WO2009116378A1 - SOLID TRANSITION METAL HYDROXIDE FILM, α-COBALT HYDROXIDE FILM, MANUFACTURING METHOD FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR α-COBALT HYDROXIDE, MANUFACTURING DEVICE FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR HYDRATED LITHIUM COBALT OXIDE, TRANSITION METAL OXIDE FILM, AND ELECTRODE MATERIAL - Google Patents

SOLID TRANSITION METAL HYDROXIDE FILM, α-COBALT HYDROXIDE FILM, MANUFACTURING METHOD FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR α-COBALT HYDROXIDE, MANUFACTURING DEVICE FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR HYDRATED LITHIUM COBALT OXIDE, TRANSITION METAL OXIDE FILM, AND ELECTRODE MATERIAL Download PDF

Info

Publication number
WO2009116378A1
WO2009116378A1 PCT/JP2009/053769 JP2009053769W WO2009116378A1 WO 2009116378 A1 WO2009116378 A1 WO 2009116378A1 JP 2009053769 W JP2009053769 W JP 2009053769W WO 2009116378 A1 WO2009116378 A1 WO 2009116378A1
Authority
WO
WIPO (PCT)
Prior art keywords
transition metal
hydroxide
cobalt
solution
substrate
Prior art date
Application number
PCT/JP2009/053769
Other languages
French (fr)
Japanese (ja)
Other versions
WO2009116378A8 (en
Inventor
隆史 加藤
佑哉 緒明
西村 達也
智司 梶山
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Priority to JP2010503818A priority Critical patent/JPWO2009116378A1/en
Publication of WO2009116378A1 publication Critical patent/WO2009116378A1/en
Publication of WO2009116378A8 publication Critical patent/WO2009116378A8/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/04Oxides; Hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/78Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by stacking-plane distances or stacking sequences
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • C01P2004/34Spheres hollow
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a solid transition metal hydroxide, in particular, a solid transition metal hydroxide film, an ⁇ -type cobalt hydroxide film, a solid transition metal hydroxide production method, an ⁇ -type cobalt hydroxide production method, an electrode material, and
  • the present invention relates to a solid transition metal hydroxide production apparatus.
  • Nickel hydroxide is expected as an electrode material for nickel-hydrogen batteries
  • cobalt hydroxide is expected as a material that contributes to improving the characteristics of lithium ion secondary batteries.
  • Non-patent Document 1 Non-patent Document 1
  • ⁇ -type has been suggested to show better electrochemical characteristics than ⁇ -type when used for lithium ion battery electrodes and electrochemical capacitors, but the effects of crystallinity and structure are studied. Since it has not been completed, it is difficult to say that the investigation of electrochemical characteristics utilizing the ⁇ -type structure is sufficient.
  • ⁇ -type selective synthesis is performed by mixing an aqueous solution containing ammonium ions and an aqueous solution containing cobalt ions (Non-patent Document 2), an electrochemical technique (Non-patent Document 3), or the like.
  • the crystallinity is not good.
  • the poor crystallinity is often caused by the disordered layered structure.
  • the ⁇ -type selective synthesis is obtained by decomposing hexamethylenetetramine in the presence of sodium chloride in an aqueous solution containing cobalt ions, but requires a temperature of 90 ° C, and it has not been thinned. No (non-patent document 4).
  • a production example using decomposition of urea is also shown (Non-Patent Documents 5 and 6), but it is merely an aggregate of plate crystals and is hardly a thin film material.
  • thermodynamically most stable ⁇ -type has a small interlayer distance (about 0.46 nm or less) and a laminated structure of layers represented by a stoichiometric ratio of Co (OH) 2 .
  • ⁇ -type negatively charged layers represented by Co (OH) 2-x are stacked with an interlayer distance of about 0.8 nm or more.
  • the present invention has been made in view of the above-described background art, and an object thereof is to provide a transition metal hydroxide film having controlled orientation.
  • the first aspect of the present invention is: A transition metal hydroxide film formed on a substrate, In the transition metal hydroxide film, the crystal axis of the transition metal hydroxide film is oriented with respect to the surface of the substrate.
  • a transition metal hydroxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
  • the second aspect of the present invention is 2.
  • the transition metal may be a multi-element system including a plurality of these elements. This is the same in the following.
  • the third aspect of the present invention is An ⁇ -type cobalt hydroxide film formed on a substrate,
  • the ⁇ -type cobalt hydroxide film is characterized in that the c-axis of ⁇ -type cobalt hydroxide is oriented with respect to the surface of the substrate.
  • an ⁇ -type cobalt hydroxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
  • the fourth aspect of the present invention is 2.
  • a material that enables construction of a composite material or the like can be obtained by intercalating molecules different from ⁇ -type cobalt hydroxide.
  • the fifth aspect of the present invention provides An ⁇ -type cobalt hydroxide film formed on a substrate,
  • the ⁇ -type cobalt hydroxide film is characterized in that diffraction peaks derived from the (003) plane, the (006) plane, and the (00.15) plane are observed.
  • an ⁇ -type cobalt hydroxide film excellent in crystallinity and oriented on the base material can be obtained, and a material that can be expected to improve various characteristics is obtained.
  • the sixth aspect of the present invention provides Solid transition by hydroxylating the transition metal while increasing the pH of the solution while coordinating a substance having a functional group that coordinates with the transition metal, which is different from the hydroxy group, with the transition metal in the solution
  • a method for producing a solid transition metal hydroxide is characterized in that a metal hydroxide is formed.
  • the seventh aspect of the present invention provides 7.
  • the eighth aspect of the present invention is 7.
  • the ninth aspect of the present invention provides 7.
  • the tenth aspect of the present invention provides 7.
  • a material capable of constructing a composite material or the like can be obtained by intercalating molecules. It is in.
  • the eleventh aspect of the present invention is An ⁇ -type cobalt hydroxide production method is characterized in that ⁇ -type cobalt hydroxide is formed while raising pH by dissolving a volatile base gas in a cobalt ion solution.
  • ⁇ -type cobalt hydroxide can be obtained by a simple method.
  • the twelfth aspect of the present invention is 12.
  • ⁇ -type cobalt hydroxide having a controlled shape is obtained.
  • An example of a molecule having a functional group coordinated with cobalt ion is polyacrylic acid.
  • the thirteenth aspect of the present invention is 12.
  • ⁇ -type cobalt hydroxide can be deposited on the substrate.
  • the fourteenth aspect of the present invention provides 12.
  • oriented ⁇ -type cobalt hydroxide having high crystallinity can be obtained.
  • functional groups that coordinate with cobalt ions include amino groups.
  • the fifteenth aspect of the present invention is 12.
  • a material capable of constructing a composite material or the like can be obtained by intercalating molecules.
  • the sixteenth aspect of the present invention is A solid transition metal hydroxide production method is characterized in that a volatile base gas is gradually dissolved in a transition metal solution to form a solid transition metal hydroxide.
  • the seventeenth aspect of the present invention is Storing the first container containing the transition metal solution and the second container containing the volatile base solution together in the third container; Solid transition having a step of increasing the pH of the solution in the first container by diffusing the volatile base gas volatilized from the second container into the third container and dissolving in the solution in the first container It is in the metal hydroxide manufacturing method.
  • the eighteenth aspect of the present invention provides Storing both the first container containing the cobalt ion solution and the second container containing the ammonia solution in the third container; A step of increasing the pH of the solution in the first container by diffusing ammonia gas volatilized from the second container into the third container and dissolving in the solution in the first container. It is in the manufacturing method of cobalt oxide.
  • ⁇ -type cobalt hydroxide can be obtained by a simple method.
  • the nineteenth aspect of the present invention provides A gas container containing polyacrylic acid and cobalt ion solution to be intercalated, and the first container in which the substrate is immersed and the second container in which the ammonia solution is contained are housed in a sealed container, and the ammonia gas volatilized from the ammonia solution. Diffusing in a sealed container; And increasing the pH of the cobalt ion solution by dissolving the ammonia gas in the cobalt ion solution, An ⁇ -type cobalt hydroxide manufacturing method is characterized in that an ⁇ -type cobalt hydroxide having molecules intercalated between layers of ⁇ -type cobalt hydroxide is formed on a substrate.
  • the twentieth aspect of the present invention provides Means for holding a transition metal solution; Means for dissolving volatile base gas in the transition metal solution, The volatile base gas dissolves in the transition metal solution to form a solid transition metal hydroxide while raising the pH, and thus the solid transition metal hydroxide production apparatus is characterized.
  • the 21st aspect of the present invention is Having a step of reacting a transition metal hydroxide with hypochlorite ion,
  • the transition metal is any one of Ni and Co in the method for producing a transition metal oxide.
  • the transition metal may be a multi-element system including a plurality of these elements. This is the same in the following.
  • the twenty-second aspect of the present invention provides 22.
  • the twenty-third aspect of the present invention provides 22.
  • a cobalt oxide can be obtained by a simple method.
  • the twenty-fourth aspect of the present invention provides 24.
  • a cobalt oxide can be obtained by a simple method.
  • the 25th aspect of the present invention is 24.
  • the twenty-sixth aspect of the present invention provides A step of reacting a transition metal hydroxide film formed on a substrate and having a crystallographic axis of the transition metal hydroxide film oriented with respect to the surface of the substrate with hypochlorite ions;
  • the transition metal is any one of Ni and Co in the method for producing a transition metal oxide film.
  • the twenty-seventh aspect of the present invention provides Forming a transition metal hydroxide by dissolving volatile base gas in the transition metal solution; Reacting the transition metal hydroxide with hypochlorite ions,
  • the transition metal is any one of Ni and Co in the method for producing a transition metal oxide.
  • the 28th aspect of the present invention provides The first container containing the polyacrylic acid and cobalt ion solution and the substrate immersed therein and the second container containing the ammonia solution are both housed in a sealed container, and the ammonia gas volatilized from the ammonia solution is diffused into the sealed container.
  • a cobalt oxide can be obtained by a simple method.
  • the 29th aspect of the present invention provides A transition metal oxide film formed on a substrate, In the transition metal oxide film, the crystal axis of the transition metal hydroxide film is oriented with respect to the surface of the substrate.
  • a transition metal oxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
  • the thirtieth aspect of the present invention is 30.
  • a transition metal oxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
  • the thirty-first aspect of the present invention provides A cobalt oxide film formed on a substrate, In the cobalt oxide film, the c-axis of the cobalt oxide film is oriented with respect to the surface of the substrate.
  • a cobalt oxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
  • the thirty-second aspect of the present invention provides 32.
  • a cobalt oxide film in which an alkali metal is introduced and the orientation is controlled can be obtained, and a material that can be expected to improve various characteristics is obtained.
  • the thirty-third aspect of the present invention provides The solid transition metal hydroxide production method or ⁇ -type cobalt hydroxide production method according to any one of claims 6 to 19, or the transition metal oxidation according to any one of claims 21 to 28.
  • the functional group that coordinates with the cobalt ion is a functional group that has relatively hard properties as a Lewis base, and examples thereof include an amino group, a nitric acid group, a sulfuric acid group, and a carboxyl group.
  • Examples of the substance having a functional group coordinated with a transition metal or the substance having a functional group coordinated with a cobalt ion include a sulfate ion and a chelating agent.
  • a technique of stabilizing a cobalt ion or the like with a ligand using a sulfate ion or a chelating agent and adding a base (OH ⁇ ) can be considered.
  • a base that becomes a gas and dissolves in water more preferably a base that generates ammonium ions (for example, ammonia, ammonia gas, volatile amine, ammonium carbonate, hydrazine (H 2 N-NH 2 ) derivative, etc.) ) Is an example.
  • ammonium ions for example, ammonia, ammonia gas, volatile amine, ammonium carbonate, hydrazine (H 2 N-NH 2 ) derivative, etc.
  • reaction solvent not only water but also other solvents such as alcohol are conceivable.
  • the transition metal hydroxide includes not only hydroxide ions but also a case where a raw material anion (anion) species (for example, a raw material chloride) or dissolved carbonic acid is incorporated.
  • cobalt hydroxide is expressed as Co (OH) 2-x (x is a number smaller than 2 and greater than or equal to 0), and this includes raw material anion (anion) species (for example, raw material chloride) and because sometimes such carbonate are dissolved, is incorporated, Co (OH) 2-x -2y (A) x (CO 3) y ⁇ nH 2 O (A is the anionic species, 0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1, n is an arbitrary number) (for example, Co (OH) 2 ⁇ x ⁇ 2y Cl x (CO 3 ) y ⁇ nH 2 O (x ⁇ 2y is a number smaller than 2 and greater than or equal to 0)).
  • ⁇ -type cobalt hydroxide is a cobalt hydroxide having a crystal structure in which the interlayer distance is wider than that of ⁇ -type cobalt hydroxide in a layered laminated structure.
  • any anion species may be used as a raw material, and examples thereof include sulfate ions and nitrate ions in addition to chlorine ions.
  • hydroxide produced by the above-described method is further reacted and converted into another compound while intercalated, and the ion exchange of the intercalated compound into another compound is performed.
  • the former method can enhance the functionality of the interlayer.
  • development to functionalization such as construction of a composite ionic conductor is possible.
  • a transition metal hydroxide film with controlled orientation can be obtained.
  • FIG. 6 is an electron micrograph relating to thinning and structural control of the obtained ⁇ -Co (OH) 2 .
  • It is the schematic of the preparation methods of alpha type cobalt hydroxide. 1 shows a crystal structure of cobalt hydroxide composed of ⁇ CoO 6 ⁇ octahedral clusters, (a) a crystal structure projected from the c-axis direction (a layered structure viewed from above), and (b) perpendicular to the c-axis.
  • the inventors of the present invention succeeded in selective synthesis and thinning of highly crystalline transition metal hydroxide having an ⁇ -type structure as a result of sincere research. First, the outline will be described.
  • FIG. 1 is a diagram showing an electron micrograph (a, b) and an X-ray diffraction (XRD) measurement result (c) of a plate crystal of ⁇ -Co (OH) 2 obtained by the method of the present embodiment. .
  • plate-like crystals of ⁇ -type cobalt hydroxide ( ⁇ -Co (OH) 2 ) having a thickness of about 50 nanometers and a size of several micrometers were selectively obtained. All XRD peaks can be attributed to ⁇ -Co (OH) 2 , and precipitation of other crystal forms cannot be confirmed.
  • FIG. 2 is an electron micrograph relating to thinning and structural control of the obtained ⁇ -Co (OH) 2 .
  • ⁇ -Co (OH) 2 crystals can be deposited on the base material (or substrate) by immersing the base material (or substrate) coated with glass or polymer. became. It was also found that these can all be produced by a reaction in an aqueous solution at room temperature, and the thickness and shape can be controlled by the coexisting organic polymer.
  • a reaction is caused by diffusion and dissolution of ammonia gas by allowing a metal (cobalt / nickel) chloride aqueous solution and two reaction solutions containing ammonia water to coexist in a sealed container.
  • the method of the present embodiment can provide a technique that can easily produce a transition metal hydroxide having both an ⁇ -type crystal structure and high crystallinity, which has been difficult to produce. Moreover, this embodiment opens the possibility as a new electrode material by performing the structure control according to a demand.
  • ⁇ -type cobalt hydroxide will be described as an example, but similar results have been obtained with manganese hydroxide by the same method.
  • other transition metal hydroxides such as Zn, Cu, Ni, etc.
  • the same method can be applied.
  • transition metal hydroxides ⁇ -type and ⁇ -type structures often have a similar interlayer distance.
  • FIG. 3 is a schematic view of a method for producing ⁇ -type cobalt hydroxide.
  • insoluble matrices represent a base material
  • soluble additive represents an additive as a structure control agent.
  • the outline of the manufacturing process is as follows. An aqueous solution containing cobalt ions of a certain concentration (for example, about 10-50 mM cobalt chloride aqueous solution) is placed in an airtight container together with ammonia water (about 1-30 wt .-%) for several hours at room temperature (25 ° C). Leave for about 1 to 3 hours. With the volatilization of ammonia, the pH of the aqueous solution containing cobalt ions increased, and cobalt hydroxide was generated. The resulting precipitate is collected by centrifugation or filtration and dried.
  • aqueous solution containing cobalt ions of a certain concentration for example, about 10-50 mM cobalt chloride aqueous solution
  • ammonia water about 1-30 wt .-5%
  • the substrate for example, a substrate coated with a slide glass and the following organic substances: chitosan, polyaniline, polyvinyl alcohol, chitin
  • the substrate is immersed in the initial cobalt chloride aqueous solution.
  • the deposited film is obtained by washing the substrate with water.
  • polyacrylic acid for example, molecular weight 2,000, 1.5 ⁇ 10 ⁇ 3 wt .-%) is added to the first aqueous solution containing cobalt ions.
  • both an aqueous solution containing a predetermined concentration of cobalt ions and ammonia water prepared in another sample tube were placed in one sealed container and allowed to stand at 25 ° C. for 3 hours.
  • Ammonia vapor diffused and dissolved in an aqueous solution containing cobalt ions, so that the pH increased and cobalt hydroxide precipitated.
  • the resulting precipitate was then collected by centrifugation or filtration and dried.
  • the base material was immersed in the aqueous solution containing a cobalt ion.
  • the shape and thickness of the precipitated cobalt hydroxide were controlled by dissolving polyacrylic acid (average molecular weight 2000) in the first aqueous solution containing cobalt ions. Furthermore, introduction (intercalation) of organic molecules between layers was performed by dissolving anionic molecules having a carboxyl group in advance in an aqueous solution containing cobalt ions. The crystal structure and crystallinity of the product were confirmed by powder X-ray diffraction (XRD), and the intercalation behavior was analyzed from the shift of the peak position indicating the interlayer distance.
  • XRD powder X-ray diffraction
  • Cobalt chloride hexahydrate (CoCl 2 ⁇ 6H 2 O) was used as the aqueous solution containing cobalt ions, but the raw material that supplies cobalt ions is the type of counter anion for cobalt, such as nitrate, sulfate, and acetate. Can be anything. However, these counter-anions are thought to remain in and between the cobalt hydroxide crystals of the product, including chloride ions, and the exact structural formula and composition of the product will change even if the basic crystal structure remains unchanged. Come (see (6) below). In general, chloride is considered to be most preferable for use in the present invention because it can be predicted that the degree of dissociation from the metal cation is large and the influence of mixing with the product is relatively small.
  • Concentration conditions were performed using two sample containers containing 20 mL of 10 to 50 mM cobalt chloride aqueous solution. 2 mM to 500 mM is a preferred concentration of the aqueous cobalt chloride solution. This is because a gentle crystal growth environment with low supersaturation is realized, and if it is lower, the reaction time becomes longer, and if it is higher, crystallinity may be lowered due to high supersaturation. It is done. Moreover, in a certain concentration range (10 mM to 50 mM), both ⁇ -type cobalt hydroxide precipitates and thin films can be obtained, but higher crystallinity precipitates are obtained, and the orientation is controlled.
  • the concentration of ammonia is preferably from 1 wt% to 28 wt% (the highest concentration of the stock solution available, if higher than this is possible), more preferably about 2 wt% to 5 wt%. Is considered to be the same as in the case of the cobalt ion (problem of supersaturation).
  • the concentration was performed in the presence of about 10 mL of ammonia water of 2 wt .-% to 28 wt .-% (stock solution of a commercial aqueous solution). It is considered that the same result will be obtained even if it is outside this range.
  • an ⁇ -type precipitate or thin film can be obtained if it is taken out in about 3 days from the time when a green precipitate is visible in the reaction vessel, more preferably 3 to 15 hours. It is good to take it out to the extent. If the length is shorter than this, the amount of precipitation in both the precipitate and the thin film is small, and if it is longer than this, the precipitation is not a problem, but there is a concern that the amount of precipitation in the film increases and the orientation deteriorates. In particular, in order to obtain an oriented thin film, it is preferable to take it out in about 3 hours after the reaction starts.
  • a blue-green precipitate characteristic of ⁇ -type can be visually confirmed about 20 minutes after the start of the reaction, and there is no significant change in the crystal structure, crystallinity, shape, etc. of the powder obtained at any time.
  • the basic crystal structure is as shown in FIG. 1 and there is no problem expressed as cobalt hydroxide.
  • the raw material chloride and dissolved carbonic acid are incorporated, it is precisely Co (OH) 2 -x-2y Cl x (CO 3 ) y ⁇ nH 2 O
  • a thin film on a glass substrate and a substrate coated with chitosan, polyaniline, polyvinyl alcohol, chitin, etc. has already been successfully achieved.
  • chitosan / chitin / polyaniline could give high orientation
  • slide glass / polyvinyl alcohol could not provide a thin film with high orientation.
  • a thin film can be directly formed on a desired base material by heterogeneous nucleation.
  • any polymer having a functional group coordinated with cobalt ions is expected to be not limited to polyacrylic acid.
  • examples thereof include a polymer having a carboxyl group, polycarboxylic acid, polyamine, and polysulfonic acid.
  • a polymer is more preferable for use for the purpose of shape control.
  • the concentration of polyacrylic acid is suitably about 0.1 to 0.5 times the cobalt ion concentration, more preferably 0. About 2 times.
  • Non-Patent Document 7 Intercalation can be interpreted as an electrostatic interaction between the positive charge between the layers and the negative charge of the molecules to be introduced.
  • a carboxylic acid having a functional site such as an aromatic ring or a ⁇ -conjugated system in the skeleton structure can be intercalated.
  • Examples include molecules in which a carboxyl group is introduced into a thiophene, imidazole, or pyridine skeleton, and a shift in the interlayer distance according to the size of the molecule was confirmed by XRD. By intercalating molecules with these functional sites, it is possible to construct optical / electronic functional composite materials.
  • the skeleton structure of the functional site can be other aromatic rings or ⁇ -conjugated systems, and it is preferable that a functional group having a negative charge (such as a sulfate group or a nitrate group) is introduced to induce intercalation. .
  • a functional group having a negative charge such as a sulfate group or a nitrate group
  • ⁇ -type cobalt hydroxide (precipitated powder) As an example, two sample containers containing 20 mL of an aqueous cobalt chloride solution of about 10 mM to 50 mM were used as concentration conditions. These solutions were placed in a sealed container together with about 10 mL of 2 to 10 wt .-% aqueous ammonia and allowed to stand at 25 ° C. for 3 to 12 hours. The obtained precipitate was washed and recovered by centrifugation, and dried at room temperature and atmospheric pressure.
  • FIG. 4 shows a crystal structure of cobalt hydroxide composed of edge-sharing ⁇ CoO 6 ⁇ octahedral clusters, (a) a crystal structure projected from the c-axis direction (a layered structure viewed from above), (B) It is the figure projected from the direction perpendicular
  • FIG. 5 is an electron micrograph and XRD measurement results of the obtained precipitated powder.
  • an electron micrograph (a, b) and an X-ray diffraction pattern (c) of the obtained ⁇ -type cobalt hydroxide crystal are shown.
  • a hexagonal plate-like crystal having a size of about 1 to 3 ⁇ m and a thickness of about 50 to 100 nm was obtained. There were some things that were not shaped like a hexagonal plate.
  • the crystallinity is high, so the generally reported crystallinity is low. Unlike crystals that can only see the diffraction of (003), (006), (100), (110), many other crystals A diffraction peak derived from the surface can be observed.
  • ⁇ -type cobalt hydroxide (thin film) ⁇ -type cobalt hydroxide (thin film)>
  • a substrate coated with an organic polymer matrix such as chitosan / polyaniline / polyvinyl alcohol / chitin on the slide glass and slide glass is placed on the lower side. Leaned diagonally toward This is intended to prevent the sedimentation of precipitated particles and to form a film only by heterogeneous nucleation.
  • FIG. 6 and 7 are diagrams showing an electron micrograph and an XRD measurement result of the obtained thin film.
  • FIG. 6 shows the obtained ⁇ -type cobalt hydroxide crystal thin film, (a, b) an electron micrograph of the thin film on the chitosan matrix, and (c, d) an electron micrograph of the thin film on the polyaniline matrix.
  • FIG. 7 shows an X-ray diffraction pattern (a) of the obtained ⁇ -type cobalt hydroxide crystal thin film, a transmission electron microscopic image (b) of a part of the thin film, and an electron diffraction pattern (c) thereof. It can be seen that the c-axis is perpendicular to the substrate.
  • a hexagonal plate-like crystal with a size of about 1 to 3 ⁇ m and a thickness of about 50 to 100 nm sticks to the substrate, that is, the c It was oriented so that the axis was perpendicular to the substrate and deposited on the organic polymer matrix. From the XRD measurement results, the orientation was suggested by the fact that diffraction peaks only on the (003) and (006) planes were observed. In addition, a spot pattern that can be assigned to the (100) and (110) planes of ⁇ -type cobalt hydroxide was obtained from electron diffraction, which suggests that the crystallinity is high in the c-axis direction.
  • a highly oriented film was obtained when the cobalt ion concentration was 20 mM, the ammonia concentration was 2 wt .-%, and the reaction time was 3 hours. Under other conditions, a form in which the hexagonal plate shape rises in a direction perpendicular to the substrate was observed, and the orientation was slightly disturbed. Further, when it was deposited on a polyvinyl alcohol substrate and an uncoated glass slide, hexagonal plate crystals were randomly deposited without being oriented. It is considered that the use of an organic polymer matrix for film formation, in particular, the presence of a functional group —NH— on the substrate surface, is preferable for obtaining an oriented thin film with high crystallinity. In the case of a slide glass or the like, the c-axis is not vertical but parallel, and is formed as a thin film on the substrate. Thus, there may be no orientation depending on the substrate used and the type of polymer applied thereto.
  • FIG. 8 shows (a, b) an electron micrograph of a thin film on a chitosan matrix, (c, d) an electron microscope of a thin film on a polyaniline matrix, for an ⁇ -type cobalt hydroxide crystal thin film obtained in the presence of polyacrylic acid. It is a photograph.
  • FIG. 9 shows an X-ray diffraction pattern (a) of an ⁇ -type cobalt hydroxide crystal thin film obtained in the presence of polyacrylic acid, a transmission electron microscope image (b) of a part of the thin film, and an electron diffraction pattern (c) thereof. It is.
  • an X-ray diffraction pattern A indicates a precipitation pattern
  • B indicates a thin film pattern. It can be seen that the c-axis is perpendicular to the substrate.
  • these nanosheets stick to the substrate, that is, the c-axis is perpendicular to the substrate. And deposited on the organic polymer matrix.
  • diffraction from the (100) and (110) planes was obtained as a spot pattern from the electron diffraction pattern, and a number of diffraction peaks were observed in the XRD pattern of the precipitate as when PAA was not added. This suggests that a structure with high crystallinity is maintained even when the nanosheet is formed.
  • FIG. 10 is an X-ray diffraction pattern showing the behavior of intercalation, and shows measurement results before (A) and after intercalation of thiophene-3-acetic acid (B).
  • the same crystal growth as in the above example was performed by setting the concentration of cobalt ions to 10 mM and the concentration of organic molecules having a carboxyl group to 20 mM.
  • a molecule in which a carboxyl group was introduced into a thiophene, imidazole, or pyridine skeleton was used for intercalation.
  • [Chemical Formula 1] is a compound used in the intercalation during the synthesis, which is 1: glutaric acid, 2: 3-thenoyl acid (3 carboxy-thiophene), 3: thiophene-3-acetic acid, 4 : Shows the chemical structure of a compound such as imidazoleacetic acid, 5: pyridine-3-carboxylic acid. With the intercalation of these molecules, the peak position on the (003) plane indicating the layer spacing of the XRD pattern shifted as shown in [Table 1]. The compound numbers correspond to the structural formula numbers shown in [Chemical Formula 1].
  • Transition metal hydroxides have been actively produced both academically and industrially.
  • This embodiment realizes the selective synthesis and thinning of transition metal hydroxides that have an ⁇ -type structure, which is a metastable phase, and that have good crystallinity through a simple process near room temperature. Both industrially and industrially.
  • the preparation and thinning of highly crystalline transition metal hydroxides having an ⁇ -type crystal structure that can be used as electrode materials and converted into various other transition metal oxides can be made into simple aqueous solutions at room temperature. It is also excellent in that it is a technology performed in the process.
  • thermodynamically stable crystalline phase it is not a thermodynamically stable crystalline phase, and a ⁇ -type structure can be obtained directly without going through the ⁇ -type, or a transition to the ⁇ -type occurs during aging during or after synthesis.
  • a ⁇ -type structure of a metastable phase that is inherently unstable and difficult to synthesize can be selectively synthesized.
  • the crystal structure of the compound is a layered structure composed of layers formed by ⁇ CoO 6 ⁇ regular octahedral clusters composed of cobalt-oxygen sharing their edges and water molecules between the layers.
  • the ⁇ -type produced is mostly irregular in its laminated structure, and it cannot be said that the crystallinity is high.
  • the compound prepared by the above method has high crystallinity.
  • the above-described method can be realized by a solution process at room temperature and normal pressure, and can be easily realized without a special instrument or reaction apparatus. Therefore, it can be manufactured at low cost and low environmental load.
  • the size, thickness, shape, and the like of the obtained crystal can be easily controlled.
  • the merit of the solution process is that the shape of the precipitated particles and the thin film can be controlled by the coexisting organic molecules.
  • Organic molecules can be introduced between layers (intercalation).
  • Organic molecules coexisting at the time of synthesis can be easily introduced between layers of a layered structure by utilizing electrostatic interaction. In other words, production and functionalization of a new organic-inorganic nanocomposite using the interlayer can be expected.
  • new electrical, magnetic, and optical properties can be expected by functionalization using a wide layer.
  • this embodiment provides a technique for performing selective synthesis and thinning of a transition metal hydroxide having a target crystal structure with a low-cost and simple synthesis process. It is extremely important that research on life extension and high output is progressing rapidly in industry, government and academia. In particular, it is a technology that makes use of the characteristics of the solution process and can be expected to control the shape according to demand and contribute to the improvement of device characteristics.
  • cobalt oxide having a layered structure (chemical structural formula: M x ) that can be used as a superconducting material, thermoelectric conversion material, electrode material (lithium ion secondary battery, electrochemical capacitor), magnetic material, etc.
  • M x layered structure
  • thermoelectric conversion material thermoelectric conversion material
  • electrode material lithium ion secondary battery, electrochemical capacitor
  • magnetic material etc.
  • transition metal compounds compounds with a layered structure composed of cobalt-oxygen octahedral clusters control superconducting materials, thermoelectric conversion materials, electrode materials, magnetism by controlling the distance between layers or ionic species.
  • these compounds have been synthesized by using cobalt compounds and alkalis as raw materials and undergoing high-temperature sintering processes and electrochemical techniques, but they require a multi-step and long-time process. .
  • a simple, low-cost, low environmental load synthetic route has not been developed.
  • Non-Patent Document 9 is the first report regarding the development of superconducting properties in materials other than copper and cobalt.
  • JP 2004-262675 Hydrohydrate sodium cobalt oxide JP-A-2005-350331 Sodium hydrated sodium cobalt oxide and method for producing the same JP-A-2006-222397 Heat transfer conversion layered cobalt oxide and synthesis method thereof
  • Patent application title Lithium Cobaltate, Method for Producing the Same, and Lithium Ion Battery Using the Same Method for producing layered rock salt type lithium cobalt oxide by hydrothermal oxidation method K. Takada, H. Sakurai, E. Takayama-Muromachi, F. Izumi, R. A. Dilanian, T. Sasaki, Superconductivity in two-dimensional CoO2 layers, Nature 2003, 422, 53-55.
  • each of the powder sample and the thin film sample was treated (a) immersed in a sodium hypochlorite (NaClO) aqueous solution (b) immersed in a NaClO aqueous solution + NaOH (c) three treatments of immersion in a NaClO aqueous solution + LiOH at room temperature
  • a sample of cobalt oxide was produced under conditions of near normal pressure.
  • the chemical structures of the compounds produced by the three treatment methods were different. However, there was no difference in structure between the powder sample (precipitate) and the thin film sample under the same processing conditions.
  • Cobalt oxide was obtained by immersing the precipitated ⁇ -type cobalt hydroxide ( ⁇ -Co (OH) 2 ) crystal powder and thin film in a commercially available NaClO aqueous solution.
  • the concentration of sodium hypochlorite is preferably 0.5 wt .-% or more for both the powder sample and the thin film sample, and more preferably within the range of 0.5 wt .-% to 5.0 wt .-%. This is because the oxidation reaction does not proceed completely at less than 0.5 wt .-%. 5.0 wt .-% or less is preferable because of the highest concentration of commercially available NaClO aqueous solution, but it is considered that there is no change in the result even if the value is larger than this.
  • the reaction time is 5 seconds or longer in the powder sample, the influence of the length of the reaction time does not appear even when the reaction time reaches 48 hours. However, it is preferable to uniformly disperse the powder in the solution by stirring or ultrasonic treatment. In a thin film sample, it is preferably 1 second or longer and 60 seconds or shorter, more preferably 5 seconds or longer and 10 seconds or shorter. This is because if the reaction time is short for 5 seconds, the oxidation reaction does not proceed completely, and unreacted substances may remain. Further, if the reaction time is longer than 10 seconds, it may be peeled off from the substrate.
  • the sodium hypochlorite concentration is preferably in the range of 0.05 .-% to 0.5 wt .-%. This is because the oxidation reaction does not proceed moderately at less than 0.05 wt .-%. This is because, when the concentration is higher than 0.5 wt .-%, it is difficult to selectively introduce the added alkali ions into the layer.
  • the concentration of alkali ions is preferably from 0.1 mol / L to 5 mol / L. This is because the rate of the oxidation reaction does not decrease at less than 0.1 mol / L. This is because ⁇ -Co (OH) 2 crystals are transferred to other crystal forms or crystals such as CoOOH at concentrations higher than 5 mol / L.
  • the reaction time is preferably 1 hour or longer together with the powder sample and the thin film sample. This is because if the reaction time is short, the oxidation reaction and the introduction of alkali ions into the layer do not proceed moderately. A long reaction time does not affect the reaction, but in the case of a thin film sample, it may be peeled off from the substrate.
  • FIG. 11 is a scanning electron micrograph of the obtained cobalt oxide plate crystal (powder sample) (a) treatment with a NaClO solution (after drying), b) treatment with a NaClO solution and LiOH).
  • the ⁇ -type cobalt hydroxide ( ⁇ -Co (OH) 2 ) crystal that was not oxidized was a plate-like crystal with a size of 1 ⁇ m to 5 ⁇ m and a thickness of about 50 nm. . Even after any of the above treatments (a) to (c), as shown in the figure, the macro plate-like form was not changed from that before the oxidation reaction.
  • FIG. 12 is a transmission electron micrograph showing the nanostructure of the obtained cobalt oxide plate crystal (powder sample).
  • the 2-3 nm nanocrystals changed to a structure with the same crystal orientation. This is considered to be a structure produced because the volume of the two is different when the structure conversion from cobalt hydroxide to cobalt oxide occurs.
  • Such a nanoscale structure is difficult to produce by a conventional firing method, which is a unique point of this method.
  • This space formed between the nanocrystals can be used as a flow path for diffusing electrolytes and substances, and can be said to be a structure suitable for exchange of substances with the outside.
  • Figure 13 shows X-ray diffraction patterns of cobalt oxide plate crystals (powder sample) by various treatments (a) treatment with NaClO solution (before drying), b) treatment with NaClO solution (after drying), c) NaClO solution Treatment with NaOH, d) treatment with NaClO solution and LiOH).
  • XRD X-ray diffraction measurement
  • the change in the layer interval before and after the drying of the sample was caused by the deinsertion of water molecules hydrated between the layers, and reversibly changed in response to repeated addition of water to the sample and drying.
  • the (100) plane spacing in the layer was changed from about 0.27 nm to about 0.24 nm, and the (110) plane spacing was about 0.16 nm. Shifted from about 0.14 nm to about 0.14 nm (this value does not depend on the dry state of the sample).
  • the structure at this time can be estimated as Na x CoO 2 ⁇ yH 2 O (0.2 ⁇ X ⁇ 0.3, 0.6 ⁇ y ⁇ 1.2) in a dry state.
  • the layer spacing indicating the layered structure changed from about 0.8 nm to about 0.64 nm to 0.68 nm.
  • the treatment (a) and the treatment (c) no change in the layer interval due to the dry state was observed.
  • the treatment (a) corresponding to the fact that the divalent cobalt ion was oxidized to 3 to 4 valence, the (100) plane spacing in the layer was changed from about 0.27 nm to about 0.24 nm.
  • the surface spacing of the (110) plane shifted from about 0.16 nm to about 0.14 nm.
  • the structures at this time are Na x CoO 2 ⁇ yH 2 O (0.2 ⁇ X ⁇ 0.4, 0.3 ⁇ y ⁇ 0.9) in the treatment (b) and Li x CoO 2 ⁇ yH 2 O (0.2 ⁇ in the treatment (c), respectively.
  • ⁇ -type cobalt hydroxide ( ⁇ -Co (OH) 2 ) crystals that have not been oxidized are such that plate crystals with a size of 1-5 ⁇ m and a thickness of about 50 nm follow the substrate.
  • the c-axis of the crystal was oriented in the direction perpendicular to the substrate.
  • FIG. 14 is a scanning electron micrograph of the obtained cobalt oxide plate crystal (thin film sample) (a) a cobalt oxide nanosheet oriented thin film, and b) a cobalt oxide plate crystal oriented thin film). Even after the oxidation treatments (a) to (c), the morphology and orientation of these thin film crystals were maintained.
  • Fig. 15 shows X-ray diffraction patterns of cobalt oxide plate crystals (thin film samples) by various treatments (a) treatment with NaClO solution (after drying), b) treatment with NaClO solution and NaOH, c) treatment with NaClO solution and LiOH. Processing).
  • the layer spacing of the layered structure changed in the same manner as the powder sample with the oxidation treatments (a) to (c).
  • the spacing between the (100) plane and the (110) plane within the layer is also shifted from 0.27 nm to about 0.24 nm, and the (110) plane spacing is shifted from about 0.16 nm to about 0.14 nm. This was confirmed by electron beam diffraction. From the above, it is considered that the same cobalt oxide as in the powder sample was produced in the thin film sample.
  • the above-mentioned method is a simple process that can synthesize cobalt oxide-related compounds in an aqueous solution process near room temperature and normal pressure without sintering. It is excellent in that a cobalt oxide oriented thin film maintaining a cobalt oxide oriented thin film can be obtained, that it is a cobalt oxide crystal composed of nanocrystals, and that size, thickness, shape, and the like can be controlled.
  • This method is an aqueous solution process under mild conditions that does not require sintering, and is excellent in that the reaction time is short, nanoscale structure control, thin film formation, and crystal orientation control can be easily performed. ing.
  • Sodium cobaltate is attracting attention as an inexpensive superconducting material and thermoelectric conversion material, and lithium cobaltate as a material for lithium ion secondary battery electrodes regardless of industry, government or academia.
  • These compounds also utilize catalysts, petroleum catalysts, oxidants, glass materials, colorants, pigments, pottery, livestock nutrients, other salt materials, ceramic coloring, ferrite, and excellent absorption characteristics of incident light It may be used as a heat conversion material for light, a display application utilizing an electrochromy characteristic or a taking in / out characteristic such as Li ion, and an electronic material. You may grind
  • lithium cobaltate can control even a crystal structure according to the above-described method, there is a possibility that a positive electrode for a lithium battery having a desired energy density can be obtained. If the energy density of the positive electrode for a lithium battery can be improved, the above-described method is very significant in that the possibility of use is greatly increased even if it is a rare material.
  • the positive electrode is manufactured by dissolving an active material such as lithium cobaltate on both sides of the aluminum foil with a solvent, drying and pressing to increase the density. May be.
  • a carbon-based conductive agent such as acetylene black, carbon or graphite powder, or a binder such as polytetrafluoroethylene resin or polyvinylidene fluoride is added to the above-described lithium cobalt oxide. It can be obtained by kneading and pellet molding.
  • an organic solvent such as N-methylpyrrolidone is added to the above lithium cobaltate in addition to these additives, kneaded to form a paste, and a metal such as an aluminum foil. It can be obtained by coating on a current collector and drying.
  • Lithium battery electrolyte contains electrochemically stable lithium ions dissolved in a polar organic solvent that does not oxidize or reduce in a wider range than the potential range of operation as a lithium ion battery.
  • a polar organic solvent for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, tetrahydrofuran, ⁇ -butyllactone, or a mixture thereof can be used.
  • Lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, or the like can be used as a solute serving as a lithium ion source.
  • a porous polypropylene film or polyethylene film is disposed between the electrodes as a separator.
  • Battery types include a separator placed between a pellet-shaped positive electrode and negative electrode, crimped onto a sealing can with a polypropylene gasket, injected with an electrolyte, and sealed coin type, positive electrode material or negative electrode Examples include a cylindrical type in which a material is applied on a metal current collector, wound around a separator, inserted into a battery can with a gasket, an electrolyte is injected, and sealed.
  • a tripolar battery intended to measure electrochemical properties.
  • a reference electrode is also arranged in addition to the positive electrode and the negative electrode, and the electrochemical characteristics of each electrode are evaluated by controlling the potential of the other electrode with respect to the reference electrode.
  • alkali ion source examples include sodium hydroxide and potassium hydroxide (which may be either an anhydride or a hydrate), and these may be used in combination.
  • chlorides, nitrates, sulfates, hydroxides and the like are used, and more specifically, lithium hydroxide (which may be either an anhydride or a hydrate), lithium chloride, and the like. May use 2 or more types together.
  • Cobalt oxide compounds have been mainly described.
  • a technique for easily producing a transition metal hydroxide having both an ⁇ -type crystal structure and high crystallinity and a technique related to structure control can be expected to greatly contribute to improvement of electrochemical characteristics and energy storage technology.
  • electronic materials for example, semiconductor materials, catalysts, raw materials for lithium cobaltate, electronics applications
  • magnetic materials for example, magnetic materials (memory), optical materials (electrochromic elements), tires, paints, pigments
  • electrochemical characteristics and energy storage technology for example, electronic materials (for example, semiconductor materials, catalysts, raw materials for lithium cobaltate, electronics applications), magnetic materials (memory), optical materials (electrochromic elements), tires, paints, pigments It is also possible to obtain precursors to cobalt oxide (CoOOH, CoO, Co 3 O 4 ) having adhesives, chemical products, and other functions.
  • cobalt oxide CoOOH, CoO, Co 3 O 4

Abstract

Provided is a transition metal hydroxide film or the like with a controlled alignment. An aspect of the invention is an α-cobalt hydroxide film formed on a substrate, wherein the α-cobalt hydroxide is characterized in that the c axis of the α-cobalt hydroxide is roughly perpendicular to the substrate surface. The configuration makes it possible to obtain an α-cobalt hydroxide film with a controlled alignment and the material obtained may be expected to have various improved characteristics. Another aspect of the invention is a manufacturing method of α-cobalt hydroxide characterized in that α-cobalt hydroxide is formed while raising pH by mixing ammonia gas into a cobalt ion solution. The configuration makes it possible to obtain α-cobalt hydroxide easily.

Description

固体遷移金属水酸化物膜、α型水酸化コバルト膜、固体遷移金属水酸化物製造方法、α型水酸化コバルト製造方法、固体遷移金属水酸化物製造装置、遷移金属酸化物の製造方法、水和リチウムコバルト酸化物の製造方法、遷移金属酸化物膜、コバルト酸化物膜、及び、電極材料Solid transition metal hydroxide film, α-type cobalt hydroxide film, solid transition metal hydroxide production method, α-type cobalt hydroxide production method, solid transition metal hydroxide production apparatus, transition metal oxide production method, water Method for producing Japanese lithium cobalt oxide, transition metal oxide film, cobalt oxide film, and electrode material
本発明は、固体遷移金属水酸化物、特に、固体遷移金属水酸化物膜、α型水酸化コバルト膜、固体遷移金属水酸化物製造方法、α型水酸化コバルト製造方法、電極材料、及び、固体遷移金属水酸化物製造装置に関する。 The present invention relates to a solid transition metal hydroxide, in particular, a solid transition metal hydroxide film, an α-type cobalt hydroxide film, a solid transition metal hydroxide production method, an α-type cobalt hydroxide production method, an electrode material, and The present invention relates to a solid transition metal hydroxide production apparatus.
近年、次世代のエネルギーデバイスとして、ニッケル・水素電池やリチウムイオン二次電池の研究が学術的にも工業的にも盛んに行われている。これに伴い、電極材料の一つとして遷移金属水酸化物が注目されている。ニッケル・水素電池では水酸化ニッケルが、リチウムイオン二次電池では水酸化コバルトが電極材料として、またその特性の向上に寄与する材料として期待されている。 In recent years, research on nickel-hydrogen batteries and lithium ion secondary batteries as next-generation energy devices has been actively conducted both academically and industrially. Accordingly, transition metal hydroxides are attracting attention as one of electrode materials. Nickel hydroxide is expected as an electrode material for nickel-hydrogen batteries, and cobalt hydroxide is expected as a material that contributes to improving the characteristics of lithium ion secondary batteries.
特にこれらの化合物の中で、準安定相であるα型の結晶構造をとる結晶はこれらの電極材料への利用が期待されているが、安定相のβ型へ容易に転移してしまうため一般的には合成が難しいとされている。熱力学的には安定な結晶相ではなく、このα型を経ずに直接β型構造が得られることや(非特許文献1)、合成中や作製後のエージングによるβ型への転移がおこるケースが一般的には多い。 Among these compounds, crystals with α-type crystal structure, which is metastable phase, are expected to be used for these electrode materials. Is considered difficult to synthesize. It is not a thermodynamically stable crystal phase, and a β-type structure can be obtained directly without passing through this α-type (Non-patent Document 1), or a transition to β-type occurs due to aging during synthesis or after production. There are many cases in general.
一方で、100℃付近の温度や電極反応を利用した合成の報告例はあるが、特殊な装置が必要なことに加え、多くの場合結晶性が低いことや構造の制御性に乏しいことなどの問題点がある。このα型の結晶構造と高い結晶性を兼ね備えた遷移金属水酸化物を、特殊な装置を必要とせず、低温の簡便かつ低コストであるプロセスで選択的に合成・制御する方法および基材へ薄膜化する手法は開発できていない。 On the other hand, there are reports of synthesis using temperatures near 100 ° C. and electrode reactions, but in addition to the need for special equipment, in many cases the crystallinity is low and the controllability of the structure is poor. There is a problem. To a method and substrate for selectively synthesizing and controlling the transition metal hydroxide having both the α-type crystal structure and high crystallinity in a low-temperature, simple and low-cost process without requiring a special apparatus. A method for thinning the film has not been developed.
また、α型は、リチウムイオン電池電極や電気化学キャパシタなどへ利用した際に、β型よりも優れた電気化学特性を示すことが示唆されてはいるが、結晶性や構造などの影響が検討できていないため、α型の構造を活かした電気化学特性の調査は充分とは言い難い。 In addition, α-type has been suggested to show better electrochemical characteristics than β-type when used for lithium ion battery electrodes and electrochemical capacitors, but the effects of crystallinity and structure are studied. Since it has not been completed, it is difficult to say that the investigation of electrochemical characteristics utilizing the α-type structure is sufficient.
例えば、α型の選択的な合成は、アンモニウムイオンを含む水溶液とコバルトイオンを含む水溶液の混合(非特許文献2)や電気化学的手法(非特許文献3)などによって行われているが、いずれも結晶性が芳しくない。結晶性が芳しくないことは、層状構造の積層が乱れていることに起因する場合が多い。α型の選択的な合成は、コバルトイオンを含む水溶液中で塩化ナトリウムの共存下、ヘキサメチレンテトラミンを分解によって得られてはいるが、90℃の温度を必要としており、また薄膜化はできていない(非特許文献4)。同様に、尿素の分解を利用した作製例なども示されているが(非特許文献5、6)、板状結晶の凝集体にすぎず薄膜材料とは言い難い。 For example, α-type selective synthesis is performed by mixing an aqueous solution containing ammonium ions and an aqueous solution containing cobalt ions (Non-patent Document 2), an electrochemical technique (Non-patent Document 3), or the like. However, the crystallinity is not good. The poor crystallinity is often caused by the disordered layered structure. The α-type selective synthesis is obtained by decomposing hexamethylenetetramine in the presence of sodium chloride in an aqueous solution containing cobalt ions, but requires a temperature of 90 ° C, and it has not been thinned. No (non-patent document 4). Similarly, a production example using decomposition of urea is also shown (Non-Patent Documents 5 and 6), but it is merely an aggregate of plate crystals and is hardly a thin film material.
一般に、熱力学的に最安定なβ型は層間距離が小さく(約0.46 nm以下)、Co(OH)2の化学量論比で表される層の積層構造である。一方で、α型はCo(OH)2-xで表される負電荷を持つ層が、約0.8 nm以上の層間距離で積層している。コバルト系以外の層状化合物では、層間を利用した光機能化の研究はよく行われているが、コバルト系では層間の機能化に関する報告例は、磁性に関する研究(非特許文献7)を除きあまりない。 In general, the thermodynamically most stable β-type has a small interlayer distance (about 0.46 nm or less) and a laminated structure of layers represented by a stoichiometric ratio of Co (OH) 2 . On the other hand, in the α-type, negatively charged layers represented by Co (OH) 2-x are stacked with an interlayer distance of about 0.8 nm or more. In layered compounds other than cobalt-based materials, research on optical functionalization using interlayers is often conducted, but in cobalt-based materials, there are not many reports on functionalization between layers except for research on magnetism (Non-patent Document 7). .
本発明は、上述の背景技術に鑑みてなされたものであり、配向性を制御した遷移金属水酸化物膜などを提供することを目的とする。 The present invention has been made in view of the above-described background art, and an object thereof is to provide a transition metal hydroxide film having controlled orientation.
この発明によれば、上述の目的を達成するために、特許請求の範囲に記載のとおりの構成を採用している。以下、この発明を詳細に説明する。 According to this invention, in order to achieve the above-mentioned object, the configuration as described in the claims is adopted. Hereinafter, the present invention will be described in detail.
本発明の第1の側面は、
基材上に形成された遷移金属水酸化物膜であって、
遷移金属水酸化物膜の結晶軸が前記基材の表面に対して配向していることを特徴とする遷移金属水酸化物膜
にある。
The first aspect of the present invention is:
A transition metal hydroxide film formed on a substrate,
In the transition metal hydroxide film, the crystal axis of the transition metal hydroxide film is oriented with respect to the surface of the substrate.
本構成によれば、配向性を制御した遷移金属水酸化物膜を得ることができ、様々な特性の向上が期待できる材料が得られる。 According to this configuration, a transition metal hydroxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
本発明の第2の側面は、
前記遷移金属は、Zn、Cu、Ni、Mn、Coのいずれかであることを特徴とする請求項1記載の遷移金属水酸化物膜
にある。前記遷移金属は、これらの元素を複数種含む多元系でもよい。この点は、以下、同様である。
The second aspect of the present invention is
2. The transition metal hydroxide film according to claim 1, wherein the transition metal is any one of Zn, Cu, Ni, Mn, and Co. The transition metal may be a multi-element system including a plurality of these elements. This is the same in the following.
本発明の第3の側面は、
基材上に形成されたα型水酸化コバルト膜であって、
α型水酸化コバルトのc軸が前記基材の表面に対して配向していることを特徴とするα型水酸化コバルト膜
にある。
The third aspect of the present invention is
An α-type cobalt hydroxide film formed on a substrate,
The α-type cobalt hydroxide film is characterized in that the c-axis of α-type cobalt hydroxide is oriented with respect to the surface of the substrate.
本構成によれば、配向性を制御したα型水酸化コバルト膜を得ることができ、様々な特性の向上が期待できる材料が得られる。 According to this configuration, an α-type cobalt hydroxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
本発明の第4の側面は、
α型水酸化コバルトの層間には、α型水酸化コバルトと異なる分子が導入されていることを特徴とする請求項1記載のα型水酸化コバルト膜
にある。
The fourth aspect of the present invention is
2. The α-type cobalt hydroxide film according to claim 1, wherein molecules different from α-type cobalt hydroxide are introduced between layers of α-type cobalt hydroxide.
本構成によれば、α型水酸化コバルトと異なる分子をインターカレーションすることで、複合材料などの構築が可能となる材料が得られる。 According to this configuration, a material that enables construction of a composite material or the like can be obtained by intercalating molecules different from α-type cobalt hydroxide.
本発明の第5の側面は、
基材上に形成されたα型水酸化コバルト膜であって、
X線回折において(003)面、(006)面及び(00.15)面に由来する回折ピークが観察されることを特徴とするα型水酸化コバルト膜
にある。
The fifth aspect of the present invention provides
An α-type cobalt hydroxide film formed on a substrate,
In the X-ray diffraction, the α-type cobalt hydroxide film is characterized in that diffraction peaks derived from the (003) plane, the (006) plane, and the (00.15) plane are observed.
本構成によれば、結晶性に優れ、基材に配向しているα型水酸化コバルト膜を得ることができ、様々な特性の向上が期待できる材料が得られる。 According to this configuration, an α-type cobalt hydroxide film excellent in crystallinity and oriented on the base material can be obtained, and a material that can be expected to improve various characteristics is obtained.
本発明の第6の側面は、
ヒドロキシ基とは異なる、遷移金属と配位する官能基を有する物質を溶液中の遷移金属と配位させつつ、前記溶液のpHを上昇させながら、前記遷移金属のヒドロキシル化を行うことによって固体遷移金属水酸化物を形成させることを特徴とする固体遷移金属水酸化物製造方法
にある。
The sixth aspect of the present invention provides
Solid transition by hydroxylating the transition metal while increasing the pH of the solution while coordinating a substance having a functional group that coordinates with the transition metal, which is different from the hydroxy group, with the transition metal in the solution A method for producing a solid transition metal hydroxide is characterized in that a metal hydroxide is formed.
本構成によれば、穏やかな結晶成長環境を実現し、結晶性の高い固体遷移金属水酸化物が得られる。 According to this configuration, a gentle crystal growth environment is realized, and a solid transition metal hydroxide having high crystallinity can be obtained.
本発明の第7の側面は、
前記遷移金属は、Zn、Cu、Ni、Mn、Coのいずれかであることを特徴とする請求項6記載の固体遷移金属水酸化物製造方法
にある。
The seventh aspect of the present invention provides
7. The solid transition metal hydroxide manufacturing method according to claim 6, wherein the transition metal is any one of Zn, Cu, Ni, Mn, and Co.
本発明の第8の側面は、
前記遷移金属と配位する官能基を有する物質は、揮発性塩基であることを特徴とする請求項6記載の固体遷移金属水酸化物製造方法。
にある。
The eighth aspect of the present invention is
7. The method for producing a solid transition metal hydroxide according to claim 6, wherein the substance having a functional group coordinated with the transition metal is a volatile base.
It is in.
本発明の第9の側面は、
前記遷移金属と配位する官能基を有する物質は、アンモニアであることを特徴とする請求項6記載の固体遷移金属水酸化物製造方法。
にある。
The ninth aspect of the present invention provides
7. The method for producing a solid transition metal hydroxide according to claim 6, wherein the substance having a functional group coordinated with the transition metal is ammonia.
It is in.
本発明の第10の側面は、
前記遷移金属溶液に、固体遷移金属水酸化物の層間にインターカレーションする分子を添加し、前記分子を固体遷移金属水酸化物の層間にインターカレーションさせることを特徴とする請求項6記載の固体遷移金属水酸化物製造方法
にある。
The tenth aspect of the present invention provides
7. The transition metal solution according to claim 6, wherein a molecule that intercalates between layers of a solid transition metal hydroxide is added, and the molecules are intercalated between layers of a solid transition metal hydroxide. It exists in the manufacturing method of a solid transition metal hydroxide.
本構成によれば、分子をインターカレーションすることで、複合材料などの構築が可能となる材料が得られる。
にある。
According to this configuration, a material capable of constructing a composite material or the like can be obtained by intercalating molecules.
It is in.
本発明の第11の側面は、
揮発性塩基ガスがコバルトイオン溶液に溶け込むことによってpHを上昇させながらα型水酸化コバルトを形成させることを特徴とするα型水酸化コバルト製造方法
にある。
The eleventh aspect of the present invention is
An α-type cobalt hydroxide production method is characterized in that α-type cobalt hydroxide is formed while raising pH by dissolving a volatile base gas in a cobalt ion solution.
本構成によれば、簡便な方法でα型水酸化コバルトを得ることが可能となる。 According to this configuration, α-type cobalt hydroxide can be obtained by a simple method.
本発明の第12の側面は、
前記コバルトイオン溶液に、コバルトイオンと配位する官能基を有する分子を添加することを特徴とする請求項11記載のα型水酸化コバルト製造方法
にある。
The twelfth aspect of the present invention is
12. The method for producing α-type cobalt hydroxide according to claim 11, wherein a molecule having a functional group coordinated with cobalt ions is added to the cobalt ion solution.
本構成によれば、形状が制御等されたα型水酸化コバルトが得られる。コバルトイオンと配位する官能基を有する分子には例えばポリアクリル酸がある。 According to this configuration, α-type cobalt hydroxide having a controlled shape is obtained. An example of a molecule having a functional group coordinated with cobalt ion is polyacrylic acid.
本発明の第13の側面は、
前記コバルトイオン溶液に基材を浸漬させ、前記基材上にα型水酸化コバルトを形成することを特徴とする請求項11記載のα型水酸化コバルト製造方法
にある。
The thirteenth aspect of the present invention is
12. The method for producing α-type cobalt hydroxide according to claim 11, wherein the substrate is immersed in the cobalt ion solution to form α-type cobalt hydroxide on the substrate.
本構成によれば、基材上へα型水酸化コバルトを析出させることができる。 According to this configuration, α-type cobalt hydroxide can be deposited on the substrate.
本発明の第14の側面は、
前記基材の表面にはコバルトイオンと配位する官能基が存在することを特徴とする請求項11記載のα型水酸化コバルト製造方法
にある。
The fourteenth aspect of the present invention provides
12. The method for producing α-type cobalt hydroxide according to claim 11, wherein a functional group that coordinates with cobalt ions is present on the surface of the substrate.
本構成によれば、配向した結晶性の高いα型水酸化コバルトを得ることができる。コバルトイオンと配位する官能基には例えばアミノ基がある。 According to this configuration, oriented α-type cobalt hydroxide having high crystallinity can be obtained. Examples of functional groups that coordinate with cobalt ions include amino groups.
本発明の第15の側面は、
前記コバルトイオン溶液に、α型水酸化コバルトの層間にインターカレーションする分子を添加し、前記分子をα型水酸化コバルトの層間にインターカレーションさせることを特徴とする請求項11記載のα型水酸化コバルト製造方法
にある。
The fifteenth aspect of the present invention is
12. The α type according to claim 11, wherein a molecule that intercalates between layers of α-type cobalt hydroxide is added to the cobalt ion solution, and the molecules are intercalated between layers of α-type cobalt hydroxide. It is in the manufacturing method of cobalt hydroxide.
本構成によれば、分子をインターカレーションすることで、複合材料などの構築が可能となる材料が得られる。 According to this configuration, a material capable of constructing a composite material or the like can be obtained by intercalating molecules.
本発明の第16の側面は、
揮発性塩基ガスが遷移金属溶液に徐々に溶け込むことによって固体遷移金属水酸化物を形成させることを特徴とする固体遷移金属水酸化物製造方法
にある。
The sixteenth aspect of the present invention is
A solid transition metal hydroxide production method is characterized in that a volatile base gas is gradually dissolved in a transition metal solution to form a solid transition metal hydroxide.
本構成によれば、穏やかな結晶成長環境を実現し、結晶性の高い固体遷移金属水酸化物が得られる。 According to this configuration, a gentle crystal growth environment is realized, and a solid transition metal hydroxide having high crystallinity can be obtained.
本発明の第17の側面は、
遷移金属溶液が入った第1容器と、揮発性塩基溶液が入った第2容器とをとも第3容器内に収納する工程と、
前記第2容器内から揮発した揮発性塩基ガスが、前記第3容器内に拡散し、第1容器内の溶液に溶け込むことによって第1容器内の溶液のpHを上昇させる工程と
を有する固体遷移金属水酸化物製造方法
にある。
The seventeenth aspect of the present invention is
Storing the first container containing the transition metal solution and the second container containing the volatile base solution together in the third container;
Solid transition having a step of increasing the pH of the solution in the first container by diffusing the volatile base gas volatilized from the second container into the third container and dissolving in the solution in the first container It is in the metal hydroxide manufacturing method.
本構成によれば、簡便な方法で固体遷移金属水酸化物を得ることが可能となる。 According to this configuration, it is possible to obtain a solid transition metal hydroxide by a simple method.
本発明の第18の側面は、
コバルトイオン溶液が入った第1容器と、アンモニア溶液が入った第2容器とをとも第3容器内に収納する工程と、
前記第2容器内から揮発したアンモニアガスが、前記第3容器内に拡散し、前記第1容器内の溶液に溶け込むことによって第1容器内の溶液のpHを上昇させる工程と
を有するα型水酸化コバルト製造方法
にある。
The eighteenth aspect of the present invention provides
Storing both the first container containing the cobalt ion solution and the second container containing the ammonia solution in the third container;
A step of increasing the pH of the solution in the first container by diffusing ammonia gas volatilized from the second container into the third container and dissolving in the solution in the first container. It is in the manufacturing method of cobalt oxide.
本構成によれば、簡便な方法でα型水酸化コバルトを得ることが可能となる。 According to this configuration, α-type cobalt hydroxide can be obtained by a simple method.
本発明の第19の側面は、
インターカレーションさせる分子、ポリアクリル酸及びコバルトイオン溶液が入り、基板が浸漬した第1容器と、アンモニア溶液が入った第2容器とをともに密閉容器内に収納し、アンモニア溶液から揮発したアンモニアガスを密閉容器内に拡散させる工程と、
前記アンモニアガスを前記コバルトイオン溶液へ溶解させることによって前記コバルトイオン溶液のpHを上昇させる工程と
を有し、
前記分子がα型水酸化コバルトの層間にインターカレーションしたα型水酸化コバルトを基板上に成膜することを特徴とするα型水酸化コバルト製造方法
にある。
The nineteenth aspect of the present invention provides
A gas container containing polyacrylic acid and cobalt ion solution to be intercalated, and the first container in which the substrate is immersed and the second container in which the ammonia solution is contained are housed in a sealed container, and the ammonia gas volatilized from the ammonia solution. Diffusing in a sealed container;
And increasing the pH of the cobalt ion solution by dissolving the ammonia gas in the cobalt ion solution,
An α-type cobalt hydroxide manufacturing method is characterized in that an α-type cobalt hydroxide having molecules intercalated between layers of α-type cobalt hydroxide is formed on a substrate.
本構成によれば、結晶性の高いα型水酸化コバルトが得られる。 According to this configuration, α-type cobalt hydroxide having high crystallinity can be obtained.
本発明の第20の側面は、
遷移金属溶液を保持する手段と、
揮発性塩基ガスを前記遷移金属溶液に溶解させる手段と
を備え、
前記揮発性塩基ガスが前記遷移金属溶液に溶け込むことによってpHを上昇させながら固体遷移金属水酸化物を形成させることを特徴とする固体遷移金属水酸化物製造装置
にある。
The twentieth aspect of the present invention provides
Means for holding a transition metal solution;
Means for dissolving volatile base gas in the transition metal solution,
The volatile base gas dissolves in the transition metal solution to form a solid transition metal hydroxide while raising the pH, and thus the solid transition metal hydroxide production apparatus is characterized.
本構成によれば、簡便な方法で固体遷移金属水酸化物を得ることが可能となる。 According to this configuration, it is possible to obtain a solid transition metal hydroxide by a simple method.
本発明の第21の側面は、
遷移金属水酸化物を次亜塩素酸イオンと反応させる工程を有し、
前記遷移金属は、Ni、Coのいずれかであることを特徴とする遷移金属酸化物の製造方法
にある。
The 21st aspect of the present invention is
Having a step of reacting a transition metal hydroxide with hypochlorite ion,
The transition metal is any one of Ni and Co in the method for producing a transition metal oxide.
本構成によれば、簡便な方法で遷移金属酸化物を得ることが可能となる。前記遷移金属は、これらの元素を複数種含む多元系でもよい。この点は、以下、同様である。 According to this configuration, it is possible to obtain a transition metal oxide by a simple method. The transition metal may be a multi-element system including a plurality of these elements. This is the same in the following.
本発明の第22の側面は、
アルカリイオン源共存下で遷移金属水酸化物を次亜塩素酸イオンと反応させることを特徴とする請求項21記載の遷移金属酸化物の製造方法
にある。
The twenty-second aspect of the present invention provides
22. The method for producing a transition metal oxide according to claim 21, wherein the transition metal hydroxide is reacted with hypochlorite ions in the presence of an alkali ion source.
本構成によれば、簡便な方法でアルカリイオンが導入された遷移金属酸化物を得ることが可能となる。 According to this configuration, it is possible to obtain a transition metal oxide into which alkali ions are introduced by a simple method.
本発明の第23の側面は、
前記遷移金属は、Coであることを特徴とする請求項21記載の遷移金属酸化物の製造方法
にある。
The twenty-third aspect of the present invention provides
22. The method for producing a transition metal oxide according to claim 21, wherein the transition metal is Co.
本構成によれば、簡便な方法でコバルト酸化物を得ることが可能となる。 According to this configuration, a cobalt oxide can be obtained by a simple method.
本発明の第24の側面は、
前記遷移金属水酸化物は、α型水酸化コバルトであることを特徴とする請求項23記載の遷移金属酸化物の製造方法
にある。
The twenty-fourth aspect of the present invention provides
24. The method for producing a transition metal oxide according to claim 23, wherein the transition metal hydroxide is α-type cobalt hydroxide.
本構成によれば、簡便な方法でコバルト酸化物を得ることが可能となる。 According to this configuration, a cobalt oxide can be obtained by a simple method.
本発明の第25の側面は、
前記遷移金属水酸化物は、α型水酸化コバルト結晶であることを特徴とする請求項23記載の遷移金属酸化物の製造方法
にある。
The 25th aspect of the present invention is
24. The method for producing a transition metal oxide according to claim 23, wherein the transition metal hydroxide is α-type cobalt hydroxide crystal.
本構成によれば、簡便な方法で結晶方位などを制御したコバルト酸化物を得ることが可能となる。 According to this configuration, it is possible to obtain a cobalt oxide whose crystal orientation is controlled by a simple method.
本発明の第26の側面は、
基材上に形成され、遷移金属水酸化物膜の結晶軸が前記基材の表面に対して配向している遷移金属水酸化物膜を次亜塩素酸イオンと反応させる工程を有し、
前記遷移金属は、Ni、Coのいずれかであることを特徴とする遷移金属酸化物膜の製造方法
にある。
The twenty-sixth aspect of the present invention provides
A step of reacting a transition metal hydroxide film formed on a substrate and having a crystallographic axis of the transition metal hydroxide film oriented with respect to the surface of the substrate with hypochlorite ions;
The transition metal is any one of Ni and Co in the method for producing a transition metal oxide film.
本構成によれば、配向性を維持したまま遷移金属酸化物膜を得ることが可能となる。 According to this configuration, it is possible to obtain a transition metal oxide film while maintaining the orientation.
本発明の第27の側面は、
揮発性塩基ガスが遷移金属溶液に溶け込むことによって遷移金属水酸化物を形成させる工程と、
前記遷移金属水酸化物を次亜塩素酸イオンと反応させる工程と
を有し、
前記遷移金属は、Ni、Coのいずれかであることを特徴とする遷移金属酸化物の製造方法
にある。
The twenty-seventh aspect of the present invention provides
Forming a transition metal hydroxide by dissolving volatile base gas in the transition metal solution;
Reacting the transition metal hydroxide with hypochlorite ions,
The transition metal is any one of Ni and Co in the method for producing a transition metal oxide.
本構成によれば、簡便な方法で遷移金属酸化物を得ることが可能となる。 According to this configuration, it is possible to obtain a transition metal oxide by a simple method.
本発明の第28の側面は、
ポリアクリル酸及びコバルトイオン溶液が入り、基板が浸漬した第1容器と、アンモニア溶液が入った第2容器とをともに密閉容器内に収納し、アンモニア溶液から揮発したアンモニアガスを密閉容器内に拡散させる工程と、
前記アンモニアガスを前記コバルトイオン溶液へ溶解させることによって前記コバルトイオン溶液のpHを上昇させ、α型水酸化コバルトを基板上に成膜する工程と、
リチウムイオン及び次亜塩素酸イオンが溶解した溶液に前記α型水酸化コバルトを浸漬する工程と
を有する水和リチウムコバルト酸化物の製造方法
にある。
The 28th aspect of the present invention provides
The first container containing the polyacrylic acid and cobalt ion solution and the substrate immersed therein and the second container containing the ammonia solution are both housed in a sealed container, and the ammonia gas volatilized from the ammonia solution is diffused into the sealed container. A process of
Increasing the pH of the cobalt ion solution by dissolving the ammonia gas in the cobalt ion solution, and forming α-type cobalt hydroxide on the substrate;
And immersing the α-type cobalt hydroxide in a solution in which lithium ions and hypochlorite ions are dissolved.
本構成によれば、簡便な方法でコバルト酸化物を得ることが可能となる。 According to this configuration, a cobalt oxide can be obtained by a simple method.
本発明の第29の側面は、
基材上に形成された遷移金属酸化物膜であって、
遷移金属水酸化物膜の結晶軸が前記基材の表面に対して配向していることを特徴とする遷移金属酸化物膜
にある。
The 29th aspect of the present invention provides
A transition metal oxide film formed on a substrate,
In the transition metal oxide film, the crystal axis of the transition metal hydroxide film is oriented with respect to the surface of the substrate.
本構成によれば、配向性を制御した遷移金属酸化物膜を得ることができ、様々な特性の向上が期待できる材料が得られる。 According to this configuration, a transition metal oxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
本発明の第30の側面は、
前記遷移金属は、Ni、Coのいずれかであることを特徴とする請求項29記載の遷移金属酸化物膜。
The thirtieth aspect of the present invention is
30. The transition metal oxide film according to claim 29, wherein the transition metal is one of Ni and Co.
本構成によれば、配向性を制御した遷移金属酸化物膜を得ることができ、様々な特性の向上が期待できる材料が得られる。 According to this configuration, a transition metal oxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
本発明の第31の側面は、
基材上に形成されたコバルト酸化物膜であって、
コバルト酸化物膜のc軸が前記基材の表面に対して配向していることを特徴とするコバルト酸化物膜
にある。
The thirty-first aspect of the present invention provides
A cobalt oxide film formed on a substrate,
In the cobalt oxide film, the c-axis of the cobalt oxide film is oriented with respect to the surface of the substrate.
本構成によれば、配向性を制御したコバルト酸化物膜を得ることができ、様々な特性の向上が期待できる材料が得られる。 According to this configuration, a cobalt oxide film with controlled orientation can be obtained, and a material that can be expected to improve various characteristics can be obtained.
本発明の第32の側面は、
コバルト酸化物の層間には、アルカリ金属が導入されていることを特徴とする請求項31記載のコバルト酸化物膜
にある。
The thirty-second aspect of the present invention provides
32. The cobalt oxide film according to claim 31, wherein an alkali metal is introduced between the cobalt oxide layers.
本構成によれば、アルカリ金属が導入され、配向性を制御したコバルト酸化物膜を得ることができ、様々な特性の向上が期待できる材料が得られる。 According to this configuration, a cobalt oxide film in which an alkali metal is introduced and the orientation is controlled can be obtained, and a material that can be expected to improve various characteristics is obtained.
本発明の第33の側面は、
請求項6から請求項19のいずれかに記載の、固体遷移金属水酸化物製造方法若しくはα型水酸化コバルト製造方法、又は、請求項21から請求項28のいずれかに記載の、遷移金属酸化物の製造方法若しくは水和リチウムコバルト酸化物の製造方法によって製造されたことを特徴とする電子材料
にある。
The thirty-third aspect of the present invention provides
The solid transition metal hydroxide production method or α-type cobalt hydroxide production method according to any one of claims 6 to 19, or the transition metal oxidation according to any one of claims 21 to 28. An electronic material manufactured by a method for manufacturing a product or a method for manufacturing a hydrated lithium cobalt oxide.
なお、コバルトイオンと配位する官能基は、ルイス塩基としては比較的かたい性質を持つ官能基であり、例えば、アミノ基、硝酸基、硫酸基、カルボキシル基がある。 The functional group that coordinates with the cobalt ion is a functional group that has relatively hard properties as a Lewis base, and examples thereof include an amino group, a nitric acid group, a sulfuric acid group, and a carboxyl group.
遷移金属と配位する官能基を有する物質又はコバルトイオンと配位する官能基を有する物質には、例えば硫酸イオン、キレート剤がある。硫酸イオン又はキレート剤を用いてコバルトイオンなどを配位子によって安定化させ、塩基(OH)を加えるといった手法が考えられる。 Examples of the substance having a functional group coordinated with a transition metal or the substance having a functional group coordinated with a cobalt ion include a sulfate ion and a chelating agent. A technique of stabilizing a cobalt ion or the like with a ligand using a sulfate ion or a chelating agent and adding a base (OH ) can be considered.
揮発性塩基としては、気体になり水へ溶解する塩基、さらに望ましくはアンモニウムイオンを発生させる塩基(例えば、アンモニア、アンモニアガス、揮発性アミン、炭酸アンモニウム、ヒドラジン(H2N-NH2)誘導体など)がその例として挙げられる。 As the volatile base, a base that becomes a gas and dissolves in water, more preferably a base that generates ammonium ions (for example, ammonia, ammonia gas, volatile amine, ammonium carbonate, hydrazine (H 2 N-NH 2 ) derivative, etc.) ) Is an example.
反応溶媒としては、水だけでなく、アルコールなどの他の溶媒も考えられる。 As the reaction solvent, not only water but also other solvents such as alcohol are conceivable.
遷移金属水酸化物には、水酸化物イオンだけでなく、原料のアニオン(陰イオン)種(例えば原料の塩化物)や溶存している炭酸などが組み込まれる場合も含まれる。例えば、水酸化コバルトは、Co(OH)2-x(xは2より小さく0以上の数)と表されるが、これには原料のアニオン(陰イオン)種(例えば原料の塩化物)や溶存している炭酸などが組み込まれることもあるため、Co(OH)2-x-2y(A)x(CO3)y・nH2O(Aはアニオン種、0≦x≦1、0≦y≦1、nは任意の数)(例えばCo(OH)2-x-2yClx(CO3)y・nH2O(x-2yは2より小さく0以上の数))も含まれる。また、α型水酸化コバルトは、層状の積層構造において、β型水酸化コバルトよりも層間距離が広い結晶構造をとる水酸化コバルトである。ここで、原料のアニオン種は何でもよいと考えられ、塩素イオンのほかにも、硫酸イオン、硝酸イオンなどがその例として挙げられる。 The transition metal hydroxide includes not only hydroxide ions but also a case where a raw material anion (anion) species (for example, a raw material chloride) or dissolved carbonic acid is incorporated. For example, cobalt hydroxide is expressed as Co (OH) 2-x (x is a number smaller than 2 and greater than or equal to 0), and this includes raw material anion (anion) species (for example, raw material chloride) and because sometimes such carbonate are dissolved, is incorporated, Co (OH) 2-x -2y (A) x (CO 3) y · nH 2 O (A is the anionic species, 0 ≦ x ≦ 1,0 ≦ y ≦ 1, n is an arbitrary number) (for example, Co (OH) 2−x−2y Cl x (CO 3 ) y · nH 2 O (x−2y is a number smaller than 2 and greater than or equal to 0)). In addition, α-type cobalt hydroxide is a cobalt hydroxide having a crystal structure in which the interlayer distance is wider than that of β-type cobalt hydroxide in a layered laminated structure. Here, it is considered that any anion species may be used as a raw material, and examples thereof include sulfate ions and nitrate ions in addition to chlorine ions.
また、上述の方法で製造された水酸化物をさらに反応させインターカレーションさせたまま別な化合物へと変換すること、また、インターカレーションされた化合物を別な化合物へイオン交換すること、が可能である。特に、前者の方法によって層間を高機能化できることが判明している。この方法によって、複合イオン伝導体の構築など、機能化への展開が可能である。 Further, the hydroxide produced by the above-described method is further reacted and converted into another compound while intercalated, and the ion exchange of the intercalated compound into another compound is performed. Is possible. In particular, it has been found that the former method can enhance the functionality of the interlayer. By this method, development to functionalization such as construction of a composite ionic conductor is possible.
本発明によれば、配向性を制御した遷移金属水酸化物膜などが得られる。 According to the present invention, a transition metal hydroxide film with controlled orientation can be obtained.
本発明のさらに他の目的、特徴又は利点は、後述する本発明の実施の形態や添付する図面に基づく詳細な説明によって明らかになるであろう。 Other objects, features, or advantages of the present invention will become apparent from the detailed description based on the embodiments of the present invention described later and the accompanying drawings.
本実施形態の方法によって得られたα-Co(OH)2の板状結晶の電子顕微鏡写真(a,b)およびX線回折(XRD)測定結果(c)を示す図である。It is a figure which shows the electron micrograph (a, b) and X-ray diffraction (XRD) measurement result (c) of the plate-like crystal of α-Co (OH) 2 obtained by the method of the present embodiment. 得られたα-Co(OH)2の薄膜化と構造制御に関する電子顕微鏡写真である。FIG. 6 is an electron micrograph relating to thinning and structural control of the obtained α-Co (OH) 2 . α型水酸化コバルトの作製方法の概略図である。It is the schematic of the preparation methods of alpha type cobalt hydroxide. 稜共有{CoO}正八面体クラスターから構成される水酸化コバルトの結晶構造を示し、(a)c軸方向から投影した(層状構造を上から見た)結晶構造、(b)c軸に垂直な方向から投影した(層状構造の方向から見た)図である。1 shows a crystal structure of cobalt hydroxide composed of {CoO 6 } octahedral clusters, (a) a crystal structure projected from the c-axis direction (a layered structure viewed from above), and (b) perpendicular to the c-axis. It is the figure projected from various directions (viewed from the direction of the layered structure). 得られた沈殿粉末の電子顕微鏡写真およびXRD測定結果を示す図である。It is a figure which shows the electron micrograph and XRD measurement result of the obtained precipitation powder. 得られた薄膜の電子顕微鏡写真およびXRD測定結果を示す図である。It is a figure which shows the electron micrograph of the obtained thin film, and a XRD measurement result. 得られた薄膜の電子顕微鏡写真およびXRD測定結果を示す図である。It is a figure which shows the electron micrograph of the obtained thin film, and a XRD measurement result. ポリアクリル酸共存下で得られたα型水酸化コバルト結晶薄膜に関し、(a,b)キトサンマトリクス上の薄膜の電子顕微鏡写真,(c、d)ポリアニリンマトリクス上の薄膜の電子顕微鏡写真である。(A, b) The electron micrograph of the thin film on a chitosan matrix, (c, d) The electron micrograph of the thin film on a polyaniline matrix regarding the alpha type cobalt hydroxide crystal thin film obtained in the presence of polyacrylic acid. ポリアクリル酸共存下で得られたα型水酸化コバルト結晶薄膜のX線回折パターン(a)と薄膜の一部の透過電子顕微鏡像(b)およびその電子線回折パターン(c)である。It is an X-ray diffraction pattern (a) of an α-type cobalt hydroxide crystal thin film obtained in the presence of polyacrylic acid, a transmission electron microscope image (b) of a part of the thin film, and an electron diffraction pattern (c) thereof. インターカレーションの挙動を示すX線回折パターンであり、インターカレーション前(A)とチオフェン-3酢酸のインターカレーション後(B)の測定結果を示す図である。It is an X-ray-diffraction pattern which shows the behavior of intercalation, and is a figure which shows the measurement result before the intercalation (A) and after the intercalation of thiophene-3 acetic acid (B). 得られた酸化コバルト板状結晶(粉末試料)の走査型電子顕微鏡写真(a) NaClO溶液による処理(乾燥後),b) NaClO溶液とLiOHによる処理)である。Scanning electron micrographs of the obtained cobalt oxide plate crystals (powder sample) (a) treatment with NaClO solution (after drying), b) treatment with NaClO solution and LiOH. 得られた酸化コバルト板状結晶(粉末試料)のナノ構造を示す透過型電子顕微鏡写真である。It is a transmission electron micrograph which shows the nanostructure of the obtained cobalt oxide plate-like crystal (powder sample). 各種の処理による酸化コバルト板状結晶(粉末試料)のX線回折パターン(a) NaClO溶液による処理(乾燥前), b) NaClO溶液による処理(乾燥後),c) NaClO溶液とNaOHによる処理,d) NaClO溶液とLiOHによる処理)である。X-ray diffraction patterns of cobalt oxide plate crystals (powder sample) by various treatments (a) Treatment with NaClO solution (before drying), b) Treatment with NaClO solution (after drying), c) Treatment with NaClO solution and NaOH, d) Treatment with NaClO solution and LiOH). 得られた酸化コバルト板状結晶(薄膜試料)の走査型電子顕微鏡写真(a)酸化コバルトナノシート配向薄膜、b)酸化コバルト板状結晶の配向薄膜)である。It is the scanning electron micrograph of the obtained cobalt oxide plate crystal (thin film sample) (a) Cobalt oxide nanosheet alignment thin film, b) Cobalt oxide plate crystal alignment thin film). 各種の処理による酸化コバルト板状結晶(薄膜試料)のX線回折パターン(a) NaClO溶液による処理(乾燥後)、b) NaClO溶液とNaOHによる処理、c) NaClO溶液とLiOHによる処理)である。X-ray diffraction pattern of cobalt oxide plate crystals (thin film sample) by various treatments (a) treatment with NaClO solution (after drying), b) treatment with ONaClO solution and NaOH, c) treatment with NaClO solution and LiOH) .
以下、本発明の実施の形態について図面を参照しながら詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[概要] [Overview]
本発明者らは、誠意研究の末、α型構造をとる高結晶性の遷移金属水酸化物の選択的合成および薄膜化に成功した。まず、その概要を説明する。 The inventors of the present invention succeeded in selective synthesis and thinning of highly crystalline transition metal hydroxide having an α-type structure as a result of sincere research. First, the outline will be described.
図1は、本実施形態の方法によって得られたα-Co(OH)2の板状結晶の電子顕微鏡写真(a,b)およびX線回折(XRD)測定結果(c)を示す図である。図のように、50ナノメートル程度の厚さと数マイクロメートルの大きさを持つ、α型水酸化コバルト(α-Co(OH)2)の板状の結晶が選択的に得られた。なお、XRDのピークは全てα-Co(OH)2に帰属でき、他の結晶形などの析出は確認できない。 FIG. 1 is a diagram showing an electron micrograph (a, b) and an X-ray diffraction (XRD) measurement result (c) of a plate crystal of α-Co (OH) 2 obtained by the method of the present embodiment. . As shown in the figure, plate-like crystals of α-type cobalt hydroxide (α-Co (OH) 2 ) having a thickness of about 50 nanometers and a size of several micrometers were selectively obtained. All XRD peaks can be attributed to α-Co (OH) 2 , and precipitation of other crystal forms cannot be confirmed.
図2は、得られたα-Co(OH)2の薄膜化と構造制御に関する電子顕微鏡写真である。図において、(a)スライドガラス上への析出, (b) 高分子マトリクス上への析出, (c) 高分子マトリクス上への析出時に水溶性高分子を添加することでナノシートへの構造制御を行った例を示す。図に示すとおり、ガラスや高分子を塗布した基材(又は基板)を浸漬しておくことで、その基材(又は基板)上へα-Co(OH)2結晶を析出させることも可能となった。これらは、全て常温の水溶液中の反応によっても作製することができ、共存させる有機高分子によってその厚さや形状などが制御可能であることも見出した。 FIG. 2 is an electron micrograph relating to thinning and structural control of the obtained α-Co (OH) 2 . In the figure, (a) Precipitation on glass slide, (b) Precipitation on polymer matrix, (c) Structure control to nanosheets by adding water-soluble polymer during deposition on polymer matrix An example is shown. As shown in the figure, α-Co (OH) 2 crystals can be deposited on the base material (or substrate) by immersing the base material (or substrate) coated with glass or polymer. became. It was also found that these can all be produced by a reaction in an aqueous solution at room temperature, and the thickness and shape can be controlled by the coexisting organic polymer.
本実施形態では、金属(コバルト・ニッケル)塩化物水溶液とアンモニア水の入った2つの反応溶液とを密閉容器内で共存させることで、アンモニアガスの拡散と溶解によって反応を起こす。この手法によって、2つの液を直接混合するような手法とは異なり、急激な反応や安定相への転移を抑制しつつ、準安定相であるα型構造と高い結晶性を兼ね備えた沈殿粉末および基材への直接の薄膜形成を可能にしている。 In this embodiment, a reaction is caused by diffusion and dissolution of ammonia gas by allowing a metal (cobalt / nickel) chloride aqueous solution and two reaction solutions containing ammonia water to coexist in a sealed container. By this method, unlike the method of directly mixing two liquids, while suppressing the rapid reaction and transition to a stable phase, a precipitated powder having a α-type structure that is a metastable phase and high crystallinity and This makes it possible to form a thin film directly on the substrate.
本実施形態の方法によって、これまで作製が困難であった、α型の結晶構造と高い結晶性を兼ね備えた遷移金属水酸化物を簡便に作製できる技術を与えることができる。また、本実施形態は、需要に応じた構造制御を行うことで新しい電極材料としての可能性さえ開くものである。 The method of the present embodiment can provide a technique that can easily produce a transition metal hydroxide having both an α-type crystal structure and high crystallinity, which has been difficult to produce. Moreover, this embodiment opens the possibility as a new electrode material by performing the structure control according to a demand.
以下では、α型水酸化コバルトを例として説明するが、同様の方法で水酸化マンガンでも同様の結果が得られており、他のZn、Cu、Niなどの他の遷移金属水酸化物の場合でも同様の手法は適用できると考えられる。遷移金属水酸化物の場合には、α型およびα型と同程度の層間距離を有する構造となることが多い。 In the following, α-type cobalt hydroxide will be described as an example, but similar results have been obtained with manganese hydroxide by the same method. In the case of other transition metal hydroxides such as Zn, Cu, Ni, etc. However, the same method can be applied. In the case of transition metal hydroxides, α-type and α-type structures often have a similar interlayer distance.
[α型水酸化コバルトの作製方法] [Production method of α-type cobalt hydroxide]
図3は、α型水酸化コバルトの作製方法の概略図である。図において、insoluble matricesは、基材、soluble additiveは構造制御剤としての添加物を表す。 FIG. 3 is a schematic view of a method for producing α-type cobalt hydroxide. In the figure, insoluble matrices represent a base material, and soluble additive represents an additive as a structure control agent.
製造過程の概要は次のとおりである。所定濃度のコバルトイオンを含む水溶液(例えば、10-50 mM程度の塩化コバルト水溶液)を、アンモニア水(1-30 wt.-%程度)とともに密閉容器内に入れ、常温(25℃)で数時間(1~3時間程度)静置する。アンモニアの揮発にともない、コバルトイオンを含む水溶液のpHが上昇し、水酸化コバルトが生成した。得られた沈殿物を遠心分離もしくはろ過によって回収し、乾燥させる。基材への析出を行う場合には、最初の塩化コバルト水溶液へ基材(例えば、スライドガラスおよび以下の有機物を塗布した基材:キトサン・ポリアニリン・ポリビニルアルコール・キチン)を浸漬しておく。析出後、基材を水洗することで析出した膜が得られる。なお、析出する水酸化コバルトの厚さを制御する場合には、ポリアクリル酸(例えば、分子量2,000, 1.5 x 10-3 wt.-%)を最初のコバルトイオンを含む水溶液に添加しておく。 The outline of the manufacturing process is as follows. An aqueous solution containing cobalt ions of a certain concentration (for example, about 10-50 mM cobalt chloride aqueous solution) is placed in an airtight container together with ammonia water (about 1-30 wt .-%) for several hours at room temperature (25 ° C). Leave for about 1 to 3 hours. With the volatilization of ammonia, the pH of the aqueous solution containing cobalt ions increased, and cobalt hydroxide was generated. The resulting precipitate is collected by centrifugation or filtration and dried. When depositing on the substrate, the substrate (for example, a substrate coated with a slide glass and the following organic substances: chitosan, polyaniline, polyvinyl alcohol, chitin) is immersed in the initial cobalt chloride aqueous solution. After the deposition, the deposited film is obtained by washing the substrate with water. In order to control the thickness of the precipitated cobalt hydroxide, polyacrylic acid (for example, molecular weight 2,000, 1.5 × 10 −3 wt .-%) is added to the first aqueous solution containing cobalt ions.
続いて、実際の製造過程の一例を説明する。まず、所定濃度のコバルトイオンを含む水溶液と別なサンプル管に用意したアンモニア水を両方ともに一つの密閉容器内に入れ、25℃で3時間静置した。アンモニア蒸気がコバルトイオンを含む水溶液へ拡散、溶解することでpHが上昇し、水酸化コバルトが析出した。次に、得られた沈殿物を遠心分離もしくはろ過によって回収し、乾燥させた。基材への析出を行う場合には、コバルトイオンを含む水溶液へ基材を浸漬しておいた。また、析出する水酸化コバルトの形状や厚さの制御は、ポリアクリル酸(平均分子量 2000)を最初のコバルトイオンを含む水溶液に溶解させて行った。さらに、有機分子の層間へ導入(インターカレーション)は、コバルトイオンを含む水溶液に予めカルボキシル基をもつアニオン性分子を溶解させておくことで行った。生成物の結晶構造および結晶性の確認は粉末X線回折(XRD)で行い、インターカレーション挙動は層間距離を示すピーク位置のシフトから解析を行った。 Subsequently, an example of an actual manufacturing process will be described. First, both an aqueous solution containing a predetermined concentration of cobalt ions and ammonia water prepared in another sample tube were placed in one sealed container and allowed to stand at 25 ° C. for 3 hours. Ammonia vapor diffused and dissolved in an aqueous solution containing cobalt ions, so that the pH increased and cobalt hydroxide precipitated. The resulting precipitate was then collected by centrifugation or filtration and dried. When performing precipitation to a base material, the base material was immersed in the aqueous solution containing a cobalt ion. The shape and thickness of the precipitated cobalt hydroxide were controlled by dissolving polyacrylic acid (average molecular weight 2000) in the first aqueous solution containing cobalt ions. Furthermore, introduction (intercalation) of organic molecules between layers was performed by dissolving anionic molecules having a carboxyl group in advance in an aqueous solution containing cobalt ions. The crystal structure and crystallinity of the product were confirmed by powder X-ray diffraction (XRD), and the intercalation behavior was analyzed from the shift of the peak position indicating the interlayer distance.
次に、条件などについて詳細に説明する。 Next, conditions and the like will be described in detail.
コバルトイオンを含む水溶液としては塩化コバルト・六水和物(CoCl2・6H2O)を用いたが、コバルトイオンを供給する原料としては、硝酸塩・硫酸塩・酢酸塩などコバルトに対する対アニオンの種類は何でもよい。ただし、これらの対アニオンは塩化物イオンを含め生成物の水酸化コバルト結晶内・層間へ残留すると考えられ、基本的な結晶構造は変わらないまでも生成物の厳密な構造式や組成は変わってくる(下記(6)参照)。一般に塩化物は金属カチオンとの解離度が大きく、生成物への混入の影響が比較的少ないと予測できるため、本発明で用いるのには最も好ましいと考えられる。 Cobalt chloride hexahydrate (CoCl 2 · 6H 2 O) was used as the aqueous solution containing cobalt ions, but the raw material that supplies cobalt ions is the type of counter anion for cobalt, such as nitrate, sulfate, and acetate. Can be anything. However, these counter-anions are thought to remain in and between the cobalt hydroxide crystals of the product, including chloride ions, and the exact structural formula and composition of the product will change even if the basic crystal structure remains unchanged. Come (see (6) below). In general, chloride is considered to be most preferable for use in the present invention because it can be predicted that the degree of dissociation from the metal cation is large and the influence of mixing with the product is relatively small.
濃度条件としては10 mMから50 mMの塩化コバルト水溶液20 mLの入ったサンプル容器2本を用いて行った。2 mMから500 mMが塩化コバルト水溶液の好ましい濃度である。これは、低過飽和度の穏やかな結晶成長環境が実現するからであり、それより低い場合には反応時間が長くなり、それより高い場合には高過飽和度によって結晶性が低下する可能性が考えられる。また、ある濃度範囲(10 mMから50 mM)においては、いずれもα型水酸化コバルトの沈殿および薄膜は得られるが、より結晶性が高い沈殿を得るという点、また、配向性などが制御された薄膜を得るためには、10 mMから20 mMがさらに好ましい濃度範囲であることがわかっている。なお、容器内のコバルトイオンの量は、アンモニアの濃度や量との兼ね合いで任意に設定できると考えられる。 Concentration conditions were performed using two sample containers containing 20 mL of 10 to 50 mM cobalt chloride aqueous solution. 2 mM to 500 mM is a preferred concentration of the aqueous cobalt chloride solution. This is because a gentle crystal growth environment with low supersaturation is realized, and if it is lower, the reaction time becomes longer, and if it is higher, crystallinity may be lowered due to high supersaturation. It is done. Moreover, in a certain concentration range (10 mM to 50 mM), both α-type cobalt hydroxide precipitates and thin films can be obtained, but higher crystallinity precipitates are obtained, and the orientation is controlled. In order to obtain a thin film, it is known that 10 mM to 20 mM is a more preferable concentration range. In addition, it is thought that the quantity of cobalt ion in a container can be arbitrarily set in consideration of the density | concentration and quantity of ammonia.
アンモニアのガスを徐々に拡散させ、コバルトイオンを含む溶液へ徐々に溶解させることでpHを上昇させることがたいへん好ましい。アンモニアが気相を介してゆっくり供給されるためpHの上昇がゆっくりであること、また、溶液中で生じるアンモニウムイオンがコバルトイオンへ配位することで、急激な沈殿の生成が抑制され、低過飽和度の穏やかな結晶成長環境を実現し、準安定相の生成が可能になっていると推定される。 It is very preferable to raise pH by gradually diffusing ammonia gas and gradually dissolving it in a solution containing cobalt ions. Since ammonia is slowly supplied via the gas phase, the pH rises slowly, and ammonium ions generated in the solution are coordinated to cobalt ions, which suppresses the formation of abrupt precipitates and low supersaturation. It is presumed that a metastable crystal growth environment can be realized and a metastable phase can be generated.
アンモニアの濃度としては、1 wt%から28 wt%(市販原液の最高濃度、これより高いものも存在すれば可能)が好ましく、さらに好ましくは2 wt%から5 wt%程度と考えられ、その理由は上記コバルトイオンの場合と同様(過飽和度の問題)と考えられる。 The concentration of ammonia is preferably from 1 wt% to 28 wt% (the highest concentration of the stock solution available, if higher than this is possible), more preferably about 2 wt% to 5 wt%. Is considered to be the same as in the case of the cobalt ion (problem of supersaturation).
ここでは、例として、濃度条件としては2 wt.-%から28 wt.-%(市販水溶液の原液)のアンモニア水約10 mLの共存下で行った。この範囲外であっても同様の結果になると考えられる。 Here, as an example, the concentration was performed in the presence of about 10 mL of ammonia water of 2 wt .-% to 28 wt .-% (stock solution of a commercial aqueous solution). It is considered that the same result will be obtained even if it is outside this range.
室温付近の温度で実験を行っており、10~35℃程度であれば同様の結果になると考えられる。室温付近でもα型水酸化コバルトを作製できることは簡易に製造できる大きな要因であり、本実施形態の優れている点の一つである。 Experiments are performed at temperatures around room temperature, and similar results are expected when the temperature is about 10 to 35 ° C. The ability to produce α-type cobalt hydroxide even near room temperature is a major factor that can be easily produced, and is one of the advantages of this embodiment.
コバルトイオンやアンモニアの濃度にも依存するが、反応容器内に緑色の沈殿物が視認できた時から3日程度で取り出すとα型の沈殿や薄膜が得られ、より好ましくは3時間~15時間程度で取り出すのがよい。これより短い場合には、沈殿・薄膜ともに析出量が少なく、これより長い場合には沈殿は問題無いが、膜は析出量が増えて配向性が低下することが懸念されるからである。特に配向した薄膜を得るには反応開始後、3時間前後で取り出すことが好ましい。3時間以上で取り出した場合であっても、配向性はやや乱れるが、薄膜を得ることは可能である。なお、α型に特徴的な青緑色の沈殿が反応開始約20分後に目視で確認でき、どの時間に取り出しても得られる粉末の結晶構造、結晶性、形状などに大きな変化はない。 Although depending on the concentration of cobalt ions and ammonia, an α-type precipitate or thin film can be obtained if it is taken out in about 3 days from the time when a green precipitate is visible in the reaction vessel, more preferably 3 to 15 hours. It is good to take it out to the extent. If the length is shorter than this, the amount of precipitation in both the precipitate and the thin film is small, and if it is longer than this, the precipitation is not a problem, but there is a concern that the amount of precipitation in the film increases and the orientation deteriorates. In particular, in order to obtain an oriented thin film, it is preferable to take it out in about 3 hours after the reaction starts. Even when it is taken out after 3 hours or more, the orientation is somewhat disturbed, but a thin film can be obtained. A blue-green precipitate characteristic of α-type can be visually confirmed about 20 minutes after the start of the reaction, and there is no significant change in the crystal structure, crystallinity, shape, etc. of the powder obtained at any time.
基本的な結晶構造は図1に示したようになり、水酸化コバルトと表して問題は無いが、原料の塩化物や溶存している炭酸などが組み込まれるため、正確にはCo(OH)2-x-2yClx(CO3)y・nH2Oと表せる。 The basic crystal structure is as shown in FIG. 1 and there is no problem expressed as cobalt hydroxide. However, since the raw material chloride and dissolved carbonic acid are incorporated, it is precisely Co (OH) 2 -x-2y Cl x (CO 3 ) y · nH 2 O
例えば、スライドガラスおよびキトサン・ポリアニリン・ポリビニルアルコール・キチンなどを塗布した基材への薄膜化に既に成功している。この中で、キトサン・キチン・ポリアニリンは高い配向性を付与でき、スライドガラス・ポリビニルアルコールは配向性が高い薄膜は得られなかった。上記以外の基材であっても、本発明の手法において反応条件の最適化を行えば、不均一核生成によって所望の基材上へ直接薄膜を形成させることが可能であると予想できる。 For example, a thin film on a glass substrate and a substrate coated with chitosan, polyaniline, polyvinyl alcohol, chitin, etc. has already been successfully achieved. Among these, chitosan / chitin / polyaniline could give high orientation, and slide glass / polyvinyl alcohol could not provide a thin film with high orientation. Even if it is a base material other than the above, if the reaction conditions are optimized in the method of the present invention, it can be expected that a thin film can be directly formed on a desired base material by heterogeneous nucleation.
ここでは、例としてポリアクリル酸を用いて反応を行った。コバルトイオンと配位する官能基を有するポリマーであれば、ポリアクリル酸に限らないと予想される。カルボキシル基を持つポリマー、ポリカルボン酸、ポリアミン、ポリスルホン酸などがその例として挙げられる。ただし、モノマーは下記に示されるように、層間へのインターカレーションがおこるため、形状の制御を目的とした使用にはポリマーがより好ましい。 Here, the reaction was performed using polyacrylic acid as an example. Any polymer having a functional group coordinated with cobalt ions is expected to be not limited to polyacrylic acid. Examples thereof include a polymer having a carboxyl group, polycarboxylic acid, polyamine, and polysulfonic acid. However, since the monomer intercalates between layers as shown below, a polymer is more preferable for use for the purpose of shape control.
コバルトイオンやアンモニアの濃度、反応時間と相関性があると思われるが、ポリアクリル酸の濃度は、コバルトイオン濃度に対して0.1から0.5倍程度が適切であり、より好ましくは0.2倍前後である。このときのポリアクリル酸濃度は、カルボキシル基の濃度(=モノマー濃度)で換算してある。これより低い濃度では、制御剤としての役割が現れず、これより高い濃度領域では結晶析出を抑制してしまうと予想できる。 Although it seems that there is a correlation with the concentration of cobalt ions and ammonia and the reaction time, the concentration of polyacrylic acid is suitably about 0.1 to 0.5 times the cobalt ion concentration, more preferably 0. About 2 times. The polyacrylic acid concentration at this time is converted by the carboxyl group concentration (= monomer concentration). If the concentration is lower than this, the role as a control agent does not appear, and it can be expected that the crystal precipitation is suppressed in a concentration region higher than this.
これまでにも、別の手法(アンモニア水を直接コバルトイオンが溶解している水溶液へ注ぐ方法)によって、α型構造の層間へ長鎖アルキルカルボン酸・硫酸・シアン酸を層間へ導入する試みがなされている(非特許文献7)。層間の正電荷と導入する分子の負電荷の静電相互作用によってインターカレーションがおこると解釈できる。 Until now, there has been an attempt to introduce long-chain alkylcarboxylic acid, sulfuric acid, and cyanic acid between layers of α-type structure by another method (method of pouring ammonia water directly into an aqueous solution in which cobalt ions are dissolved). (Non-Patent Document 7). Intercalation can be interpreted as an electrostatic interaction between the positive charge between the layers and the negative charge of the molecules to be introduced.
本実施形態においては、前述のような脂肪族カルボン酸に加え、芳香環やπ共役系などの機能部位を骨格構造に持つカルボン酸をインターカレーションできる。例として、チオフェン、イミダゾール、ピリジン骨格へカルボキシル基が導入された分子が挙げられ、実際にXRDによってインターカレーションに伴い、その分子の大きさに応じた層間距離のシフトを確認した。これらの機能部位を持つ分子をインターカレーションすることで、光・電子機能性の複合材料の構築が可能となる。機能部位の骨格構造は他の芳香環やπ共役系なども可能であり、インターカレーションを誘導するために負電荷を持つ官能基(硫酸基や硝酸基など)が導入されていることが好ましい。 In this embodiment, in addition to the aliphatic carboxylic acid as described above, a carboxylic acid having a functional site such as an aromatic ring or a π-conjugated system in the skeleton structure can be intercalated. Examples include molecules in which a carboxyl group is introduced into a thiophene, imidazole, or pyridine skeleton, and a shift in the interlayer distance according to the size of the molecule was confirmed by XRD. By intercalating molecules with these functional sites, it is possible to construct optical / electronic functional composite materials. The skeleton structure of the functional site can be other aromatic rings or π-conjugated systems, and it is preferable that a functional group having a negative charge (such as a sulfate group or a nitrate group) is introduced to induce intercalation. .
[作製例とその結果] [Production examples and results]
<α型水酸化コバルトの作製例(沈殿粉末)>
一例として、濃度条件としては10 mMから50 mM程度の塩化コバルト水溶液20 mLの入ったサンプル容器2本を用いて行った。これらの溶液を、2~10wt.-%アンモニア水約10 mLとともに密閉容器内へ入れ、25℃で3~12時間静置した。得られた沈殿を遠心分離によって水洗・回収し、室温・大気圧下で乾燥させた。
<Production example of α-type cobalt hydroxide (precipitated powder)>
As an example, two sample containers containing 20 mL of an aqueous cobalt chloride solution of about 10 mM to 50 mM were used as concentration conditions. These solutions were placed in a sealed container together with about 10 mL of 2 to 10 wt .-% aqueous ammonia and allowed to stand at 25 ° C. for 3 to 12 hours. The obtained precipitate was washed and recovered by centrifugation, and dried at room temperature and atmospheric pressure.
ここで、図4は、稜共有{CoO}正八面体クラスターから構成される水酸化コバルトの結晶構造を示し、(a)c軸方向から投影した(層状構造を上から見た)結晶構造、(b)c軸に垂直な方向から投影した(層状構造の方向から見た)図である。 Here, FIG. 4 shows a crystal structure of cobalt hydroxide composed of edge-sharing {CoO 6 } octahedral clusters, (a) a crystal structure projected from the c-axis direction (a layered structure viewed from above), (B) It is the figure projected from the direction perpendicular | vertical to c-axis (viewed from the direction of the layered structure).
図5は、得られた沈殿粉末の電子顕微鏡写真およびXRD測定結果を示す図である。図においては、得られたα型水酸化コバルト結晶の電子顕微鏡写真(a,b)とX線回折パターン(c)とを示す。大きさが約1~3 μm程度、厚さが50~100 nm程度の六角板状の結晶が得られた。六角板状以外のかたちが崩れたものもいくつか存在した。XRDパターンにおいては、結晶性が高いため、一般に報告されている結晶性が低く(003), (006), (100), (110)の回折以外が見えない結晶と異なり、多くの他の結晶面に由来する回折ピークが観察できている。これらのピークは、既報(非特許文献8)で詳細に解析されているα型のピーク位置と一致し、図に示したように指数付けすることができる。上記濃度範囲においては、沈殿粉末の形状およびXRDパターンに目立った変化は無かった。 FIG. 5 is an electron micrograph and XRD measurement results of the obtained precipitated powder. In the figure, an electron micrograph (a, b) and an X-ray diffraction pattern (c) of the obtained α-type cobalt hydroxide crystal are shown. A hexagonal plate-like crystal having a size of about 1 to 3 μm and a thickness of about 50 to 100 nm was obtained. There were some things that were not shaped like a hexagonal plate. In the XRD pattern, the crystallinity is high, so the generally reported crystallinity is low. Unlike crystals that can only see the diffraction of (003), (006), (100), (110), many other crystals A diffraction peak derived from the surface can be observed. These peaks coincide with the α-type peak positions analyzed in detail in the previous report (Non-patent Document 8), and can be indexed as shown in the figure. In the above concentration range, there was no noticeable change in the shape and XRD pattern of the precipitated powder.
<α型水酸化コバルトの作製例(薄膜)>
上記作製例(沈殿粉末)と同様にした各サンプル容器内に、スライドガラスおよびスライドガラス上にキトサン・ポリアニリン・ポリビニルアルコール・キチンなどの有機高分子マトリクスを塗布した基板を、塗布した面を下側に向けて斜めに立てかけた。これは、沈殿粒子の降り積もりを防ぎ、不均一核生成のみによる成膜を目的としたものである。
<Production example of α-type cobalt hydroxide (thin film)>
In each sample container similar to the above preparation example (precipitated powder), a substrate coated with an organic polymer matrix such as chitosan / polyaniline / polyvinyl alcohol / chitin on the slide glass and slide glass is placed on the lower side. Leaned diagonally toward This is intended to prevent the sedimentation of precipitated particles and to form a film only by heterogeneous nucleation.
図6及び図7は、得られた薄膜の電子顕微鏡写真およびXRD測定結果を示す図である。図6は、得られたα型水酸化コバルト結晶薄膜を示し、(a,b)キトサンマトリクス上の薄膜の電子顕微鏡写真,(c、d)ポリアニリンマトリクス上の薄膜の電子顕微鏡写真である。図7は、得られたα型水酸化コバルト結晶薄膜のX線回折パターン(a)と薄膜の一部の透過電子顕微鏡像(b)およびその電子線回折パターン(c)である。c軸が基板に対して垂直になっていることがわかる。 6 and 7 are diagrams showing an electron micrograph and an XRD measurement result of the obtained thin film. FIG. 6 shows the obtained α-type cobalt hydroxide crystal thin film, (a, b) an electron micrograph of the thin film on the chitosan matrix, and (c, d) an electron micrograph of the thin film on the polyaniline matrix. FIG. 7 shows an X-ray diffraction pattern (a) of the obtained α-type cobalt hydroxide crystal thin film, a transmission electron microscopic image (b) of a part of the thin film, and an electron diffraction pattern (c) thereof. It can be seen that the c-axis is perpendicular to the substrate.
キチン・キトサン・ポリアニリンの基板を用いた場合には、大きさが約1~3 μm程度、厚さが50~100 nm程度の六角板状の結晶が基板にはり付くように、つまり、そのc軸が基板に対して垂直になるように配向して有機高分子マトリクス上に析出した。XRD測定結果より、(003)および(006)面のみの回折ピークが見られたことより、配向性が示唆される。また、電子線回折よりα型水酸化コバルトの(100)および(110)面に帰属できるスポットパターンが得られたことより、c軸方向への結晶性の高さも示唆される。コバルトイオン濃度が20 mM、アンモニア濃度が2 wt.-%、反応時間が3時間のときに配向性が高い膜が得られた。それ以外の条件では六角板状が基板に垂直方向に立ち上がるような形態も見られ、配向性がやや乱れた。また、ポリビニルアルコールの基板およびコーティングを施していないスライドガラス上へ析出させた場合には、配向せず六角板状結晶がランダムに析出していた。成膜のために有機高分子マトリクスを利用すること、特に基板表面に官能基-NH-が存在していることが配向した結晶性の高い薄膜を得るために好ましいと考えられる。なお、スライドガラスなどの場合、c軸は垂直にはならず平行な方向になり、基板上に薄膜として形成する。このように、用いる基板、さらにそこに塗布してある高分子の種類によっては配向性が無い場合もある。 When a chitin / chitosan / polyaniline substrate is used, a hexagonal plate-like crystal with a size of about 1 to 3 μm and a thickness of about 50 to 100 nm sticks to the substrate, that is, the c It was oriented so that the axis was perpendicular to the substrate and deposited on the organic polymer matrix. From the XRD measurement results, the orientation was suggested by the fact that diffraction peaks only on the (003) and (006) planes were observed. In addition, a spot pattern that can be assigned to the (100) and (110) planes of α-type cobalt hydroxide was obtained from electron diffraction, which suggests that the crystallinity is high in the c-axis direction. A highly oriented film was obtained when the cobalt ion concentration was 20 mM, the ammonia concentration was 2 wt .-%, and the reaction time was 3 hours. Under other conditions, a form in which the hexagonal plate shape rises in a direction perpendicular to the substrate was observed, and the orientation was slightly disturbed. Further, when it was deposited on a polyvinyl alcohol substrate and an uncoated glass slide, hexagonal plate crystals were randomly deposited without being oriented. It is considered that the use of an organic polymer matrix for film formation, in particular, the presence of a functional group —NH— on the substrate surface, is preferable for obtaining an oriented thin film with high crystallinity. In the case of a slide glass or the like, the c-axis is not vertical but parallel, and is formed as a thin film on the substrate. Thus, there may be no orientation depending on the substrate used and the type of polymer applied thereto.
XRD測定結果について詳細に検討を行なったところ、「基板上で高結晶性」かつ「配向している」、この2つの状態を満たしていた場合には(003)、(006)及び(00.15)の3つのピークのみが観察されたことが判明した(図7)。ここで、(003)と(006)の2つは少々結晶性が低い場合でも観察できると予想できる。しかし、高次の回折(00.15)は上記2つの条件を満たしていない限りなかなか観察できないと考えられる。なお、補足として、この結晶構造においては(009)は対称性の都合上ピークとして出現しない。また、これらは、ブラッグの回折条件、2d sinθ= n λにおきまして、nの数が異なるケースに該当する(dは一定であり、nの変化によって横軸θの出現が変わっているだけで、現実にそのd値に該当する構造が結晶内にできているわけではない)。 When XRD measurement results were examined in detail, it was found that (003), (006), and (00.15) when these two states were satisfied, “highly crystalline on the substrate” and “oriented”. It was found that only three peaks were observed (FIG. 7). Here, it can be expected that (003) and (006) can be observed even when the crystallinity is slightly low. However, it is considered that high-order diffraction (00.15) cannot be observed unless the above two conditions are satisfied. As a supplement, in this crystal structure, (009) does not appear as a peak due to symmetry. These correspond to the case where the number of n is different under Bragg diffraction conditions, 2d sin θ = n λ (d is constant, only the appearance of the horizontal axis θ is changed by the change of n. The structure corresponding to the d value is not formed in the crystal).
<酸性有機高分子添加による形状の制御>
作製例(沈殿粉末)及び作製例(薄膜)と同様にした各サンプル容器内に、酸性高分子であるポリアクリル酸(PAA, 分子量: 2,000)を1.5 x 10-3 wt.-%添加し、同様の結晶成長および薄膜作製の実験を行った。大きさが約1 μm程度、厚さが20~50 nm程度のナノシートの沈殿物が得られた。
<Shape control by adding acidic organic polymer>
Add 1.5 x 10 -3 wt .-% of polyacrylic acid (PAA, molecular weight: 2,000), which is an acidic polymer, to each sample container similar to the preparation example (precipitated powder) and preparation example (thin film). Similar crystal growth and thin film fabrication experiments were conducted. A nanosheet precipitate having a size of about 1 μm and a thickness of about 20 to 50 nm was obtained.
図8は、ポリアクリル酸共存下で得られたα型水酸化コバルト結晶薄膜に関し、(a,b)キトサンマトリクス上の薄膜の電子顕微鏡写真,(c、d)ポリアニリンマトリクス上の薄膜の電子顕微鏡写真である。 FIG. 8 shows (a, b) an electron micrograph of a thin film on a chitosan matrix, (c, d) an electron microscope of a thin film on a polyaniline matrix, for an α-type cobalt hydroxide crystal thin film obtained in the presence of polyacrylic acid. It is a photograph.
図9は、ポリアクリル酸共存下で得られたα型水酸化コバルト結晶薄膜のX線回折パターン(a)と薄膜の一部の透過電子顕微鏡像(b)およびその電子線回折パターン(c)である。図において、X線回折パターンAは沈殿のパターン、Bは薄膜のパターンを示す。c軸が基板に対して垂直になっていることがわかる。 FIG. 9 shows an X-ray diffraction pattern (a) of an α-type cobalt hydroxide crystal thin film obtained in the presence of polyacrylic acid, a transmission electron microscope image (b) of a part of the thin film, and an electron diffraction pattern (c) thereof. It is. In the figure, an X-ray diffraction pattern A indicates a precipitation pattern, and B indicates a thin film pattern. It can be seen that the c-axis is perpendicular to the substrate.
これらの図に示すように、配向した薄膜が得られたマトリクス上(キチン・キトサン・ポリアニリン)には、これらのナノシートが基板にはり付くように、つまりc軸が基板に対して垂直になるように配向して有機高分子マトリクス上に析出した。また、電子線回折像より(100), (110)面に由来する回折がスポットパターンで得られたこと、沈殿物のXRDパターンがPAAを添加していない場合と同様の多数の回折ピークが観測できたことから、ナノシートになっても結晶性が高い構造が維持されていることが示唆される。 As shown in these figures, on the matrix (chitin / chitosan / polyaniline) where oriented thin films are obtained, these nanosheets stick to the substrate, that is, the c-axis is perpendicular to the substrate. And deposited on the organic polymer matrix. In addition, diffraction from the (100) and (110) planes was obtained as a spot pattern from the electron diffraction pattern, and a number of diffraction peaks were observed in the XRD pattern of the precipitate as when PAA was not added. This suggests that a structure with high crystallinity is maintained even when the nanosheet is formed.
<α型水酸化コバルト作製時における有機分子のインターカレーション>
図10は、インターカレーションの挙動を示すX線回折パターンであり、インターカレーション前(A)とチオフェン-3酢酸のインターカレーション後(B)の測定結果を示す図である。一例として、濃度条件としてコバルトイオン濃度を10 mM、カルボキシル基を有する有機分子の濃度を20 mMとして、上記例と同様の結晶成長を行った。チオフェン、イミダゾール、ピリジン骨格へカルボキシル基が導入された分子をインターカレーションに用いた。[化1]は、合成時にインターカレーションを行った際に使用した化合物であって、1:グルタル酸、2:3-テノイル酸(3カルボキシ-チオフェン)、3:チオフェン-3-酢酸、4:イミダゾール酢酸、5:ピリジン-3-カルボン酸といった化合物の化学構造を示すものである。これらの分子のインターカレーションにともない、XRDパターンの層間隔を示す(003)面のピーク位置が、[表1]に示すようにシフトした。なお、化合物の番号は[化1]に示した構造式の番号と対応する。
<Intercalation of organic molecules during the production of α-type cobalt hydroxide>
FIG. 10 is an X-ray diffraction pattern showing the behavior of intercalation, and shows measurement results before (A) and after intercalation of thiophene-3-acetic acid (B). As an example, the same crystal growth as in the above example was performed by setting the concentration of cobalt ions to 10 mM and the concentration of organic molecules having a carboxyl group to 20 mM. A molecule in which a carboxyl group was introduced into a thiophene, imidazole, or pyridine skeleton was used for intercalation. [Chemical Formula 1] is a compound used in the intercalation during the synthesis, which is 1: glutaric acid, 2: 3-thenoyl acid (3 carboxy-thiophene), 3: thiophene-3-acetic acid, 4 : Shows the chemical structure of a compound such as imidazoleacetic acid, 5: pyridine-3-carboxylic acid. With the intercalation of these molecules, the peak position on the (003) plane indicating the layer spacing of the XRD pattern shifted as shown in [Table 1]. The compound numbers correspond to the structural formula numbers shown in [Chemical Formula 1].
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
[用途] [Usage]
二次電池の高寿命化、大容量化、高出力化は次世代のエネルギー技術の最も重要な課題であり、電気・自動車メーカーを筆頭に化学・材料メーカーに至るまで幅広く研究が行われてきた。その中で、これまで困難であったα型の結晶構造と高い結晶性を兼ね備えた遷移金属水酸化物を簡便に作製する技術及び構造制御に関する技術によれば、電気化学特性の向上とエネルギー貯蔵技術への大きな貢献が見込める。また、上述の技術によれば、電子材料(例えば、半導体材料、触媒、コバルト酸リチウムの原料、エレクトロニクス用途)、磁性材料(メモリー)、光学材料(エレクトロクロミック素子)、タイヤ、塗料、顔料、接着剤、化成品用途、さらに他の機能性を持つ酸化コバルト(CoOOH, CoO, Co3O4)への前駆体を得ることも考えられる。 Longer life, higher capacity, and higher output of secondary batteries are the most important issues in next-generation energy technology, and research has been conducted extensively from chemical and material manufacturers, including electrical and automobile manufacturers. . Among them, according to the technology for easily producing transition metal hydroxides that have both α-type crystal structure and high crystallinity, which has been difficult until now, and the technology related to structure control, improvement of electrochemical properties and energy storage A significant contribution to technology can be expected. In addition, according to the above-described technology, electronic materials (for example, semiconductor materials, catalysts, lithium cobalt oxide raw materials, electronics applications), magnetic materials (memory), optical materials (electrochromic elements), tires, paints, pigments, adhesives It is also conceivable to obtain precursors to cobalt oxide (CoOOH, CoO, Co 3 O 4 ) with agents, chemical products and other functionalities.
[ここまでのまとめ] [Summary so far]
遷移金属水酸化物の作製は学術的にも工業的にも盛んに行われてきている。本実施形態は、準安定相であるα型構造をとりなおかつ結晶性のよい遷移金属水酸化物を選択的に合成および薄膜化することを室温付近の簡便なプロセスで実現するものであり、学術的にも工業的にもその意義は大きい。特に、電極材料としての利用や他の種々の遷移金属酸化物へ変換が可能な、α型の結晶構造を取る結晶性の高い遷移金属水酸化物の作製および薄膜化を、常温の簡便な水溶液プロセスで行う技術である点でも優れている。以下、本実施形態の利点を説明する。 Transition metal hydroxides have been actively produced both academically and industrially. This embodiment realizes the selective synthesis and thinning of transition metal hydroxides that have an α-type structure, which is a metastable phase, and that have good crystallinity through a simple process near room temperature. Both industrially and industrially. In particular, the preparation and thinning of highly crystalline transition metal hydroxides having an α-type crystal structure that can be used as electrode materials and converted into various other transition metal oxides can be made into simple aqueous solutions at room temperature. It is also excellent in that it is a technology performed in the process. Hereinafter, advantages of the present embodiment will be described.
熱力学的には安定な結晶相ではなく、このα型を経ずに直接β型構造が得られることや、合成中や作製後のエージングによるβ型への転移がおこるケースが一般的には多い。しかしながら、本実施形態では、本来不安定かつ合成し難い準安定相のα型構造が選択的に合成できる。 In general, it is not a thermodynamically stable crystalline phase, and a β-type structure can be obtained directly without going through the α-type, or a transition to the β-type occurs during aging during or after synthesis. Many. However, in this embodiment, an α-type structure of a metastable phase that is inherently unstable and difficult to synthesize can be selectively synthesized.
化合物の結晶構造は、コバルト-酸素から成る{CoO6}正八面体状クラスターがその稜を共有することでできる層と層間の水分子によって積層構造をとっている。これまでの多くの手法では、作製したα型において、その積層構造が不規則な場合がほとんどであり、結晶性が高いとは言いがたい。しかしながら、上述の方法で作製した化合物は結晶性が高い。 The crystal structure of the compound is a layered structure composed of layers formed by {CoO 6 } regular octahedral clusters composed of cobalt-oxygen sharing their edges and water molecules between the layers. In many of the conventional techniques, the α-type produced is mostly irregular in its laminated structure, and it cannot be said that the crystallinity is high. However, the compound prepared by the above method has high crystallinity.
スライドガラスに高分子マトリクスを塗布した基板に析出させることができる。用いる基材の種類によって析出した結晶に配向性を付与することも可能であった。基材を浸漬するだけで容易に薄膜化が可能であり、結晶が基材(例えば、基板でなくとも不均一核生成を誘導する下地)の上に直接、析出・コーティングすることは将来の応用を考慮すると重要な技術である。 It can be deposited on a substrate in which a polymer matrix is applied to a slide glass. It was also possible to impart orientation to the precipitated crystals depending on the type of substrate used. Thinning is possible simply by immersing the base material, and it is a future application to deposit and coat crystals directly on the base material (for example, a substrate that induces non-uniform nucleation even if not a substrate). This is an important technology.
上述の方法は、室温付近、常圧の溶液プロセスでも実現することが可能であり、特殊な器具や反応装置なしでも簡便に実現することもできる。したがって、低コストかつ低環境負荷での作製が可能である。 The above-described method can be realized by a solution process at room temperature and normal pressure, and can be easily realized without a special instrument or reaction apparatus. Therefore, it can be manufactured at low cost and low environmental load.
上述の方法では、得られる結晶の大きさや厚さ、形状などを容易に制御可能である。溶液プロセスのメリットとして、共存させる有機分子によって沈殿粒子も薄膜においても形状の制御が可能であることが挙げられる。 In the above-described method, the size, thickness, shape, and the like of the obtained crystal can be easily controlled. The merit of the solution process is that the shape of the precipitated particles and the thin film can be controlled by the coexisting organic molecules.
また、様々な有機分子を層間へ導入(インターカレーション)できる。層状構造の層間へ、静電相互作用を利用し合成時に共存させた有機分子を容易に導入することができる。つまり、層間を利用した新しい有機無機ナノ複合体の作製や機能化が期待できる。また、α型水酸化コバルト結晶自体を活用することに加え、広い層間を利用した機能化を行うことで、新しい電気・磁気・光学特性の発現も期待できる。 Various organic molecules can be introduced between layers (intercalation). Organic molecules coexisting at the time of synthesis can be easily introduced between layers of a layered structure by utilizing electrostatic interaction. In other words, production and functionalization of a new organic-inorganic nanocomposite using the interlayer can be expected. In addition to utilizing the α-type cobalt hydroxide crystal itself, new electrical, magnetic, and optical properties can be expected by functionalization using a wide layer.
このように、本実施形態は、目的の結晶構造をとる遷移金属水酸化物の選択的な合成および薄膜化を、低コスト化かつ簡便な合成プロセスで行う技術を与えることであり、電池の長寿命化や高出力化の研究が産官学で急速に進展する中極めて重要である。特に、溶液プロセスの特徴を活かし、需要に応じた形状の制御などが期待でき、デバイス特性の向上などに貢献しうる技術である。 As described above, this embodiment provides a technique for performing selective synthesis and thinning of a transition metal hydroxide having a target crystal structure with a low-cost and simple synthesis process. It is extremely important that research on life extension and high output is progressing rapidly in industry, government and academia. In particular, it is a technology that makes use of the characteristics of the solution process and can be expected to control the shape according to demand and contribute to the improvement of device characteristics.
[酸化コバルト関連化合物及びその薄膜の製造方法など] [Cobalt oxide-related compounds and methods for producing thin films thereof]
<概要>
本発明者らは、研究・開発をさらに進め、酸化コバルト関連化合物などについてあらたな知見を得た。ここでは、例えば、超伝導材料、熱電変換材料、電極材料(リチウムイオン二次電池、電気化学キャパシタ)、磁性材料などとして利用が可能な、層状構造を有するコバルト酸化物(化学構造式;MxCoO2・yH2O; M=Li, Naなどのアルカリ金属、0≦x≦1、yは任意、Coの価数は3以上4以下)の製造方法について説明する。上述のα型水酸化コバルトの製造方法を経由することで、全工程を室温・常圧付近とする、水溶液を利用した酸化コバルト関連化合物の製造方法の実現も可能となる。より具体的には、超伝導材料や熱電変換材料となるコバルト酸ナトリウム、電極材料となるコバルト酸リチウムの製造を、水溶液プロセスの化学酸化によって温和な条件下の簡便な手法で実現することも可能となる。
<Overview>
The present inventors further advanced research and development, and obtained new knowledge about cobalt oxide related compounds and the like. Here, for example, cobalt oxide having a layered structure (chemical structural formula: M x ) that can be used as a superconducting material, thermoelectric conversion material, electrode material (lithium ion secondary battery, electrochemical capacitor), magnetic material, etc. CoO 2 · yH 2 O; production method of alkali metal such as M = Li, Na, 0 ≦ x ≦ 1, y is arbitrary, Co valence is 3 or more and 4 or less. By going through the above-described method for producing α-type cobalt hydroxide, it is possible to realize a method for producing a cobalt oxide-related compound using an aqueous solution in which all steps are performed at room temperature and near atmospheric pressure. More specifically, the production of sodium cobaltate, which is a superconducting material and thermoelectric conversion material, and lithium cobaltate, which is an electrode material, can also be realized by a simple method under mild conditions by chemical oxidation in an aqueous solution process. It becomes.
<背景>
近年、地球規模での環境問題への関心が高まる中、材料合成においても、環境に負荷をかけないプロセスの開発が求められている。特に、セラミックスの製造においては、高い温度や圧力の制御を必要としたプロセスが中心であり、より低コスト・低環境負荷での合成手法の確立が求められている。生物が骨や歯のような無機成分を温和な環境で作り出しているように、水溶液中で種々の機能性の無機材料を合成するといったプロセスの開発は困難であった。
遷移金属化合物の中で、コバルト-酸素の正八面体クラスターから構成された層状構造をとる化合物は、層間の距離又はイオン種などを制御することで、超伝導材料、熱電変換材料、電極材料、磁性材料などへの幅広い応用の可能性がある。しかし、これらの化合物の合成は、これまでコバルト化合物及びアルカリを原料とし、高温での焼結プロセスや電気化学的手法を経ることで合成されるが、多段階かつ長時間のプロセスを必要としている。簡便・低コスト・低環境負荷な合成ルートは開発されていない。また、高温での焼結を経るプロセスは、特性の向上やデバイスとしての実用を目指す上で、制御性がある合成法とは言い難い。具体的には、焼結によって作りこまれたナノスケールの構造の消失、薄膜形成に必要な基材の制約、有機無機複合体中の有機物の焼失など、いくつかの欠点が挙げられる。
<Background>
In recent years, with increasing interest in environmental issues on a global scale, development of processes that do not place a burden on the environment is also required in material synthesis. In particular, in the production of ceramics, a process that requires high temperature and pressure control is the center, and establishment of a synthesis method with lower cost and lower environmental load is required. It has been difficult to develop a process for synthesizing various functional inorganic materials in an aqueous solution, as living organisms produce inorganic components such as bones and teeth in a mild environment.
Among transition metal compounds, compounds with a layered structure composed of cobalt-oxygen octahedral clusters control superconducting materials, thermoelectric conversion materials, electrode materials, magnetism by controlling the distance between layers or ionic species. There is a wide range of applications to materials. However, these compounds have been synthesized by using cobalt compounds and alkalis as raw materials and undergoing high-temperature sintering processes and electrochemical techniques, but they require a multi-step and long-time process. . A simple, low-cost, low environmental load synthetic route has not been developed. In addition, a process that undergoes sintering at a high temperature is difficult to say as a synthesis method with controllability in order to improve characteristics and to put it to practical use as a device. Specifically, there are some disadvantages such as disappearance of the nanoscale structure formed by sintering, restrictions on the base material necessary for forming a thin film, and burning of organic substances in the organic-inorganic composite.
NaxCoO2で表される化合物自体およびその高温焼成を経た製造プロセスはいくつかの研究グループより下記の文献で既に発表されている。なお、非特許文献9は、銅以外の物質、コバルト系における超伝導特性の発現に関する初の報告とされている。 The compound itself represented by Na x CoO 2 and its production process through high-temperature firing have already been published in the following literature by several research groups. Note that Non-Patent Document 9 is the first report regarding the development of superconducting properties in materials other than copper and cobalt.
特開2004-262675      水和ナトリウムコバルト酸化物JP 2004-262675 Hydrohydrate sodium cobalt oxide 特開2005-350331      水和ナトリウムコバルト酸化物及びその製造方法JP-A-2005-350331 Sodium hydrated sodium cobalt oxide and method for producing the same 特開2006-222397      熱伝変換層状コバルト酸化物とその合成方法JP-A-2006-222397 Heat transfer conversion layered cobalt oxide and synthesis method thereof 特開平11-292547      コバルト酸リチウムおよびその製造方法ならびにそれを用いてなるリチウムイオン電池Patent application title: Lithium Cobaltate, Method for Producing the Same, and Lithium Ion Battery Using the Same 特開平11-263624      水熱酸化法による層状岩塩型リチウムコバルト酸化物の製造方法Method for producing layered rock salt type lithium cobalt oxide by hydrothermal oxidation method
<具体的内容>
《酸化コバルト関連化合物の製造方法》
以下、上述の手法で製造した、層状構造を有するα型水酸化コバルト(α-Co(OH)2)結晶を前駆体として用い、水溶液中で化学的に酸化を行うことによって酸化コバルト関連化合物を得た。
例として、粉末試料と薄膜試料に関してそれぞれ
処理(ア) 次亜塩素酸ナトリウム(NaClO)水溶液に浸漬
処理(イ) NaClO水溶液+NaOHに浸漬
処理(ウ) NaClO水溶液+LiOHに浸漬
の3つの処理を室温・常圧付近という条件下で行い、酸化コバルトの試料を製造した。3つの処理方法によってできる化合物の化学構造はそれぞれ異なっていた。ただし、同一の処理条件においては、粉末試料(沈殿物)と薄膜試料の2つにおいて、構造の差はなかった。
<Specific contents>
<< Production Method of Cobalt Oxide Related Compounds >>
Hereinafter, a cobalt oxide related compound is obtained by chemically oxidizing in an aqueous solution using α-type cobalt hydroxide (α-Co (OH) 2 ) crystal having a layered structure produced by the above-mentioned method as a precursor. Obtained.
As an example, each of the powder sample and the thin film sample was treated (a) immersed in a sodium hypochlorite (NaClO) aqueous solution (b) immersed in a NaClO aqueous solution + NaOH (c) three treatments of immersion in a NaClO aqueous solution + LiOH at room temperature A sample of cobalt oxide was produced under conditions of near normal pressure. The chemical structures of the compounds produced by the three treatment methods were different. However, there was no difference in structure between the powder sample (precipitate) and the thin film sample under the same processing conditions.
(ア)~(ウ)の処理条件ごとにその実験条件を示す。 The experimental conditions are shown for each of the processing conditions (a) to (c).
{(処理ア)について}
析出させたα型水酸化コバルト(α-Co(OH)2)結晶の粉末および薄膜を市販のNaClO水溶液に浸漬することで酸化コバルトが得られた。
{About (Processing A)}
Cobalt oxide was obtained by immersing the precipitated α-type cobalt hydroxide (α-Co (OH) 2 ) crystal powder and thin film in a commercially available NaClO aqueous solution.
次亜塩素酸ナトリウム濃度は、粉末試料と薄膜試料いずれも0.5 wt.-%以上が好ましく、さらには、0.5 wt.-%以上5.0 wt.-%以下の範囲内が好ましい。これは、0.5 wt.-%未満では酸化反応が完全に進行しないためである。5.0 wt.-%以下が好ましいのは市販のNaClO水溶液の最高濃度のためであるが、これより大きい値でも結果に変化は無いと考えている。 The concentration of sodium hypochlorite is preferably 0.5 wt .-% or more for both the powder sample and the thin film sample, and more preferably within the range of 0.5 wt .-% to 5.0 wt .-%. This is because the oxidation reaction does not proceed completely at less than 0.5 wt .-%. 5.0 wt .-% or less is preferable because of the highest concentration of commercially available NaClO aqueous solution, but it is considered that there is no change in the result even if the value is larger than this.
反応時間は、粉末試料においては、5秒以上の反応時間であれば、48時間になっても反応時間の長さによる影響は現れていない。ただ、粉末を攪拌や超音波処理によって溶液内に均一に分散させることが好ましい。薄膜試料においては、1秒以上60秒以下にすることが好ましく、さらに好ましくは5秒以上10秒以下である。これは、反応時間が5秒短いと酸化反応が完全に進行せず、未反応物が残ってしまう場合があるためである。また、反応時間が10秒よりも長い場合には基板からはく離してしまう場合があるためである。 If the reaction time is 5 seconds or longer in the powder sample, the influence of the length of the reaction time does not appear even when the reaction time reaches 48 hours. However, it is preferable to uniformly disperse the powder in the solution by stirring or ultrasonic treatment. In a thin film sample, it is preferably 1 second or longer and 60 seconds or shorter, more preferably 5 seconds or longer and 10 seconds or shorter. This is because if the reaction time is short for 5 seconds, the oxidation reaction does not proceed completely, and unreacted substances may remain. Further, if the reaction time is longer than 10 seconds, it may be peeled off from the substrate.
{(処理イおよびウ)について}
これは、コバルト酸化物(化学構造式;MxCoO2・yH2O; M=Li, Naなどのアルカリ金属、0<x<1、yは任意、Coの価数は3以上4以下)の製造方法である。NaイオンやLiイオンを、層状構造内へ導入する際には、NaClO水溶液にNaOHやLiOHなどを加える。
{About (Processing A and C)}
This is a cobalt oxide (chemical structural formula; M x CoO 2 · yH 2 O; M = alkali metal such as Li, Na, 0 <x <1, y is optional, Co valence is 3 or more and 4 or less) It is a manufacturing method. When introducing Na ions or Li ions into the layered structure, NaOH or LiOH is added to the NaClO aqueous solution.
次亜塩素酸ナトリウム濃度は0.05.-%以上0.5 wt.-%以下の範囲内が好ましい。これは、0.05 wt.-%未満では酸化反応が程よく進行しないためである。0.5 wt.-%より高い濃度では加えたアルカリイオンの選択的な層内への導入が難しくなるからである。 The sodium hypochlorite concentration is preferably in the range of 0.05 .-% to 0.5 wt .-%. This is because the oxidation reaction does not proceed moderately at less than 0.05 wt .-%. This is because, when the concentration is higher than 0.5 wt .-%, it is difficult to selectively introduce the added alkali ions into the layer.
アルカリイオンの濃度は0.1 mol/L以上5 mol/L以下が好ましい。これは、0.1 mol/L未満では酸化反応の速度が低下しないためである。5 mol/Lより高い濃度ではα-Co(OH)2結晶が他の結晶形やCoOOHなどの結晶へ転移してしまうためである。 The concentration of alkali ions is preferably from 0.1 mol / L to 5 mol / L. This is because the rate of the oxidation reaction does not decrease at less than 0.1 mol / L. This is because α-Co (OH) 2 crystals are transferred to other crystal forms or crystals such as CoOOH at concentrations higher than 5 mol / L.
反応時間は、粉末試料と薄膜試料とともに1時間以上が好ましい。これは、反応時間が短いと酸化反応およびアルカリイオンの層内への導入が程よく進行しないからである。反応時間が長いことで反応には影響を与えないが、薄膜試料の場合には基板からはく離してしまう可能性がある。 The reaction time is preferably 1 hour or longer together with the powder sample and the thin film sample. This is because if the reaction time is short, the oxidation reaction and the introduction of alkali ions into the layer do not proceed moderately. A long reaction time does not affect the reaction, but in the case of a thin film sample, it may be peeled off from the substrate.
《製造化合物に関する考察》
粉末試料、薄膜試料の順番で実施例を述べる。
《Considerations for production compounds》
Examples will be described in the order of powder sample and thin film sample.
{粉末試料}
図11は、得られた酸化コバルト板状結晶(粉末試料)の走査型電子顕微鏡写真(a) NaClO溶液による処理(乾燥後),b) NaClO溶液とLiOHによる処理)である。粉末試料に関して、酸化処理を行っていないα型水酸化コバルト(α-Co(OH)2)結晶は、大きさが1 μm 以上5 μm以下、厚さが50 nm程度の板状結晶であった。上記(ア)~(ウ)のいずれの処理を行った後にも、図のように、そのマクロな板状の形態は酸化反応前と変化が無かった。
{Powder sample}
FIG. 11 is a scanning electron micrograph of the obtained cobalt oxide plate crystal (powder sample) (a) treatment with a NaClO solution (after drying), b) treatment with a NaClO solution and LiOH). Regarding the powder sample, the α-type cobalt hydroxide (α-Co (OH) 2 ) crystal that was not oxidized was a plate-like crystal with a size of 1 μm to 5 μm and a thickness of about 50 nm. . Even after any of the above treatments (a) to (c), as shown in the figure, the macro plate-like form was not changed from that before the oxidation reaction.
図12は、得られた酸化コバルト板状結晶(粉末試料)のナノ構造を示す透過型電子顕微鏡写真である。図のように、ナノメートルレベルでは酸化コバルトの生成にともなって、2-3 nmのナノ結晶が結晶方位をそろえた構造へと変化した。これは、水酸化コバルトから酸化コバルトへ構造変換がおこる際、両者の体積が異なるために生じた構造と考えられる。このようなナノスケールの構造体は従来の焼成法によって作り出すことは難しく、本手法の独自の点といえる。この、ナノ結晶間にできるスペースは電解液や物質が拡散する流路として活用でき、外部との物質の授受に適した構造といえる。 FIG. 12 is a transmission electron micrograph showing the nanostructure of the obtained cobalt oxide plate crystal (powder sample). As shown in the figure, at the nanometer level, with the formation of cobalt oxide, the 2-3 nm nanocrystals changed to a structure with the same crystal orientation. This is considered to be a structure produced because the volume of the two is different when the structure conversion from cobalt hydroxide to cobalt oxide occurs. Such a nanoscale structure is difficult to produce by a conventional firing method, which is a unique point of this method. This space formed between the nanocrystals can be used as a flow path for diffusing electrolytes and substances, and can be said to be a structure suitable for exchange of substances with the outside.
図13は、各種の処理による酸化コバルト板状結晶(粉末試料)のX線回折パターン(a) NaClO溶液による処理(乾燥前), b) NaClO溶液による処理(乾燥後),c) NaClO溶液とNaOHによる処理,d) NaClO溶液とLiOHによる処理)である。ここでは、X線回折測定(XRD)によって、層状構造およびその層間隔について解析を行った。NaClO処理(ア)によって、層状構造を示す低角側の層間隔のピークは約0.8 nmから、試料の乾燥前はおよそ9.2 nm 以上9.8 nm以下、乾燥後はおよそ7.2 nm 以上7.6 nm以下へと変化した。この試料の乾燥前後における層間隔の変化は、層間へ水和している水分子の脱挿入に起因しており、試料への水の添加と乾燥の繰り返しに対応して可逆的に変化した。2価のコバルトイオンが3~4価へ酸化されたことに対応し、層内の(100)面の面間隔は約0.27 nmから約0.24 nmへ、(110)面の面間隔は約0.16 nmから約0.14 nmへそれぞれシフトした(この値は試料の乾燥状態に依存しない)。このときの構造は、乾燥状態でNaxCoO2・yH2O (0.2<X<0.3, 0.6<y<1.2)と推定できる。NaClOとNaOHによる処理(イ)およびNaClOとLiOHによる処理(ウ)では、層状構造を示す層間隔は約0.8 nmから、いずれも約0.64 nm 以上0.68 nm以下へと変化した。処理(イ)および処理(ウ)においては、乾燥状態による層間隔の変化は観察されなかった。また、処理(ア)と同様に、2価のコバルトイオンが3~4価へ酸化されたことに対応し、層内の(100)面の面間隔は約0.27 nmから約0.24 nmへ、(110)面の面間隔は約0.16 nmから約0.14 nmへそれぞれシフトした。このときの構造は、それぞれ処理(イ)ではNaxCoO2・yH2O (0.2<X<0.4, 0.3<y<0.9)および処理(ウ)ではLixCoO2・yH2O (0.2<X<0.4, 0.3<y<0.9)と推定できる Figure 13 shows X-ray diffraction patterns of cobalt oxide plate crystals (powder sample) by various treatments (a) treatment with NaClO solution (before drying), b) treatment with NaClO solution (after drying), c) NaClO solution Treatment with NaOH, d) treatment with NaClO solution and LiOH). Here, the layered structure and its layer spacing were analyzed by X-ray diffraction measurement (XRD). By NaClO treatment (a), the peak of the layer spacing on the low-angle side showing a layered structure is from about 0.8 nm to about 9.2 nm to 9.8 nm before drying the sample, and from about 7.2 nm to 7.6 nm after drying. changed. The change in the layer interval before and after the drying of the sample was caused by the deinsertion of water molecules hydrated between the layers, and reversibly changed in response to repeated addition of water to the sample and drying. Corresponding to the fact that divalent cobalt ions were oxidized to tri to tetravalent, the (100) plane spacing in the layer was changed from about 0.27 nm to about 0.24 nm, and the (110) plane spacing was about 0.16 nm. Shifted from about 0.14 nm to about 0.14 nm (this value does not depend on the dry state of the sample). The structure at this time can be estimated as Na x CoO 2 · yH 2 O (0.2 <X <0.3, 0.6 <y <1.2) in a dry state. In the treatment with NaClO and NaOH (a) and the treatment with NaClO and LiOH (c), the layer spacing indicating the layered structure changed from about 0.8 nm to about 0.64 nm to 0.68 nm. In the treatment (a) and the treatment (c), no change in the layer interval due to the dry state was observed. Similarly to the treatment (a), corresponding to the fact that the divalent cobalt ion was oxidized to 3 to 4 valence, the (100) plane spacing in the layer was changed from about 0.27 nm to about 0.24 nm. The surface spacing of the (110) plane shifted from about 0.16 nm to about 0.14 nm. The structures at this time are Na x CoO 2 · yH 2 O (0.2 <X <0.4, 0.3 <y <0.9) in the treatment (b) and Li x CoO 2 · yH 2 O (0.2 <in the treatment (c), respectively. X <0.4, 0.3 <y <0.9)
{薄膜試料}
薄膜試料に関して、酸化処理を行っていないα型水酸化コバルト(α-Co(OH)2)結晶は、大きさが1-5 μm、厚さが50 nm程度の板状結晶が基板に沿うように析出し、結晶のc軸が基板と垂直な方向へ配向していた。
{Thin film sample}
For thin-film samples, α-type cobalt hydroxide (α-Co (OH) 2 ) crystals that have not been oxidized are such that plate crystals with a size of 1-5 μm and a thickness of about 50 nm follow the substrate. The c-axis of the crystal was oriented in the direction perpendicular to the substrate.
図14は、得られた酸化コバルト板状結晶(薄膜試料)の走査型電子顕微鏡写真(a)酸化コバルトナノシート配向薄膜、b)酸化コバルト板状結晶の配向薄膜)である。酸化処理(ア)~(ウ)を行った後も、これらの薄膜結晶の形態および配向性は維持されていた。 FIG. 14 is a scanning electron micrograph of the obtained cobalt oxide plate crystal (thin film sample) (a) a cobalt oxide nanosheet oriented thin film, and b) a cobalt oxide plate crystal oriented thin film). Even after the oxidation treatments (a) to (c), the morphology and orientation of these thin film crystals were maintained.
図15は、各種の処理による酸化コバルト板状結晶(薄膜試料)のX線回折パターン(a) NaClO溶液による処理(乾燥後)、b) NaClO溶液とNaOHによる処理、c) NaClO溶液とLiOHによる処理)である。層状構造の層間隔は酸化処理(ア)~(ウ)に伴って粉末試料と同様に変化していた。層内の(100)面と(110)面の面間隔も同様に、0.27 nmから約0.24 nmへ、(110)面の面間隔は約0.16 nmから約0.14 nmへそれぞれシフトしていることを、電子線回折によって確認した。以上より、薄膜試料においても粉末試料と同様の酸化コバルトが生成したと考えられる。 Fig. 15 shows X-ray diffraction patterns of cobalt oxide plate crystals (thin film samples) by various treatments (a) treatment with NaClO solution (after drying), b) treatment with NaClO solution and NaOH, c) treatment with NaClO solution and LiOH. Processing). The layer spacing of the layered structure changed in the same manner as the powder sample with the oxidation treatments (a) to (c). Similarly, the spacing between the (100) plane and the (110) plane within the layer is also shifted from 0.27 nm to about 0.24 nm, and the (110) plane spacing is shifted from about 0.16 nm to about 0.14 nm. This was confirmed by electron beam diffraction. From the above, it is considered that the same cobalt oxide as in the powder sample was produced in the thin film sample.
<酸化コバルト関連化合物などに関するまとめ>
上述の方法は、焼結を行わなくとも、常温・常圧付近の水溶液プロセスにおいて酸化コバルト関連化合物が合成できる点、反応時間が極めて短く工程数の少ない簡便なプロセスである点、前駆体の水酸化コバルト配向薄膜を維持した酸化コバルト配向薄膜が得られる点、ナノ結晶で構成された酸化コバルト結晶である点、大きさや厚さ、形状などの制御が可能である点などで優れている。
<Summary of cobalt oxide related compounds>
The above-mentioned method is a simple process that can synthesize cobalt oxide-related compounds in an aqueous solution process near room temperature and normal pressure without sintering. It is excellent in that a cobalt oxide oriented thin film maintaining a cobalt oxide oriented thin film can be obtained, that it is a cobalt oxide crystal composed of nanocrystals, and that size, thickness, shape, and the like can be controlled.
上述の方法によれば、例えば、層状構造を有するコバルト酸化物(化学構造式;MxCoO2 ・yH2O; M=Li, Naなどのアルカリ金属、0<x<1、yは任意、Coの価数は3以上4以下)を、出発原料となるコバルト塩およびアルカリより、全工程を常圧かつ25℃付近の温和な条件における水溶液プロセスで合成することができる。この方法は、焼結を必要としない温和な条件下の水溶液プロセスであり、反応時間が短い、ナノスケール構造制御や薄膜化とその結晶配向制御などを容易に行うことができるなどの点で優れている。
上述のように、これまで高温での焼結プロセスを経て製造されていたコバルト酸ナトリウムやコバルト酸リチウムを、低コスト・低環境負荷な環境における水溶液プロセスで合成することが可能となった。また、水溶液プロセスの特徴として、容易に構造制御を行うことができた。上述の方法によれば、焼結を必要としないためナノスケールの構造を維持することが可能となるため、新しい特性の発現や物性の向上が期待できる。ナノ結晶間にできるスペースは電解液や物質が拡散する流路として活用でき、外部との物質の授受に適した構造といえる。
According to the above-described method, for example, a cobalt oxide having a layered structure (chemical structural formula: M x CoO 2 · yH 2 O; an alkali metal such as M = Li, Na, 0 <x <1, y is arbitrary, Co valence of 3 or more and 4 or less) can be synthesized from the cobalt salt and alkali as starting materials by an aqueous solution process under normal conditions and mild conditions around 25 ° C. This method is an aqueous solution process under mild conditions that does not require sintering, and is excellent in that the reaction time is short, nanoscale structure control, thin film formation, and crystal orientation control can be easily performed. ing.
As described above, it has become possible to synthesize sodium cobaltate and lithium cobaltate, which have been manufactured through a high-temperature sintering process, in an aqueous solution process in a low-cost and low-environmental environment. In addition, as a feature of the aqueous solution process, it was possible to easily control the structure. According to the above-described method, since it is not necessary to sinter, it is possible to maintain a nano-scale structure, and thus it is possible to expect the development of new characteristics and improvement of physical properties. The space formed between the nanocrystals can be used as a flow path for diffusing electrolytes and substances, and can be said to be a structure suitable for exchange of substances with outside.
コバルト酸ナトリウムは安価な超伝導材料や熱電変換材料として、コバルト酸リチウムはリチウムイオン二次電池電極の材料として産官学を問わず注目を集めている。また、これらの化合物は、触媒、石油触媒、酸化剤、ガラス材料、着色料、顔料、陶器、家畜の栄養剤、他の塩類の材料、セラミックス着色、フェライト、入射光の優れた吸収特性を利用する光の熱変換材料、エレクトロクロミー特性又はLiイオンなどの出し入れ特性を利用するディスプレイ用途、電子材料などとして使用してもよい。上述の化合物は必要に応じて、サンプルミルなどの粉砕機で粉砕してもよい。 Sodium cobaltate is attracting attention as an inexpensive superconducting material and thermoelectric conversion material, and lithium cobaltate as a material for lithium ion secondary battery electrodes regardless of industry, government or academia. These compounds also utilize catalysts, petroleum catalysts, oxidants, glass materials, colorants, pigments, pottery, livestock nutrients, other salt materials, ceramic coloring, ferrite, and excellent absorption characteristics of incident light It may be used as a heat conversion material for light, a display application utilizing an electrochromy characteristic or a taking in / out characteristic such as Li ion, and an electronic material. You may grind | pulverize the above-mentioned compound with grinders, such as a sample mill, as needed.
特に、コバルト酸リチウムは、上述の方法によれば結晶構造までも制御できるため、所望のエネルギー密度のリチウム電池用正極電極を得ることができる可能性がある。エネルギー密度のリチウム電池用正極電極を向上させることができれば、希少素材であっても利用の可能性は大きく開ける点で上述の方法は大きな意義がある。リチウム電池用正極電極としてコバルト酸リチウムを使用する場合には、正極電極は、アルミニウム箔の両面にコバルト酸リチウムなどの活物質を溶剤で溶いて塗布後、乾燥・プレスして密度を上げ製作してもよい。 In particular, since lithium cobaltate can control even a crystal structure according to the above-described method, there is a possibility that a positive electrode for a lithium battery having a desired energy density can be obtained. If the energy density of the positive electrode for a lithium battery can be improved, the above-described method is very significant in that the possibility of use is greatly increased even if it is a rare material. When lithium cobaltate is used as the positive electrode for lithium batteries, the positive electrode is manufactured by dissolving an active material such as lithium cobaltate on both sides of the aluminum foil with a solvent, drying and pressing to increase the density. May be.
例えば、コイン型電池用とするときには、上述のコバルト酸リチウムに、アセチレンブラックやカーボン、グラファイト粉末などの炭素系導電剤や、ポリ四フッ化エチレン樹脂やポリビニリデンフルオライドなどの結着剤を添加、混練し、ペレット成型して得ることができる。さらに、円筒型あるいは角形電池用とするときには、上述のコバルト酸リチウムに、これらの添加物以外にN-メチルピロリドンなどの有機溶剤も添加し、混練してペースト状とし、アルミ箔のような金属集電体上に塗布し、乾燥して得ることができる。 For example, when used for a coin-type battery, a carbon-based conductive agent such as acetylene black, carbon or graphite powder, or a binder such as polytetrafluoroethylene resin or polyvinylidene fluoride is added to the above-described lithium cobalt oxide. It can be obtained by kneading and pellet molding. In addition, when used for a cylindrical or rectangular battery, an organic solvent such as N-methylpyrrolidone is added to the above lithium cobaltate in addition to these additives, kneaded to form a paste, and a metal such as an aluminum foil. It can be obtained by coating on a current collector and drying.
リチウム電池の電解液には、電気化学的に安定な、すなわち、リチウムイオン電池として作動する電位範囲より広い範囲で、酸化・還元されることのない極性有機溶媒に、リチウムイオンを溶解させたものを使用することができる。極性有機溶媒としては、例えば、プロピレンカーボネートやエチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、ジエトキシエタン、テトラヒドロフラン、γ-ブチルラクトンなどやそれらの混合液を用いることができる。リチウムイオン源となる溶質には、過塩素酸リチウムや六フッ化リン酸リチウム、四フッ化ホウ素酸リチウムなどを用いることができる。また、電極間には多孔性のポリプロピレンフィルムやポリエチレンフィルムが、セパレータとして配置される。電池の種類としては、ペレット状の正極と負極の間にセパレータを置き、ポリプロピレン製のガスケットのついた封口缶に圧着し、電解液を注入し、密閉したコイン型のものや、正極材料や負極材料を金属集電体上に塗布し、セパレータをはさんで巻き取り、ガスケットのついた電池缶に挿入し、電解液を注入し、封入した円筒型のものなどが挙げられる。また、電気化学特性を測定することを目的とした三極式の電池もある。この電池は、正極と負極以外に参照極も配置し、参照極に対して他の電極の電位をコントロールすることにより、各電極の電気化学的な特性を評価するものである。 Lithium battery electrolyte contains electrochemically stable lithium ions dissolved in a polar organic solvent that does not oxidize or reduce in a wider range than the potential range of operation as a lithium ion battery. Can be used. As the polar organic solvent, for example, propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, diethoxyethane, tetrahydrofuran, γ-butyllactone, or a mixture thereof can be used. Lithium perchlorate, lithium hexafluorophosphate, lithium tetrafluoroborate, or the like can be used as a solute serving as a lithium ion source. A porous polypropylene film or polyethylene film is disposed between the electrodes as a separator. Battery types include a separator placed between a pellet-shaped positive electrode and negative electrode, crimped onto a sealing can with a polypropylene gasket, injected with an electrolyte, and sealed coin type, positive electrode material or negative electrode Examples include a cylindrical type in which a material is applied on a metal current collector, wound around a separator, inserted into a battery can with a gasket, an electrolyte is injected, and sealed. There is also a tripolar battery intended to measure electrochemical properties. In this battery, a reference electrode is also arranged in addition to the positive electrode and the negative electrode, and the electrochemical characteristics of each electrode are evaluated by controlling the potential of the other electrode with respect to the reference electrode.
このように、上述の技術は、今後、低コスト・低環境負荷の材料合成プロセスとして、次世代の産業上極めて重要な技術となる可能性が高い。 Thus, the above-described technology is likely to become an extremely important technology for the next generation industry as a material synthesis process with low cost and low environmental load.
《その他》
アルカリイオン源としては、例として、水酸化ナトリウムあるいは水酸化カリウム((無水物および水和物のどちらでも良い)などが挙げられ、これらを併用してもよい。また、リチウム源としては、例として、塩化物、硝酸塩、硫酸塩、水酸化物などが使用され、より具体的には水酸化リチウム(無水物および水和物のどちらでも良い)、塩化リチウムなどが挙げられる。これらのリチウム源は、2種以上を併用してもよい。
<Others>
Examples of the alkali ion source include sodium hydroxide and potassium hydroxide (which may be either an anhydride or a hydrate), and these may be used in combination. In particular, chlorides, nitrates, sulfates, hydroxides and the like are used, and more specifically, lithium hydroxide (which may be either an anhydride or a hydrate), lithium chloride, and the like. May use 2 or more types together.
酸化コバルト化合物について主に説明してきたが、CoをNiに置換した酸化ニッケル化合物(化学構造式;MxNiO2 ・yH2O; M=Li, Naなどのアルカリ金属、0<x<1、yは任意、Niの価数は3以上4以下)も上述の手法で得られることが判明している。Co、Niを双方含有する多元系化合物であっても同様である。 Cobalt oxide compounds have been mainly described. Nickel oxide compounds in which Co is replaced with Ni (chemical structural formula: M x NiO 2 · yH 2 O; alkali metals such as M = Li, Na, 0 <x <1, It has been found that y is arbitrary, and the valence of Ni is 3 or more and 4 or less). The same applies to a multi-component compound containing both Co and Ni.
[権利解釈など] [Interpretation of rights, etc.]
以上、特定の実施形態を参照しながら、本発明について説明してきた。しかしながら、本発明の要旨を逸脱しない範囲で当業者が実施形態の修正又は代用を成し得ることは自明である。すなわち、例示という形態で本発明を開示してきたのであり、本明細書の記載内容を限定的に解釈するべきではない。本発明の要旨を判断するためには、冒頭に記載した特許請求の範囲の欄を参酌すべきである。 The present invention has been described above with reference to specific embodiments. However, it is obvious that those skilled in the art can make modifications or substitutions of the embodiments without departing from the gist of the present invention. That is, the present invention has been disclosed in the form of exemplification, and the contents described in the present specification should not be interpreted in a limited manner. In order to determine the gist of the present invention, the claims section described at the beginning should be considered.
また、この発明の説明用の実施形態が上述の目的を達成することは明らかであるが、多くの変更や他の実施例を当業者が行うことができることも理解されるところである。特許請求の範囲、明細書、図面及び説明用の各実施形態のエレメント又はコンポーネントを他の1つまたは組み合わせとともに採用してもよい。特許請求の範囲は、かかる変更や他の実施形態をも範囲に含むことを意図されており、これらは、この発明の技術思想および技術的範囲に含まれる。 It will also be appreciated that illustrative embodiments of the invention achieve the above objects, but that many modifications and other examples can be made by those skilled in the art. The elements or components of each embodiment described in the claims, specification, drawings, and description may be employed in combination with one or more other elements. The claims are intended to cover such modifications and other embodiments, which are within the spirit and scope of the present invention.
例えば、α型の結晶構造と高い結晶性を兼ね備えた遷移金属水酸化物を簡便に作製する技術及び構造制御に関する技術であれば、電気化学特性の向上とエネルギー貯蔵技術への大きな貢献が見込める。また、上述の技術によれば、例えば、電子材料(例えば、半導体材料、触媒、コバルト酸リチウムの原料、エレクトロニクス用途)、磁性材料(メモリー)、光学材料(エレクトロクロミック素子)、タイヤ、塗料、顔料、接着剤、化成品用途、さらに他の機能性を持つ酸化コバルト(CoOOH, CoO, Co3O4)への前駆体を得ることも考えられる。 For example, a technique for easily producing a transition metal hydroxide having both an α-type crystal structure and high crystallinity and a technique related to structure control can be expected to greatly contribute to improvement of electrochemical characteristics and energy storage technology. In addition, according to the above-described technology, for example, electronic materials (for example, semiconductor materials, catalysts, raw materials for lithium cobaltate, electronics applications), magnetic materials (memory), optical materials (electrochromic elements), tires, paints, pigments It is also possible to obtain precursors to cobalt oxide (CoOOH, CoO, Co 3 O 4 ) having adhesives, chemical products, and other functions.

Claims (33)

  1. 基材上に形成された遷移金属水酸化物膜であって、
    遷移金属水酸化物膜の結晶軸が前記基材の表面に対して配向していることを特徴とする遷移金属水酸化物膜。
    A transition metal hydroxide film formed on a substrate,
    A transition metal hydroxide film, wherein a crystal axis of the transition metal hydroxide film is oriented with respect to the surface of the substrate.
  2. 前記遷移金属は、Zn、Cu、Ni、Mn、Coのいずれかであることを特徴とする請求項1記載の遷移金属水酸化物膜。 2. The transition metal hydroxide film according to claim 1, wherein the transition metal is any one of Zn, Cu, Ni, Mn, and Co.
  3. 基材上に形成されたα型水酸化コバルト膜であって、
    α型水酸化コバルトのc軸が前記基材の表面に対して配向していることを特徴とするα型水酸化コバルト膜。
    An α-type cobalt hydroxide film formed on a substrate,
    An α-type cobalt hydroxide film, wherein the c-axis of α-type cobalt hydroxide is oriented with respect to the surface of the substrate.
  4. α型水酸化コバルトの層間には、α型水酸化コバルトと異なる分子が導入されていることを特徴とする請求項3記載のα型水酸化コバルト膜。 4. The α-type cobalt hydroxide film according to claim 3, wherein a molecule different from α-type cobalt hydroxide is introduced between layers of α-type cobalt hydroxide.
  5. 基材上に形成されたα型水酸化コバルト膜であって、
    X線回折において(003)面、(006)面及び(00.15)面に由来する回折ピークが観察されることを特徴とするα型水酸化コバルト膜。
    An α-type cobalt hydroxide film formed on a substrate,
    An α-type cobalt hydroxide film, wherein diffraction peaks derived from the (003) plane, the (006) plane, and the (00.15) plane are observed in X-ray diffraction.
  6. ヒドロキシ基とは異なる、遷移金属と配位する官能基を有する物質を溶液中の遷移金属と配位させつつ、前記溶液のpHを上昇させながら、前記遷移金属のヒドロキシル化を行うことによって固体遷移金属水酸化物を形成させることを特徴とする固体遷移金属水酸化物製造方法。 Solid transition by hydroxylating the transition metal while increasing the pH of the solution while coordinating a substance having a functional group that coordinates with the transition metal, which is different from the hydroxy group, with the transition metal in the solution A method for producing a solid transition metal hydroxide, comprising forming a metal hydroxide.
  7. 前記遷移金属は、Zn、Cu、Ni、Mn、Coのいずれかであることを特徴とする請求項6記載の固体遷移金属水酸化物製造方法。 7. The method for producing a solid transition metal hydroxide according to claim 6, wherein the transition metal is any one of Zn, Cu, Ni, Mn, and Co.
  8. 前記遷移金属と配位する官能基を有する物質は、揮発性塩基であることを特徴とする請求項6記載の固体遷移金属水酸化物製造方法。 7. The method for producing a solid transition metal hydroxide according to claim 6, wherein the substance having a functional group coordinated with the transition metal is a volatile base.
  9. 前記遷移金属と配位する官能基を有する物質は、アンモニアであることを特徴とする請求項6記載の固体遷移金属水酸化物製造方法。 7. The method for producing a solid transition metal hydroxide according to claim 6, wherein the substance having a functional group coordinated with the transition metal is ammonia.
  10. 前記遷移金属溶液に、固体遷移金属水酸化物の層間にインターカレーションする分子を添加し、前記分子を固体遷移金属水酸化物の層間にインターカレーションさせることを特徴とする請求項6記載の固体遷移金属水酸化物製造方法。 7. The transition metal solution according to claim 6, wherein a molecule that intercalates between layers of a solid transition metal hydroxide is added, and the molecules are intercalated between layers of a solid transition metal hydroxide. Solid transition metal hydroxide production method.
  11. 揮発性塩基ガスがコバルトイオン溶液に溶け込むことによってpHを上昇させながらα型水酸化コバルトを形成させることを特徴とするα型水酸化コバルト製造方法。 A method for producing α-type cobalt hydroxide, comprising forming α-type cobalt hydroxide while increasing pH by dissolving a volatile base gas in a cobalt ion solution.
  12. 前記コバルトイオン溶液に、コバルトイオンと配位する官能基を有する分子を添加することを特徴とする請求項11記載のα型水酸化コバルト製造方法。 12. The method for producing α-type cobalt hydroxide according to claim 11, wherein a molecule having a functional group coordinated with cobalt ions is added to the cobalt ion solution.
  13. 前記コバルトイオン溶液に基材を浸漬させ、前記基材上にα型水酸化コバルトを形成することを特徴とする請求項11記載のα型水酸化コバルト製造方法。 12. The method for producing α-type cobalt hydroxide according to claim 11, wherein the substrate is immersed in the cobalt ion solution to form α-type cobalt hydroxide on the substrate.
  14. 前記基材の表面にコバルトイオンと配位する官能基が存在することを特徴とする請求項11記載のα型水酸化コバルト製造方法。 12. The method for producing α-type cobalt hydroxide according to claim 11, wherein a functional group that coordinates with cobalt ions is present on the surface of the substrate.
  15. 前記コバルトイオン溶液に、α型水酸化コバルトの層間にインターカレーションする分子を添加し、前記分子をα型水酸化コバルトの層間にインターカレーションさせることを特徴とする請求項11記載のα型水酸化コバルト製造方法。 12. The α type according to claim 11, wherein a molecule that intercalates between layers of α-type cobalt hydroxide is added to the cobalt ion solution, and the molecules are intercalated between layers of α-type cobalt hydroxide. Cobalt hydroxide manufacturing method.
  16. 揮発性塩基ガスが遷移金属溶液に徐々に溶け込むことによって固体遷移金属水酸化物を形成させることを特徴とする固体遷移金属水酸化物製造方法。 A solid transition metal hydroxide production method comprising forming a solid transition metal hydroxide by gradually dissolving a volatile base gas into a transition metal solution.
  17. 遷移金属溶液が入った第1容器と、揮発性塩基溶液が入った第2容器とをとも第3容器内に収納する工程と、
    前記第2容器内から揮発した揮発性塩基ガスが、前記第3容器内に拡散し、第1容器内の溶液に溶け込むことによって第1容器内の溶液のpHを上昇させる工程と
    を有する固体遷移金属水酸化物製造方法。
    Storing the first container containing the transition metal solution and the second container containing the volatile base solution together in the third container;
    Solid transition having a step of increasing the pH of the solution in the first container by diffusing the volatile base gas volatilized from the second container into the third container and dissolving in the solution in the first container Metal hydroxide manufacturing method.
  18. コバルトイオン溶液が入った第1容器と、アンモニア溶液が入った第2容器とをとも第3容器内に収納する工程と、
    前記第2容器内から揮発したアンモニアガスが、前記第3容器内に拡散し、前記第1容器内の溶液に溶け込むことによって第1容器内の溶液のpHを上昇させる工程と
    を有するα型水酸化コバルト製造方法。
    Storing both the first container containing the cobalt ion solution and the second container containing the ammonia solution in the third container;
    A step of increasing the pH of the solution in the first container by diffusing ammonia gas volatilized from the second container into the third container and dissolving in the solution in the first container. Cobalt oxide production method.
  19. インターカレーションさせる分子、ポリアクリル酸及びコバルトイオン溶液が入り、基板が浸漬した第1容器と、アンモニア溶液が入った第2容器とをともに密閉容器内に収納し、アンモニア溶液から揮発したアンモニアガスを密閉容器内に拡散させる工程と、
    前記アンモニアガスを前記コバルトイオン溶液へ溶解させることによって前記コバルトイオン溶液のpHを上昇させる工程と
    を有し、
    前記分子がα型水酸化コバルトの層間にインターカレーションしたα型水酸化コバルトを基板上に成膜することを特徴とするα型水酸化コバルト製造方法。
    A gas container containing polyacrylic acid and cobalt ion solution to be intercalated, and the first container in which the substrate is immersed and the second container in which the ammonia solution is contained are housed in a sealed container, and the ammonia gas volatilized from the ammonia solution. Diffusing in a sealed container;
    And increasing the pH of the cobalt ion solution by dissolving the ammonia gas in the cobalt ion solution,
    A method for producing α-type cobalt hydroxide, characterized in that α-type cobalt hydroxide in which the molecules intercalate between layers of α-type cobalt hydroxide is formed on a substrate.
  20. 遷移金属溶液を保持する手段と、
    揮発性塩基ガスを前記遷移金属溶液に溶解させる手段と
    を備え、
    前記揮発性塩基ガスが前記遷移金属溶液に溶け込むことによってpHを上昇させながら固体遷移金属水酸化物を形成させることを特徴とする固体遷移金属水酸化物製造装置。
    Means for holding a transition metal solution;
    Means for dissolving volatile base gas in the transition metal solution,
    An apparatus for producing a solid transition metal hydroxide, wherein the volatile base gas dissolves in the transition metal solution to form a solid transition metal hydroxide while increasing the pH.
  21. 遷移金属水酸化物を次亜塩素酸イオンと反応させる工程を有し、
    前記遷移金属は、Ni、Coのいずれかであることを特徴とする遷移金属酸化物の製造方法。
    Having a step of reacting a transition metal hydroxide with hypochlorite ion,
    The method for producing a transition metal oxide, wherein the transition metal is any one of Ni and Co.
  22. アルカリイオン源共存下で遷移金属水酸化物を次亜塩素酸イオンと反応させることを特徴とする請求項21記載の遷移金属酸化物の製造方法。 22. The method for producing a transition metal oxide according to claim 21, wherein the transition metal hydroxide is reacted with hypochlorite ions in the presence of an alkali ion source.
  23. 前記遷移金属は、Coであることを特徴とする請求項21記載の遷移金属酸化物の製造方法。 22. The method for producing a transition metal oxide according to claim 21, wherein the transition metal is Co.
  24. 前記遷移金属水酸化物は、α型水酸化コバルトであることを特徴とする請求項23記載の遷移金属酸化物の製造方法。 24. The method for producing a transition metal oxide according to claim 23, wherein the transition metal hydroxide is α-type cobalt hydroxide.
  25. 前記遷移金属水酸化物は、α型水酸化コバルト結晶であることを特徴とする請求項23記載の遷移金属酸化物の製造方法。 24. The method for producing a transition metal oxide according to claim 23, wherein the transition metal hydroxide is α-type cobalt hydroxide crystal.
  26. 基材上に形成され、遷移金属水酸化物膜の結晶軸が前記基材の表面に対して配向している遷移金属水酸化物膜を次亜塩素酸イオンと反応させる工程を有し、
    前記遷移金属は、Ni、Coのいずれかであることを特徴とする遷移金属酸化物膜の製造方法。
    A step of reacting a transition metal hydroxide film formed on a substrate and having a crystallographic axis of the transition metal hydroxide film oriented with respect to the surface of the substrate with hypochlorite ions;
    The method for producing a transition metal oxide film, wherein the transition metal is any one of Ni and Co.
  27. 揮発性塩基ガスが遷移金属溶液に溶け込むことによって遷移金属水酸化物を形成させる工程と、
    前記遷移金属水酸化物を次亜塩素酸イオンと反応させる工程と
    を有し、
    前記遷移金属は、Ni、Coのいずれかであることを特徴とする遷移金属酸化物の製造方法。
    Forming a transition metal hydroxide by dissolving volatile base gas in the transition metal solution;
    Reacting the transition metal hydroxide with hypochlorite ions,
    The method for producing a transition metal oxide, wherein the transition metal is any one of Ni and Co.
  28. ポリアクリル酸及びコバルトイオン溶液が入り、基板が浸漬した第1容器と、アンモニア溶液が入った第2容器とをともに密閉容器内に収納し、アンモニア溶液から揮発したアンモニアガスを密閉容器内に拡散させる工程と、
    前記アンモニアガスを前記コバルトイオン溶液へ溶解させることによって前記コバルトイオン溶液のpHを上昇させ、α型水酸化コバルトを基板上に成膜する工程と、
    リチウムイオン及び次亜塩素酸イオンが溶解した溶液に前記α型水酸化コバルトを浸漬する工程と
    を有する水和リチウムコバルト酸化物の製造方法。
    The first container containing the polyacrylic acid and cobalt ion solution and the substrate immersed therein and the second container containing the ammonia solution are both housed in a sealed container, and the ammonia gas volatilized from the ammonia solution is diffused into the sealed container. A process of
    Increasing the pH of the cobalt ion solution by dissolving the ammonia gas in the cobalt ion solution, and forming α-type cobalt hydroxide on the substrate;
    Immersing the α-type cobalt hydroxide in a solution in which lithium ions and hypochlorite ions are dissolved.
  29. 基材上に形成された遷移金属酸化物膜であって、
    遷移金属水酸化物膜の結晶軸が前記基材の表面に対して配向していることを特徴とする遷移金属酸化物膜。
    A transition metal oxide film formed on a substrate,
    A transition metal oxide film, wherein the crystal axis of the transition metal hydroxide film is oriented with respect to the surface of the substrate.
  30. 前記遷移金属は、Ni、Coのいずれかであることを特徴とする請求項29記載の遷移金属酸化物膜。 30. The transition metal oxide film according to claim 29, wherein the transition metal is one of Ni and Co.
  31. 基材上に形成されたコバルト酸化物膜であって、
    コバルト酸化物膜のc軸が前記基材の表面に対して配向していることを特徴とするコバルト酸化物膜。
    A cobalt oxide film formed on a substrate,
    A cobalt oxide film, wherein the c-axis of the cobalt oxide film is oriented with respect to the surface of the substrate.
  32. コバルト酸化物の層間には、アルカリ金属が導入されていることを特徴とする請求項31記載のコバルト酸化物膜。 32. The cobalt oxide film according to claim 31, wherein an alkali metal is introduced between the cobalt oxide layers.
  33. 請求項6から請求項19のいずれかに記載の、固体遷移金属水酸化物製造方法若しくはα型水酸化コバルト製造方法、又は、請求項21から請求項28のいずれかに記載の、遷移金属酸化物の製造方法若しくは水和リチウムコバルト酸化物の製造方法によって製造されたことを特徴とする電子材料。 The solid transition metal hydroxide production method or α-type cobalt hydroxide production method according to any one of claims 6 to 19, or the transition metal oxidation according to any one of claims 21 to 28. An electronic material manufactured by a method for manufacturing a product or a method for manufacturing a hydrated lithium cobalt oxide.
PCT/JP2009/053769 2008-02-29 2009-02-27 SOLID TRANSITION METAL HYDROXIDE FILM, α-COBALT HYDROXIDE FILM, MANUFACTURING METHOD FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR α-COBALT HYDROXIDE, MANUFACTURING DEVICE FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR HYDRATED LITHIUM COBALT OXIDE, TRANSITION METAL OXIDE FILM, AND ELECTRODE MATERIAL WO2009116378A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010503818A JPWO2009116378A1 (en) 2008-02-29 2009-02-27 Solid transition metal hydroxide film, solid transition metal hydroxide production method, and solid transition metal hydroxide production apparatus,

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008051430 2008-02-29
JP2008-051430 2008-02-29

Publications (2)

Publication Number Publication Date
WO2009116378A1 true WO2009116378A1 (en) 2009-09-24
WO2009116378A8 WO2009116378A8 (en) 2009-11-12

Family

ID=41090785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/053769 WO2009116378A1 (en) 2008-02-29 2009-02-27 SOLID TRANSITION METAL HYDROXIDE FILM, α-COBALT HYDROXIDE FILM, MANUFACTURING METHOD FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR α-COBALT HYDROXIDE, MANUFACTURING DEVICE FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR HYDRATED LITHIUM COBALT OXIDE, TRANSITION METAL OXIDE FILM, AND ELECTRODE MATERIAL

Country Status (2)

Country Link
JP (1) JPWO2009116378A1 (en)
WO (1) WO2009116378A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219328A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Colloidal solution of cobalt hydroxide and method for producing the same
JP2016056035A (en) * 2014-09-05 2016-04-21 国立研究開発法人物質・材料研究機構 Method for single layer peeling layered transition metal hydroxide nanocone, method for manufacturing transition metal oxide nanocone and electrode material using transition metal hydroxide nanosheet
CN110392955A (en) * 2017-03-15 2019-10-29 日本麦可罗尼克斯股份有限公司 Electric energy storage device
CN113134361A (en) * 2021-03-30 2021-07-20 江苏大学 Ag/alpha-Co (OH)2Preparation method of oxygen evolution catalyst
CN114717590A (en) * 2022-03-10 2022-07-08 中国科学院海洋研究所 Preparation method of cobalt-based chlorine evolution catalyst electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256959A (en) * 1991-09-07 1994-09-13 Shiro Kanbe Method for synthesizing oxide film via hydroxide
JP2003183873A (en) * 2001-12-20 2003-07-03 Japan Science & Technology Corp New cobalt film, new electrochromic material, and positive electrode material for alkali ion cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06256959A (en) * 1991-09-07 1994-09-13 Shiro Kanbe Method for synthesizing oxide film via hydroxide
JP2003183873A (en) * 2001-12-20 2003-07-03 Japan Science & Technology Corp New cobalt film, new electrochromic material, and positive electrode material for alkali ion cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MA, R. ET AL.: "Tetrahedral Co(II) Coordination in a-Type Cobalt Hydroxide: Rietveld Refinement and X-ray Absorption Spectroscopy", INORGANIC CHEMISTRY, vol. 45, no. 10, 15 May 2006 (2006-05-15), pages 3964 - 3969 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011219328A (en) * 2010-04-13 2011-11-04 Toyota Motor Corp Colloidal solution of cobalt hydroxide and method for producing the same
JP2016056035A (en) * 2014-09-05 2016-04-21 国立研究開発法人物質・材料研究機構 Method for single layer peeling layered transition metal hydroxide nanocone, method for manufacturing transition metal oxide nanocone and electrode material using transition metal hydroxide nanosheet
CN110392955A (en) * 2017-03-15 2019-10-29 日本麦可罗尼克斯股份有限公司 Electric energy storage device
CN110392955B (en) * 2017-03-15 2022-03-08 日本麦可罗尼克斯股份有限公司 Electrical storage device
CN113134361A (en) * 2021-03-30 2021-07-20 江苏大学 Ag/alpha-Co (OH)2Preparation method of oxygen evolution catalyst
CN113134361B (en) * 2021-03-30 2023-08-25 江苏大学 Ag/alpha-Co (OH) 2 Preparation method of oxygen evolution catalyst
CN114717590A (en) * 2022-03-10 2022-07-08 中国科学院海洋研究所 Preparation method of cobalt-based chlorine evolution catalyst electrode
CN114717590B (en) * 2022-03-10 2023-08-08 中国科学院海洋研究所 Preparation method of cobalt-based chlorine evolution catalyst electrode

Also Published As

Publication number Publication date
JPWO2009116378A1 (en) 2011-07-21
WO2009116378A8 (en) 2009-11-12

Similar Documents

Publication Publication Date Title
Hua et al. Unravelling the growth mechanism of hierarchically structured Ni1/3Co1/3Mn1/3 (OH) 2 and their application as precursors for high-power cathode materials
Hu et al. Hollow/porous nanostructures derived from nanoscale metal–organic frameworks towards high performance anodes for lithium-ion batteries
Kim et al. Template-free synthesis of Li [Ni 0.25 Li 0.15 Mn 0.6] O 2 nanowires for high performance lithium battery cathode
KR101718918B1 (en) Ferric phosphate hydrate particle powder and process for production thereof, olivine-type lithium iron phosphate particle powder and process for production thereof, and non-aqueous electrolyte secondary battery
US10170759B2 (en) Metal oxides from acidic solutions
Guan et al. Synthesis of FeTiO 3 nanosheets with {0001} facets exposed: enhanced electrochemical performance and catalytic activity
Rodriguez et al. N-doped Li 4 Ti 5 O 12 nanoflakes derived from 2D protonated titanate for high performing anodes in lithium ion batteries
KR20120096020A (en) Method for producing complex oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
WO2015025795A1 (en) Alkali metal titanium oxide having anisotropic structure, titanium oxide, electrode active material containing said oxides, and electricity storage device
Jiang et al. LiNi0. 29Co0. 33Mn0. 38O2 polyhedrons with reduced cation mixing as a high-performance cathode material for Li-ion batteries synthesized via a combined co-precipitation and molten salt heating technique
Chen et al. Controlled synthesis of spherical hierarchical LiNi1− x− yCoxAlyO2 (0< x, y< 0.2) via a novel cation exchange process as cathode materials for High-Performance Lithium Batteries
Hashem et al. Urchin-like α-MnO 2 formed by nanoneedles for high-performance lithium batteries
Gunnewiek et al. Synthesis of spinel cobalt oxide nanoparticles using a modified polymeric precursor method
WO2009116378A1 (en) SOLID TRANSITION METAL HYDROXIDE FILM, α-COBALT HYDROXIDE FILM, MANUFACTURING METHOD FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR α-COBALT HYDROXIDE, MANUFACTURING DEVICE FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR HYDRATED LITHIUM COBALT OXIDE, TRANSITION METAL OXIDE FILM, AND ELECTRODE MATERIAL
US20220199991A1 (en) Methods for the Production of Cathode Materials for Lithium Ion Batteries
Nugroho et al. Continuous synthesis of Li4Ti5O12 nanoparticles in supercritical fluids and their electrochemical performance for anode in Li-ion batteries
Saini et al. Phase modulation in nanocrystalline vanadium di-oxide (VO2) nanostructures using citric acid via one pot hydrothermal method
JP6168538B2 (en) Method for producing titanium oxide using porous titanium compound impregnated with solution
US20170306511A1 (en) Crystalline transition metal oxide particles and continuous method of producing the same
Sun et al. Preparation of Li2MnO3 nanowires with structural defects as high rate and high capacity cathodes for lithium-ion batteries
Hong et al. Preparation of lithium titanate nanoparticles assisted by an ion-exchange process and their electrochemical performance as anode materials for Li-ion batteries
Lin et al. Kinetically-controlled formation of Fe2O3 nanoshells and its potential in Lithium-ion batteries
CN106571464A (en) Ni-Co-Al-Mg composite hydroxide, preparation method and application thereof
JPH10214624A (en) Manufacture of nonaqueous secondary battery positive active material and lithium secondary battery using the same
Cui et al. Mn 3 O 4 nano-sized crystals: rapid synthesis and extension to preparation of nanosized LiMn 2 O 4 materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09723119

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010503818

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09723119

Country of ref document: EP

Kind code of ref document: A1