking with oxygen atoms of a hydroxyl group, and is a metal hydroxide layer peeled off from a layered double hydroxide, that is, a basic layer. Here, the layered double hydroxide is a compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] [A n− x / n · mH 2 O], and M 2 + is a divalent metal ion, M 3+ is a trivalent metal ion, a n-represents an n-valent anion, x is less than one positive real number, n represents a positive integer, m is a positive real number Indicates. The structure of the layered double hydroxide includes a metal hydroxide layer represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + and a general formula [A n− x / and n · mH 2 O] intermediate layer consisting of anions and water molecules represented by n- is one that alternately stacked.

本発明の水分散型コロイド溶液のうち一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物において、2価の金属イオンM2+の具体例として、Mg2+、Ca2+、Sr2+、Pd2+、Ba2+、Zn2+、Co2+、Ni2+、Pt2+、Cu2+、Fe2+等が挙げられる。このうち、Mg2+とZn2+は、前駆体である層状複水酸化物を単相で得られやすいために好適に使用できる。Mg2+とZn2+は、このうち1種を用いてもよいし、2種を組み合わせて用いてもよい。また、3価の金属イオンM3+の具体例として、Al3+、Ga3+、Fe3+、Co3+、Au3+、Ce3+、Bi3+等が挙げられる。このうち、Al3+は3価イオンとしての安定性が高いため、水分散型コロイド溶液の前駆体である層状複水酸化物の作成に好適に使用できる。本発明の水分散型コロイド溶液においては、2価の金属イオンと3価の金属イオンの組み合わせとして、Mg2+及び/又はZn2+と、Al3+の組み合わせが特に好例として挙げられる。 As a specific example of the divalent metal ion M 2+ in the compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + in the water-dispersed colloidal solution of the present invention, Mg 2 Examples include + , Ca 2+ , Sr 2+ , Pd 2+ , Ba 2+ , Zn 2+ , Co 2+ , Ni 2+ , Pt 2+ , Cu 2+ , and Fe 2+ . Among these, Mg 2+ and Zn 2+ can be suitably used because the layered double hydroxide as a precursor can be easily obtained in a single phase. Of these, Mg 2+ and Zn 2+ may be used alone or in combination. Specific examples of the trivalent metal ion M 3+ include Al 3+ , Ga 3+ , Fe 3+ , Co 3+ , Au 3+ , Ce 3+ , Bi 3+ and the like. Among these, Al 3+ has high stability as a trivalent ion, and therefore can be suitably used for preparing a layered double hydroxide that is a precursor of an aqueous dispersion colloidal solution. In the water-dispersed colloidal solution of the present invention, a combination of Mg 2+ and / or Zn 2+ and Al 3+ is particularly preferable as a combination of a divalent metal ion and a trivalent metal ion.

層状複水酸化物において、一般式[M2+ 1-xM3+ x(OH)2]x+のxの上限は一般的に0.33と云われている。しかし、xがこのような値では本発明の水分散型コロイド溶液は望むべくもない。種々検討を重ねた結果、xは、0.13<x<0.28の範囲において安定したコロイド溶液が得られるが、特に0.15<x<0.22の範囲において急激にコロイド溶液の安定性が向上することを見出した。 In the layered double hydroxide, the upper limit of x in the general formula [M 2+ 1−x M 3+ x (OH) 2 ] x + is generally said to be 0.33. However, when x is such a value, the water-dispersed colloidal solution of the present invention is not desired. As a result of various investigations, it was found that a stable colloidal solution was obtained when x was in the range of 0.13 <x <0.28, but the stability of the colloidal solution was drastically improved particularly in the range of 0.15 <x <0.22. .

本発明の水分散型コロイド溶液に含有される1価の無機陰イオンとしては、I、Br、Cl、F、NO3 、NO2 、ClO4 、ClO、PF6 、BF4 、SCN、CN、OHが例示できる。これら1価の無機陰イオンは、1種のみでもよいし、2種以上を含んでいてもよい。この中でも特に、ClとNO3 は、本発明の水分散型コロイド溶液を安定に分散させる上で好適に使用できる。1価の無機陰イオンは、層状複水酸化物の一般式のうち[An− x/n・mH2O]n−で示される陰イオンと水分子からなる中間層に由来するものがほとんどであるが、コロイド溶液をより安定化させるために必要に応じて添加される酸の陰イオンに由来するものも含まれる。当該酸の陰イオンの種類は、中間層の陰イオンと同じである必要は無く、OHを除く上記に示した陰イオンの種類の範囲内であれば特に制限されることはない。 Examples of the monovalent inorganic anion contained in the water-dispersed colloidal solution of the present invention include I , Br , Cl , F , NO 3 , NO 2 , ClO 4 , ClO and PF 6. -, BF 4 -, SCN - , CN -, OH - can be exemplified. These monovalent inorganic anions may be used alone or in combination of two or more. Among these, in particular, Cl and NO 3 can be suitably used for stably dispersing the water-dispersed colloidal solution of the present invention. Most monovalent inorganic anions are derived from an intermediate layer consisting of an anion represented by [A n− x / n · mH 2 O] n− and water molecules in the general formula of the layered double hydroxide. However, those derived from the anion of the acid added as necessary to further stabilize the colloidal solution are also included. Type of anions of the acid is not necessarily the same as the anion of the intermediate layer, OH - it is not particularly limited as long as it is within the range of types of anions shown above except.

次いで、1価の無機陰イオンの量について云えば、この量は、上記の通り、層状複水酸化物由来の陰イオンと、コロイド溶液をより安定化させるために必要に応じて添加される酸由来の陰イオンとの合計量である。即ち、1価の無機陰イオンの量は、一般式[M2+ 1-xM3+ x(OH)2]x+に対して、モル比で0.1〜0.4の範囲である。前記モル比が0.1〜0.4の範囲であれば、コロイド粒子の顕著な溶解や、製造時及び保存中に白濁や凝集を見ない安定な状態の水分散型コロイド溶液を得ることができる。 Next, regarding the amount of monovalent inorganic anion, as described above, this amount is the anion derived from the layered double hydroxide and the acid added as necessary to further stabilize the colloidal solution. It is the total amount with the derived anion. That is, the amount of the monovalent inorganic anion is in the range of 0.1 to 0.4 in terms of molar ratio with respect to the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + . When the molar ratio is in the range of 0.1 to 0.4, it is possible to obtain a water-dispersed colloidal solution in a stable state in which colloidal particles are notably dissolved, and white turbidity and aggregation are not observed during production and storage.

本発明の水分散型コロイド溶液は、[M2+ 1-xM3+ x(OH)2]x+として20質量%以下の濃度範囲で得ることができる。そして、コロイド溶液がより安定な状態を保つためには、15質量%以下の濃度が好ましく、より好ましくは12質量%以下の濃度である。濃度の下限については、コロイド溶液の品質上どれだけ低濃度にしても問題はないが、実用的な観点から[M2+ 1-xM3+ x(OH)2]x+として5質量%以上含有することが好ましい。尚、20質量%以上ではコロイド溶液の粘度が高くなるため、安定なコロイド溶液が得られにくい。 The water-dispersed colloidal solution of the present invention can be obtained in a concentration range of 20% by mass or less as [M2 + 1- xM3 + x (OH) 2 ] x + . In order to keep the colloid solution in a more stable state, the concentration is preferably 15% by mass or less, more preferably 12% by mass or less. As for the lower limit of the concentration, no matter how low the colloidal solution quality is, there is no problem, but from a practical point of view, [M 2+ 1-x M 3+ x (OH) 2 ] x + is 5% by mass or more. It is preferable to contain. If the content is 20% by mass or more, the viscosity of the colloidal solution becomes high, and it is difficult to obtain a stable colloidal solution.

本発明の水分散型コロイド溶液の作成において、コロイド化の過程及び得られた溶液の性状が、非特許文献1の内容を具体的に記した特許文献3に開示された方法(作成例を後掲の〔参考例〕に記載)で作成したコロイド溶液と同様の挙動を示した。この非特許文献1と特許文献3は、有機酸を中間層に含有させた層状複水酸化物を作成した後、層状複水酸化物を層間剥離してコロイド溶液とする方法である。このことより、本発明のコロイド溶液も層状複水酸化物が層間剥離することでコロイド化していると推定できる。   In the preparation of the water-dispersed colloidal solution of the present invention, the process of colloidalization and the properties of the obtained solution were determined according to the method disclosed in Patent Document 3 specifically describing the contents of Non-Patent Document 1 (after the preparation example). The same behavior as the colloidal solution prepared in [Reference Example] is shown. Non-Patent Document 1 and Patent Document 3 are methods in which a layered double hydroxide containing an organic acid in an intermediate layer is prepared, and then the layered double hydroxide is delaminated to form a colloidal solution. From this, it can be presumed that the colloidal solution of the present invention is also colloidalized by delamination of the layered double hydroxide.

次に、本発明の水分散型コロイド溶液の製造方法について詳しく説明する。
本発明の水分散型コロイド溶液の製造方法は、まず水分散型コロイド溶液の前駆体として層状複水酸化物を合成した後、洗浄し、これを水中に分散させる方法である。
本発明に於いては、この層状複水酸化物を共沈法によって合成する。本発明に於いて共沈法を採用した理由は、種々検討を重ねた結果、結晶サイズの小さな層状複水酸化物、即ち積層方向の厚みが小さく金属水酸化物シートの面積の小さい層状複水酸化物が得られ、中間層が水と接触しやすく層間剥離が容易、即ちコロイド化、ナノサイズ化が容易なことによる。
Next, the method for producing the water-dispersed colloidal solution of the present invention will be described in detail.
The method for producing a water-dispersed colloidal solution according to the present invention is a method in which a layered double hydroxide is first synthesized as a precursor of a water-dispersed colloidal solution, then washed and dispersed in water.
In the present invention, this layered double hydroxide is synthesized by a coprecipitation method. The reason why the coprecipitation method is used in the present invention is that, as a result of various studies, a layered double hydroxide having a small crystal size, that is, a layered double water having a small thickness in the stacking direction and a small area of the metal hydroxide sheet. This is because an oxide is obtained, the intermediate layer is easily in contact with water, and delamination is easy, that is, colloidalization and nano-sizing are easy.

前駆体である層状複水酸化物の合成方法に関しては幾つかの方法があるが、本発明の水分散型コロイド溶液を得るには、共沈法で合成することが最適である。共沈法は、2価の金属塩と3価の金属塩の混合水溶液を適切なpHに保ちながらアルカリ水溶液で中和することによって、2価の金属イオンと3価の金属イオンとを水酸化物として共沈殿させることで層状複水酸化物を得る方法である。この方法によるときが、コロイド化が最も容易で、生成した水分散型コロイド溶液も最も安定である。   There are several methods for synthesizing the layered double hydroxide as a precursor. To obtain the water-dispersed colloidal solution of the present invention, it is optimal to synthesize by the coprecipitation method. In the coprecipitation method, divalent metal ions and trivalent metal ions are hydroxylated by neutralizing the mixed aqueous solution of divalent metal salt and trivalent metal salt with an alkaline aqueous solution while maintaining an appropriate pH. In this method, a layered double hydroxide is obtained by coprecipitation as a product. When this method is used, colloidalization is the easiest, and the resulting water-dispersed colloidal solution is also most stable.

本発明において、層状複水酸化物の合成で使用する2価の金属塩と3価の金属塩は、金属水酸化物層の層間に取り込まれ得る有機物や2価以上の価数の無機陰イオンを含有しないものである。2価及び3価の金属イオンの種類は前記と同じものが挙げられ、それらの塩は下記の通りである。即ち、2価の金属イオンの塩としては、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+、Pd2+、Co2+、Ni2+、Pt2+、Cu2+、Fe2+の塩化物または硝酸塩が例として挙げられる。3価の金属イオンの塩としては、Al3+、Ga3+、Fe3+、Co3+、Au3+、Ce3+、Bi3+の塩化物または硝酸塩が例として挙げられる。このうち、2価の金属塩として、塩化マグネシウム、硝酸マグネシウム、塩化亜鉛、硝酸亜鉛のうち1種以上であることが特に好ましく、3価の金属塩として塩化アルミニウムまたは硝酸アルミニウムのうちいずれか一方または双方であることが特に好ましい。 In the present invention, the divalent metal salt and the trivalent metal salt used in the synthesis of the layered double hydroxide are organic substances that can be incorporated between the metal hydroxide layers or inorganic anions having a valence of 2 or more. It does not contain. Examples of the divalent and trivalent metal ions include the same as described above, and salts thereof are as follows. That is, as salts of divalent metal ions, Mg 2+ , Ca 2+ , Sr 2+ , Ba 2+ , Zn 2+ , Pd 2+ , Co 2+ , Ni 2+ , Pt 2+ , Cu 2 Examples include + , Fe 2+ chloride or nitrate. Examples of the trivalent metal ion salt include chlorides or nitrates of Al 3+ , Ga 3+ , Fe 3+ , Co 3+ , Au 3+ , Ce 3+ , Bi 3+ . Among these, the divalent metal salt is particularly preferably at least one of magnesium chloride, magnesium nitrate, zinc chloride, and zinc nitrate, and the trivalent metal salt is either aluminum chloride or aluminum nitrate or Both are particularly preferred.

2価の金属塩と3価の金属塩の配合比は、層状複水酸化物が単相で得られる条件が好ましい。即ち、最終的に得られるコロイド溶液中の一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物中のxが、0.13<x<0.28の範囲内になるように2価の金属塩と3価の金属塩の配合比を決めることが望ましい。 The mixing ratio of the divalent metal salt and the trivalent metal salt is preferably such that the layered double hydroxide is obtained in a single phase. That is, x in the compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + in the finally obtained colloid solution is in the range of 0.13 <x <0.28. It is desirable to determine the mixing ratio of the divalent metal salt and the trivalent metal salt.

さらに中和方法を説明すると、先ずアルカリを用いてpH7〜12に調整した水溶液(以下、水溶液Aとする)を作成する。ここで用いるアルカリの例として水酸化ナトリウム、水酸化カリウムが挙げられる。次に、水溶液Aに、撹拌下で2価の金属塩と3価の金属塩の混合水溶液を添加する。しかし、この操作だけでは、金属塩の添加によって瞬時にpHの低下が起こるため、中和反応がほとんど進まない。従って、中和反応を進行させるために、金属塩の添加と同時にアルカリ水溶液を適宜添加し、最適なpHに維持しながら中和を行う。尚、使用する2価の金属塩と3価の金属塩の種類によって、最適な中和pHは異なるが、中性からアルカリ性であり、数値範囲としては概ねpH7〜12範囲内である。2価の金属塩として塩化マグネシウム及び/又は塩化亜鉛を、3価の金属塩として塩化アルミニウムを用いたときは、pH9〜11の範囲がより好ましい。
中和に使用するアルカリ水溶液としては、中和により本発明の前駆体となる層状複水酸化物が得られるものであれば特に限定されないが、水酸化ナトリウム、水酸化カリウムが好例として挙げられる。
The neutralization method will be further described. First, an aqueous solution (hereinafter referred to as an aqueous solution A) adjusted to pH 7 to 12 using an alkali is prepared. Examples of the alkali used here include sodium hydroxide and potassium hydroxide. Next, a mixed aqueous solution of a divalent metal salt and a trivalent metal salt is added to the aqueous solution A under stirring. However, with this operation alone, the neutralization reaction hardly proceeds because the pH drops instantaneously due to the addition of the metal salt. Accordingly, in order to proceed with the neutralization reaction, an aqueous alkali solution is appropriately added simultaneously with the addition of the metal salt, and neutralization is performed while maintaining an optimum pH. The optimum neutralization pH differs depending on the type of divalent metal salt and trivalent metal salt used, but it is neutral to alkaline, and the numerical range is generally within the range of pH 7-12. When magnesium chloride and / or zinc chloride is used as the divalent metal salt and aluminum chloride is used as the trivalent metal salt, the pH range of 9 to 11 is more preferable.
The alkaline aqueous solution used for neutralization is not particularly limited as long as the layered double hydroxide that becomes the precursor of the present invention can be obtained by neutralization, but sodium hydroxide and potassium hydroxide are preferable examples.

また、中和時のpHを安定させるために、水溶液Aと、中和に使用するアルカリ水溶液には、必要に応じて緩衝剤等の塩類を添加しても良い。このような塩類としては、1価の無機陰イオンからなるものであれば良く、例えば、塩化ナトリウム、塩化カリウム、次亜塩素酸ナトリウム、過塩素酸ナトリウム、過酸化水素等が挙げられる。
上記塩類を配合する際の量は、層状複水酸化物が得られる範囲内であれば特に限定されないが、概ね反応溶液全量に対し、10質量%以下である。
In order to stabilize the pH during neutralization, salts such as a buffering agent may be added to the aqueous solution A and the alkaline aqueous solution used for neutralization, if necessary. Such a salt may be any salt composed of a monovalent inorganic anion, and examples thereof include sodium chloride, potassium chloride, sodium hypochlorite, sodium perchlorate, and hydrogen peroxide.
The amount of the salt is not particularly limited as long as the layered double hydroxide is obtained, but is generally 10% by mass or less based on the total amount of the reaction solution.

さて、上記の通り本発明に於ける中和方法においては、アルカリ側で中和反応を行うことが極めて重要である。同時に、本発明の製造方法に於いて不可欠の要素は上記2価の金属塩と3価の金属塩の混合水溶液の添加時間である。これについて説明すると、上記2価の金属塩と3価の金属塩の混合水溶液の添加時間は、2分〜50分の範囲とすることが最適である。即ち、50分よりも長時間で添加した場合、層状複水酸化物は単相で得られるものの、以後の処理により得られるコロイド溶液は白濁したものとなり、本発明の水分散型コロイド溶液を得ることは極めて困難になる。一方、2分より短時間で添加した場合、アルカリ水溶液によって、中和に最適なpH範囲に保つことが困難となり、結果として層状複水酸化物のほかに不純物相が生成し易く、これを分散処理しても、透明性の高いコロイド溶液は得られ難い。   As described above, in the neutralization method of the present invention, it is extremely important to carry out the neutralization reaction on the alkali side. At the same time, an indispensable factor in the production method of the present invention is the addition time of the mixed aqueous solution of the above divalent metal salt and trivalent metal salt. To explain this, the addition time of the mixed aqueous solution of the divalent metal salt and the trivalent metal salt is optimally set in the range of 2 minutes to 50 minutes. That is, when added for longer than 50 minutes, the layered double hydroxide is obtained in a single phase, but the colloidal solution obtained by the subsequent treatment becomes cloudy, and the water-dispersed colloidal solution of the present invention is obtained. It becomes extremely difficult. On the other hand, when added in less than 2 minutes, it becomes difficult to maintain an optimum pH range for neutralization with an aqueous alkaline solution, resulting in the formation of an impurity phase in addition to the layered double hydroxide, which is dispersed. Even if it is processed, it is difficult to obtain a highly transparent colloidal solution.

中和時の濃度は特に限定されないが、中和終了時のスラリー濃度が[M2+ 1-xM3+ x(OH)2]x+として0.5〜4.0質量%となるように原料を配合、添加することが推奨される。即ち、0.5質量%未満では濃度が低いために生産性が悪く、4.0質量%を超える濃度では非常に粘調になり、反応時の撹拌が困難になる傾向がある。 The concentration at the time of neutralization is not particularly limited, but the raw material is blended so that the slurry concentration at the end of neutralization is 0.5 to 4.0% by mass as [M 2+ 1-x M 3+ x (OH) 2 ] x + , It is recommended to add. That is, if the concentration is less than 0.5% by mass, the productivity is poor because the concentration is low, and if the concentration exceeds 4.0% by mass, the viscosity tends to be very viscous and stirring during the reaction tends to be difficult.

上記のような共沈法で得られた層状複水酸化物は、多くの余分な塩類を含み、この状態ではコロイド化しない。従って、生成した層状複水酸化物を副生塩と分離するために、洗浄し、脱塩する工程(以下、脱塩工程と云う)が不可欠である。本発明においては、層状複水酸化物が乾燥しない条件で十分脱塩できれば特に問題なく、例えば、イオン交換や、デカンテーションを繰り返し行う方法、限外ろ過や吸引ろ過等のろ過処理を純水を適宜注ぎながら繰り返し行う方法等が挙げられる。脱塩の程度は、中和反応時に生成する副生塩の総量を約50ppm以下、即ち、デカンテーションの廃液、またはろ液の電気伝導度(EC)を概ね150μS/cm以下になるまで洗浄を行うことが望ましい。   The layered double hydroxide obtained by the coprecipitation method as described above contains a large amount of excess salts and does not colloid in this state. Therefore, a step of washing and desalting (hereinafter referred to as a desalting step) is indispensable in order to separate the produced layered double hydroxide from the by-product salt. In the present invention, there is no particular problem as long as the layered double hydroxide can be sufficiently desalted under conditions that do not dry, for example, a method of repeatedly performing ion exchange or decantation, filtration treatment such as ultrafiltration or suction filtration, etc. The method of repeating repeatedly, pouring suitably is mentioned. The degree of desalting is about 50 ppm or less of the total amount of by-product salt produced during the neutralization reaction, that is, washing until the decantation waste liquid or filtrate has an electrical conductivity (EC) of approximately 150 μS / cm or less. It is desirable to do.

脱塩工程後の層状複水酸化物は乾燥させることなく、水に混濁した状態で分散処理に供する。この混濁状態における外観は白色のスラリー状であるが、分散処理により透明感のあるコロイド溶液となる。分散処理は、[M2+ 1-xM3+ x(OH)2]x+として15質量%以下の濃度で行うことが好ましい。15質量%を超えると分散処理によるコロイド化が困難となる。 The layered double hydroxide after the desalting step is subjected to a dispersion treatment in a turbid state in water without drying. Although the appearance in this turbid state is a white slurry, it becomes a transparent colloidal solution by dispersion treatment. The dispersion treatment is preferably performed at a concentration of 15% by mass or less as [M 2+ 1-x M 3+ x (OH) 2 ] x + . If it exceeds 15% by mass, colloidalization by dispersion treatment becomes difficult.

また、この分散処理の際に、pHを調整する目的で酸を添加することも可能である。これは、分散処理後に得られるコロイド溶液のpHを[M2+ 1-xM3+ x(OH)2]x+の等電点から遠ざけ、コロイド溶液を更に安定化する目的で添加するものである。添加する酸の種類は、2価と3価の金属塩由来の1価の陰イオンと同じ陰イオンを含む酸である必要は無いが、上記で示したI、Br、Cl、F、NO3 、NO2 、ClO4 、ClO、PF6 、BF4 、SCN、CNを陰イオンとして含む1価の酸のうち1種または2種以上である。このうち、塩酸または硝酸がより好ましい。なお、通常は余剰の陰イオン、即ち層状複水酸化物に由来する陰イオン以外の陰イオンによって、コロイド化の進行速度は遅くなる傾向にあるが、コロイド化の進行と同時に凝集が起こりやすい系においては、余剰の陰イオンが凝集の進行を阻害するのに有効な場合がある。 In addition, it is possible to add an acid for the purpose of adjusting pH during the dispersion treatment. This is added for the purpose of further stabilizing the colloidal solution by keeping the pH of the colloidal solution obtained after the dispersion treatment away from the isoelectric point of [M 2+ 1-x M 3+ x (OH) 2 ] x +. is there. The type of acid to be added need not be an acid containing the same anion as the monovalent anion derived from the divalent and trivalent metal salts, but I , Br , Cl , F shown above. One or two or more of monovalent acids containing , NO 3 , NO 2 , ClO 4 , ClO , PF 6 , BF 4 , SCN and CN as anions. Of these, hydrochloric acid or nitric acid is more preferable. In general, the rate of colloidalization tends to be slowed by surplus anions, that is, anions other than those derived from layered double hydroxides, but aggregation tends to occur simultaneously with the progress of colloidalization. In some cases, excess anions may be effective in inhibiting the progress of aggregation.

上記pHを調整する目的で添加する1価の酸の量は、最終的に得られるコロイド溶液中に含まれる1価の無機陰イオンの総量が、一般式[M2+ 1-xM3+ x(OH)2]x+に対して、モル比で0.1〜0.4となる範囲内で添加可能である。モル比が0.1〜0.4の範囲であれば、層状複水酸化物の酸による溶解や、コロイド溶液の製造時及び保存中に白濁や凝集が起こりにくい安定な状態の水分散型コロイド溶液を得ることができる。 The amount of monovalent acid added for the purpose of adjusting the pH is determined by the total amount of monovalent inorganic anions contained in the finally obtained colloidal solution represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] can be added in a molar ratio of 0.1 to 0.4 with respect to x + . When the molar ratio is in the range of 0.1 to 0.4, a water-dispersed colloidal solution in a stable state is obtained in which the layered double hydroxide is dissolved by an acid, and is less prone to white turbidity or aggregation during production and storage of the colloidal solution. Can do.

分散処理方法としては、室温で5〜12日間程度静置する室温エージング法、超音波処理法、加熱処理法が挙げられる。このうち、超音波処理法は超音波によって[M2+ 1-xM3+ x(OH)2]x+の金属水酸化物が破壊されことがあるため、好ましくない。工業的生産を考慮すると加熱処理法が最も好ましい。 Examples of the dispersion treatment method include a room temperature aging method, a sonication method, and a heat treatment method that are allowed to stand at room temperature for about 5 to 12 days. Among these, the ultrasonic treatment method is not preferable because the metal hydroxide of [M 2+ 1-x M 3+ x (OH) 2 ] x + may be destroyed by ultrasonic waves. In view of industrial production, the heat treatment method is most preferable.

加熱処理法における加熱温度は40〜100℃の温度範囲であることが望ましい。即ち、40℃を下回るとコロイド化に要する時間が著しく長くなり生産性が悪くなる。一方、100℃を上回ると非常に短時間でコロイド化するが、加熱時間を厳密に制御しなければ、凝集によるコロイド溶液の不透明化や沈殿が発生する。加熱処理の時間は、コロイド溶液が得られる条件であれば特に限定されないが、概ね30分〜6時間程度でコロイド化させることができる。   The heating temperature in the heat treatment method is preferably in the temperature range of 40 to 100 ° C. That is, when the temperature is lower than 40 ° C., the time required for colloidalization is remarkably increased and productivity is deteriorated. On the other hand, when the temperature exceeds 100 ° C., the colloidalization takes place in a very short time. However, if the heating time is not strictly controlled, the colloidal solution becomes opaque and precipitates due to aggregation. The time for the heat treatment is not particularly limited as long as the colloidal solution is obtained, but it can be colloided in about 30 minutes to 6 hours.

得られたコロイド溶液は限外ろ過、エバポレーター等で必要な濃度まで濃縮することができる。しかし、コロイド溶液として安定な濃度の上限は、[M2+ 1-xM3+ x(OH)2]x+として20質量%であり、より安定な状態を保つためには15質量%以下の濃度が好ましく、より好ましくは12質量%以下である。濃度の下限については、コロイド溶液の品質上どれだけ低濃度にしても問題はないが、実用的な観点から5質量%以上であることが好ましい。 The obtained colloidal solution can be concentrated to a required concentration by ultrafiltration, an evaporator or the like. However, the upper limit of the concentration stable as a colloidal solution is 20% by mass as [M 2+ 1-x M 3+ x (OH) 2 ] x + , and 15% by mass or less to maintain a more stable state. The concentration is preferable, and more preferably 12% by mass or less. Regarding the lower limit of the concentration, no matter how low the concentration of the colloidal solution is, there is no problem, but it is preferably 5% by mass or more from a practical viewpoint.

さて、本発明の水分散型コロイド溶液の製造において、大気の炭酸ガス由来のCO3 2−がコロイド溶液に混入する恐れがあるが、CO3 2−は層状複水酸化物の層間結合力を強めるため、層状複水酸化物製造時の混入はできる限り避けることが望ましい。CO3 2−の混入を極力避ける方法として窒素、アルゴン等の不活性ガス雰囲気中で製造することが望ましいが、この方法以外でも混入が極力避けられる方法であれば特に制限されるものではない。 In the production of the water-dispersed colloidal solution of the present invention, CO 3 2− derived from atmospheric carbon dioxide gas may be mixed into the colloidal solution, but CO 3 2− has an interlayer cohesive strength of the layered double hydroxide. In order to strengthen, it is desirable to avoid contamination during the production of the layered double hydroxide as much as possible. As a method for avoiding the contamination of CO 3 2− as much as possible, it is desirable to produce in an atmosphere of an inert gas such as nitrogen or argon, but there is no particular limitation as long as the method can avoid contamination as much as possible.

このように、特殊な剥離剤や分散剤を層間に含有しない本発明の無機物のみからなる層状複水酸化物が特許文献3(特開2006-52114号公報)と同様の挙動でコロイド化する理由については定かではない。しかし、その理由として、結晶サイズの小さい層状複水酸化物を用いているために、層間に水分子が取り込まれやすく、その水分子が熱振動することで層間を押し広げて、剥離反応を引き起こしているものと推測される。即ち、剥離に要する時間が、室温エージング法の5〜12日間程度に対して加熱処理法にあっては30分〜6時間程度というこの差は、水分子の熱振動力の差に由来すると考えられる。   As described above, the reason why the layered double hydroxide composed only of the inorganic substance of the present invention containing no special release agent or dispersant between the layers is colloidalized in the same manner as in Patent Document 3 (Japanese Patent Laid-Open No. 2006-52114). Not sure about. However, the reason for this is that because of the use of layered double hydroxides with a small crystal size, water molecules are likely to be taken in between the layers, and the water molecules are thermally vibrated to spread the layers and cause a peeling reaction. It is presumed that In other words, this difference of about 30 minutes to 6 hours in the heat treatment method compared to about 5 to 12 days in the room temperature aging method is considered to be due to the difference in thermal vibration force of water molecules. It is done.

さて、このようにして得られた本発明の水分散型コロイド溶液は半透明から透明の白色溶液の外観を示す。
本発明の水分散型コロイド溶液の透明度の範囲を全光線透過率(以下、透過率と云う)、及びヘイズ率で表すと、[M2+ 1-xM3+ x(OH)2]x+として0.5質量%含有するコロイド溶液において透過率は30%以上、且つヘイズ率は55%以下である。より好ましくは、製造1ヶ月後の室温保存において、透過率が30%以上、且つヘイズ率は55%以下である。
The water-dispersed colloidal solution of the present invention thus obtained shows the appearance of a translucent to transparent white solution.
When the range of transparency of the water-dispersed colloidal solution of the present invention is expressed in terms of total light transmittance (hereinafter referred to as transmittance) and haze rate, [M 2+ 1-x M 3+ x (OH) 2 ] x + In the colloidal solution containing 0.5% by mass, the transmittance is 30% or more and the haze ratio is 55% or less. More preferably, the transmittance is 30% or more and the haze ratio is 55% or less when stored at room temperature after one month of production.

また、本発明の水分散型コロイド溶液の粘度は、一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物を10質量%含有するコロイド溶液をE型粘度計により測定した場合、概ね1.5mPa・s〜5.0mPa・sを示すために、取り扱いが容易で、樹脂等他物質との混合、分散も極めて容易である。 Further, the viscosity of the water-dispersed colloidal solution of the present invention is such that a colloidal solution containing 10% by mass of a compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + is an E-type viscometer. Is approximately 1.5 mPa · s to 5.0 mPa · s, so that it is easy to handle and extremely easy to mix and disperse with other substances such as resins.

更にまた、本発明の水分散型コロイド溶液の分散粒子径(メディアン径)は、動的光散乱式粒径分布測定装置(株式会社堀場製作所製 LB-500)による測定で概ね10nm〜150nmの範囲を示し、ナノサイズ化されているから各種物質との混合において、均一分散し、良質の混合物を得ることができる等数々の特性を有するものである。   Furthermore, the dispersed particle diameter (median diameter) of the water-dispersed colloidal solution of the present invention is generally in the range of 10 nm to 150 nm as measured by a dynamic light scattering particle size distribution measuring device (LB-500 manufactured by Horiba, Ltd.). Since it is nano-sized, it has a number of characteristics such as being able to obtain a good-quality mixture by uniformly dispersing in mixing with various substances.

本発明の水分散型コロイド溶液は、難燃剤等の樹脂添加剤やカチオン吸着能を利用した有害物質除去剤、電池材料、紫外線吸収剤、防錆剤、触媒等さまざまな用途への利用が可能である。この際、必要に応じて、本発明のコロイド溶液に各種添加剤をコロイド状態が維持できる範囲で配合することも可能である。添加剤の例として、ジエタノールアミン、水酸化テトラメチルアンモニウム、アンモニア等のアミン類、酢酸、プロピオン酸、クエン酸、乳酸等の有機酸、ポリエチレングリコール、ポリプロピレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ボリアクリル酸等の有機高分子、アルキルスルホン酸ナトリウム、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンソルビタン脂肪酸エステル、カルボキシベタイン等の界面活性剤が挙げられる。   The water-dispersed colloidal solution of the present invention can be used for various applications such as resin additives such as flame retardants, harmful substance removing agents utilizing cation adsorption ability, battery materials, UV absorbers, rust preventives, and catalysts. It is. At this time, if necessary, various additives can be added to the colloid solution of the present invention within a range in which the colloidal state can be maintained. Examples of additives include amines such as diethanolamine, tetramethylammonium hydroxide, ammonia, organic acids such as acetic acid, propionic acid, citric acid and lactic acid, polyethylene glycol, polypropylene glycol, polyvinyl alcohol, polyvinyl pyrrolidone, polyacrylic acid, etc. And organic surfactants such as sodium alkyl sulfonate, polyoxyethylene alkyl ether, polyoxyethylene sorbitan fatty acid ester, carboxybetaine, and the like.

また、本発明のコロイド溶液は水に分散したコロイド溶液であるが、有機溶媒との親和性が高いので水溶媒を有機溶媒で置換することにより、有機溶媒分散型のコロイド溶液とすることもできる。有機溶媒としては、メタノール、エタノール、イソプロパノール等のアルコール類、テトラヒドロフラン、ジエチルエーテル等のエーテル類、2-メトキシプロパノール、2-n-ブトキシエタノール等のセロソルブ類、メチルエチルケトン、メチルイソブチルケトン等のケトン類やホルムアミド、ジメチルスルホキシド等が例示できる。
以下に、本発明の実施例を示すが、本発明は特にこれにより限定されるものではない。
The colloidal solution of the present invention is a colloidal solution dispersed in water. However, since it has a high affinity with an organic solvent, it can be made into an organic solvent-dispersed colloidal solution by replacing the aqueous solvent with an organic solvent. . Examples of the organic solvent include alcohols such as methanol, ethanol and isopropanol, ethers such as tetrahydrofuran and diethyl ether, cellosolves such as 2-methoxypropanol and 2-n-butoxyethanol, ketones such as methyl ethyl ketone and methyl isobutyl ketone, Examples include formamide and dimethyl sulfoxide.
Examples of the present invention are shown below, but the present invention is not particularly limited thereby.

〔実施例1〕
塩化マグネシウム6水和物234gと塩化アルミニウム6水和物64gを純水252gに溶解し、金属塩水溶液を調製した。この金属塩水溶液を水酸化ナトリウムでpH10に調整した2.5%塩化ナトリウム水溶液2000gに撹拌下で添加した。金属塩水溶液の添加時間は5分であった。この際、pHを9〜11の範囲に保つように、20質量%に調製した水酸化ナトリウム水溶液を適宜添加した。以上の操作によって得られた共沈殿のスラリーを、限外ろ過処理により、ろ液ECが70μS/cmになるまで洗浄することで脱塩した。得られた溶液はコロイド状ではなく、透明度が非常に低い白色のスラリー状の外観であった(以下、このスラリーを“スラリーA”とする)。このスラリーAを小分けし、下記の実施例1−1から1−5に供した。尚、スラリーAを100℃で乾燥した粉末について、X線回折装置(以下、XRDと記載する)(島津製作所(株)製XRD-7000)で測定したところ、2θ=10.9度に底面反射を持つ層状複水酸化物が単相で得られていることが確認できた。
Example 1
234 g of magnesium chloride hexahydrate and 64 g of aluminum chloride hexahydrate were dissolved in 252 g of pure water to prepare an aqueous metal salt solution. This metal salt aqueous solution was added with stirring to 2000 g of a 2.5% sodium chloride aqueous solution adjusted to pH 10 with sodium hydroxide. The addition time of the metal salt aqueous solution was 5 minutes. At this time, a sodium hydroxide aqueous solution adjusted to 20% by mass was appropriately added so as to keep the pH in the range of 9 to 11. The coprecipitation slurry obtained by the above operation was desalted by washing by ultrafiltration until the filtrate EC reached 70 μS / cm. The resulting solution was not colloidal but had a white slurry appearance with very low transparency (hereinafter, this slurry is referred to as “slurry A”). This slurry A was subdivided and subjected to the following Examples 1-1 to 1-5. The powder obtained by drying the slurry A at 100 ° C. has a bottom reflection at 2θ = 10.9 degrees as measured by an X-ray diffractometer (hereinafter referred to as XRD) (XRD-7000 manufactured by Shimadzu Corporation). It was confirmed that the layered double hydroxide was obtained in a single phase.

[実施例1−1]
スラリーAを70℃で2時間加熱することで白色透明のコロイド溶液が得られた。蛍光X線分析装置(フィリップス社製 PW2400)(以下、XRFと記載する)による元素分析と重量分析の結果から、コロイド溶液中には[Mg0.82Al0.18(OH)2]0.18+の組成の金属水酸化物層が10.8質量%、塩素が1.23質量%存在することが明らかになった。即ち、Cl/[Mg0.82Al0.18(OH)2]0.18+(モル比)=0.19であった。尚、原料の金属塩量とコロイド溶液中の金属水酸化物層量から算出した金属成分の収率(以下、収率とする)は、約90%であった。
[Example 1-1]
The slurry A was heated at 70 ° C. for 2 hours to obtain a white transparent colloidal solution. Based on the results of elemental analysis and gravimetric analysis using an X-ray fluorescence spectrometer (PW2400 manufactured by Philips) (hereinafter referred to as XRF), the colloidal solution contains a metal with the composition [Mg 0.82 Al 0.18 (OH) 2 ] 0.18+ It was revealed that the hydroxide layer was 10.8% by mass and chlorine was 1.23% by mass. That is, Cl / [Mg 0.82 Al 0.18 (OH) 2 ] 0.18+ (molar ratio) = 0.19. The yield of the metal component (hereinafter referred to as the yield) calculated from the amount of the metal salt of the raw material and the amount of the metal hydroxide layer in the colloidal solution was about 90%.

[実施例1−2]
スラリーAを90℃で1時間加熱することで白色透明のコロイド溶液が得られた。コロイド溶液中の金属水酸化物層の組成と濃度、塩素濃度は実施例1-1と同じである。
[Example 1-2]
The slurry A was heated at 90 ° C. for 1 hour to obtain a white transparent colloidal solution. The composition and concentration of the metal hydroxide layer in the colloidal solution and the chlorine concentration are the same as in Example 1-1.

[実施例1−3]
スラリーAを50℃で6時間加熱することで白色透明のコロイド溶液が得られた。コロイド溶液中の金属水酸化物層の組成と濃度、塩素濃度は実施例1-1と同じである。
[Example 1-3]
A white transparent colloidal solution was obtained by heating the slurry A at 50 ° C. for 6 hours. The composition and concentration of the metal hydroxide layer in the colloidal solution and the chlorine concentration are the same as in Example 1-1.

[実施例1−4]
スラリーAに1質量%塩酸水溶液を[Mg0.82Al0.18(OH)2]0.18に対してモル比で0.025添加し、70℃で5時間加熱することで白色透明のコロイド溶液が得られた。XRFによる元素分析と重量分析の結果から、コロイド溶液中には[Mg0.82Al0.18(OH)2]0.18+が10.0質量%、塩素が1.33質量%存在することが明らかになった。即ち、Cl/[Mg0.82Al0.18(OH)2]0.18+(モル比)=0.22だった。この条件で得られたコロイド溶液はとりわけ安定であり、50℃で1ヶ月保存した場合も透過率、ヘイズ率、粘度が初期値からほとんど変化しなかった。
[Example 1-4]
A 1% by mass hydrochloric acid aqueous solution was added to Slurry A at a molar ratio of 0.025 to [Mg 0.82 Al 0.18 (OH) 2 ] 0.18 and heated at 70 ° C. for 5 hours to obtain a white transparent colloidal solution. From the results of elemental analysis and gravimetric analysis by XRF, it was revealed that [Mg 0.82 Al 0.18 (OH) 2 ] 0.18+ was 10.0 mass% and chlorine was 1.33 mass% in the colloidal solution. That is, Cl / [Mg 0.82 Al 0.18 (OH) 2 ] 0.18+ (molar ratio) = 0.22. The colloidal solution obtained under these conditions was particularly stable, and even when stored at 50 ° C. for 1 month, the transmittance, haze ratio, and viscosity remained almost unchanged from the initial values.

[実施例1−5]
スラリーAを10日間室温でエージングすることで白色透明のコロイド溶液が得られた。コロイド溶液中の金属水酸化物層の組成と濃度、塩素濃度は実施例1-1と同じであった。
[Example 1-5]
A white transparent colloidal solution was obtained by aging the slurry A at room temperature for 10 days. The composition and concentration of the metal hydroxide layer in the colloidal solution and the chlorine concentration were the same as in Example 1-1.

〔実施例2〕
塩化マグネシウム6水和物221gと塩化アルミニウム6水和物76gを純水253gに溶解した金属塩水溶液を使用し、その添加時間を10分とした以外は、実施例1と同様に層状複水酸化物のスラリーを作成した。これを100℃乾燥した粉末についてXRD測定したところ、2θ=11.2度に底面反射を持つ層状複水酸化物が単相で得られていることが確認できた。この層状複水酸化物のスラリーを70℃で2時間加熱することで白色透明のコロイド溶液が得られた。XRFによる元素分析と重量分析の結果から、コロイド溶液中には[Mg0.77Al0.23(OH)2]0.23+が10.6質量%、塩素が1.40質量%存在することが明らかになった。即ち、Cl/[Mg0.77Al0.23(OH)2]0.23+(モル比)=0.22だった。
(Example 2)
Layered double hydroxide as in Example 1 except that a metal salt aqueous solution in which 221 g of magnesium chloride hexahydrate and 76 g of aluminum chloride hexahydrate were dissolved in 253 g of pure water was used and the addition time was 10 minutes. A slurry of the product was made. When XRD measurement was performed on the powder dried at 100 ° C., it was confirmed that a layered double hydroxide having bottom reflection at 2θ = 11.2 degrees was obtained in a single phase. The layered double hydroxide slurry was heated at 70 ° C. for 2 hours to obtain a white transparent colloidal solution. From the results of elemental analysis and gravimetric analysis by XRF, it was revealed that [Mg 0.77 Al 0.23 (OH) 2 ] 0.23+ was 10.6% by mass and chlorine was 1.40% by mass in the colloidal solution. That is, Cl / [Mg 0.77 Al 0.23 (OH) 2 ] 0.23+ (molar ratio) = 0.22.

〔実施例3〕
塩化マグネシウム6水和物124gと塩化アルミニウム6水和物26gを純水125gに溶解した金属塩水溶液を使用し、その添加時間を40分とした以外は、実施例1と同様に層状複水酸化物のスラリーを作成した。このスラリーを100℃乾燥した粉末についてXRD測定したところ、2θ=10.9度に底面反射を持つ層状複水酸化物が単相で得られていることが確認できた。この層状複水酸化物のスラリーを70℃で2時間加熱することで、白色透明のコロイド溶液が得られた。XRFによる元素分析と重量分析の結果から、コロイド溶液中には[Mg0.84Al0.16(OH)2]0.16+が10.2質量%、塩素が0.96質量%存在することが明らかになった。即ち、Cl/[Mg0.84Al0.16(OH)2]0.16+(モル比)=0.16だった。
Example 3
Layered double hydroxide as in Example 1, except that an aqueous metal salt solution in which 124 g of magnesium chloride hexahydrate and 26 g of aluminum chloride hexahydrate were dissolved in 125 g of pure water was used and the addition time was 40 minutes. A slurry of the product was made. When XRD measurement was performed on the powder obtained by drying this slurry at 100 ° C., it was confirmed that a layered double hydroxide having bottom reflection at 2θ = 10.9 degrees was obtained in a single phase. The layered double hydroxide slurry was heated at 70 ° C. for 2 hours to obtain a white transparent colloidal solution. The results of elemental analysis and gravimetric analysis by XRF revealed that [Mg 0.84 Al 0.16 (OH) 2 ] 0.16+ was present in the colloidal solution at 10.2% by mass and chlorine at 0.96% by mass. That is, Cl / [Mg 0.84 Al 0.16 (OH) 2 ] 0.16+ (molar ratio) = 0.16.

〔実施例4〕
塩化亜鉛88gと塩化アルミニウム6水和物64gを純水398gに溶解した金属塩水溶液を使用した以外は、実施例1と同様に層状複水酸化物のスラリーを作成した。このスラリーを100℃乾燥した粉末についてXRD測定したところ、2θ=11.0度に底面反射を持つ層状複水酸化物が単相で得られていることが確認できた。この層状複水酸化物のスラリーを70℃で2時間加熱することで、白色透明のコロイド溶液が得られた。XRFによる元素分析と重量分析の結果から、コロイド溶液中には[Zn0.81Al0.19(OH)2]0.19+が10.0質量%、塩素が0.73質量%存在することが明らかになった。即ち、Cl/[Zn0.81Al0.19(OH)2]0.19+(モル比)=0.19だった。
Example 4
A layered double hydroxide slurry was prepared in the same manner as in Example 1 except that an aqueous metal salt solution in which 88 g of zinc chloride and 64 g of aluminum chloride hexahydrate were dissolved in 398 g of pure water was used. When XRD measurement was performed on the powder obtained by drying this slurry at 100 ° C., it was confirmed that a layered double hydroxide having a bottom reflection at 2θ = 11.0 degrees was obtained in a single phase. The layered double hydroxide slurry was heated at 70 ° C. for 2 hours to obtain a white transparent colloidal solution. From the results of elemental analysis and gravimetric analysis by XRF, it was found that [Zn 0.81 Al 0.19 (OH) 2 ] 0.19+ was 10.0% by mass and chlorine was 0.73% by mass in the colloidal solution. That is, Cl / [Zn 0.81 Al 0.19 (OH) 2 ] 0.19+ (molar ratio) = 0.19.

〔実施例5〕
塩化マグネシウム6水和物117gと塩化亜鉛44gと塩化アルミニウム6水和物64gを純水389gに溶解した金属塩水溶液を使用した以外は、実施例1と同様の方法で白色のスラリーを得た。このスラリーを100℃乾燥した粉末についてXRD測定したところ、2θ=11.0度に底面反射を持つ層状複水酸化物が単相で得られていることが確認できた。この層状複水酸化物のスラリーを70℃で2時間加熱することで、白色透明のコロイド溶液が得られた。XRFによる元素分析と重量分析の結果から、コロイド溶液中には[Mg0.39Zn0.41Al0.20(OH)2]0.20+が10.1質量%、塩素が0.90質量%存在することが明らかになった。即ち、Cl/[Mg0.39Zn0.41Al0.20(OH)2]0.20+(モル比)=0.19だった。
Example 5
A white slurry was obtained in the same manner as in Example 1, except that an aqueous metal salt solution in which 117 g of magnesium chloride hexahydrate, 44 g of zinc chloride and 64 g of aluminum chloride hexahydrate were dissolved in 389 g of pure water was used. When XRD measurement was performed on the powder obtained by drying this slurry at 100 ° C., it was confirmed that a layered double hydroxide having a bottom reflection at 2θ = 11.0 degrees was obtained in a single phase. The layered double hydroxide slurry was heated at 70 ° C. for 2 hours to obtain a white transparent colloidal solution. The results of elemental analysis and gravimetric analysis by XRF revealed that [Mg 0.39 Zn 0.41 Al 0.20 (OH) 2 ] 0.20+ was present in 10.1% by mass and chlorine was 0.90% by mass in the colloidal solution. That is, it was Cl / [Mg 0.39 Zn 0.41 Al 0.20 (OH) 2 ] 0.20+ (molar ratio) = 0.19.

〔実施例6〕
硝酸マグネシウム6水和物295gと硝酸アルミニウム9水和物100gを純水155gに溶解した金属塩水溶液を使用した以外は、実施例1と同様の方法で白色のスラリーを得た。このスラリーを100℃乾燥した粉末についてXRD測定したところ、2θ=11.0度に底面反射を持つ層状複水酸化物が単相で得られていることが確認できた。この層状複水酸化物のスラリーを70℃で2時間加熱することで、白色透明のコロイド溶液が得られた。XRFによる元素分析と重量分析の結果から、コロイド溶液中には[Mg0.80Al0.20(OH)2]0.20+が10.5質量%、硝酸イオンが質量2.2%存在することが明らかになった。即ち、硝酸イオン/[Mg0.80Al0.20(OH)2]0.20+(モル比)=0.20だった。
Example 6
A white slurry was obtained in the same manner as in Example 1 except that an aqueous metal salt solution in which 295 g of magnesium nitrate hexahydrate and 100 g of aluminum nitrate nonahydrate were dissolved in 155 g of pure water was used. When XRD measurement was performed on the powder obtained by drying this slurry at 100 ° C., it was confirmed that a layered double hydroxide having a bottom reflection at 2θ = 11.0 degrees was obtained in a single phase. The layered double hydroxide slurry was heated at 70 ° C. for 2 hours to obtain a white transparent colloidal solution. From the results of elemental analysis and gravimetric analysis by XRF, it was found that [Mg 0.80 Al 0.20 (OH) 2 ] 0.20+ was present in the colloidal solution at 10.5 mass% and nitrate ions at 2.2 mass%. That is, nitrate ion / [Mg 0.80 Al 0.20 (OH) 2 ] 0.20+ (molar ratio) = 0.20.

〔実施例7〕
塩化マグネシウム6水和物251gと塩化アルミニウム6水和物48gを純水251gに溶解した金属塩水溶液を使用した以外は、実施例1と同様に層状複水酸化物のスラリーを作成した。これを100℃乾燥した粉末についてXRD測定したところ、2θ=10.7度に底面反射を持つ層状複水酸化物が単相で得られていることが確認できた。この層状複水酸化物のスラリーを70℃で2時間加熱することで白色透明のコロイド溶液が得られた。XRFによる元素分析と重量分析の結果から、コロイド溶液中には[Mg0.86Al0.14(OH)2]0.14+が10.6質量%、塩素が0.89質量%存在することが明らかになった。即ち、Cl/[Mg0.86Al0.14(OH)2]0.14+(モル比)=0.14だった。
Example 7
A layered double hydroxide slurry was prepared in the same manner as in Example 1 except that a metal salt aqueous solution in which 251 g of magnesium chloride hexahydrate and 48 g of aluminum chloride hexahydrate were dissolved in 251 g of pure water was used. When XRD measurement was performed on the powder dried at 100 ° C., it was confirmed that the layered double hydroxide having bottom reflection at 2θ = 10.7 degrees was obtained in a single phase. The layered double hydroxide slurry was heated at 70 ° C. for 2 hours to obtain a white transparent colloidal solution. From the results of elemental analysis and gravimetric analysis by XRF, it was revealed that [Mg 0.86 Al 0.14 (OH) 2 ] 0.14+ was present at 10.6% by mass and chlorine at 0.89% by mass in the colloidal solution. That is, Cl / [Mg 0.86 Al 0.14 (OH) 2 ] 0.14+ (molar ratio) = 0.14.

〔実施例8〕
塩化マグネシウム6水和物209gと塩化アルミニウム6水和物87gを純水254gに溶解した金属塩水溶液を使用した以外は、実施例1と同様に層状複水酸化物のスラリーを作成した。これを100℃乾燥した粉末についてXRD測定したところ、2θ=11.0度に底面反射を持つ層状複水酸化物が単相で得られていることが確認できた。この層状複水酸化物のスラリーを70℃で2時間加熱することで白色透明のコロイド溶液が得られた。XRFによる元素分析と重量分析の結果から、コロイド溶液中には[Mg0.74Al0.26(OH)2]0.26+が10.7質量%、塩素が1.61質量%存在することが明らかになった。即ち、Cl/[Mg0.74Al0.26(OH)2]0.26+(モル比)=0.25だった。
(Example 8)
A layered double hydroxide slurry was prepared in the same manner as in Example 1 except that a metal salt aqueous solution in which 209 g of magnesium chloride hexahydrate and 87 g of aluminum chloride hexahydrate were dissolved in 254 g of pure water was used. When XRD measurement was performed on the powder dried at 100 ° C., it was confirmed that the layered double hydroxide having bottom reflection at 2θ = 11.0 degrees was obtained in a single phase. The layered double hydroxide slurry was heated at 70 ° C. for 2 hours to obtain a white transparent colloidal solution. The results of elemental analysis and gravimetric analysis by XRF revealed that [Mg 0.74 Al 0.26 (OH) 2 ] 0.26+ was 10.7% by mass and chlorine was 1.61% by mass in the colloidal solution. That is, Cl / [Mg 0.74 Al 0.26 (OH) 2 ] 0.26+ (molar ratio) = 0.25.

〔比較例1〕
塩化マグネシウム6水和物279gと塩化アルミニウム6水和物22gを純水249gに溶解した金属塩水溶液を使用した以外は、実施例1と同様の方法で白色のスラリーを得た。このスラリーを100℃乾燥した粉末についてXRD測定したところ、2θ=10.9度に底面反射を持つ層状複水酸化物の他に、水酸化マグネシウムに由来するブルーサイト構造が確認された。これを70℃で2時間加熱したが白濁したスラリー状の溶液のままであり、コロイド溶液は得られなかった。XRFによる元素分析と重量分析の結果から、スラリー中には[Mg0.92Al0.08(OH)2]0.08+が11.0質量%、塩素が1.27質量%存在することが明らかになった。即ち、Cl/[Mg0.92Al0.08(OH)2]0.08+(モル比)=0.19だった。
(Comparative Example 1)
A white slurry was obtained in the same manner as in Example 1 except that an aqueous metal salt solution in which 279 g of magnesium chloride hexahydrate and 22 g of aluminum chloride hexahydrate were dissolved in 249 g of pure water was used. When XRD measurement was performed on the powder obtained by drying this slurry at 100 ° C., a brucite structure derived from magnesium hydroxide was confirmed in addition to the layered double hydroxide having bottom reflection at 2θ = 10.9 degrees. Although this was heated at 70 ° C. for 2 hours, it remained as a cloudy slurry solution, and no colloidal solution was obtained. The results of elemental analysis and gravimetric analysis by XRF revealed that [Mg 0.92 Al 0.08 (OH) 2 ] 0.08+ was present in the slurry at 11.0% by mass and chlorine at 1.27% by mass. That is, Cl / [Mg 0.92 Al 0.08 (OH) 2 ] 0.08+ (molar ratio) = 0.19.

〔比較例2〕
塩化マグネシウム6水和物192gと塩化アルミニウム6水和物104gを純水254gに溶解した金属塩水溶液を使用した以外は、実施例1と同様の方法で白色のスラリーを得た。このスラリーを100℃乾燥した粉末についてXRD測定したところ、2θ=11.4度に底面反射を持つ層状複水酸化物が単相で得られていることが確認された。これを70℃で2時間加熱したが白濁したスラリー状の溶液のままであり、コロイド溶液は得られなかった。XRFによる元素分析と重量分析の結果から、スラリー中には[Mg0.66Al0.34(OH)2]0.34+が10.5質量%、塩素が2.15質量%存在することが明らかになった。即ち、Cl/[Mg0.66Al0.34(OH)2]0.34+(モル比)=0.34だった。
(Comparative Example 2)
A white slurry was obtained in the same manner as in Example 1 except that an aqueous metal salt solution in which 192 g of magnesium chloride hexahydrate and 104 g of aluminum chloride hexahydrate were dissolved in 254 g of pure water was used. When XRD measurement was performed on the powder obtained by drying this slurry at 100 ° C., it was confirmed that a layered double hydroxide having a bottom reflection at 2θ = 11.4 degrees was obtained in a single phase. Although this was heated at 70 ° C. for 2 hours, it remained as a cloudy slurry solution, and no colloidal solution was obtained. The results of elemental analysis and gravimetric analysis by XRF revealed that [Mg 0.66 Al 0.34 (OH) 2 ] 0.34+ was present in the slurry at 10.5% by mass and chlorine at 2.15% by mass. That is, Cl / [Mg 0.66 Al 0.34 (OH) 2 ] 0.34+ (molar ratio) = 0.34.

〔比較例3〕
実施例1で示した層状複水酸化物のスラリーAに、10質量%塩酸水溶液を[Mg0.82Al0.18(OH)2]0.18に対してモル比で0.4添加したところ(スラリー中の塩化物イオン/[Mg0.82Al0.18(OH)2]0.18+(モル比) = 0.59)、スラリーは無色透明でチンダル現象の見られない外観となり、層状複水酸化物が完全に溶解してしまった。即ち、コロイド溶液を得ることはできなかった。
(Comparative Example 3)
When 10 mass% hydrochloric acid aqueous solution was added at a molar ratio of 0.4 to [Mg 0.82 Al 0.18 (OH) 2 ] 0.18 to the slurry A of the layered double hydroxide shown in Example 1 (chloride ions in the slurry) / [Mg 0.82 Al 0.18 (OH) 2 ] 0.18+ (molar ratio) = 0.59), the slurry was colorless and transparent and had no Tyndall phenomenon, and the layered double hydroxide was completely dissolved. That is, a colloidal solution could not be obtained.

〔参考例〕
非特許文献1の内容を具体的に記した特許文献3の方法に従い合成を行った。
乳酸マグネシウム3水和物73.9gと乳酸アルミニウム19.6gを純水406.5gに溶解し、金属塩水溶液を調製した。この金属塩水溶液を20%乳酸ナトリウム水溶液500gに窒素雰囲気中、撹拌下で添加した。この際、pHを9.5〜10.5の範囲に保つように、20質量%水酸化ナトリウム水溶液を適宜添加した。以上の操作によって得られた共沈殿のスラリーを、限外ろ過処理により、ろ液ECが70μS/cmになるまで洗浄及び脱塩することで白色のスラリーを得た。このスラリーを100℃乾燥した粉末についてXRD測定したところ、層状複水酸化物が単相で得られていることが確認された。これを10日間室温エージングしたところ、実施例1〜8と同様の挙動で、白色透明のコロイド溶液が得られた。XRFによる元素分析と重量分析の結果からコロイド溶液には[Mg0.81Al0.19(OH)2]0.19+が4.6質量%含まれることが確認された。また、全有機炭素分析装置(島津製作所(株)製TOC-Vc)により全有機炭素量を測定し、乳酸の分子量に換算したところ、乳酸が1.55質量%存在することが確認された。即ち、CH3CH(OH)COO/[Mg0.81Al0.19(OH)2]0.19+(モル比)=0.22だった。
このコロイド溶液の収率は約35%と低収率であった。これは、限外ろ過処理による脱塩工程で層状複水酸化物の構成成分であるマグネシウム成分とアルミニウム成分が限外ろ過膜に捕捉されずに、ろ液に混入し、それが系外に排出されたためである。この原因としては、金属イオン成分が有機酸によって安定化しているために(錯形成等)、アルカリ水溶液の添加による中和でおこるべき金属水酸化物層の形成が十分に進まず、その結果多量の金属イオン成分が未反応のまま残存し、その未反応のイオン成分が限外ろ過処理時にろ過膜に捕捉されずに、ろ液として系外に排出されたことによると推測された。また、コロイド溶液の濃度に関して、限外ろ過装置で装置の許容する液量まで濃縮を試みたが、収率が低かったために、結果として[Mg0.81Al0.19(OH)2]0.19+として4.6質量%のコロイド溶液しか得られなかった。
[Reference example]
The synthesis was performed according to the method of Patent Document 3, which specifically describes the contents of Non-Patent Document 1.
73.9 g of magnesium lactate trihydrate and 19.6 g of aluminum lactate were dissolved in 406.5 g of pure water to prepare an aqueous metal salt solution. This metal salt aqueous solution was added to 500 g of 20% sodium lactate aqueous solution under stirring in a nitrogen atmosphere. At this time, a 20% by mass aqueous sodium hydroxide solution was appropriately added so as to keep the pH in the range of 9.5 to 10.5. The coprecipitation slurry obtained by the above operation was washed and desalted by ultrafiltration treatment until the filtrate EC became 70 μS / cm to obtain a white slurry. When XRD measurement was performed on the powder obtained by drying this slurry at 100 ° C., it was confirmed that the layered double hydroxide was obtained in a single phase. When this was aged at room temperature for 10 days, a white transparent colloidal solution was obtained with the same behavior as in Examples 1-8. From the results of elemental analysis and gravimetric analysis by XRF, it was confirmed that the colloidal solution contained 4.6% by mass of [Mg 0.81 Al 0.19 (OH) 2 ] 0.19+ . Further, when the total organic carbon content was measured by a total organic carbon analyzer (TOC-Vc manufactured by Shimadzu Corporation) and converted into the molecular weight of lactic acid, it was confirmed that 1.55% by mass of lactic acid was present. That is, CH 3 CH (OH) COO / [Mg 0.81 Al 0.19 (OH) 2 ] 0.19+ (molar ratio) = 0.22.
The yield of this colloidal solution was as low as about 35%. This is because the magnesium and aluminum components, which are the components of the layered double hydroxide, are not captured by the ultrafiltration membrane in the desalting process by ultrafiltration treatment, but are mixed into the filtrate and discharged out of the system. It was because it was done. This is because the metal ion component is stabilized by the organic acid (complex formation, etc.), so the formation of the metal hydroxide layer that should be neutralized by the addition of the alkaline aqueous solution does not proceed sufficiently, and as a result, a large amount It was speculated that this metal ion component remained unreacted, and the unreacted ion component was not captured by the filtration membrane during the ultrafiltration treatment and was discharged out of the system as a filtrate. Concentration of the colloidal solution was attempted with an ultrafiltration device until the liquid volume allowed by the device. However, because the yield was low, the result was 4.6 mass as [Mg 0.81 Al 0.19 (OH) 2 ] 0.19+. Only% colloidal solution was obtained.

これら実施例及び比較例で得られたコロイド溶液、及びスラリーについて、合成1日後の透過率、ヘイズ率、粒子径、粘度を測定した。さらに、実施例1〜8については、そのコロイド溶液の濃度を[M2+ 1-xM3+ x(OH)2]x+として10質量%に調製した後、室温で1ヶ月保存後の透過率、ヘイズ率、粘度を測定した。尚、これらの測定は、以下の方法で行い、その結果を表1に示した。 For the colloidal solutions and slurries obtained in these Examples and Comparative Examples, the transmittance, haze ratio, particle diameter, and viscosity after 1 day of synthesis were measured. Further, for Examples 1 to 8, the concentration of the colloidal solution was adjusted to [M 2+ 1-x M 3+ x (OH) 2 ] x + at 10% by mass and then permeated after storage at room temperature for 1 month. Rate, haze ratio, and viscosity were measured. These measurements were performed by the following method, and the results are shown in Table 1.

<透過率、ヘイズ率の測定>
得られたコロイド溶液、またはスラリーを、[M2+ 1-xM3+ x(OH)2]x+として、0.5質量%になるように純水で希釈した後、日本電飾工業株式会社製側色差計 ND-300Aで透過率、ヘイズ率を測定した。
<分散粒子径の測定>
得られたコロイド溶液、またはスラリーを、[M2+ 1-xM3+ x(OH)2]x+として、1質量%になるように純水で希釈した後、株式会社堀場製作所製 動的光散乱式粒径分布測定装置 LB-500で分散粒子径(メディアン径)を測定した。
<粘度の測定>
[M2+ 1-xM3+ x(OH)2]x+として10質量%の濃度としたコロイド溶液の粘度を、株式会社トキメック製 E型粘度計を用いて測定を行った。
<Measurement of transmittance and haze ratio>
The obtained colloidal solution or slurry is diluted with pure water so as to be 0.5% by mass as [M 2+ 1-x M 3+ x (OH) 2 ] x + , and then manufactured by Nippon Denshoku Industries Co., Ltd. The transmittance and haze ratio were measured with a side color difference meter ND-300A.
<Measurement of dispersed particle size>
The obtained colloidal solution or slurry is diluted with pure water to [M 2+ 1-x M 3+ x (OH) 2 ] x + to 1% by mass, and then manufactured by Horiba Ltd. The dispersed particle diameter (median diameter) was measured with a light scattering particle size distribution analyzer LB-500.
<Measurement of viscosity>
The viscosity of the colloidal solution having a concentration of 10% by mass as [M 2+ 1-x M 3+ x (OH) 2 ] x + was measured using an E-type viscometer manufactured by Tokimec Corporation.

表1

Figure 0005424479
※ 4.6質量%時の粘度 Table 1
Figure 0005424479
* Viscosity at 4.6% by mass

Claims (9)

一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物と1価の無機陰イオンのみからなり、1価の無機陰イオンが当該化合物に対してモル比で0.1〜0.4の範囲である水分散型コロイド溶液
(但し、
(i)一般式[M2+ 1-xM3+ x(OH)2]x+中のM2+は2価の金属イオン、M3+は3価の金属イオンを示す。
(ii)一般式[M2+ 1-xM3+ x(OH)2]x+中のxは、0.13<x<0.28の範囲である。
(iii)水分散型コロイド溶液には、原料中の不純物に由来する有機物を除けば、有機物を含有しない。)。
It consists of a compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + and a monovalent inorganic anion, and the monovalent inorganic anion has a molar ratio of 0.1 to the compound. Water-dispersed colloidal solution in the range of ~ 0.4 (however,
(i) In the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + , M 2+ represents a divalent metal ion, and M 3+ represents a trivalent metal ion.
(ii) x in the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + is in the range of 0.13 <x <0.28.
(iii) The water-dispersed colloidal solution does not contain organic substances except organic substances derived from impurities in the raw material. ).
2価の金属イオンがMg2+及び/又はZn2+であり、3価の金属イオンがAl3+である請求項1記載の水分散型コロイド溶液。 The water-dispersed colloidal solution according to claim 1, wherein the divalent metal ion is Mg 2+ and / or Zn 2+ and the trivalent metal ion is Al 3+ . 1価の無機陰イオンがClまたはNO3 である請求項1又は2記載の水分散型コロイド溶液。 Monovalent inorganic anions Cl - or NO 3 - a water-dispersible colloidal solution according to claim 1 or 2, wherein. 一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物を5〜20質量%含有する請求項1〜3のいずれか1項に記載の水分散型コロイド溶液。 The water-dispersed colloidal solution according to any one of claims 1 to 3, containing 5 to 20% by mass of a compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + . 一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物を0.5質量%含有する水分散型コロイド溶液の全光線透過率が30%以上、且つヘイズ率が55%以下である請求項1〜4記載のいずれか1項に記載の水分散型コロイド溶液。 A water-dispersed colloidal solution containing 0.5% by mass of a compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + has a total light transmittance of 30% or more and a haze ratio of 55%. The water-dispersed colloidal solution according to any one of claims 1 to 4, which is the following. 一般式[M2+ 1-xM3+ x(OH)2]x+で示される化合物を10質量%含有する水分散型コロイド溶液の粘度が1.5mPa・s〜5.0mPa・sである請求項1〜5記載のいずれか1項に記載の水分散型コロイド溶液。 A water-dispersed colloidal solution containing 10% by mass of a compound represented by the general formula [M 2+ 1-x M 3+ x (OH) 2 ] x + has a viscosity of 1.5 mPa · s to 5.0 mPa · s. The water-dispersed colloidal solution according to any one of 1 to 5. 2価の金属イオンと1価の無機陰イオンからなる2価の金属塩と3価の金属イオンと1価の無機陰イオンからなる3価の金属塩との混合水溶液と、アルカリ水溶液とを中性からアルカリ性の条件下で反応させ、2価の金属成分と3価の金属成分とを共沈殿させることにより層状複水酸化物を合成、洗浄し、これを水中に分散させることを特徴とする請求項1〜6のいずれか1項に記載の水分散型コロイド溶液の製造方法。 A mixed aqueous solution of a divalent metal salt composed of a divalent metal ion and a monovalent inorganic anion, a trivalent metal ion composed of a trivalent metal ion and a monovalent inorganic anion, and an alkaline aqueous solution. It is characterized by synthesizing and washing a layered double hydroxide by co-precipitation of a divalent metal component and a trivalent metal component by reacting under alkaline to alkaline conditions, and dispersing this in water The method for producing a water-dispersed colloidal solution according to any one of claims 1 to 6 . 前記2価の金属塩の2価の金属イオンがMg2+及び/又はZn2+であり、1価の無機陰イオンがCl 又はNO 3 であり、
前記3価の金属塩の3価の金属イオンがAl3+であり、1価の無機陰イオンがCl 又はNO 3 である請求項7記載の水分散型コロイド溶液の製造方法。
The divalent metal ion of the divalent metal salt is Mg 2+ and / or Zn 2+ , and the monovalent inorganic anion is Cl or NO 3 ,
The trivalent metal ions of trivalent metal salt is Al 3+, 1 monovalent inorganic anions Cl - or NO 3 - is The process of claim 7 water-dispersible colloidal solution wherein.
水中に分散させるときの温度が40℃〜100℃である請求項7又は8記載の水分散型コロイド溶液の製造方法。 The method for producing a water-dispersed colloidal solution according to claim 7 or 8 , wherein the temperature when dispersed in water is 40 ° C to 100 ° C.
JP2009278323A 2009-12-08 2009-12-08 Water-dispersed colloidal solution and method for producing the same Active JP5424479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009278323A JP5424479B2 (en) 2009-12-08 2009-12-08 Water-dispersed colloidal solution and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009278323A JP5424479B2 (en) 2009-12-08 2009-12-08 Water-dispersed colloidal solution and method for producing the same

Publications (2)

Publication Number Publication Date
JP2011121786A JP2011121786A (en) 2011-06-23
JP5424479B2 true JP5424479B2 (en) 2014-02-26

Family

ID=44286068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009278323A Active JP5424479B2 (en) 2009-12-08 2009-12-08 Water-dispersed colloidal solution and method for producing the same

Country Status (1)

Country Link
JP (1) JP5424479B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201217351D0 (en) * 2012-09-28 2012-11-14 Scg Chemicals Co Ltd Catalyst systems
JP6598377B2 (en) * 2015-11-04 2019-10-30 多木化学株式会社 Alumina colloid-containing aqueous solution
CN113358603B (en) * 2021-06-04 2023-03-24 中国核动力研究设计院 Solution uniformity evaluation device and method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0695290A (en) * 1992-09-10 1994-04-08 Tdk Corp Thin clay film and its production
KR100359716B1 (en) * 1998-09-11 2003-04-21 (주)나노하이브리드 Live-inorganic hybrid complexes capable of storing and transferring genes and methods of manufacturing the same
JP2981553B1 (en) * 1998-09-17 1999-11-22 工業技術院長 Spinel manufacturing method
JP2003026418A (en) * 2001-07-11 2003-01-29 Ube Material Industries Ltd Method of manufacturing hydrotalcite
JP4702512B2 (en) * 2003-09-19 2011-06-15 戸田工業株式会社 Hydrotalcite compound particle powder and aqueous dispersion containing the hydrotalcite compound particle powder
US20090108233A1 (en) * 2004-12-24 2009-04-30 The Univeristy Of Queensland Preparation of suspensions
WO2008059618A1 (en) * 2006-11-17 2008-05-22 Jdc Corporation Liquid treating apparatus, and liquid treating method, using hydrotalcite-like granular substance

Also Published As

Publication number Publication date
JP2011121786A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
Chung et al. Synthesis of minimal-size ZnO nanoparticles through sol–gel method: Taguchi design optimisation
Zou et al. Opposite particle size effect on amorphous calcium carbonate crystallization in water and during heating in air
Dong et al. Single-crystalline mesoporous ZnO nanosheets prepared with a green antisolvent method exhibiting excellent photocatalytic efficiencies
Fujinami et al. Sub-10 nm strontium titanate nanocubes highly dispersed in non-polar organic solvents
Taguchi et al. Synthesis of surface-modified monoclinic ZrO 2 nanoparticles using supercritical water
WO2012102150A1 (en) Water-swelling layered double hydroxide, method for producing same, gel or sol substance, double hydroxide nanosheet, and method for producing same
Eslami et al. Synthesis and characterization of CuO nanoparticles by the chemical liquid deposition method and investigation of its catalytic effect on the thermal decomposition of ammonium perchlorate
JP5645015B2 (en) Method for producing yttrium oxide stabilized zirconium oxide sol
JP2009173482A (en) Swellable layered double hydroxide and its manufacturing method, and gel-like substance, sol-like substance and nanosheet using the same
JP5424479B2 (en) Water-dispersed colloidal solution and method for producing the same
JP5582999B2 (en) Method for producing aqueous solution containing alumina colloid and aqueous solution containing alumina colloid obtained by the production method
JP2014028716A (en) Planar crystallinity-alumina-composite-oxide fine-particle aggregate, planar crystallinity-alumina-composite-oxide particle consisting of planar crystallinity-alumina-composite-oxide fine-particle aggregate, and production method of planar crystallinity-alumina-composite-oxide fine-particle aggregate and planar crystallinity-alumina-composite-oxide particle
Mahmoudabad et al. Synthesis and characterization of PbO nanostructure and NiO doped with PbO through combustion of citrate/nitrate gel
KR101887052B1 (en) Method for producing rutile-type titanium oxide sol
KR101621831B1 (en) Ultrafine particles of titanium dioxide and process for producing the same
Ilkhechi et al. Temperature stability and photocatalytic activity of nanocrystalline cristobalite powders with Cu dopant
JP2020132465A (en) Production method of iridium oxide and iridium oxide
Rishikeshi et al. Cu–ZnO nanocrystallites by aqueous thermolysis method: thermal and vibrational study
WO2009116378A1 (en) SOLID TRANSITION METAL HYDROXIDE FILM, α-COBALT HYDROXIDE FILM, MANUFACTURING METHOD FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR α-COBALT HYDROXIDE, MANUFACTURING DEVICE FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR HYDRATED LITHIUM COBALT OXIDE, TRANSITION METAL OXIDE FILM, AND ELECTRODE MATERIAL
JP2014034495A (en) Metal oxide nanostructure and method for manufacturing the same
JP2013060320A (en) Method for producing spherical calcium carbonate fine particle
JP5750662B2 (en) Cerium oxide nanoparticle-zeolite composite, its production method and use as ultraviolet shielding material
JP6218116B2 (en) Composite metal oxide particles and method for producing the same
WO2022070785A1 (en) Strontium titanate microparticles
JP5807886B2 (en) Method for producing zinc oxide fine particles and / or zinc oxide film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120720

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5424479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250