KR101887052B1 - Method for producing rutile-type titanium oxide sol - Google Patents

Method for producing rutile-type titanium oxide sol Download PDF

Info

Publication number
KR101887052B1
KR101887052B1 KR1020137024428A KR20137024428A KR101887052B1 KR 101887052 B1 KR101887052 B1 KR 101887052B1 KR 1020137024428 A KR1020137024428 A KR 1020137024428A KR 20137024428 A KR20137024428 A KR 20137024428A KR 101887052 B1 KR101887052 B1 KR 101887052B1
Authority
KR
South Korea
Prior art keywords
titanium
aqueous solution
oxalic acid
mass
terms
Prior art date
Application number
KR1020137024428A
Other languages
Korean (ko)
Other versions
KR20140016290A (en
Inventor
나츠미 무라카미
아이 미야모토
요시나리 코야마
Original Assignee
닛산 가가쿠 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산 가가쿠 가부시키가이샤 filed Critical 닛산 가가쿠 가부시키가이샤
Publication of KR20140016290A publication Critical patent/KR20140016290A/en
Application granted granted Critical
Publication of KR101887052B1 publication Critical patent/KR101887052B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/51Methods thereof
    • B01F23/511Methods thereof characterised by the composition of the liquids or solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0004Preparation of sols
    • B01J13/0047Preparation of sols containing a metal oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3669Treatment with low-molecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S516/00Colloid systems and wetting agents; subcombinations thereof; processes of
    • Y10S516/924Significant dispersive or manipulative operation or step in making or stabilizing colloid system
    • Y10S516/928Mixing combined with non-mixing operation or step, successively or simultaneously, e.g. heating, cooling, ph change, ageing, milling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

[과제] 분산성이 우수한, 동적 광산란법에 따라 측정된 입자 직경이 5~100nm인 루틸형 산화 티탄 졸을 효율적으로 제조하는 방법을 제공하는 것. [해결수단] 하기의 (a) 공정 및 (b) 공정을 포함하는 동적 광산란법에 따라 측정된 입자 직경이 5~100nm인 루틸형 산화 티탄 졸의 제조 방법: (a) 공정: 옥살산 주석 수용액, 티탄알콕사이드, 옥살산, 제4급 암모늄 수산화물 및 물을 혼합하고, 그 때, 티탄 원자 1몰에 대하여, 각각, 주석 원자가 0.1~0.8몰의 비율, 상기 옥살산이 0.01~5몰의 비율, 및 상기 제4급 암모늄 수산화물이 0.1~3.5몰의 비율이 되도록 조정하여, TiO2 환산 농도 0.1~15질량%의 티탄 함유 수용액을 조제하는 공정, (b) 공정: 상기 (a) 공정에서 얻어진 티탄 함유 수용액을 100~200℃에서 수열처리하는 공정.[PROBLEMS] To provide a method for efficiently producing a rutile titanium oxide sol having an excellent dispersibility and a particle diameter of 5 to 100 nm measured according to a dynamic light scattering method. [MEANS FOR SOLVING PROBLEMS] A method for producing a rutile titanium oxide sol having a particle diameter of 5 to 100 nm, which is measured by a dynamic light scattering method including the following steps (a) and (b): (a) Titanium alkoxide, oxalic acid, quaternary ammonium hydroxide and water are mixed, and at that time, the proportion of the oxalic acid in the proportion of 0.1 to 0.8 mol, the proportion of the oxalic acid in the amount of 0.01 to 5 mol, Containing aqueous solution of 0.1 to 15 mass% in terms of TiO 2 is prepared by adjusting the quaternary ammonium hydroxide to a ratio of 0.1 to 3.5 mol, (b) a step of: preparing a titanium-containing aqueous solution obtained in the step (a) And a hydrothermal treatment at 100 to 200 ° C.

Description

루틸형 산화 티탄 졸의 제조 방법{METHOD FOR PRODUCING RUTILE-TYPE TITANIUM OXIDE SOL}METHOD FOR PRODUCING RUTILE-TYPE TITANIUM OXIDE SOL [0002]

본 발명은, 루틸형 산화 티탄 졸의 제조 방법에 관한 것이다.The present invention relates to a process for producing a rutile titanium oxide sol.

산화 티탄의 결정 구조에는, 정방정계 고온형의 루틸형, 정방정계 저온형의 아나타제형 및 사방정계 부르카이트형의 3종류가 있으며, 그 중에서도 루틸형 산화 티탄은 굴절률이 높은 점에서, 굴절률 조정제로서 사용되고 있다. There are three types of crystal structures of titanium oxide: rutile type of tetragonal high temperature type, anatase type of tetragonal low temperature type and anatase type of orthorhombic bourcite type. Among them, rutile type titanium oxide has a high refractive index, .

광학 재료로서 이용하기 위해서는, 굴절률이 높은 것뿐만 아니라, 도막으로 했을 때의 투명성도 필요하다. 그러나, 일반적으로 루틸형 산화 티탄은, 무정형의 산화 티탄이나 아나타제형 산화 티탄을 고온 소성하는 고상법으로 제조되기 때문에, 입자 직경이 커져, 투명성이 손상된다고 하는 문제가 있었다. In order to use it as an optical material, it is necessary not only to have a high refractive index, but also to have transparency as a coating film. However, in general, since the rutile titanium oxide is produced by the solid-phase method in which amorphous titanium oxide or anatase-type titanium oxide is baked at a high temperature, there is a problem that the particle diameter becomes large and transparency is impaired.

고온 소성이 필요한 고상법에 비해, 습식법은 저온 합성할 수 있기 때문에 미립자를 얻기 쉬운 방법이다. 습식법으로 루틸형 산화 티탄 졸을 제조하는 방법으로서, 티탄염과 루틸형 구조를 가지는 주석 화합물의 공존하에서 반응시키는 방법을 들 수 있다. Compared with the solid-phase method requiring high-temperature firing, the wet method is an easy method for obtaining fine particles because it can be synthesized at a low temperature. As a method for producing a rutile titanium oxide sol by a wet method, there is a method of reacting the titanium salt in the presence of a tin compound having a rutile structure.

티탄염과 주석 화합물을 이용하는 방법으로서는, 과산화수소의 존재하에서 티탄의 강산염과 금속 주석을 반응시키고, 50~100℃에서 산화 티탄-산화 주석 복합 콜로이드의 응집체를 생성시키는 방법이 개시되어 있다(특허 문헌 1참조). 또한, Sn/Ti 몰비가 0.001~2인 주석 화합물의 공존하에, 티탄 화합물 용액을 pH-1~3 범위에서 실온으로부터 100℃의 온도에서 반응시키는 루틸형 산화 티탄 미립자의 제조 방법이 개시되어 있다(특허 문헌 2 참조). 또한, 티탄 원자를 함유한 겔을 과산화수소로 용해한 것을 반응시키는 방법으로서는, 수화 산화 티탄 겔을 과산화수소로 용해한 것과 주석산 칼륨의 양이온 교환한 것을 혼합하고, 가열 처리하는 방법(특허 문헌 3 참조), 티탄 화합물과 주석 화합물과 암모니아를 반응시켜 겔을 생성시킨 후, 과산화수소로 용해하고 수열 처리하는 방법(특허 문헌 4 참조) 등이 개시되어 있다.As a method of using a titanium salt and a tin compound, there is disclosed a method of reacting a strong acid of titanium with metal tin in the presence of hydrogen peroxide to produce an aggregate of a titanium oxide-tin oxide composite colloid at 50 to 100 ° C 1). Also disclosed is a method for producing rutile titanium oxide fine particles in which a titanium compound solution is allowed to react in a pH range of 1 to 3 at a temperature of from room temperature to 100 ° C in the presence of a tin compound having a Sn / Ti molar ratio of 0.001 to 2 Patent Document 2). As a method of reacting a gel containing titanium atoms dissolved in hydrogen peroxide, a method of dissolving a hydrated titanium oxide gel in hydrogen peroxide and cationically exchanged potassium citrate are mixed and subjected to a heat treatment (see Patent Document 3) A method of reacting a tin compound with ammonia to produce a gel, dissolving it in hydrogen peroxide and hydrothermally treating it (see Patent Document 4), and the like.

일본특허공개공보 평10-245224호Japanese Patent Application Laid-Open No. 10-245224 일본특허공개공보 2005-132706호Japanese Patent Application Laid-Open No. 2005-132706 일본특허공개공보 평2-255532호Japanese Patent Application Laid-Open No. 2-255532 일본특허공개공보 2009-227519호Japanese Patent Application Laid-Open No. 2009-227519

특허 문헌 1에 기재된 방법에서는, 1차 입자 직경이 2~20nm인 산화 티탄-산화 주석 복합 콜로이드 입자의 응집체 슬러리가 생성되기 때문에, 분산 상태의 양호한 졸을 얻기 위해서는 포함되는 전해질을 제거할 필요가 있다. 특허 문헌 2에 기재된 방법에서는, 침전물이 생성되기 때문에, 고액 분리 장치를 필요로 한다. 특허 문헌 3에 기재된 방법에서는, 비표면적이 높은 수화 산화 티탄의 겔 또는 졸을 안정적으로 조제하는 것이 곤란하기 때문에, 얻어지는 산화 티탄의 결정성이 변동하는 문제가 있고, 또한, 수화 산화 티탄의 겔 또는 졸에 알칼리 등의 불순물이 잔존하기 때문에, 얻어지는 루틸형 산화 티탄은 실질적으로 알칼리를 함유하지 않는 것을 얻을 수 없다는 결점이 있다. 특허 문헌 4에 기재된 방법에서는, 티탄 수산화물과 주석 수산화물의 혼합 겔의 세정을 필수로 하지만, 불순물 이온의 제거는 곤란하며, 세정에 장시간을 필요로 하고, 또한 고액 분리 장치를 필요로 하기 때문에 공업적으로는 바람직하지 않다.
In the method described in Patent Document 1, an agglomerate slurry of titanium oxide-tin oxide composite colloidal particles having a primary particle diameter of 2 to 20 nm is produced, so that it is necessary to remove an electrolyte contained in order to obtain a good sol in a dispersed state . In the method described in Patent Document 2, since a precipitate is formed, a solid-liquid separator is required. In the method described in Patent Document 3, it is difficult to stably prepare a gel or sol of hydrated titanium oxide having a high specific surface area, there is a problem that the crystallinity of the obtained titanium oxide fluctuates. In addition, Impurities such as alkali remain in the sol, so that the resulting rutile-type titanium oxide has a drawback that substantially no alkali-containing substance can be obtained. In the method described in Patent Document 4, it is essential to clean the mixed gel of titanium hydroxide and tin hydroxide. However, since it is difficult to remove impurity ions, a long time is required for cleaning, and a solid-liquid separator is required, .

따라서, 본 발명은, 실질적으로 나트륨, 칼륨 등의 알칼리 금속 및 염소 등의 불순물을 포함하지 않고, 고액 분리 공정을 필요로 하지 않으며, 분산성이 우수한, 동적 광산란법에 따라 측정된 입자 직경이 5~100nm인 루틸형 산화 티탄 졸을 효율적으로 제조하는 방법을 제공하는 것이다.Accordingly, the present invention provides a method for producing a liquid crystal display device which does not contain substantially alkali metals such as sodium and potassium and impurities such as chlorine, does not require a solid-liquid separation step and is excellent in dispersibility, And a method for efficiently producing a rutile-type titanium oxide sol having a particle diameter of 100 nm to 100 nm.

본 발명자들은 상기의 과제를 해결하기 위하여 예의 검토한 결과, 주석염을 포함한 티탄 함유 수용액을 옥살산 및 제4급 암모늄 수산화물의 존재하에서 수열처리함으로써, 침전이나 응집체를 발생시키지 않고 분산 상태가 양호한 루틸형 산화 티탄 졸을 제조할 수 있는 것을 발견했다. 즉, 본 발명은, DISCLOSURE OF THE INVENTION The present inventors have intensively studied to solve the above problems and found that a titanium-containing aqueous solution containing a tin salt is hydrothermally treated in the presence of oxalic acid and a quaternary ammonium hydroxide to form a rutile type It was found that titanium oxide sol can be produced. That is,

제1관점으로서, 하기의 (a) 공정 및 (b) 공정을 포함하는 동적 광산란법에 따라 측정된 입자 직경이 5~100nm인 루틸형 산화 티탄 졸의 제조 방법: As a first aspect, a process for producing a rutile titanium oxide sol having a particle diameter of 5 to 100 nm, which is measured by a dynamic light scattering method comprising the following steps (a) and (b)

(a) 공정: 옥살산 주석 수용액, 티탄 알콕사이드, 옥살산, 제4급 암모늄 수산화물 및 물을 혼합하고, 그 때, 티탄 원자 1몰에 대하여, 각각, 주석 원자가 0.1~0.8 몰의 비율, 상기 옥살산이 0.01~5몰의 비율, 및 상기 제4급 암모늄 수산화물이 0.1~3.5몰의 비율이 되도록 조정하고, TiO2 환산 농도 0.1~15질량%의 티탄 함유 수용액을 조제하는 공정, (a) Process: A tin oxalate aqueous solution, a titanium alkoxide, oxalic acid, a quaternary ammonium hydroxide and water are mixed, and then 0.1 to 0.8 mol of tin atoms per mol of the titanium atom, 0.01 To 5 moles of said quaternary ammonium hydroxide and 0.1 to 3.5 moles of said quaternary ammonium hydroxide to prepare a titanium-containing aqueous solution having a concentration of 0.1 to 15 mass% in terms of TiO 2 ,

(b) 공정: 상기 (a) 공정에서 얻어진 티탄 함유 수용액을 100~200℃에서 수열처리하는 공정,
(b): a step of subjecting the titanium-containing aqueous solution obtained in the step (a) to a hydrothermal treatment at 100 to 200 캜,

제2 관점으로서, 상기 티탄 알콕사이드가 일반식 (I)As a second aspect, the titanium alkoxide is represented by the general formula (I)

Ti(OR1)4 (I) Ti (OR 1) 4 (I )

[식 (I) 중의 각 R1은 동일 혹은 상이한, 탄소 원자수 1~3의 알킬기임.]로 표시되는 테트라알콕시티탄인, 제1 관점에 기재된 루틸형 산화 티탄 졸의 제조 방법,
A process for producing a rutile-type titanium oxide sol according to the first aspect, which is a tetraalkoxytitanium represented by the formula (I) wherein each R 1 is the same or different and is an alkyl group having 1 to 3 carbon atoms,

제3 관점으로서, 상기 제4급 암모늄 수산화물이 일반식 (II) As a third aspect, the quaternary ammonium hydroxide is represented by the general formula (II)

〔NR2R3R4R5〕OH (II) [NR 2 R 3 R 4 R 5 ] OH (II)

[식 (II) 중, R2, R3, R4 및 R5은, 각각 독립하여, 탄소 원자수 1~8의 알킬기, 탄소 원자수 1~8의 히드록시알킬기 또는 탄소 원자수 7~15의 아릴옥시알킬기 혹은 벤질기를 나타냄.]로 표시되는 제4급 암모늄 수산화물인, 제1 관점에 기재된 루틸형 산화 티탄 졸의 제조 방법,
R 2 , R 3 , R 4 and R 5 each independently represent an alkyl group having 1 to 8 carbon atoms, a hydroxyalkyl group having 1 to 8 carbon atoms or a carbon number of 7 to 15 An aryloxyalkyl group or a benzyl group], a process for producing a rutile-type titanium oxide sol described in the first aspect,

제4 관점으로서, 상기 제4급 암모늄 수산화물이 수산화 테트라메틸암모늄 또는 수산화 테트라에틸암모늄인, 제3 관점에 기재된 루틸형 산화 티탄 졸의 제조 방법, As a fourth aspect, there is provided a process for producing a rutile titanium oxide sol described in the third aspect, wherein the quaternary ammonium hydroxide is tetramethylammonium hydroxide or tetraethylammonium hydroxide,

이다.to be.

본 발명의 루틸형 산화 티탄 졸의 제조 방법에 의해 얻어지는 루틸형 산화 티탄 졸은, 실질적으로 나트륨, 칼륨 등의 알칼리 금속 및 염소 등의 불순물을 포함하지 않고, 또한 높은 투명성을 가지고 있다. 또한, 그 건조 피막은 약 1.9 이상의 높은 굴절률을 나타내고, 내수성, 내습성, 내광성, 내후성, 내열성, 및 내마모성 등도 양호하다. The rutile titanium oxide sol obtained by the process for producing a rutile titanium oxide sol of the present invention does not substantially contain impurities such as alkali metals such as sodium and potassium and chlorine, and has high transparency. Further, the dried coating exhibits a high refractive index of about 1.9 or more, and is excellent in water resistance, moisture resistance, light resistance, weather resistance, heat resistance, wear resistance and the like.

또한, 본 발명의 루틸형 산화 티탄 졸의 제조 방법에 의해 얻어지는 루틸형 산화 티탄 졸은, 각종 바인더를 혼합하여 코팅 조성물로 할 수 있고, 이 조성물을 기재에 도포함으로써, 기재의 투명성을 손상시키지 않는 높은 투명성, 및 높은 굴절률을 가지는 코팅막을 형성할 수 있다.The rutile titanium oxide sol obtained by the process for producing a rutile titanium oxide sol of the present invention can be used as a coating composition by mixing various binders. By applying the composition to a substrate, It is possible to form a coating film having high transparency and high refractive index.

본 발명에서는, 우선 (a) 공정에 있어서 옥살산 주석 수용액, 티탄 알콕사이드, 옥살산, 제4급 암모늄 수산화물 및 물을 혼합하고, 티탄 함유 수용액을 조제한다. 옥살산 주석 수용액, 티탄 알콕사이드, 옥살산, 제4급 암모늄 수산화물 및 물을 혼합하는 순서는 특별히 제약되지 않는다.
In the present invention, in step (a), an aqueous tin oxalate solution, titanium alkoxide, oxalic acid, quaternary ammonium hydroxide and water are mixed to prepare a titanium-containing aqueous solution. The order of mixing tin oxalate aqueous solution, titanium alkoxide, oxalic acid, quaternary ammonium hydroxide and water is not particularly limited.

혼합되는 옥살산 주석 수용액, 티탄 알콕사이드, 옥살산 및 제4급 암모늄 수산화물은, 티탄 원자 1몰에 대하여, 각각, 주석 원자가 0.1~0.8몰의 비율, 옥살산이 0.01~5몰의 비율, 및 제4급 암모늄 수산화물이 0.1~3.5몰의 비율이 되도록 조정한다.
The aqueous tin oxalate solution, titanium alkoxide, oxalic acid and quaternary ammonium hydroxide to be mixed are mixed in a ratio of 0.1 to 0.8 mol of tin atoms, 0.01 to 5 mol of oxalic acid, And the hydroxide is adjusted to a ratio of 0.1 to 3.5 mol.

주석 원자는, 티탄 원자 1몰에 대하여 0.1~0.8몰의 비율이 되도록 조정한다. 주석 원자의 비율이, 티탄 원자 1몰에 대하여 0.1 미만인 경우, 루틸형 산화 티탄의 결정성이 불충분해지고, 또한, 아나타제형 산화 티탄이 생성되는 경우가 있다. 또한, 주석 원자의 비율이, 티탄 원자 1몰에 대하여 0.8을 넘는 경우, 얻어지는 루틸형 산화 티탄 졸 중의 산화 주석의 함유량이 많아지는 점에서, 산화 티탄의 굴절률이 저하되기 때문에 바람직하지 않다.
The tin atom is adjusted so as to have a ratio of 0.1 to 0.8 mol per 1 mol of the titanium atom. When the proportion of tin atoms is less than 0.1 per mole of titanium atoms, the crystallinity of the rutile titanium oxide becomes insufficient and anatase-type titanium oxide may be produced in some cases. When the ratio of the tin atoms to one mole of the titanium atom is more than 0.8, the content of tin oxide in the obtained rutile titanium oxide sol is increased, so that the refractive index of the titanium oxide is lowered.

옥살산은, 티탄 원자 1몰에 대하여 0.01~5몰의 비율이 되도록 조정한다. 옥살산의 비율이, 티탄 원자 1몰에 대하여 0.01몰 미만의 경우, (b) 공정의 수열처리 후에, 아나타제형 산화 티탄이 일부 생성되고, 목적으로 하는 단상의 루틸형 산화 티탄 졸을 얻을 수 없다. 또한, 옥살산의 비율이, 티탄 원자 1몰에 대하여 5몰을 넘는 경우, 티탄 함유 수용액의 pH가 3 미만이 되고, (b) 공정의 수열처리 후에 동적 광산란법에 따라 측정된 입자 직경이 100nm를 넘는 루틸형 산화 티탄 콜로이드 입자의 현탁액이 얻어지고, 목적으로 하는 루틸형 산화 티탄 졸을 얻을 수 없다.
The oxalic acid is adjusted so as to be in a proportion of 0.01 to 5 mol per 1 mol of the titanium atom. When the proportion of oxalic acid is less than 0.01 mol based on 1 mol of the titanium atom, anatase-type titanium oxide is partially formed after the hydrothermal treatment in the step (b), and the target single-phase rutile titanium oxide sol can not be obtained. When the proportion of oxalic acid exceeds 5 moles per 1 mole of titanium atoms, the pH of the titanium-containing aqueous solution becomes less than 3, and the particle diameter measured by the dynamic light scattering method after the hydrothermal treatment in the step (b) A suspension of rutile-type titanium oxide colloid particles in excess can be obtained, and a target rutile-type titanium oxide sol can not be obtained.

제4급 암모늄 수산화물은, 티탄 원자 1몰에 대하여 0.1~3.5몰의 비율이 되도록 조정한다. 제4급 암모늄 수산화물의 비율이, 티탄 원자 1몰에 대하여 0.1몰 미만의 경우, (b) 공정의 수열처리 후에, 동적 광산란법에 따라 측정된 입자 직경이 100nm를 넘는 루틸형 산화 티탄 콜로이드 입자의 현탁액이 얻어지고, 목적으로 하는 루틸형 산화 티탄 졸을 얻을 수 없다. 또한, 제4급 암모늄 수산화물의 비율이, 티탄 원자 1몰에 대하여 3.5몰을 넘는 경우, (b) 공정의 수열처리 후에 루틸형 산화 티탄 외에 부르카이트형 산화 티탄이 생성되고, 단상의 루틸형 산화 티탄 졸을 얻을 수 없다.
The quaternary ammonium hydroxide is adjusted to have a ratio of 0.1 to 3.5 mol per 1 mol of titanium atom. When the proportion of the quaternary ammonium hydroxide is less than 0.1 mol per 1 mol of the titanium atom, the rutile-type titanium oxide colloid particles having a particle diameter of more than 100 nm measured by the dynamic light scattering method after the hydrothermal treatment in the step (b) A suspension is obtained, and the intended rutile-type titanium oxide sol can not be obtained. When the proportion of the quaternary ammonium hydroxide exceeds 3.5 mol per 1 mol of the titanium atom, brittle titanium oxide is produced in addition to the rutile titanium oxide after the hydrothermal treatment in the step (b), and the single-phase rutile type oxidation Titanium sol can not be obtained.

상기 티탄 함유 수용액은, TiO2 환산 농도가 0.5~15질량%가 되도록, 이용하는 물의 양을 적절히 조정하여 조제하면 된다. 여기서, TiO2 환산이란, 편의적으로 가수분해 중합축물 중의 Ti량을 그 산화물인 TiO2의 형태로 나타낸 것이며, 티탄 알콕사이드의 몰수의 TiO2가 가수분해계 축합물 중에 포함되어 있는 것을 나타낸다.
The titanium-containing aqueous solution may be prepared by appropriately adjusting the amount of water to be used so that the concentration in terms of TiO 2 is 0.5 to 15% by mass. Here, in terms of TiO 2 is, for convenience as will showing the Ti content in the hydrolytic polymerization chukmul to its oxide in the form of TiO 2, it shows that the number of moles of titanium alkoxide TiO 2 is contained in the hydrolysis and condensation system.

상기 옥살산 주석수용액, 티탄 알콕사이드, 옥살산, 제4급 암모늄 수산화물 및 물의 혼합은 교반하에서 행하는 것이 바람직하다. 또한, 얻어지는 티탄 함유 수용액을 (b) 공정의 수열처리를 행하기 전에 60~100℃에서 가열해도 좋다.
It is preferable that the above-mentioned aqueous tin oxalate solution, titanium alkoxide, oxalic acid, quaternary ammonium hydroxide and water are mixed under stirring. The obtained titanium-containing aqueous solution may be heated at 60 to 100 占 폚 before hydrothermal treatment of the step (b).

(a) 공정에 의해 조제되는 티탄 함유 수용액의 pH는, 3.0~14.0이다.
The pH of the titanium-containing aqueous solution prepared by the step (a) is 3.0 to 14.0.

본 발명에 이용되는 옥살산 주석 수용액은, 수성 매체 중에서 금속 주석, 옥살산 및 과산화수소를 반응시켜 얻을 수 있다. 옥살산 주석 수용액의 제조는, 옥살산의 수용액 중에 과산화수소와 금속 주석을 H2O2/Sn 몰비가 2~3으로 유지되도록 교호로 소량씩 단속적으로 첨가하거나, 또는 연속적으로 첨가하는 것이 바람직하다. 먼저 전량의 과산화수소를 옥살산 수용액 중에 첨가하고, 이것에 금속 주석을 첨가하면 과산화수소의 대부분이 반응의 초기에 분해되어 과산화수소의 양이 부족하므로 바람직하지 않다. H2O2/Sn 몰비가 3을 넘어도 반응은 가능하지만, 과산화수소량의 잔량이 많아지기 때문에 바람직하지 않다. H2O2/Sn 몰비가 2 미만에서는 산화가 불충분해지며, 원하는 옥살산 주석 수용액을 얻을 수 없다. 반응은 가열하에서 행해져도 좋고, 30~70℃의 범위가 바람직하다. 반응액 중의 Sn 농도는 0.01~8질량%로 유지하는 것이 바람직하고, 최종적으로 얻어지는 옥살산 주석 수용액으로서, Sn 농도는 1~5질량%인 것이 바람직하다. 얻어지는 옥살산 주석 수용액은, 과산화수소가 잔존하는 경우가 있기 때문에, 백금이 담지된 산화 촉매를 충전한 칼럼에 통과시켜 과산화수소를 제거하는 것이 바람직하다.
The aqueous tin oxalate solution used in the present invention can be obtained by reacting metallic tin, oxalic acid and hydrogen peroxide in an aqueous medium. The preparation of the aqueous solution of tin oxalate is preferably carried out by intermittently adding a small amount of hydrogen peroxide and metal tin alternately or continuously to maintain the H 2 O 2 / Sn molar ratio at 2 to 3 in an aqueous solution of oxalic acid. First, when the entire amount of hydrogen peroxide is added to the aqueous oxalic acid solution and the metal tin is added thereto, most of the hydrogen peroxide is decomposed at an early stage of the reaction and the amount of hydrogen peroxide is insufficient. Even if the molar ratio of H 2 O 2 / Sn exceeds 3, the reaction is possible, but the amount of hydrogen peroxide is increased, which is not preferable. If the molar ratio of H 2 O 2 / Sn is less than 2, the oxidation becomes insufficient, and desired tin oxalate aqueous solution can not be obtained. The reaction may be carried out under heating or in a range of 30 to 70 캜. The Sn concentration in the reaction liquid is preferably maintained at 0.01 to 8% by mass, and as the finally obtained aqueous tin oxalate solution, the Sn concentration is preferably 1 to 5% by mass. Since the obtained aqueous solution of tin oxalate may contain hydrogen peroxide in some cases, it is preferable to pass hydrogen peroxide through a column packed with an oxidation catalyst carrying platinum.

본 발명에 이용되는 티탄 알콕사이드는, 알콕실기의 탄소 원자수가 1~3인 테트라알콕시티탄이 이용된다. 이 테트라알콕시티탄은, 일반식 (I) As the titanium alkoxide used in the present invention, tetraalkoxytitanium having 1 to 3 carbon atoms in the alkoxyl group is used. The tetraalkoxytitanium is represented by the general formula (I)

Ti(OR1)4 (I) Ti (OR 1) 4 (I )

[식 (I) 중의 각 R1은 동일 혹은 상이한, 탄소 원자수 1~3의 알킬기임.]로 표시할 수 있다.
[Wherein each R 1 in formula (I) is the same or different and is an alkyl group having 1 to 3 carbon atoms].

상기 테트라알콕시티탄은, 4개의 알콕실기가 서로 동일해도 상이해도 좋지만, 입수의 용이함 등의 관점에서, 동일한 것이 바람직하게 이용된다. 상기 테트라알콕시티탄의 구체예로서는, 테트라메톡시티탄, 테트라에톡시티탄, 테트라-n-프로폭시티탄, 테트라이소프로폭시티탄 등을 들 수 있다. 이들은 1종을 단독으로 이용해도, 또는 2종 이상을 조합하여 이용해도 좋다.
The above tetraalkoxytitanium may be the same or different from the four alkoxyl groups, but the same one is preferably used from the viewpoint of availability and the like. Specific examples of the tetraalkoxytitanium include tetramethoxytitanium, tetraethoxytitanium, tetra-n-propoxytitanium and tetraisopropoxytitanium. These may be used singly or in combination of two or more.

본 발명에 이용되는 제4급 암모늄 수산화물은, 일반식 (II) The quaternary ammonium hydroxide used in the present invention is a quaternary ammonium hydroxide represented by the general formula (II)

〔NR2R3R4R5〕OH (II) [NR 2 R 3 R 4 R 5 ] OH (II)

[식 (II) 중, R2, R3, R4 및 R5은, 각각 독립하여, 탄소 원자수 1~8의 알킬기, 탄소 원자수 1~8의 히드록시알킬기 또는 탄소 원자수 7~15의 아릴옥시알킬기 혹은 벤질기를 나타냄.]로 표시할 수 있다.
R 2 , R 3 , R 4 and R 5 each independently represent an alkyl group having 1 to 8 carbon atoms, a hydroxyalkyl group having 1 to 8 carbon atoms or a carbon number of 7 to 15 Quot; represents an aryloxyalkyl group or a benzyl group of "

상기 제4급 암모늄 수산화물의 구체예로서는, 수산화 테트라메틸암모늄, 수산화 테트라에틸암모늄, 수산화 테트라프로필암모늄, 수산화 테트라부틸암모늄, 수산화 옥틸트리메틸암모늄, 수산화 트리부틸메틸암모늄, 수산화 트리옥틸메틸암모늄, 수산화 벤질트리메틸암모늄, 수산화 벤질트리에틸암모늄, 수산화 벤질트리프로필암모늄, 수산화 벤질트리부틸암모늄, 수산화 모노메틸트리에탄올암모늄, 수산화 디메틸디에탄올암모늄 등을 들 수 있다. 그 중에서도 수산화 테트라메틸암모늄 및 수산화 테트라에틸암모늄이 바람직하게 이용된다.
Specific examples of the quaternary ammonium hydroxides include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, octyltrimethylammonium hydroxide, tributylmethylammonium hydroxide, trioctylmethylammonium hydroxide, benzyltrimethylhydroxide Ammonium benzyl triethyl ammonium hydroxide, benzyltripropyl ammonium hydroxide, benzyl tributyl ammonium hydroxide, ammonium monomethyl triethanol hydroxide, dimethyl diethanol ammonium hydroxide and the like. Among them, tetramethylammonium hydroxide and tetraethylammonium hydroxide are preferably used.

(a) 공정에서는, 첨가된 티탄 알콕사이드는 분해되어 알코올이 발생한다. 부생물의 알코올은 제거해도 제거하지 않아도 좋다. 알코올을 제거하는 경우는, 상기 티탄 함유 수용액을 알코올의 비점 이상으로 가열하거나, 또는 이베퍼레이터 (evaporator)등을 이용한 감압 하에서 증류 제거해도 좋다.
In the step (a), the titanium alkoxide added is decomposed to generate an alcohol. The alcohol of the by-product may be removed without removing it. In the case of removing the alcohol, the titanium-containing aqueous solution may be heated to the boiling point or higher of the alcohol, or may be distilled off under reduced pressure using an evaporator or the like.

상기 (a) 공정에서 얻어진 티탄 함유 수용액은, (b) 공정에 있어서 내압 용기에 충전되어 수열처리된다. 수열처리 온도는 100~200℃이며, 바람직하게는 120~180℃이다. 수열처리 시간은 0.5~10시간이며, 바람직하게는 1~6시간이다. 수열처리 온도가 100℃ 미만에서는 산화 티탄 입자의 결정화가 불충분해지며, 루틸형 산화 티탄 콜로이드 입자를 얻을 수 없다. 또한, 수열처리 온도가 200℃를 넘으면 생성되는 산화 티탄 입자가 응집하기 때문에, 호모지나이저 등에 의한 분산처리를 행하지 않으면 졸을 얻을 수 없고, 바람직하지 않다.
The titanium-containing aqueous solution obtained in the step (a) is filled in a pressure-resistant vessel in the step (b) and subjected to hydrothermal treatment. The hydrothermal treatment temperature is from 100 to 200 ° C, preferably from 120 to 180 ° C. The hydrothermal treatment time is 0.5 to 10 hours, preferably 1 to 6 hours. If the temperature for hydrothermal treatment is less than 100 ° C, crystallization of the titanium oxide particles becomes insufficient, and rutile titanium oxide colloid particles can not be obtained. In addition, when the water-heat treatment temperature exceeds 200 ° C, the resulting titanium oxide particles aggregate, so that it is not preferable to obtain a sol without a dispersion treatment using a homogenizer or the like.

분말 X선 회절 분석에 이용하는 ICDD 카드(Inernational Centre for Diffractrion Data)에 있어서, 산화 주석의 <110>면의 면간격 d(Å)치는 3.35이며, 루틸형 산화 티탄의 <110>면의 d는 3.25이다. 본 발명에 의해 얻어지는 루틸형 산화 티탄 졸은, 분말 X선 회절 분석에 의한 회절 패턴 및 <110>결정면의 d가 3.25<d<3.35의 범위이며, 단상의 루틸형 결정이다.
In the ICDD card (Invention Center for Diffraction Data) used for powder X-ray diffraction analysis, the plane interval d (Å) of the <110> plane of the tin oxide was 3.35 and the d of the <110> plane of the rutile titanium oxide was 3.25 to be. The rutile titanium oxide sol obtained by the present invention is a single phase rutile crystal in which the diffraction pattern by powder X-ray diffraction analysis and d of the <110> crystal face are in the range of 3.25 <d <3.35.

본 발명에 의해 얻어지는 루틸형 산화 티탄 졸은, 투과형 전자현미경에서는, 투영상으로서 1차 입자 직경이 5~50nm인 타원구상의 콜로이드 입자로서 관찰할 수 있다. 또한 얻어진 루틸형 산화 티탄 졸은, 동적 광산란법 입자 직경 측정 장치에 의해 측정되는 입자 직경이 5~100nm이다. 또한, 상기 루틸형 산화 티탄 졸은, 투명성이 높고, 1주간 실온에서 정치해도 침강물이 관찰되지 않는다. 또한, 상기 루틸형 산화 티탄 졸의 pH는 3.0~14.0의 범위이다.
The rutile-type titanium oxide sol obtained by the present invention can be observed as an elliptic spherical colloid particle having a primary particle diameter of 5 to 50 nm as a projected image in a transmission electron microscope. The obtained rutile titanium oxide sol has a particle diameter of 5 to 100 nm as measured by a dynamic light scattering method particle diameter measuring apparatus. In addition, the rutile titanium oxide sol has high transparency, and no sediment is observed even if it is left at room temperature for one week. The pH of the rutile titanium oxide sol is in the range of 3.0 to 14.0.

본 발명에 의해 얻어지는 루틸형 산화 티탄 졸은, 한외 여과법을 이용하여 세정 및/또는 농축을 행할 수 있다.
The rutile-type titanium oxide sol obtained by the present invention can be cleaned and / or concentrated using an ultrafiltration method.

본 발명에 의해 얻어지는 루틸형 산화 티탄 졸은, 필요에 따라 산 및/또는 염기성 화합물을 첨가함으로써 졸로서 안정화시킬 수 있다. The rutile-type titanium oxide sol obtained by the present invention can be stabilized as a sol by adding an acid and / or a basic compound, if necessary.

이용되는 산으로서는 염산, 질산 등의 무기산, 옥살산, 유산, 주석산, 사과산, 구연산, 글리콜산, 히드로아크릴산, α-옥시부티르산, 글리세린산, 타르트론산 등을 이용할 수 있다. As the acid to be used, inorganic acids such as hydrochloric acid and nitric acid, oxalic acid, lactic acid, tartaric acid, malic acid, citric acid, glycolic acid, hydroacrylic acid, a-oxybutyric acid, glyceric acid and tartronic acid can be used.

이용되는 염기성 화합물로서는, 암모니아, 알칼리 금속 수산화물, 에틸아민, 디에틸아민, n-프로필아민, 이소프로필아민, 디이소프로필아민, 디프로필아민, n-부틸아민, 이소부틸아민, 디이소부틸아민, 트리에틸아민, 벤질아민 등의 알킬아민, 모노에탄올아민, 트리에탄올아민 등의 알칸올아민, 구아니딘 수산화물, 테트라메틸암모늄하이드로옥사이드, 테트라에틸암모늄하이드로옥사이드 등의 제4급 암모늄 수산화물, 또는 탄산암모늄, 탄산구아니딘 등의 탄산염을 들 수 있다.
Examples of the basic compound to be used include ammonia, an alkali metal hydroxide, ethylamine, diethylamine, n-propylamine, isopropylamine, diisopropylamine, dipropylamine, n-butylamine, isobutylamine, diisobutylamine , Alkylamines such as triethylamine and benzylamine, alkanolamines such as monoethanolamine and triethanolamine, quaternary ammonium hydroxides such as guanidine hydroxide, tetramethylammonium hydroxide and tetraethylammonium hydroxide, and ammonium hydroxides such as ammonium carbonate, And carbonates such as guanidine carbonate.

본 발명에 의해 얻어지는 루틸형 산화 티탄 졸은, 각종 바인더와 혼합하여 코팅 조성물로 할 수 있다. The rutile titanium oxide sol obtained by the present invention can be mixed with various binders to form a coating composition.

또한, 상기 코팅 조성물을 기재에 도포하여 고굴절률 피막을 가지는 부재를 얻을 수 있다. 기재는, 플라스틱, 고무, 글라스, 금속, 세라믹스 및 종이 등 다양한 것을 사용할 수 있다. Further, the above-mentioned coating composition may be applied to a substrate to obtain a member having a high refractive index coating. The substrate may be made of various materials such as plastic, rubber, glass, metal, ceramics and paper.

상기 피막의 굴절률은 루틸형 산화 티탄 졸과 바인더와 혼합 비율, 및 바인더의 종류에 따라 상이하지만, 거의 1.55~2.2의 범위이다. The refractive index of the coating varies depending on the blending ratio of the rutile titanium oxide sol and the binder and the kind of the binder, but is in the range of approximately 1.55 to 2.2.

본 발명에 의해 얻어지는 루틸형 산화 티탄 졸과 바인더를 포함하는 코팅 조성물을 도포하여 얻어진 고굴절률을 가지는 피막은, 추가로 반사 방지막을 마련함으로써 반사 방지 기능을 부여할 수 있다.The coating having a high refractive index obtained by applying the coating composition comprising the rutile titanium oxide sol obtained by the present invention and the binder can impart an antireflection function by further providing an antireflection film.

실시예
Example

이하, 실시예 및 비교예에 따라 본 발명을 구체적으로 설명하지만, 본 발명은 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in detail with reference to examples and comparative examples, but the present invention is not limited to these examples.

또한, 측정 및 관찰에 이용한 장치는, 하기와 같다.The apparatus used for measurement and observation is as follows.

[동적 광산란법에 의한 입자 직경 측정] [Measurement of particle diameter by dynamic light scattering method]

N4PLUS(BECKMAN COLUTER사 제품) N4PLUS (manufactured by BECKMAN COLUTER)

[투과형 전자현미경 관찰] [Transmission electron microscope observation]

JEM-1010(JEOL Ltd. 제품)
JEM-1010 (manufactured by JEOL Ltd.)

(제조예 1) (Production Example 1)

2L의 용기에 순수 849g을 넣고, 옥살산 이수화물[Ube Industries, Ltd. 제품] 82g을 용해했다. 이어서, 금속 주석 분말[Yamaishi Metal Co.,Ltd. 제품] 22g과 35% 과산화수소 수용액[Kanto Chemical Co., Inc. 제품] 47g을 각각 10분할하여 교호로 투입하고, 50~55℃에서 2시간 유지했다. 이어서, 백금 촉매를 충전한 컬럼에 통액하여, 잉여의 과산화수소를 제거하고, SnO2 환산 농도가 2.8질량%인 옥살산 주석 수용액 1000g을 조제했다. 얻어진 옥살산 주석 수용액은 CHN 원소 분석의 결과, 옥살산 농도는 4.7질량%이며, 원자 흡광 분석의 결과, 나트륨 농도는 정량 한계 이하(10ppb 미만)였다.
849 g of pure water was placed in a 2 L vessel, and 100 ml of oxalic acid dihydrate [Ube Industries, Ltd. Product] was dissolved in 82 g. Then, a metal tin powder [Yamaishi Metal Co., Ltd. Product] and 35% aqueous hydrogen peroxide solution [manufactured by Kanto Chemical Co., Inc. Product] were each divided into 10 parts, put in alternation, and maintained at 50 to 55 ° C for 2 hours. Subsequently, the excess hydrogen peroxide was removed by passing through a column packed with a platinum catalyst to prepare 1000 g of a tin oxalate aqueous solution having a SnO 2 concentration of 2.8 mass%. As a result of CHN elemental analysis, the resulting oxalic acid aqueous solution had a concentration of oxalic acid of 4.7 mass%. As a result of the atomic absorption analysis, the sodium concentration was below the quantitative limit (less than 10 ppb).

(실시예 1) (Example 1)

200mL의 비커에 순수 27.0g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 26.9g(SnO2 환산으로 0.75g, 옥살산 환산으로 1.26g 함유), 티탄테트라이소프로폭사이드 14.2g[TiO2 환산으로 4.0g 함유, Kanto Chemical Co., Inc. 제품], 25질량% 수산화 테트라메틸암모늄 수용액[Tama Chemicals Co., Ltd 제품] 31.9g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 0.28, 수산화 테트라메틸암모늄/티탄 원자의 몰비 2.0이었다. 상기 티탄 함유 수용액 100g을 80℃에서 2시간 가열했다. 가열 후의 티탄 함유 수용액의 pH는 14.0, 전도도는 64.2 mS/cm, TiO2 환산 농도는 4.0 질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 상기 가열 후의 티탄 함유 수용액 60g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 14.0, 전도도 76.3mS/cm, TiO2 환산농도 4.0질량%, 수산화 테트라메틸암모늄 농도 9.1질량%, 옥살산 농도 1.3질량%, 동적 광산란법에 따라 측정된 입자 직경 37nm이며, 투과형 전자현미경 관찰에서는 20~30nm의 원 형상 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행했다. d값은 3.26이며, 루틸형 결정의 단상인 것이 확인되었다.
26.0 g of tin oxalate aqueous solution (0.75 g in terms of SnO 2 , containing 1.26 g in terms of oxalic acid) prepared in Production Example 1 and 14.2 g of titanium tetraisopropoxide (containing 4.0 g in terms of TiO 2) g, Kanto Chemical Co., Inc. Product] and 31.9 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide [product of Tama Chemicals Co., Ltd.] Were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 0.28, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 2.0. 100 g of the titanium-containing aqueous solution was heated at 80 DEG C for 2 hours. The pH of the titanium-containing aqueous solution after heating was 14.0, the conductivity was 64.2 mS / cm, and the concentration in terms of TiO 2 was 4.0% by mass. 60 g of the titanium-containing aqueous solution after heating was charged into a 100 ml Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The resulting sol had a particle diameter of 37 nm as measured by a dynamic light scattering method at a pH of 14.0, a conductivity of 76.3 mS / cm, a concentration of 4.0 mass% in terms of TiO 2 , a concentration of tetramethylammonium hydroxide of 9.1 mass%, an oxalic acid concentration of 1.3 mass% In the microscopic observation, circular particles of 20 to 30 nm were observed. The obtained sol was dried at 110 占 폚 and the powder obtained was analyzed by X-ray diffraction. d value was 3.26, and it was confirmed that it was a single phase of rutile type crystal.

(실시예 2)(Example 2)

2L의 용기에 순수 197g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 269g(SnO2 환산하여 7.5g, 옥살산 환산하여 12.6g 함유), 티탄테트라이소프로폭사이드 142g(TiO2 환산하여 40g 함유), 옥살산 이수화물 73g(옥살산 환산하여 52g), 25질량% 수산화 테트라메틸암모늄 수용액 319g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 1.4, 수산화 테트라메틸암모늄/티탄 원자의 몰비 1.75였다. 상기 티탄 함유 수용액 1000g을 80℃에서 2시간 가열하고, 또한 580Torr의 감압 하에서 2시간 유지한 후, TiO2 환산 농도가 4.0질량%가 되도록 순수를 이용하여 조제했다. 얻어진 티탄 함유 수용액은, pH가 5.1, 전도도가 30.9mS/cm였다. 3L의 글라스 라이닝된 오토클레이브 용기에 상기 농도 조정 후의 티탄 함유 수용액 1000g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 3.9, 전도도 32.6mS/cm, TiO2 환산농도 4.0 질량%, 수산화 테트라메틸암모늄 농도 8.0질량%, 옥살산 농도 6.5질량%, 동적 광산란법에 따라 측정된 입자 직경 16nm이며, 투과형 전자현미경 관찰에서는 단축 5nm와 장축 15nm의 타원 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행했다. d값은 3.26이며, 루틸형 결정의 단상인 것이 확인되었다. 상기 루틸형 산화 티탄 수성 졸 1000g을 로터리 이베퍼레이터를 이용하여 농축하여, TiO2 환산 농도가 20.5질량%인 안정된 루틸형 산화 티탄 수성 졸을 얻었다. 동적 광산란법에 따라 측정된 입자 직경은 16nm였다.
197 g of pure water was placed in a 2 L vessel, 269 g of tin oxalate aqueous solution (containing 7.5 g in terms of SnO 2 and 12.6 g in terms of oxalic acid) prepared in Production Example 1 and 142 g of titanium tetraisopropoxide (containing 40 g in terms of TiO 2 ) 73 g of oxalic acid dihydrate (52 g in terms of oxalic acid) and 319 g of 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.4, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75. 1000 g of the titanium-containing aqueous solution was heated at 80 캜 for 2 hours and maintained at a reduced pressure of 580 Torr for 2 hours. Then, pure water was used to adjust the TiO 2 -converted concentration to 4.0% by mass. The titanium-containing aqueous solution thus obtained had a pH of 5.1 and a conductivity of 30.9 mS / cm. 1000 g of the titanium-containing aqueous solution after the above concentration adjustment was added to a 3 L glass-lined autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The resulting sol had a particle diameter of 16 nm as measured by a dynamic light scattering method, a pH of 3.9, a conductivity of 32.6 mS / cm, a concentration of 4.0 mass% in terms of TiO 2 , a concentration of tetramethylammonium hydroxide of 8.0 mass%, an oxalic acid concentration of 6.5 mass% On microscopic observation, elliptical particles of 5 nm in short axis and 15 nm in long axis were observed. The obtained sol was dried at 110 占 폚 and the powder obtained was analyzed by X-ray diffraction. d value was 3.26, and it was confirmed that it was a single phase of rutile type crystal. 1000 g of the rutile titanium oxide aqueous sol was concentrated using a rotary evaporator to obtain a stable rutile titanium oxide aqueous sol having a concentration of 20.5 mass% in terms of TiO 2 . The particle diameter measured according to the dynamic light scattering method was 16 nm.

(실시예 3)(Example 3)

200mL의 비커에 순수 44.9g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 26.9g(SnO2 환산하여 0.75g, 옥살산 환산하여 1.26g 함유), 티탄테트라이소프로폭사이드 14.2g(TiO2 환산하여 4.0g 함유), 옥살산 이수화물 2.2g(옥살산 환산하여 1.6g), 25질량% 수산화 테트라메틸암모늄 수용액 11.8g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 0.63, 수산화 테트라메틸암모늄/티탄 원자의 몰비 0.65였다. 상기 티탄 함유 수용액 100g을 80℃에서 2시간 가열했다. 가열 후의 티탄 함유 수용액의 pH는 3.6, 전도도는 15.8mS/cm, TiO2 환산 농도는 4.0질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 가열 후의 티탄 함유 수용액 60g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 3.4, 전도도 18.0mS/cm, TiO2 환산 농도 4.0질량%, 수산화 테트라메틸암모늄 농도 3.0질량%, 옥살산 농도 2.9질량%, 동적 광산란법에 따라 측정된 입자 직경 22nm이며, 투과형 전자현미경 관찰에서는 단축 5nm와 장축 15nm의 타원 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행했다. d값은 3.29이며, 루틸형 결정의 단상인 것이 확인되었다.
44.9 g of pure water was added to 200 mL of a beaker, and 26.9 g (0.75 g in terms of SnO 2 , containing 1.26 g in terms of oxalic acid) of the aqueous tin oxalate solution prepared in Preparation Example 1 and 14.2 g of titanium tetraisopropoxide in terms of TiO 2 (1.6 g in terms of oxalic acid) and 11.8 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 0.63, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 0.65. 100 g of the titanium-containing aqueous solution was heated at 80 DEG C for 2 hours. The pH of the titanium-containing aqueous solution after heating was 3.6, the conductivity was 15.8 mS / cm, and the concentration in terms of TiO 2 was 4.0% by mass. 60 g of the titanium-containing aqueous solution after heating was charged into a 100 mL Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The sol thus obtained had a pH of 3.4, a conductivity of 18.0 mS / cm, a concentration of 4.0% by mass in terms of TiO 2 , a concentration of tetramethylammonium hydroxide of 3.0% by mass, a concentration of oxalic acid of 2.9% by mass, a particle diameter of 22 nm as measured by a dynamic light scattering method, On microscopic observation, elliptical particles of 5 nm in short axis and 15 nm in long axis were observed. The obtained sol was dried at 110 占 폚 and the powder obtained was analyzed by X-ray diffraction. The value of d was 3.29, and it was confirmed that it was a single phase of a rutile type crystal.

(실시예 4) (Example 4)

200mL의 비커에 순수 3.5g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 26.9g(SnO2 환산하여 0.75g, 옥살산 환산하여 1.26g 함유), 티탄테트라이소프로폭사이드 14.2g(TiO2 환산하여 4.0g 함유), 옥살산 이수화물 9.8g(옥살산 환산하여 7.0g), 25질량% 수산화 테트라메틸암모늄 수용액 45.6g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 1.8, 수산화 테트라메틸암모늄/티탄 원자의 몰비 2.5였다. 상기 티탄 함유 수용액 100g을 90℃에서 2시간 가열했다. 가열 후의 티탄 함유 수용액의 pH는 4.9, 전도도는 37.4mS/cm, TiO2 환산 농도는 4.0질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 상기 가열 후의 티탄 함유 수용액 60g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 4.2, 전도도 41.0mS/cm, TiO2 환산 농도 4.0질량%, 수산화 테트라메틸암모늄 농도 11.4 질량%, 옥살산 농도 8.3 질량%, 동적 광산란법에 따라 측정된 입자 직경 17m이며, 투과형 전자현미경 관찰에서는 단축 5nm와 장축 20nm의 타원 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행하고, 루틸형 결정의 단상인 것이 확인되었다.
Put 3.5g of pure water to a beaker of 200mL, tin oxalic acid aqueous solution prepared in Preparation Example 1 26.9g (SnO 2 converted to 0.75g, oxalic acid converted to contain 1.26g), titanium tetraisopropoxide 14.2g (TiO 2 converted to 4.0 ), 9.8 g of oxalic acid dihydrate (7.0 g in terms of oxalic acid) and 45.6 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.8, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 2.5. 100 g of the titanium-containing aqueous solution was heated at 90 캜 for 2 hours. The pH of the titanium-containing aqueous solution after heating was 4.9, the conductivity was 37.4 mS / cm, and the concentration in terms of TiO 2 was 4.0 mass%. 60 g of the titanium-containing aqueous solution after heating was charged into a 100 ml Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The sol thus obtained had a particle diameter of 17 m measured by a dynamic light scattering method at a pH of 4.2, a conductivity of 41.0 mS / cm, a concentration of 4.0 mass% in terms of TiO 2 , a concentration of tetramethylammonium hydroxide of 11.4 mass%, an oxalic acid concentration of 8.3 mass% On microscopic observation, elliptical particles of 5 nm in short axis and 20 nm in long axis were observed. The powder obtained by drying the obtained sol at 110 占 폚 was subjected to an X-ray diffraction analysis to confirm that it was a single phase of a rutile crystal.

(실시예 5) (Example 5)

200mL의 비커에 순수 30.6g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 37.7g(SnO2 환산하여 1.1g, 옥살산 환산하여 1.8g 함유), 티탄테트라이소프로폭사이드 2.8g(TiO2 환산하여 0.79g 함유), 옥살산 이수화물 0.64g(옥살산 환산하여 0.45g), 25질량% 수산화 테트라메틸암모늄 수용액 7.3g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.7, 옥살산/티탄 원자의 몰비 2.5, 수산화 테트라메틸암모늄/티탄 원자의 몰비 1.75였다. 상기 티탄 함유 수용액 79.0g을 80℃에서 2시간 가열했다. 가열 후의 티탄 함유 수용액의 pH는 3.2, 전도도는 18.3mS/cm, TiO2 환산 농도는 1.0질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 상기 가열 후의 티탄 함유 수용액 60g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 3.2, 전도도 14.5mS/cm, TiO2 환산 농도 1.0질량%, 수산화 테트라메틸암모늄 농도 2.3질량%, 옥살산 농도 2.3질량%, 동적 광산란법에 따라 측정된 입자 직경 14nm이며, 투과형 전자현미경 관찰에서는 1차 입자 직경 5nm 정도의 입자가 집합한 15~30nm의 응집 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행했다. d값은 3.34이며, 루틸형 결정의 단상인 것이 확인되었다.
(Containing 1.1 g in terms of SnO 2 and 1.8 g in terms of oxalic acid), 2.8 g of titanium tetraisopropoxide (0.79 g in terms of TiO 2 ), and 30 g of pure water in a 200 mL beaker, (0.45 g in terms of oxalic acid) and 7.3 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The obtained titanium-containing aqueous solution had a molar ratio of tin atom / titanium atom of 0.7, a molar ratio of oxalic acid / titanium atom of 2.5, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75. 79.0 g of the titanium-containing aqueous solution was heated at 80 캜 for 2 hours. The pH of the titanium-containing aqueous solution after heating was 3.2, the conductivity was 18.3 mS / cm, and the concentration in terms of TiO 2 was 1.0% by mass. 60 g of the titanium-containing aqueous solution after heating was charged into a 100 ml Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The sol thus obtained had a pH of 3.2, a conductivity of 14.5 mS / cm, a TiO 2 concentration of 1.0% by mass, a tetramethylammonium hydroxide concentration of 2.3% by mass, an oxalic acid concentration of 2.3% by mass, a particle diameter of 14 nm as measured by a dynamic light scattering method, In the microscopic observation, aggregated particles of 15 to 30 nm in which particles having a primary particle diameter of about 5 nm were aggregated were observed. The obtained sol was dried at 110 占 폚 and the powder obtained was analyzed by X-ray diffraction. The value of d was 3.34, confirming that it was a single phase of a rutile type crystal.

(실시예 6) (Example 6)

200mL의 비커에 순수 19.7g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 26.9g(SnO2 환산하여 0.75g, 옥살산 환산하여 1.26g 함유), 티탄테트라이소프로폭사이드 14.2g(TiO2 환산하여 4.0g 함유), 옥살산 이수화물 7.3g(옥살산 환산하여 5.2g), 25질량% 수산화 테트라메틸암모늄 수용액 31.9g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 1.4, 수산화 테트라메틸암모늄/티탄 원자의 몰비 1.75였다. 상기 티탄 함유 수용액 100g을 80℃에서 2시간 가열하고, 또한 580Torr의 감압 하에서 2시간 유지한 후, TiO2 환산 농도가 4.0질량%가 되도록 순수를 이용하여 조제했다. 얻어진 티탄 함유 수용액의 pH는 5.1, 전도도는 30.9mS/cm, TiO2 환산 농도는 4.0질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 상기 농도 조정 후의 티탄 함유 수용액 60g을 투입하고, 100℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 4.4, 전도도 32.1mS/cm, TiO2 환산 농도 4.0질량%, 수산화 테트라메틸암모늄 농도 8.0질량%, 옥살산 농도 6.5질량%, 동적 광산란법에 따라 측정된 입자 직경 19nm이며, 투과형 전자현미경 관찰에서는 약 10nm의 타원 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행하고, 루틸형 결정의 단상인 것이 확인되었다.
19.7 g of pure water was added to 200 mL of a beaker, and 26.9 g (0.75 g in terms of SnO 2 , containing 1.26 g in terms of oxalic acid) of the aqueous tin oxalate solution prepared in Preparation Example 1 and 14.2 g of titanium tetraisopropoxide (4.0 in terms of TiO 2) g), oxalic acid dihydrate (5.2 g in terms of oxalic acid), and 31.9 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.4, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75. 100 g of the titanium-containing aqueous solution was heated at 80 캜 for 2 hours, maintained at a reduced pressure of 580 Torr for 2 hours, and then adjusted to pure water to have a TiO 2 reduced concentration of 4.0% by mass. The obtained titanium-containing aqueous solution had a pH of 5.1, a conductivity of 30.9 mS / cm, and a concentration in terms of TiO 2 of 4.0% by mass. 60 g of the titanium-containing aqueous solution after the concentration adjustment described above was charged into a 100 mL Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 100 DEG C for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The sol thus obtained had a pH of 4.4, a conductivity of 32.1 mS / cm, a concentration of 4.0 mass% in terms of TiO 2 , a concentration of tetramethylammonium hydroxide of 8.0 mass%, a concentration of oxalic acid of 6.5 mass%, a particle diameter of 19 nm measured by a dynamic light scattering method, In the microscopic observation, elliptical particles of about 10 nm were observed. The powder obtained by drying the obtained sol at 110 占 폚 was subjected to an X-ray diffraction analysis to confirm that it was a single phase of a rutile crystal.

(실시예 7) (Example 7)

200mL의 비커에 순수 19.7g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 26.9g(SnO2 환산하여 0.75g, 옥살산 환산하여 1.26g 함유), 티탄테트라이소프로폭사이드 14.2g(TiO2 환산하여 4.0g 함유), 옥살산 이수화물 7.3g(옥살산 환산하여 5.2g), 25질량% 수산화 테트라메틸암모늄 수용액 31.9g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 1.4, 수산화 테트라메틸암모늄/티탄 원자의 몰비 1.75였다. 상기 티탄 함유 수용액 100g을, 80℃에서 2시간 가열하고, 또한 580Torr의 감압 하에서 2시간 유지한 후, TiO2 환산 농도가 4.0질량%가 되도록 순수를 이용하여 조제했다. 얻어진 티탄 함유 수용액의 pH는 5.1, 전도도는 30.9mS/cm, TiO2 환산 농도는 4.0질량%였다. 200mL의 SUS 제품 오토클레이브 용기에 상기 농도 조정 후의 티탄 함유 수용액 100g을 투입하고, 180℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 6.9, 전도도 41.6mS/cm, TiO2 환산 농도 4.0질량%, 수산화 테트라메틸암모늄 농도 8.0질량%, 옥살산 농도 6.5질량%, 동적 광산란법에 따라 측정된 입자 직경 81nm이며, 투과형 전자현미경 관찰에서는 약 20nm의 타원 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행하고, 루틸형 결정의 단상인 것이 확인되었다.
19.7 g of pure water was added to 200 mL of a beaker, and 26.9 g (0.75 g in terms of SnO 2 , containing 1.26 g in terms of oxalic acid) of the aqueous tin oxalate solution prepared in Preparation Example 1 and 14.2 g of titanium tetraisopropoxide (4.0 in terms of TiO 2) g), oxalic acid dihydrate (5.2 g in terms of oxalic acid), and 31.9 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.4, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75. The titanium-containing aqueous solution (100 g) was heated at 80 캜 for 2 hours, maintained at a reduced pressure of 580 Torr for 2 hours, and then pure water was used so that the concentration in terms of TiO 2 became 4.0% by mass. The obtained titanium-containing aqueous solution had a pH of 5.1, a conductivity of 30.9 mS / cm, and a concentration in terms of TiO 2 of 4.0% by mass. 100 g of the titanium-containing aqueous solution after the above concentration adjustment was introduced into an SUS product autoclave vessel of 200 mL, and hydrothermal treatment was performed at 180 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The obtained sol, pH 6.9, conductivity of 41.6mS / cm, in terms of TiO 2 concentration of 4.0% by mass, and a particle size of 81nm measured according to tetramethylammonium hydroxide concentration of 8.0% by mass oxalic acid concentration of 6.5% by mass, a dynamic light scattering method, a transmission electron In the microscopic observation, elliptical particles of about 20 nm were observed. The powder obtained by drying the obtained sol at 110 占 폚 was subjected to an X-ray diffraction analysis to confirm that it was a single phase of a rutile crystal.

(제조예 2) (Production Example 2)

100mL의 비커에 순수 20g을 넣고, 주석산 나트륨[SnO2로서 51.7질량% 함유, Showa Kako Corp. 제품] 1.46g을 용해했다. 이어서, 수소형 양이온 교환 수지[앰버라이트(등록상표) IR-120B]를 충전한 컬럼에 통액하여, 나트륨을 제거하고, SnO2 환산 농도가 1.6중량%인 주석산 수용액을 45.2g 조제했다. 원자 흡광 분석의 결과, 상기의 주석산 수용액 중의 나트륨 농도는 6ppm였다.
20 g of pure water was added to 100 mL of the beaker, and sodium tartrate [containing 51.7% by mass as SnO 2 , Showa Kako Corp. Product] was dissolved. Subsequently, the solution was passed through a column packed with a small-sized cation exchange resin (Amberlite (registered trademark) IR-120B) to remove sodium, and 45.2 g of an aqueous tartaric acid solution having a concentration of 1.6 wt% in terms of SnO 2 was prepared. As a result of the atomic absorption analysis, the concentration of sodium in the aqueous tartaric acid solution was 6 ppm.

(비교예 1) (Comparative Example 1)

200mL의 비커에 순수 22.1g을 넣고, 제조예 2에서 조제한 주석산 수용액 45.2g(SnO2 환산하여 0.72g 함유), 티탄테트라이소프로폭사이드 14.2g(TiO2 환산하여 4.0g 함유), 옥살산 이수화물 7.9g(옥살산 환산하여 5.6g), 25질량% 수산화 테트라메틸암모늄 수용액 30.6g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 1.3, 수산화 테트라메틸암모늄/티탄 원자의 몰비 1.75였다. 상기 티탄 함유 수용액 95.9g을 80℃에서 2시간 가열했다. 가열 후의 티탄 함유 수용액의 pH는 5.9, 전도도는 31.5mS/cm, TiO2 환산 농도는 4.0질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 상기 가열 후의 티탄 함유 수용액 60g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 3.9, 전도도 36.0mS/cm, TiO2 환산 농도 4.0질량%, 수산화 테트라메틸암모늄 농도 8.0질량%, 옥살산 농도 5.8질량%, 동적 광산란법에 따라 측정된 입자 직경 17nm이며, 투과형 전자현미경 관찰에서는 5nm 정도의 원형상 입자와 단축 5nm와 장축 25nm의 타원 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행하고, 아나타제형 결정과 루틸형 결정의 혼합물인 것이 확인되었다.
(Containing 0.72 g in terms of SnO 2 ), 14.2 g (containing 4.0 g in terms of TiO 2 ) of titanium tetraisopropoxide, 0.5 g of oxalic acid dihydrate (5.6 g in terms of oxalic acid) and 30.6 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The obtained titanium-containing aqueous solution had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.3, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75. 95.9 g of the titanium-containing aqueous solution was heated at 80 占 폚 for 2 hours. The pH of the titanium-containing aqueous solution after heating was 5.9, the conductivity was 31.5 mS / cm, and the concentration in terms of TiO 2 was 4.0% by mass. 60 g of the titanium-containing aqueous solution after heating was charged into a 100 ml Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The obtained sol, pH 3.9, conductivity of 36.0mS / cm, in terms of TiO 2 concentration of 4.0% by mass, and a particle size of 17nm measured according to tetramethylammonium hydroxide concentration of 8.0% by mass oxalic acid concentration of 5.8% by mass, a dynamic light scattering method, a transmission electron On the microscopic observation, circular particles having a diameter of about 5 nm and elliptical particles having a minor axis of 5 nm and a major axis of 25 nm were observed. The powder obtained by drying the obtained sol at 110 占 폚 was subjected to an X-ray diffraction analysis to confirm that it was a mixture of anatase type crystal and rutile type crystal.

(비교예 2) (Comparative Example 2)

200mL의 비커에 순수 19.7g을 넣고, 10질량% 주석(IV) 이소프로폭사이드의 이소프로판올 용액(Alfa Aesar사 제품) 17.7g(SnO2 환산하여 0.75g 함유), 티탄테트라이소프로폭사이드 14.2g(TiO2 환산하여 4.0g 함유), 옥살산 이수화물 9.5g(옥살산 환산하여 6.7g), 25질량% 수산화 테트라메틸암모늄 수용액 36.4g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 1.5, 수산화 테트라메틸암모늄/티탄 원자의 몰비 2.0이었다. 상기 티탄 함유 수용액 100g을 90℃에서 2시간 가열했다. 가열 후의 티탄 함유 수용액의 pH는 4.7, 전도도는 28.6mS/cm, TiO2 환산 농도는 4.0질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 상기 가열 후의 티탄 함유 수용액 60g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 3.9, 전도도 31.4mS/cm, TiO2 환산 농도 4.0질량%, 수산화 테트라메틸암모늄 농도 9.1 질량%, 옥살산 농도 6.7 질량%, 동적 광산란법에 따라 측정된 입자 직경 16nm이며, 투과형 전자현미경 관찰에서는 5nm의 둥그스름한 입자와, 단축 5nm와 장축 20nm의 타원 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행하고, 아나타제형 결정과 루틸형 결정의 혼합물인 것이 확인되었다.
19.7 g of pure water was added to a 200 mL beaker and 17.7 g of an isopropanol solution of 10 mass% tin (IV) isopropoxide (containing 0.75 g in terms of SnO 2 ) (manufactured by Alfa Aesar), 14.2 g of titanium tetraisopropoxide (Containing 4.0 g in terms of TiO 2 ), 9.5 g of oxalic acid dihydrate (6.7 g in terms of oxalic acid) and 36.4 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.5, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 2.0. 100 g of the titanium-containing aqueous solution was heated at 90 캜 for 2 hours. The pH of the titanium-containing aqueous solution after heating was 4.7, the conductivity was 28.6 mS / cm, and the concentration in terms of TiO 2 was 4.0% by mass. 60 g of the titanium-containing aqueous solution after heating was charged into a 100 ml Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The obtained sol, pH 3.9, and the conductivity of 31.4mS / cm, in terms of TiO 2 concentration of 4.0% by mass, a particle size of 16nm measured according to tetramethylammonium hydroxide concentration of 9.1% by mass oxalic acid concentration of 6.7% by mass, a dynamic light scattering method, a transmission electron On microscopic observation, rounded particles of 5 nm and oval particles of 5 nm of short axis and 20 nm of long axis were observed. The powder obtained by drying the obtained sol at 110 占 폚 was subjected to an X-ray diffraction analysis to confirm that it was a mixture of anatase type crystal and rutile type crystal.

(비교예 3) (Comparative Example 3)

200mL의 비커에 순수 74.7g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 13.5g(SnO2 환산하여 0.38g, 옥살산 환산하여 0.63g 함유), 티탄테트라이소프로폭사이드 7.1g(TiO2 환산하여 2.0g 함유), 옥살산 이수화물 4.2g(옥살산 환산하여 3.0g), 25질량% 수산화 테트라메틸암모늄 수용액 63.8g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 1.6, 수산화 테트라메틸암모늄/옥살산의 몰비 7.0이었다. 상기 티탄 함유 수용액 100g을 80℃에서 2시간 가열하고, 또한 580Torr의 감압 하에서 2시간 유지한 후, TiO2 환산 농도가 4.0질량%가 되도록 순수를 이용하여 조제했다. 조정 후의 티탄 함유 수용액의 pH는 14.6, 전도도는 62.1mS/cm, TiO2 환산 농도는 2.0질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 상기 농도 조정 후의 티탄 함유 수용액 60g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 실온으로 냉각 후, 취출된 처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 14.0, 전도도 50.0mS/cm, TiO2 환산 농도 2.0질량%, 수산화 테트라메틸암모늄 농도 15.9질량%, 옥살산 농도 3.6질량%, 동적 광산란법에 따라 측정된 입자 직경 115nm이며, 투과형 전자현미경 관찰에서는 20nm 정도의 구상 입자와 단축 70nm와 장축 350nm의 타원 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행한 바, 루틸형 결정과 부르카이트형 결정의 혼합물인 것이 확인되었다.
(Containing 0.38 g in terms of SnO 2 and 0.63 g in terms of oxalic acid) and 7.1 g of titanium tetraisopropoxide (converted to 2.0 in terms of TiO 2 ) were put into a beaker of 200 mL, to which 74.7 g of pure water was added, g), 4.2 g of oxalic acid dihydrate (3.0 g in terms of oxalic acid), and 63.8 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The obtained titanium-containing aqueous solution had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.6, and a molar ratio of tetramethylammonium hydroxide / oxalic acid of 7.0. 100 g of the titanium-containing aqueous solution was heated at 80 캜 for 2 hours, maintained at a reduced pressure of 580 Torr for 2 hours, and then adjusted to pure water to have a TiO 2 reduced concentration of 4.0% by mass. The pH of the titanium-containing aqueous solution after the adjustment was 14.6, the conductivity was 62.1 mS / cm, and the concentration in terms of TiO 2 was 2.0% by mass. 60 g of the titanium-containing aqueous solution after the above concentration adjustment was introduced into a 100 mL Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After cooling to room temperature, the obtained solution after the treatment was a pale milky white titanium oxide aqueous sol. The sol thus obtained had a pH of 14.0, a conductivity of 50.0 mS / cm, a concentration of 2.0 mass% in terms of TiO 2 , a concentration of tetramethylammonium hydroxide of 15.9 mass%, a concentration of oxalic acid of 3.6 mass%, a particle diameter of 115 nm measured by a dynamic light scattering method, Spherical particles having a diameter of about 20 nm and oval particles having a short axis of 70 nm and a long axis of 350 nm were observed under a microscope. The powder obtained by drying the obtained sol at 110 占 폚 was analyzed by X-ray diffraction to find that it was a mixture of a rutile crystal and a bourcite crystal.

(비교예 4) (Comparative Example 4)

200mL의 비커에 순수 19.7g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 26.9g(SnO2 환산하여 0.75g, 옥살산 환산하여 1.26g 함유), 티탄테트라이소프로폭사이드 14.2g(TiO2 환산하여 4.0g 함유), 옥살산 이수화물 7.3g(옥살산 환산하여 5.2g), 25질량% 수산화 테트라메틸암모늄 수용액 31.9g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 1.4, 수산화 테트라메틸암모늄/티탄 원자의 몰비 1.75였다. 상기 티탄 함유 수용액 100g을 80℃에서 2시간 가열하고, 또한 580Torr의 감압 하에서 2시간 유지한 후, TiO2 환산 농도가 4.0질량%가 되도록 순수를 이용하여 조제했다. 조정 후의 티탄 함유 수용액의 pH는 5.1, 전도도는 30.9mS/cm, TiO2 환산 농도는 4.0질량%였다. 200mL의 SUS 제품 오토클레이브 용기에 상기 농도 조정 후의 티탄 함유 수용액 100g을 투입하고, 220℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 유백색의 현탁액이었다. 얻어진 현탁액은, pH 8.2, 전도도 42.0mS/cm, TiO2 환산 농도 4.0질량%, 수산화 테트라메틸암모늄 농도 8.0질량%, 옥살산 농도 6.5질량%, 동적 광산란법에 따라 측정된 입자 직경 950nm이며, 투과형 전자현미경 관찰에서는 1차 입자 직경이 약 5nm인 콜로이드 입자가 응집하여 500nm 이상이 된 응집체가 관찰되었다. 얻어진 현탁액을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행하고, 루틸형 결정인 것이 확인되었다.
19.7 g of pure water was added to 200 mL of a beaker, and 26.9 g (0.75 g in terms of SnO 2 , containing 1.26 g in terms of oxalic acid) of the aqueous tin oxalate solution prepared in Preparation Example 1 and 14.2 g of titanium tetraisopropoxide (4.0 in terms of TiO 2) g), oxalic acid dihydrate (5.2 g in terms of oxalic acid), and 31.9 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 1.4, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75. 100 g of the titanium-containing aqueous solution was heated at 80 캜 for 2 hours, maintained at a reduced pressure of 580 Torr for 2 hours, and then adjusted to pure water to have a TiO 2 reduced concentration of 4.0% by mass. The pH of the titanium-containing aqueous solution after the adjustment was 5.1, the conductivity was 30.9 mS / cm, and the concentration in terms of TiO 2 was 4.0% by mass. 100 g of the titanium-containing aqueous solution after the above concentration adjustment was introduced into a 200-mL SUS product autoclave vessel, and hydrothermal treatment was performed at 220 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a milky white suspension. The obtained suspension had a particle diameter of 950 nm as measured by a dynamic light scattering method at pH 8.2, conductivity of 42.0 mS / cm, concentration of 4.0 mass% in terms of TiO 2 , concentration of tetramethylammonium hydroxide of 8.0 mass%, concentration of oxalic acid of 6.5 mass% In the microscopic observation, agglomerates of colloidal particles having a primary particle diameter of about 5 nm aggregated and became 500 nm or more were observed. The resulting suspension was dried at 110 占 폚 and the powder thus obtained was subjected to X-ray diffraction analysis to confirm that it was a rutile crystal.

(비교예 5) (Comparative Example 5)

200mL의 비커에 순수 32.2g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 13.5g(SnO2 환산하여 0.38g, 옥살산 환산하여 0.63g 함유), 티탄테트라이소프로폭사이드 14.2g(TiO2 환산하여 4.0g 함유), 옥살산 이수화물 7.8g(옥살산 환산하여 5.5g), 25질량% 수산화 테트라메틸암모늄 수용액 31.9g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.05, 옥살산/티탄 원자의 몰비 1.4, 수산화 테트라메틸암모늄/티탄 원자의 몰비 1.75였다. 상기 티탄 함유 수용액 100g을 80℃에서 2시간 가열했다. 가열 후의 티탄 함유 수용액의 pH는 4.7, 전도도는 29.4mS/cm, TiO2 환산 농도는 4.0질량%였다. 200mL의 SUS 제품 오토클레이브 용기에 상기 가열 후의 티탄 함유 수용액 100g을 투입하고, 180℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 3.9, 전도도 32.0mS/cm, TiO2 환산 농도 4.0질량%, 수산화 테트라메틸암모늄 농도 8.0질량%, 옥살산 농도 6.5질량%, 동적 광산란법에 따라 측정된 입자 직경 22nm이며, 투과형 전자현미경 관찰에서는 단축 5nm와 장축 20nm의 타원 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행한 바, 루틸형 결정과 아나타제형 결정의 혼합물인 것을 알 수 있었다.
(Containing 0.38 g in terms of SnO 2 and 0.63 g in terms of oxalic acid) and 14.2 g of titanium tetraisopropoxide (4.0 in terms of TiO 2 ) were added to a 200-mL beaker, to which 32.2 g of pure water was added, g), oxalic acid dihydrate (5.5 g in terms of oxalic acid), and 31.9 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.05, a molar ratio of oxalic acid / titanium atom of 1.4, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75. 100 g of the titanium-containing aqueous solution was heated at 80 DEG C for 2 hours. The pH of the titanium-containing aqueous solution after heating was 4.7, the conductivity was 29.4 mS / cm, and the concentration in terms of TiO 2 was 4.0 mass%. 100 g of the titanium-containing aqueous solution after heating was charged into a 200-mL SUS product autoclave vessel, and hydrothermal treatment was performed at 180 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The sol thus obtained had a pH of 3.9, a conductivity of 32.0 mS / cm, a concentration of 4.0% by mass in terms of TiO 2 , a concentration of tetramethylammonium hydroxide of 8.0% by mass, a concentration of oxalic acid of 6.5% by mass, a particle diameter of 22 nm as measured by a dynamic light scattering method, On microscopic observation, elliptical particles of 5 nm in short axis and 20 nm in long axis were observed. The powder obtained by drying the obtained sol at 110 占 폚 was analyzed by X-ray diffraction to find that it was a mixture of rutile type crystals and anatase type crystals.

(비교예 6) (Comparative Example 6)

200mL의 비커에 순수 39.6g을 넣고, 제조예 1에서 조제한 옥살산 주석 수용액 13.5g(SnO2 환산하여 0.38g, 옥살산 환산하여 0.63g 함유), 티탄테트라이소프로폭사이드 7.2g(TiO2 환산하여 2.0g 함유), 옥살산 이수화물 21.5g(옥살산 환산하여 15.3g), 25질량% 수산화 테트라메틸암모늄 수용액 18.2g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 옥살산/티탄 원자의 몰비 7.1, 수산화 테트라메틸암모늄/티탄 원자의 몰비 2.0이었다. 상기 티탄 함유 수용액 100g을 80℃에서 2시간 가열하고, 또한 580Torr의 감압 하에서 2시간 유지한 후, TiO2 환산 농도가 4.0질량%가 되도록 순수를 이용하여 조제했다. 얻어진 티탄 함유 수용액의 pH는 2.1, 전도도는 93.5mS/cm, TiO2 환산 농도는 2.0질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 상기 농도 조정 후의 티탄 함유 수용액 60g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 유백색의 현탁액이었다. 얻어진 현탁액은, pH 2.1, 전도도 27.0 mS/cm, TiO2 환산 농도 2.0 질량%, 수산화 테트라메틸암모늄 농도 2.3질량%, 옥살산 농도 15.9질량%, 동적 광산란법에 따라 측정된 입자 직경 243nm이며, 투과형 전자현미경 관찰에서는 1차 입자 직경이 약 4nm인 콜로이드 입자가 응집하여 300nm 이상이 된 응집체가 관찰되었다. 얻어진 현탁액을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행하고, 루틸형 결정인 것이 확인되었다.
(Containing 0.38 g in terms of SnO 2 and 0.63 g in terms of oxalic acid) and 7.2 g of titanium tetraisopropoxide (2.0 in terms of TiO 2 ) were added to 200 mL of the beaker, (15.3 g in terms of oxalic acid) and 18.2 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1, a molar ratio of oxalic acid / titanium atom of 7.1, and a molar ratio of tetramethylammonium hydroxide / titanium atom of 2.0. 100 g of the titanium-containing aqueous solution was heated at 80 캜 for 2 hours, maintained at a reduced pressure of 580 Torr for 2 hours, and then adjusted to pure water to have a TiO 2 reduced concentration of 4.0% by mass. The obtained titanium-containing aqueous solution had a pH of 2.1, a conductivity of 93.5 mS / cm, and a concentration in terms of TiO 2 of 2.0% by mass. 60 g of the titanium-containing aqueous solution after the above concentration adjustment was introduced into a 100 mL Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a milky white suspension. The suspension thus obtained had a pH of 2.1, a conductivity of 27.0 mS / cm, a concentration of 2.0% by weight in terms of TiO 2 , a concentration of 2.3% by mass of tetramethylammonium hydroxide, a concentration of oxalic acid of 15.9% by mass, a particle diameter of 243 nm measured by a dynamic light scattering method, In the microscopic observation, aggregates having aggregated colloidal particles having a primary particle diameter of about 4 nm and having a particle size of 300 nm or more were observed. The resulting suspension was dried at 110 占 폚 and the powder thus obtained was subjected to X-ray diffraction analysis to confirm that it was a rutile crystal.

(비교예 7) (Comparative Example 7)

200mL의 비커에 순수 36.2g을 넣고, 10질량% 주석(IV) 이소프로폭사이드 이소프로판올 용액(Alfa Aesar사 제품) 17.7g(SnO2 환산하여 0.75g 함유), 티탄테트라이소프로폭사이드 14.2g(TiO2 환산하여 4.0g 함유), 25질량% 수산화 테트라메틸암모늄 수용액 31.9g을 교반하에 첨가했다. 얻어진 티탄 함유 수용액은, 주석 원자/티탄 원자의 몰비 0.1, 수산화 테트라메틸암모늄/티탄 원자의 몰비 1.75였다. 상기 티탄 함유 수용액 100g을 90℃에서 2시간 가열했다. 가열 후의 티탄 함유 수용액의 pH는 14, 전도도는 64.9mS/cm, TiO2 환산 농도는 4.0질량%였다. 100mL의 테플론(등록상표) 제품 오토클레이브 용기에 상기 가열 후의 티탄 함유 수용액 60g을 투입하고, 140℃에서 5시간 수열처리를 행했다. 수열처리 후, 실온으로 냉각했다. 수열처리 후의 용액은 엷은 유백색의 산화 티탄 수성 졸이었다. 얻어진 졸은, pH 14, 전도도 67.4mS/cm, TiO2 환산 농도 4.0질량%, 수산화 테트라메틸암모늄 농도 9.1질량%, 동적 광산란법에 따라 측정된 입자 직경 125nm이며, 투과형 전자현미경 관찰에서는 2~3nm의 구상 입자가 관찰되었다. 얻어진 졸을 110℃에서 건조시켜 얻은 분말의 X선 회절 분석을 행하고, 아나타제형 결정과 루틸형 결정의 혼합물인 것이 확인되었다.
36.2 g of pure water was added to a 200 mL beaker and 17.7 g of a 10 mass% tin (IV) isopropoxide isopropanol solution (manufactured by Alfa Aesar) (containing 0.75 g in terms of SnO 2 ) and 14.2 g of titanium tetraisopropoxide Containing 4.0 g in terms of TiO 2 ) and 31.9 g of a 25 mass% aqueous solution of tetramethylammonium hydroxide were added with stirring. The titanium-containing aqueous solution obtained had a molar ratio of tin atom / titanium atom of 0.1 and a molar ratio of tetramethylammonium hydroxide / titanium atom of 1.75. 100 g of the titanium-containing aqueous solution was heated at 90 캜 for 2 hours. The pH of the titanium-containing aqueous solution after heating was 14, the conductivity was 64.9 mS / cm, and the concentration in terms of TiO 2 was 4.0% by mass. 60 g of the titanium-containing aqueous solution after heating was charged into a 100 ml Teflon (registered trademark) product autoclave vessel, and hydrothermal treatment was performed at 140 캜 for 5 hours. After hydrothermal treatment, it was cooled to room temperature. The solution after the hydrothermal treatment was a pale milky white titanium oxide aqueous sol. The sol thus obtained had a particle size of 125 nm measured by a dynamic light scattering method at a pH of 14, a conductivity of 67.4 mS / cm, a concentration of 4.0 mass% in terms of TiO 2 , a concentration of tetramethylammonium hydroxide of 9.1 mass% Of spherical particles were observed. The powder obtained by drying the obtained sol at 110 占 폚 was subjected to an X-ray diffraction analysis to confirm that it was a mixture of anatase type crystal and rutile type crystal.

[표 1][Table 1]

Figure 112013084207762-pct00001
Figure 112013084207762-pct00001

NR4(OH)(*): 제4급 암모늄 수산화물NR 4 (OH) (*): Quaternary ammonium hydroxide

입자 직경(nm)(**): 동적 광산란법에 따라 측정
Particle diameter (nm) (**): Measured according to dynamic light scattering method

본 발명에 의해 얻어지는 루틸형 산화 티탄 졸은, 촉매, 광촉매, 광학 재료, 항균, 오염방지 등의 용도에 유용하며, 특히 색소 증감형 태양전지의 투명 전극용 산화 티탄으로서 유용하다.The rutile-type titanium oxide sol obtained by the present invention is useful as a catalyst, a photocatalyst, an optical material, an antibacterial agent, and a pollution prevention, and is particularly useful as a titanium oxide for a transparent electrode of a dye-sensitized solar cell.

Claims (4)

하기의 (a) 공정 및 (b) 공정을 포함한 동적 광산란법에 따라 측정된 입자 직경이 5~100nm인 루틸형 산화 티탄 졸의 제조 방법:
(a) 공정: 옥살산 주석 수용액, 티탄 알콕사이드, 옥살산, 제4급 암모늄 수산화물 및 물을 혼합하고, 그 때, 티탄 원자 1몰에 대하여, 각각, 주석 원자가 0.1~0.8몰의 비율, 상기 옥살산이 0.01~5몰의 비율, 및 상기 제4급 암모늄 수산화물이 0.1~3.5몰의 비율이 되도록 조정하여, TiO2 환산 농도 0.1~15질량%의 티탄 함유 수용액을 조제하는 공정,
(b) 공정: 상기 (a) 공정에서 얻어진 티탄 함유 수용액을 100~200℃에서 수열처리하는 공정.
A process for producing a rutile titanium oxide sol having a particle diameter of 5 to 100 nm, which is measured by a dynamic light scattering method including the following steps (a) and (b):
(a) Process: A tin oxalate aqueous solution, a titanium alkoxide, oxalic acid, a quaternary ammonium hydroxide and water are mixed, and then 0.1 to 0.8 mol of tin atoms per mol of the titanium atom, 0.01 To 5 moles of said quaternary ammonium hydroxide and 0.1 to 3.5 moles of said quaternary ammonium hydroxide to prepare a titanium-containing aqueous solution having a concentration of 0.1 to 15 mass% in terms of TiO 2 ,
(b) A step of hydrothermally treating the titanium-containing aqueous solution obtained in the step (a) at 100 to 200 캜.
제1항에 있어서,
상기 티탄 알콕사이드가 일반식 (I)
Ti(OR1)4 (I)
[식 (I) 중의 각 R1은 동일 혹은 상이한, 탄소 원자수 1~3의 알킬기임.]로 표시되는 테트라알콕시티탄인 루틸형 산화 티탄 졸의 제조 방법.
The method according to claim 1,
Wherein the titanium alkoxide has the general formula (I)
Ti (OR 1) 4 (I )
Wherein each R 1 in the formula (I) is the same or different and is an alkyl group having 1 to 3 carbon atoms.
제1항에 있어서,
상기 제4급 암모늄 수산화물이 일반식 (II)
〔NR2R3R4R5〕OH (II)
[식 (II) 중, R2, R3, R4 및 R5는, 각각 독립하여, 탄소 원자수 1~8의 알킬기, 탄소 원자수 1~8의 히드록시알킬기 또는 탄소 원자수 7~15의 아릴옥시알킬기 혹은 벤질기를 나타냄.]로 표시되는 제4급 암모늄 수산화물인 루틸형 산화 티탄 졸의 제조 방법.
The method according to claim 1,
Wherein the quaternary ammonium hydroxide is represented by the general formula (II)
[NR 2 R 3 R 4 R 5 ] OH (II)
R 2 , R 3 , R 4 and R 5 each independently represent an alkyl group having 1 to 8 carbon atoms, a hydroxyalkyl group having 1 to 8 carbon atoms or an alkyl group having 7 to 15 carbon atoms An aryloxyalkyl group having 1 to 20 carbon atoms, or a benzyl group), which is a quaternary ammonium hydroxide.
제3항에 있어서,
상기 제4급 암모늄 수산화물이 수산화 테트라메틸암모늄 또는 수산화 테트라에틸암모늄인 루틸형 산화 티탄 졸의 제조 방법.
The method of claim 3,
Wherein the quaternary ammonium hydroxide is tetramethylammonium hydroxide or tetraethylammonium hydroxide.
KR1020137024428A 2011-02-15 2012-02-15 Method for producing rutile-type titanium oxide sol KR101887052B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011029852 2011-02-15
JPJP-P-2011-029852 2011-02-15
PCT/JP2012/053554 WO2012111717A1 (en) 2011-02-15 2012-02-15 Method for producing rutile-type titanium oxide sol

Publications (2)

Publication Number Publication Date
KR20140016290A KR20140016290A (en) 2014-02-07
KR101887052B1 true KR101887052B1 (en) 2018-08-09

Family

ID=46672630

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137024428A KR101887052B1 (en) 2011-02-15 2012-02-15 Method for producing rutile-type titanium oxide sol

Country Status (8)

Country Link
US (1) US8747542B2 (en)
EP (1) EP2676934B1 (en)
JP (1) JP5835589B2 (en)
KR (1) KR101887052B1 (en)
CN (1) CN103380083B (en)
HU (1) HUE037418T2 (en)
TW (1) TWI520909B (en)
WO (1) WO2012111717A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6076019B2 (en) * 2011-10-06 2017-02-08 多木化学株式会社 Alkaline rutile type titanium oxide sol
JP6370698B2 (en) * 2014-12-05 2018-08-08 株式会社ダイセル Antimicrobial agent
JP6578756B2 (en) * 2015-06-19 2019-09-25 株式会社リコー Dispersion for forming porous structure, porous structure, and photoelectric conversion element
US11161987B2 (en) 2015-12-09 2021-11-02 The Research Foundation For The State University Of New York Mixed transition metal oxides silica xerogels as antifouling/fouling release surfaces
JP7114010B1 (en) * 2020-09-18 2022-08-05 三井金属鉱業株式会社 Titanic acid aqueous solution
EP4365136A1 (en) * 2021-07-02 2024-05-08 Ishihara Sangyo Kaisha, Ltd. Titanium oxide particles and method for producing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132706A (en) * 2003-10-31 2005-05-26 Mitsui Chemicals Inc Manufacturing method of rutile type titanium oxide superfine particle
JP2009227519A (en) 2008-03-24 2009-10-08 Jgc Catalysts & Chemicals Ltd Method for producing rutile-type titanium dioxide fine particles
WO2010055770A1 (en) * 2008-11-12 2010-05-20 日産化学工業株式会社 Titanium oxide sol manufacturing method
JP2011502937A (en) 2007-11-15 2011-01-27 ユミコア ソシエテ アノニム Method for producing rutile titanium dioxide powder

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2783417B2 (en) 1989-03-30 1998-08-06 触媒化成工業株式会社 Manufacturing method of rutile type titanium oxide sol
JP4069330B2 (en) 1997-03-03 2008-04-02 日産化学工業株式会社 Method for producing titanium oxide-tin oxide composite sol
WO1997015526A1 (en) * 1995-10-27 1997-05-01 E.I. Du Pont De Nemours And Company Hydrothermal process for making ultrafine metal oxide powders
JP2002255532A (en) * 2001-02-06 2002-09-11 Kishun Kin Method for producing silicon carbide and method for disposing waste silicon sludge
US7045005B2 (en) * 2001-07-19 2006-05-16 Sumitomo Chemical Company, Limited Ceramics dispersion liquid, method for producing the same, and hydrophilic coating agent using the same
DE10205920A1 (en) 2002-02-12 2003-08-21 Itn Nanovation Gmbh Nanoscale rutile and process for its production
JP4374869B2 (en) * 2002-05-27 2009-12-02 住友化学株式会社 Manufacturing method of ceramic dispersion
US7645436B1 (en) * 2003-01-07 2010-01-12 Aps Laboratory Tractable metal oxide sols and nanocomposites therefrom
EP1775120A4 (en) * 2004-06-29 2009-12-02 Mitsui Chemicals Inc Fine particles of tin-modified rutile-type titanium dioxide
JP5075385B2 (en) * 2006-09-28 2012-11-21 株式会社 資生堂 Porous titanium oxide and method for producing the same
KR20100014340A (en) * 2006-12-28 2010-02-10 이 아이 듀폰 디 네모아 앤드 캄파니 Processes for the hydrothermal production of titanium dioxide
JP4918880B2 (en) * 2007-05-23 2012-04-18 日産化学工業株式会社 Method for producing zirconia sol

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005132706A (en) * 2003-10-31 2005-05-26 Mitsui Chemicals Inc Manufacturing method of rutile type titanium oxide superfine particle
JP2011502937A (en) 2007-11-15 2011-01-27 ユミコア ソシエテ アノニム Method for producing rutile titanium dioxide powder
JP2009227519A (en) 2008-03-24 2009-10-08 Jgc Catalysts & Chemicals Ltd Method for producing rutile-type titanium dioxide fine particles
WO2010055770A1 (en) * 2008-11-12 2010-05-20 日産化学工業株式会社 Titanium oxide sol manufacturing method

Also Published As

Publication number Publication date
KR20140016290A (en) 2014-02-07
TWI520909B (en) 2016-02-11
HUE037418T2 (en) 2018-08-28
JPWO2012111717A1 (en) 2014-07-07
CN103380083A (en) 2013-10-30
TW201247545A (en) 2012-12-01
EP2676934A1 (en) 2013-12-25
EP2676934A4 (en) 2015-07-29
US20130331463A1 (en) 2013-12-12
EP2676934B1 (en) 2018-04-04
JP5835589B2 (en) 2015-12-24
CN103380083B (en) 2016-04-20
WO2012111717A1 (en) 2012-08-23
US8747542B2 (en) 2014-06-10

Similar Documents

Publication Publication Date Title
KR101563557B1 (en) Titanium Oxide Sol Manufacturing Method
KR101887052B1 (en) Method for producing rutile-type titanium oxide sol
JP4606385B2 (en) Method for producing alkali-type titanium oxide sol
JP2009227519A (en) Method for producing rutile-type titanium dioxide fine particles
JP3515034B2 (en) Titanium oxide sol and method for producing the same
KR101971724B1 (en) Method for producing rutile-type titanium oxide sol
JP6300313B2 (en) Rutile-type titanium oxide sol and method for producing the same
JP2016193801A (en) Method for producing titanium oxide sol doped with niobium and/or tantalum
JP4559948B2 (en) Layered titanate nanosheet dispersion
JP6076019B2 (en) Alkaline rutile type titanium oxide sol
JP2012193048A (en) Method for producing titanium oxide fine particle, and titanium oxide fine particle produced by the production method

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right