JP2011219328A - Colloidal solution of cobalt hydroxide and method for producing the same - Google Patents

Colloidal solution of cobalt hydroxide and method for producing the same Download PDF

Info

Publication number
JP2011219328A
JP2011219328A JP2010092481A JP2010092481A JP2011219328A JP 2011219328 A JP2011219328 A JP 2011219328A JP 2010092481 A JP2010092481 A JP 2010092481A JP 2010092481 A JP2010092481 A JP 2010092481A JP 2011219328 A JP2011219328 A JP 2011219328A
Authority
JP
Japan
Prior art keywords
raw material
cobalt
colloidal solution
cobalt hydroxide
hydroxide particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010092481A
Other languages
Japanese (ja)
Other versions
JP5672754B2 (en
Inventor
Satoshi Nagao
諭 長尾
Hiroto Hirata
裕人 平田
Iwao Ikeda
巌 池田
Kimitoshi Sato
仁俊 佐藤
Yoshie Yamamura
佳恵 山村
Akira Morikawa
彰 森川
Akihiko Suda
明彦 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2010092481A priority Critical patent/JP5672754B2/en
Publication of JP2011219328A publication Critical patent/JP2011219328A/en
Application granted granted Critical
Publication of JP5672754B2 publication Critical patent/JP5672754B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Colloid Chemistry (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a colloidal solution including cobalt hydroxide particles which have a single nanosize and also have a narrow particle size distribution.SOLUTION: The colloidal solution contains cobalt hydroxide particles and a polymeric dispersant. The polymer dispersant is at least one kind selected from acrylic polymers and/or the salts thereof, the particle diameter Dof the cobalt hydroxide particles at which the cumulative mass of the particle size distribution thereof is 50% is 3.5 to 4.5 mm, and the particle diameter Dof the cobalt hydroxide particles at which the cumulative mass of the particle size distribution thereof is 90% is ≤2.0 times the particle diameter D. A method for producing the colloidal solution is also provided.

Description

本発明は、水酸化コバルトのコロイド溶液及びその製造方法に関し、具体的には、シングルナノメートルサイズを有する水酸化コバルト粒子のコロイド溶液及びその製造方法に関する。   The present invention relates to a colloidal solution of cobalt hydroxide and a method for producing the same, and more specifically to a colloidal solution of cobalt hydroxide particles having a single nanometer size and a method for producing the same.

ナノメートルサイズを有する物質は、ミクロンオーダーのサイズを有する物質と比較してマトリックスとの界面が飛躍的に増大すること、また、バルク材料とは異なる特異な特性を発現しうること等の理由から、幅広い分野において様々な工学的応用が期待されている。
ナノメートルサイズを有する物質は、一般的に1nm〜数十nmのサイズを有する物質を指す。中でも、1nm〜10nmのシングルナノメートルサイズを有する物質は、数十nmのサイズを有する物質と比較して、さらに、上記したような効果が大きいことから、大いに期待される材料の1つである。
A material having a nanometer size has a significantly increased interface with the matrix compared to a material having a micron-order size, and can exhibit unique properties different from those of bulk materials. Various engineering applications are expected in a wide range of fields.
A substance having a nanometer size generally refers to a substance having a size of 1 nm to several tens of nm. Among them, a substance having a single nanometer size of 1 nm to 10 nm is one of highly expected materials because the above-described effect is larger than a substance having a size of several tens of nm. .

例えば、触媒の活性を向上させるためには、結晶面の制御と共に、1次粒子の微小化による比表面積の向上も有効である。また、リチウム電池等の電極活物質も、電極性能を向上させるために、均一で微小なものが求められている。そのため、触媒物質や電極活物質等のナノメートルサイズ化、さらには、シングルナノメートルサイズ化が望まれている。   For example, in order to improve the activity of the catalyst, it is effective to increase the specific surface area by miniaturizing primary particles as well as controlling the crystal plane. Also, electrode active materials such as lithium batteries are required to be uniform and minute in order to improve electrode performance. Therefore, it is desired to make a catalyst material, an electrode active material, etc., nanometer-sized, and further, single nanometer-sized.

従来、酸化コバルトやコバルト複合酸化物(例えば、コバルト酸リチウム等)等のコバルト化合物は、様々な用途に使用されている。例えば、酸化コバルトは、自動車等の内燃機関から排出される排ガス中に含まれる一酸化炭素の浄化触媒等として、また、コバルト酸リチウムは、リチウム電池等の正極活物質等として使用されている。これら酸化コバルトやコバルト複合酸化物の原料として用いられるコバルト化合物粒子にも、ナノメートルサイズ化、さらにはシングルナノメートルサイズ化が望まれている。   Conventionally, cobalt compounds such as cobalt oxide and cobalt composite oxide (for example, lithium cobaltate) have been used for various applications. For example, cobalt oxide is used as a purification catalyst for carbon monoxide contained in exhaust gas discharged from internal combustion engines such as automobiles, and lithium cobaltate is used as a positive electrode active material for lithium batteries and the like. The cobalt compound particles used as raw materials for these cobalt oxides and cobalt composite oxides are also desired to be nanometer-sized and further single nanometer-sized.

例えば、特許文献1には、粒度分布幅の狭い四酸化三コバルトを製造することを目的の1つとする製造方法であって、水溶性二価コバルト化合物を水系媒液中で中和・酸化することを特徴とする四酸化三コバルトの製造方法が開示されている。特許文献1に記載の製造方法では、分散剤は用いられていない。   For example, Patent Document 1 discloses a production method that aims to produce tricobalt tetroxide having a narrow particle size distribution width, and neutralizes and oxidizes a water-soluble divalent cobalt compound in an aqueous medium. A method for producing tricobalt tetroxide is disclosed. In the production method described in Patent Document 1, no dispersant is used.

また、特許文献2には、一次粒子の平均粒径1〜150nm銅微粒子が少なくともその表面の一部が分散剤で覆われて水溶液中に分散されている、銅微粒子分散水溶液の製造方法であって、(i)銅イオンを分散剤の存在下で、特定のpHに調整したアンモニア水溶液中でアンモニアとの反応により水溶性の銅アンミン錯体を得る工程(工程1)、(ii)前記工程1で得られた銅アンミン錯体を含む水溶液に、還元剤を添加して還元反応により少なくとも表面の一部が分散剤で覆われた銅微粒子を形成する工程(工程2)を含むことを特徴とする銅微粒子分散水溶液の製造方法が開示されている。   Patent Document 2 discloses a method for producing an aqueous copper fine particle dispersion in which copper fine particles having an average primary particle diameter of 1 to 150 nm are dispersed in an aqueous solution with at least a part of the surface covered with a dispersant. (I) a step of obtaining a water-soluble copper ammine complex by reaction with ammonia in an aqueous ammonia solution adjusted to a specific pH in the presence of a dispersant in the presence of a dispersant (step 1), (ii) the step 1 A step (step 2) of adding a reducing agent to the aqueous solution containing the copper ammine complex obtained in step 1 and forming copper fine particles in which at least a part of the surface is covered with a dispersing agent by a reduction reaction. A method for producing a copper fine particle-dispersed aqueous solution is disclosed.

一方、特許文献3には、微小サイズで単分散性に優れた金属微粒子を製造することを目的として、金属微粒子の製造過程における還元剤分解による副生ガス発生を抑制した金属微粒子の製造方法が開示されている。具体的には、分解性の還元剤と析出性物質とを少なくとも含有する第1の溶液と、金属微粒子を作製する金属原子又は金属イオンを含有する第2の溶液とを液相法により混合反応させて金属微粒子を形成する混合工程を備えた金属微粒子の製造方法であって、前記混合工程の前に、前記第1の溶液を所定温度に冷却する冷却工程又は前記第1の溶液のpHを所定領域に調整するpH調整工程を備えることを特徴とする金属微粒子の製造方法が開示されている。   On the other hand, Patent Document 3 discloses a method for producing metal fine particles that suppresses by-product gas generation due to decomposition of a reducing agent in the production process of metal fine particles for the purpose of producing fine metal particles having excellent monodispersibility. It is disclosed. Specifically, a first reaction solution containing at least a decomposable reducing agent and a precipitating substance and a second solution containing metal atoms or metal ions for producing metal fine particles are mixed by a liquid phase method. A metal fine particle manufacturing method comprising a mixing step of forming metal fine particles, wherein the cooling step of cooling the first solution to a predetermined temperature or the pH of the first solution is performed before the mixing step. Disclosed is a method for producing fine metal particles, which comprises a pH adjusting step for adjusting to a predetermined region.

特開2002−68750号公報JP 2002-68750 A 特開2009−256779号公報JP 2009-256679 A 特開2008−81772号公報JP 2008-81772 A

しかしながら、特許文献1に記載の製造方法で得られる四酸化三コバルトは、平均粒子径が0.03〜0.1μmというサブミクロンオーダーであり、比表面積が小さい。
一方、特許文献2において、分散剤としてポリアクリル酸が例示されているが、実施例で実際に使用されているのは、ポリビニルピロリドンのみである。本発明者らの知見によれば、ポリビニルピロリドンのようなアミン系の高分子分散剤では、金属微粒子の凝集を充分に抑制することができないため、シングルナノサイズを有し、且つ、均一な粒度分布を有する(すなわち、粒度分布が狭い)金属微粒子、特に水酸化コバルト微粒子を得ることはできない。
以上のように、従来、シングルナノサイズを有し且つ均一な粒度分布を有する水酸化コバルト粒子を得ることは困難であった。
However, tricobalt tetroxide obtained by the production method described in Patent Document 1 has a submicron order with an average particle size of 0.03 to 0.1 μm and a small specific surface area.
On the other hand, in Patent Document 2, polyacrylic acid is exemplified as a dispersant, but only polyvinylpyrrolidone is actually used in the examples. According to the knowledge of the present inventors, an amine-based polymer dispersant such as polyvinylpyrrolidone cannot sufficiently suppress the aggregation of metal fine particles, and therefore has a single nanosize and a uniform particle size. Metal fine particles having a distribution (that is, narrow particle size distribution), particularly cobalt hydroxide fine particles, cannot be obtained.
As described above, conventionally, it has been difficult to obtain cobalt hydroxide particles having a single nanosize and a uniform particle size distribution.

本発明は、上記実情を鑑みて成し遂げられたものであり、本発明の目的は、シングルナノサイズを有し且つ狭い粒度分布を有する水酸化コバルト粒子を含むコロイド溶液を提供することである。   The present invention has been accomplished in view of the above circumstances, and an object of the present invention is to provide a colloidal solution containing cobalt hydroxide particles having a single nanosize and a narrow particle size distribution.

本発明のコロイド溶液は、水酸化コバルト粒子と高分子分散剤とを含むコロイド溶液であって、
前記高分子分散剤が、アクリル系重合体及び/又はその塩から選ばれる少なくとも1種であり、
前記水酸化コバルト粒子の粒度分布の累積質量の50%となる粒子径D50が3.5〜4.5nmであり、且つ、前記水酸化コバルト粒子の粒度分布の累積質量の90%となる粒子径D90が前記粒子径D50の2.0倍以下であることを特徴とするものである。
The colloidal solution of the present invention is a colloidal solution containing cobalt hydroxide particles and a polymer dispersant,
The polymer dispersant is at least one selected from an acrylic polymer and / or a salt thereof,
The particle diameter D 50 which is 50% of the cumulative weight particle size distribution of the cobalt hydroxide particles are 3.5~4.5Nm, and, is 90% of the cumulative mass of the particle size distribution of the cobalt hydroxide particles particles is characterized in that the diameter D 90 of at most 2.0 times the particle diameter D 50.

本発明のコロイド溶液は、シングルナノサイズを有し且つ粒度分布が狭い水酸化コバルト粒子を含むものであり、該コロイド溶液を原料として用いることで、高比表面積を有するコバルト酸化物粒子等のコバルト化合物粒子を得ることが可能である。   The colloidal solution of the present invention includes cobalt hydroxide particles having a single nanosize and a narrow particle size distribution. By using the colloidal solution as a raw material, cobalt such as cobalt oxide particles having a high specific surface area is used. Compound particles can be obtained.

本発明のコロイド溶液の製造方法は、水酸化コバルト粒子と高分子分散剤とを含むコロイド溶液の製造方法であって、
(1)溶媒溶解性コバルト化合物と該コバルト化合物を溶解可能な溶媒とを含む第1の原料溶液、及び
(2)中和剤とアクリル系重合体及び/又はその塩からなる高分子分散剤とを含み、前記中和剤の含有量が前記第1の原料溶液に含まれる全てのコバルトイオンを中和するために必要な量の0.5倍を超えて1.2倍未満である第2の原料溶液を、
せん断速度3000sec−1以上の領域で混合することを特徴とするものである。
The method for producing a colloidal solution of the present invention is a method for producing a colloidal solution containing cobalt hydroxide particles and a polymer dispersant,
(1) a first raw material solution containing a solvent-soluble cobalt compound and a solvent capable of dissolving the cobalt compound, and (2) a polymer dispersant comprising a neutralizing agent and an acrylic polymer and / or a salt thereof. And the content of the neutralizing agent is more than 0.5 times and less than 1.2 times the amount necessary for neutralizing all cobalt ions contained in the first raw material solution. The raw material solution
The mixing is performed in a region where the shear rate is 3000 sec −1 or more.

本発明のコロイド溶液の製造方法によれば、シングルナノサイズの水酸化コバルト粒子を高分散状態で含有する、上記本発明のコロイド溶液を得ることができる。   According to the method for producing a colloidal solution of the present invention, the above-described colloidal solution of the present invention containing single nano-sized cobalt hydroxide particles in a highly dispersed state can be obtained.

本発明のコロイド溶液の製造方法において、前記第2の原料溶液(2)における前記中和剤の含有量は、前記第1の原料溶液(1)に含まれる全てのコバルトイオンを中和するために必要な量の0.8倍以上1.1倍以下であることが好ましい。
また、前記中和剤の具体例としてはアンモニアが挙げられる。
In the method for producing a colloidal solution of the present invention, the content of the neutralizing agent in the second raw material solution (2) is to neutralize all cobalt ions contained in the first raw material solution (1). It is preferable that it is 0.8 times or more and 1.1 times or less of the amount required for.
A specific example of the neutralizing agent is ammonia.

本発明によれば、シングルナノサイズを有し且つ狭い粒度分布を有する水酸化コバルト粒子を含むコロイド溶液を得ることができる。従って、本発明により提供されるコロイド溶液を用いることによって、シングルナノサイズ及び狭い粒度分布を有し、高比表面積を有するコバルト化合物粒子を得ることが可能である。   According to the present invention, a colloidal solution containing cobalt hydroxide particles having a single nanosize and a narrow particle size distribution can be obtained. Therefore, by using the colloidal solution provided by the present invention, it is possible to obtain cobalt compound particles having a single nanosize and a narrow particle size distribution and a high specific surface area.

実施例で得られたコロイド溶液に含まれる水酸化コバルト粒子の粒度分布曲線(累積分布)である。It is a particle size distribution curve (cumulative distribution) of the cobalt hydroxide particle contained in the colloidal solution obtained in the Example. 実施例で得られたコロイド溶液に含まれる水酸化コバルト粒子の粒度分布曲線(頻度分布)である。It is a particle size distribution curve (frequency distribution) of the cobalt hydroxide particle contained in the colloidal solution obtained in the Example.

まず、本発明のコロイド溶液について説明する。
本発明のコロイド溶液は、水酸化コバルト粒子と高分子分散剤とを含むコロイド溶液であって、
前記高分子分散剤が、アクリル系重合体及び/又はその塩から選ばれる少なくとも1種であり、
前記水酸化コバルト粒子の粒度分布の累積質量の50%となる粒子径D50(以下、単に「粒子径D50」ということがある。)が3.5〜4.5nmであり、且つ、前記水酸化コバルト粒子の粒度分布の累積質量の90%となる粒子径D90(以下、単に「粒子径D90」ということがある)が前記粒子径D50の2.0倍以下であることを特徴とするものである。
First, the colloid solution of the present invention will be described.
The colloidal solution of the present invention is a colloidal solution containing cobalt hydroxide particles and a polymer dispersant,
The polymer dispersant is at least one selected from an acrylic polymer and / or a salt thereof,
The particle diameter D 50 (hereinafter sometimes simply referred to as “particle diameter D 50 ”), which is 50% of the cumulative mass of the particle size distribution of the cobalt hydroxide particles, is 3.5 to 4.5 nm, and The particle diameter D 90 (hereinafter sometimes simply referred to as “particle diameter D 90 ”) that is 90% of the cumulative mass of the particle size distribution of the cobalt hydroxide particles is 2.0 times or less of the particle diameter D 50. It is a feature.

本発明のコロイド溶液に含有される水酸化コバルト粒子は、まず、粒子径D50、つまり累積質量換算における平均粒径が3.5〜4.5nmであり、シングルナノサイズの累積質量平均粒径を有している。
さらに、本発明のコロイド溶液に含有される水酸化コバルト粒子は、粒子径D90が粒子径D50の2.0倍以下、つまり、D90/D50≦2.0を満たす粒度分布を有している。D90/D50は、粒径分布の広さを示す指標値であり、実質1以上となるが、1に近いほど単分散状態に近く、粒度分布が狭いことを示す。
The cobalt hydroxide particles contained in the colloidal solution of the present invention first have a particle diameter D 50 , that is, an average particle diameter in terms of cumulative mass of 3.5 to 4.5 nm, and a single nano-sized cumulative mass average particle diameter. have.
Furthermore, the cobalt hydroxide particles contained in the colloidal solution of the present invention have a particle size distribution in which the particle diameter D 90 is 2.0 times or less of the particle diameter D 50 , that is, D 90 / D 50 ≦ 2.0. is doing. D 90 / D 50 is an index value indicating the breadth of the particle size distribution, and is substantially 1 or more, but the closer to 1, the closer to the monodispersed state and the narrower the particle size distribution.

すなわち、本発明のコロイド溶液は、均一な粒度分布を有するシングルナノサイズの水酸化コバルト粒子を含有する。このように、シングルナノサイズ及び狭い粒度分布を有する水酸化コバルト粒子を含有する、本発明のコロイド溶液を原料として用いることによって、シングルナノサイズを有し、比表面積が大きなコバルト化合物粒子を製造することが可能となる。   That is, the colloidal solution of the present invention contains single nano-sized cobalt hydroxide particles having a uniform particle size distribution. In this way, cobalt compound particles having a single nanosize and a large specific surface area are produced by using the colloidal solution of the present invention containing cobalt hydroxide particles having a single nanosize and a narrow particle size distribution as a raw material. It becomes possible.

本発明のコロイド溶液は、例えば、後述する本発明のコロイド溶液の製造方法によって、調製することができる。   The colloidal solution of the present invention can be prepared, for example, by the method for producing the colloidal solution of the present invention described later.

本発明において、水酸化コバルト粒子の粒度分布の累積質量50%となる粒子径D50及び累積質量90%となる粒子径D90は、コロイド溶液に含まれる水酸化コバルト粒子の粒度分布曲線から求めることができる。水酸化コバルト粒子の粒度分布曲線は、公知の方法により求めることができ、例えば、動的光散乱法を利用した粒度分布測定装置等、光散乱法を利用した装置を用いることができる。具体的な装置として、例えば、大塚電子株式会社製、ELS−Zが挙げられる。 In the present invention, the particle diameter D 50 which is 50% of the cumulative mass of the particle size distribution of the cobalt hydroxide particles and the particle diameter D 90 which is 90% of the cumulative mass are determined from the particle size distribution curve of the cobalt hydroxide particles contained in the colloidal solution. be able to. The particle size distribution curve of the cobalt hydroxide particles can be obtained by a known method. For example, a device using a light scattering method such as a particle size distribution measuring device using a dynamic light scattering method can be used. Specific examples include ELS-Z manufactured by Otsuka Electronics Co., Ltd.

本発明のコロイド溶液において、水酸化コバルト粒子は、アクリル系重合体及び/又はその塩からなる高分子分散剤(以下、単に「アクリル系高分子分散剤」ということがある)によってその表面が覆われ、保護されている。尚、水酸化コバルト粒子は、表面全体がアクリル系高分子分散剤に覆われている状態の他、少なくとも一部の表面がアクリル系高分子分散剤に覆われている状態でもよい。
アクリル系高分子分散剤は、コロイド溶液中の水酸化コバルト粒子の表面を覆うように存在し、水酸化コバルト粒子の分散性を良好に維持する作用を有するものであればよく、特に限定されない。
In the colloidal solution of the present invention, the surface of the cobalt hydroxide particles is covered with a polymer dispersant comprising an acrylic polymer and / or a salt thereof (hereinafter sometimes simply referred to as “acrylic polymer dispersant”). And protected. The cobalt hydroxide particles may be in a state in which at least a part of the surface is covered with the acrylic polymer dispersant in addition to the state where the entire surface is covered with the acrylic polymer dispersant.
The acrylic polymer dispersant is not particularly limited as long as it is present so as to cover the surface of the cobalt hydroxide particles in the colloidal solution and has an action of maintaining good dispersibility of the cobalt hydroxide particles.

具体的なアクリル系高分子分散剤としては、例えば、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリアクリル酸、ポリメタクリル酸、アクリル酸エステル共重合体、メタクリル酸エステル共重合体、アクリル酸共重合体、メタクリル酸共重合体等のアクリル系重合体、並びに、これらアクリル系重合体の塩が挙げられる。アクリル系重合体の塩としては、ナトリウム塩、カリウム塩等のアルカリ金属塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属塩等が挙げられる。
好ましいアクリル系高分子分散剤としては、例えば、ポリアクリル酸ナトリウムが挙げられる。
本発明のコロイド溶液は、アクリル系高分子分散剤を1種のみ含有していても或いは2種以上を含有していてもよい。
Specific examples of the acrylic polymer dispersant include polyacrylic acid ester, polymethacrylic acid ester, polyacrylic acid, polymethacrylic acid, acrylic acid ester copolymer, methacrylic acid ester copolymer, and acrylic acid copolymer. Examples thereof include acrylic polymers such as a polymer and a methacrylic acid copolymer, and salts of these acrylic polymers. Examples of the salt of the acrylic polymer include alkali metal salts such as sodium salt and potassium salt, and alkaline earth metal salts such as calcium salt and magnesium salt.
A preferable acrylic polymer dispersant is, for example, sodium polyacrylate.
The colloid solution of the present invention may contain only one type of acrylic polymer dispersant or may contain two or more types.

コロイド溶液におけるアクリル系高分子分散剤の量は、水酸化コバルト粒子の分散性を良好に維持することができればよく、特に限定されないが、コロイド溶液中に含まれるコバルトイオン1モルに対して、700g以上であることが好ましく、2400g以下であることが好ましい。
コロイド溶液おけるアクリル系高分子分散剤とコバルトイオンの比率は、コロイド溶液調製時における各材料の仕込み比率で調整すればよい。
The amount of the acrylic polymer dispersant in the colloidal solution is not particularly limited as long as the dispersibility of the cobalt hydroxide particles can be maintained satisfactorily, but is 700 g with respect to 1 mol of cobalt ions contained in the colloidal solution. It is preferable that it is above, and it is preferable that it is 2400 g or less.
What is necessary is just to adjust the ratio of the acrylic polymer dispersing agent and cobalt ion in a colloidal solution with the preparation ratio of each material at the time of colloidal solution preparation.

コロイド溶液の溶媒は特に限定されず、コロイド溶液調製時に使用するコロイド化合物の溶解性、アクリル系高分子分散剤の親水性や親油性等に応じて、適宜選択すればよい。具体的には、例えば、イオン交換水等が挙げられる。
本発明のコロイド溶液には、その他成分が含有されていてもよい。
The solvent of the colloidal solution is not particularly limited, and may be appropriately selected according to the solubility of the colloidal compound used when preparing the colloidal solution, the hydrophilicity or lipophilicity of the acrylic polymer dispersant. Specifically, ion exchange water etc. are mentioned, for example.
The colloid solution of the present invention may contain other components.

次に、本発明のコロイド溶液の製造方法について説明する。
本発明のコロイド溶液の製造方法は、水酸化コバルト粒子と高分子分散剤とを含むコロイド溶液の製造方法であって、
(1)溶媒溶解性コバルト化合物と該コバルト化合物を溶解可能な溶媒とを含む第1の原料溶液、及び
(2)中和剤とアクリル系重合体及び/又はその塩からなる高分子分散剤とを含み、前記中和剤の含有量が前記第1の原料溶液に含まれるコバルトイオンを中和するために必要な量の0.5倍を超えて1.2倍未満である第2の原料溶液を、
せん断速度3000sec−1以上の領域で混合することを特徴とするものである。
Next, the manufacturing method of the colloidal solution of this invention is demonstrated.
The method for producing a colloidal solution of the present invention is a method for producing a colloidal solution containing cobalt hydroxide particles and a polymer dispersant,
(1) a first raw material solution containing a solvent-soluble cobalt compound and a solvent capable of dissolving the cobalt compound, and (2) a polymer dispersant comprising a neutralizing agent and an acrylic polymer and / or a salt thereof. And the content of the neutralizing agent is 0.5 to less than 1.2 times the amount necessary to neutralize the cobalt ions contained in the first raw material solution. The solution
The mixing is performed in a region where the shear rate is 3000 sec −1 or more.

第1の原料溶液(1)は、少なくとも溶媒溶解性コバルト化合物及び溶媒を含む。
溶媒溶解性コバルト化合物は、コバルトイオンの供給源であり、溶媒溶解性を有していれば特に限定されず、例えば、硝酸コバルト、硫酸コバルト、塩酸コバルト、酢酸コバルト、ギ酸コバルト等が挙げられ、中でも硝酸コバルトが好ましい。溶媒溶解性コバルト化合物は、無水物でも水和物でもよい。
溶媒は、上記コバルト化合物を溶解し、コバルトイオンを生成させることができれば特に限定されず、例えば、イオン交換水等が挙げられる。
The first raw material solution (1) contains at least a solvent-soluble cobalt compound and a solvent.
The solvent-soluble cobalt compound is a supply source of cobalt ions, and is not particularly limited as long as it has solvent solubility, such as cobalt nitrate, cobalt sulfate, cobalt hydrochloride, cobalt acetate, cobalt formate, Of these, cobalt nitrate is preferable. The solvent-soluble cobalt compound may be an anhydride or a hydrate.
A solvent will not be specifically limited if the said cobalt compound can be melt | dissolved and a cobalt ion can be produced | generated, For example, ion-exchange water etc. are mentioned.

第1の原料溶液(1)において、溶媒溶解性コバルト化合物と溶媒との比率は特に限定されないが、通常、コバルトイオン濃度が0.01モル/L以上であることが好ましく、0.5モル/L以下であることが好ましい。
第1の原料溶液(1)の調製方法は特に限定されず、溶媒と溶媒溶解性コバルト化合物とを任意の方法で混合すればよい。
In the first raw material solution (1), the ratio of the solvent-soluble cobalt compound and the solvent is not particularly limited, but usually the cobalt ion concentration is preferably 0.01 mol / L or more, and preferably 0.5 mol / L. L or less is preferable.
The method for preparing the first raw material solution (1) is not particularly limited, and the solvent and the solvent-soluble cobalt compound may be mixed by any method.

第2の原料溶液(2)は、少なくとも中和剤とアクリル系重合体及び/又はその塩からなる高分子分散剤とを含む。
中和剤は、溶媒溶解性コバルト化合物が溶解した第1の原料溶液(1)を中和して、水酸化コバルト粒子を析出できるものであればよく、使用する溶媒溶解性コバルト化合物に合わせて適宜選択すればよい。
溶媒溶解性コバルト化合物として上記に記載したような化合物を用いる場合には、例えば、アンモニアガス、アンモニア水、炭酸アンモニウム等のアンモニウム化合物、水酸化ナトリウム、水酸化カリウム等のアルカリが挙げられる。
The second raw material solution (2) includes at least a neutralizing agent and a polymer dispersant composed of an acrylic polymer and / or a salt thereof.
The neutralizing agent only needs to neutralize the first raw material solution (1) in which the solvent-soluble cobalt compound is dissolved and precipitate the cobalt hydroxide particles, and matches the solvent-soluble cobalt compound to be used. What is necessary is just to select suitably.
When a compound as described above is used as the solvent-soluble cobalt compound, examples thereof include ammonia compounds such as ammonia gas, aqueous ammonia and ammonium carbonate, and alkalis such as sodium hydroxide and potassium hydroxide.

本発明の製造方法の大きな特徴の1つは、第2の原料溶液(2)における中和剤の含有量を、上記第1の原料溶液(1)に含まれる全てのコバルトイオン(Co2+)を中和するために必要な量(以下、「中和量」ということがある)の0.5倍を超えて1.2倍未満とする点にある。中和剤の含有量を、中和量の0.5倍を超える量とすることで中和反応を確実に進行させることができると共に、中和量の1.2倍未満とすることで生成した水酸化コバルト粒子の溶解を防止することができる。
第2の原料溶液(2)の中和剤含有量は、上記第1の原料溶液に含まれる全てのコバルトイオンを中和するために必要な量の0.8倍以上1.1倍以下であることが好ましく、特に1.0以上1.1倍以下であることが好ましい。
One of the major features of the production method of the present invention is that the content of the neutralizing agent in the second raw material solution (2) is changed to all the cobalt ions (Co 2+ ) contained in the first raw material solution (1). The amount is 0.5 to less than 1.2 times the amount necessary for neutralizing (hereinafter, sometimes referred to as “neutralization amount”). By making the content of the neutralizing agent more than 0.5 times the amount of neutralization, the neutralization reaction can surely proceed, and it is generated by making the amount less than 1.2 times the amount of neutralization. It is possible to prevent the dissolved cobalt hydroxide particles.
The neutralizing agent content of the second raw material solution (2) is 0.8 to 1.1 times the amount necessary for neutralizing all cobalt ions contained in the first raw material solution. It is preferable that it is 1.0 to 1.1 times in particular.

アクリル系重合体及び/又はその塩からなる高分子分散剤(アクリル系高分子分散剤)を用いることも、本発明の製造方法の大きな特徴の1つである。アクリル系高分子分散剤については、上記本発明のコロイド溶液において説明したものと同様であるため、ここでの説明は省略する。
第2の原料溶液(2)におけるアクリル系高分子分散剤の含有量は、第1の原料溶液(1)と第2の原料溶液(2)とから得られるコロイド溶液において、水酸化コバルト粒子の分散性を良好に維持することができればよく、特に限定されない。好ましくは、第1の原料溶液(1)に含まれるコバルト1モルに対して、450g以上であることが好ましく、900g以下であることが好ましい。
The use of a polymer dispersant (acrylic polymer dispersant) comprising an acrylic polymer and / or a salt thereof is also one of the major features of the production method of the present invention. Since the acrylic polymer dispersant is the same as that described in the colloidal solution of the present invention, description thereof is omitted here.
The content of the acrylic polymer dispersant in the second raw material solution (2) is that of the cobalt hydroxide particles in the colloidal solution obtained from the first raw material solution (1) and the second raw material solution (2). There is no particular limitation as long as the dispersibility can be maintained well. Preferably, it is preferably 450 g or more and more preferably 900 g or less with respect to 1 mol of cobalt contained in the first raw material solution (1).

第2の原料溶液(2)の溶媒は、中和剤を溶解できれば、特に限定されず、例えば、イオン交換水等を用いることができる。
第2の原料溶液(2)における溶媒量は、得られる第2の原料溶液の体積が、第1の原料溶液の体積と同じになるように調整することが好ましい。
第2の原料溶液の調製方法は特に限定されず、中和剤、アクリル系高分子分散剤及び溶媒を任意の方法で混合すればよい。
The solvent of the second raw material solution (2) is not particularly limited as long as it can dissolve the neutralizing agent, and for example, ion-exchanged water or the like can be used.
The amount of solvent in the second raw material solution (2) is preferably adjusted so that the volume of the obtained second raw material solution is the same as the volume of the first raw material solution.
The method for preparing the second raw material solution is not particularly limited, and the neutralizing agent, the acrylic polymer dispersant and the solvent may be mixed by any method.

本発明において、第1の原料溶液(1)及び第2の原料溶液(2)は、せん断速度3000sec−1以上の領域で混合される。せん断速度3000sec−1以上の領域で第1及び第2の原料溶液を混合することも本発明の大きな特徴である。3000sec−1以上の高せん断条件下、コバルトイオンを中和し、水酸化コバルトを析出させることによって、シングルナノサイズを有し、粒度分布が狭い水酸化コバルト粒子を得ることができる。せん断速度が3000sec−1未満であると、水酸化コバルト粒子の凝集が起こってしまう。上記せん断速度は、好ましくは、4500sec−1以上である。
尚、上記第1の原料溶液及び第2の原料溶液をスターラーで混合(つまり、せん断速度3000sec−1未満)しても、本発明のコロイド溶液に含まれるような粒度分布を有する水酸化コバルト粒子は得られないことが本発明者らにより確認されている。
In the present invention, the first raw material solution (1) and the second raw material solution (2) are mixed in a region having a shear rate of 3000 sec −1 or more. It is also a major feature of the present invention that the first and second raw material solutions are mixed in a region where the shear rate is 3000 sec −1 or more. By neutralizing cobalt ions and precipitating cobalt hydroxide under high shear conditions of 3000 sec −1 or more, cobalt hydroxide particles having a single nanosize and a narrow particle size distribution can be obtained. If the shear rate is less than 3000 sec −1 , aggregation of cobalt hydroxide particles occurs. The shear rate is preferably 4500 sec −1 or more.
In addition, even if the first raw material solution and the second raw material solution are mixed with a stirrer (that is, a shear rate of less than 3000 sec −1 ), the cobalt hydroxide particles having a particle size distribution that is included in the colloidal solution of the present invention. Have been confirmed by the present inventors.

上記のような高せん断速度で第1及び第2の原料溶液を混合する装置としては、次のような高速攪拌装置を用いることができる。すなわち、少なくとも2つ以上の異なる原料溶液を別々に下記反応室内に導入できる機構(以下、導入機構という場合がある。)と、2つ以上の異なる原料溶液を3000sec−1以上のせん断速度で混合させるせん断機構を有する反応室と、を備える装置である。
導入機構としては、具体的には、高速攪拌装置内に2つ以上の異なる原料溶液を独立に供給できる装置、及び、該溶液供給装置から供給される原料溶液を反応室へと運搬するノズルを備える構成が挙げられる。
反応室は、第1及び第2の原料溶液を上記高せん断条件で混合できるよう、微小空間を有している。ここで微小空間とは、上記第1及び第2の原料溶液を反応させて、水酸化コバルト粒子を得ることができるのに充分な容積を有する空間であり、具体的には、数ナノ立方メートル〜数マイクロ立方メートルの容積を有する空間が好ましい。また、反応室は、反応室への原料溶液の導入路及び反応室からの目的生成物の排出路を除いて密閉された空間であることが好ましい。
反応室におけるせん断機構としては、2つ以上の異なる原料溶液を3000sec−1以上のせん断速度で混合させることができる高速攪拌機構であれば特に限定されない。具体的には、ローターとステーターとを備えたホモジナイザーであって、ローターの回転数を調整することでせん断速度を調整できるものが挙げられる。
As a device for mixing the first and second raw material solutions at a high shear rate as described above, the following high-speed stirring device can be used. That is, a mechanism capable of separately introducing at least two different raw material solutions into the following reaction chamber (hereinafter sometimes referred to as an introduction mechanism) and two or more different raw material solutions are mixed at a shear rate of 3000 sec −1 or higher. And a reaction chamber having a shearing mechanism.
Specifically, the introduction mechanism includes a device capable of independently supplying two or more different raw material solutions into the high-speed stirring device, and a nozzle for conveying the raw material solution supplied from the solution supply device to the reaction chamber. The structure provided is mentioned.
The reaction chamber has a minute space so that the first and second raw material solutions can be mixed under the high shear condition. Here, the minute space is a space having a volume sufficient to allow the first and second raw material solutions to react to obtain cobalt hydroxide particles. A space having a volume of a few microcubic meters is preferred. The reaction chamber is preferably a sealed space except for the introduction path of the raw material solution to the reaction chamber and the discharge path of the target product from the reaction chamber.
The shearing mechanism in the reaction chamber is not particularly limited as long as it is a high-speed stirring mechanism capable of mixing two or more different raw material solutions at a shear rate of 3000 sec −1 or more. Specifically, a homogenizer provided with a rotor and a stator, which can adjust the shear rate by adjusting the rotation speed of the rotor, can be mentioned.

得られた水酸化コバルト粒子含有コロイド溶液は、必要に応じて、水酸化コバルト粒子をろ過、洗浄、乾燥して使用することができる。   The obtained cobalt hydroxide particle-containing colloidal solution can be used after filtering, washing and drying the cobalt hydroxide particles as required.

本発明により提供されるコロイド溶液は、既述したように、シングルナノサイズを有する均一な水酸化コバルト粒子を含有する。従って、本発明のコロイド溶液を用いることによって、高比表面積を有するコバルト化合物粒子を得ることが可能であり、触媒物質や電極活物質等の性能向上が期待できる。   The colloidal solution provided by the present invention contains uniform cobalt hydroxide particles having a single nanosize as described above. Therefore, by using the colloidal solution of the present invention, it is possible to obtain cobalt compound particles having a high specific surface area, and an improvement in performance of a catalyst material, an electrode active material, etc. can be expected.

(実施例1)
<水酸化コバルト粒子含有コロイド溶液の調製>
Co(NO・6HO 3.64g(0.0125モル)と、イオン交換水125gとを混合し、第1の原料溶液(コバルトイオン濃度0.1モル/L)を調製した。
一方、アンモニア水(アンモニア濃度25%)1.87g(アンモニア0.0275モル)と、ポリアクリル酸ナトリウム(重量平均分子量1200)21.9gと、イオン交換水100gとを混合し、第2の原料溶液を調製した。
Example 1
<Preparation of cobalt hydroxide particle-containing colloidal solution>
Co (NO 3 ) 2 .6H 2 O 3.64 g (0.0125 mol) and 125 g of ion-exchanged water were mixed to prepare a first raw material solution (cobalt ion concentration 0.1 mol / L).
On the other hand, 1.87 g of ammonia water (ammonia concentration 25%) (ammonia 0.0275 mol), 21.9 g of sodium polyacrylate (weight average molecular weight 1200), and 100 g of ion-exchanged water are mixed, and the second raw material is mixed. A solution was prepared.

尚、第1の原料溶液の調製と第2の原料溶液の調製において使用したイオン交換水の量は、第1の原料溶液と第2の原料溶液の体積が同じになる量とした。
また、第2の原料溶液に含有されるアンモニア量は、第1の原料溶液に含有される全てのCo2+イオンを中和するのに必要な量の1.1倍(0.0125×2×1.1=0.0275モル)である。
The amount of ion-exchanged water used in the preparation of the first raw material solution and the preparation of the second raw material solution was such that the volume of the first raw material solution and that of the second raw material solution were the same.
Further, the amount of ammonia contained in the second raw material solution is 1.1 times (0.0125 × 2 ×) the amount necessary to neutralize all Co 2+ ions contained in the first raw material solution. 1.1 = 0.0275 mol).

次に、得られた第1の原料溶液と第2の原料溶液とを、高速攪拌装置を用いて混合し、Co(OH)粒子含有コロイドを得た。高速攪拌装置による混合は、第1の原料溶液及び第2の原料溶液を、それぞれ、2.5ml/minで供給しながら、せん断速度7000sec−1(回転速度10000rpm)、室温で1時間行った。尚、反応室に供給する、スタートアップ溶液のpHは9.2〜9.6になるようにアンモニアを加えて調整した。
攪拌開始初期のコロイドの色は桃色で、時間経過と共に青緑色に変化した。桃色及び青緑色は、粉末状態のCo(OH)の色(結晶の色)と一致することから、得られたコバルト含有コロイド溶液には、Co(OH)粒子を含有すると考えられる。
Next, the obtained 1st raw material solution and 2nd raw material solution were mixed using the high-speed stirring apparatus, and the Co (OH) 2 particle containing colloid was obtained. The mixing with the high-speed stirring device was performed at room temperature for 1 hour at a shear rate of 7000 sec −1 (rotational speed of 10,000 rpm) while supplying the first raw material solution and the second raw material solution at 2.5 ml / min, respectively. The pH of the startup solution supplied to the reaction chamber was adjusted by adding ammonia so that the pH was 9.2 to 9.6.
The color of the colloid at the beginning of stirring was pink and changed to blue-green with time. Pink and blue-green colors match the color of Co (OH) 2 in the powder state (crystal color), and thus the obtained cobalt-containing colloidal solution is considered to contain Co (OH) 2 particles.

<水酸化コバルト粒子の評価>
得られたCo(OH)粒子含有コロイド溶液について、動的光散乱法による粒度分布測定装置(大塚電子株式会社製、ELS−Z)を用いて、粒度分布を測定した。結果を図1(累積分布)及び図2(頻度分布)に示す。尚、図1及び図2の累積及び頻度は、質量換算して求めたものである。
図1に示すように、得られたコロイド中のCo(OH)粒子は、D50=4.5nm、D90=8.1nm、D90/D50=1.8であった。また、図2より、得られたコロイド中のCo(OH)粒子は、粒度分布がシャープであり、均一な粒径を有していることがわかる。
尚、上記と同様にして複数回(n=3)、水酸化コバルト粒子含有コロイド溶液を調製したところ、D50=3.5〜4.5nm、D90=3.5〜8.1nm、pH9.2のコロイド溶液が得られた。尚、得られたコロイド溶液中に含まれる粒子について、散乱強度分布から得られた平均粒径及びσ値(分散)より平均粒径を求めたところ、5.5±3.3nmであった。また、得られたコロイド溶液は、調製後1日経過した後においても緑青色を呈しており、水酸化コバルト粒子に変化は生じなかった。
<Evaluation of cobalt hydroxide particles>
About the obtained Co (OH) 2 particle containing colloid solution, the particle size distribution was measured using the particle size distribution measuring apparatus (Otsuka Electronics Co., Ltd. product, ELS-Z) by a dynamic light scattering method. The results are shown in FIG. 1 (cumulative distribution) and FIG. 2 (frequency distribution). The accumulation and frequency in FIGS. 1 and 2 are calculated in terms of mass.
As shown in FIG. 1, the Co (OH) 2 particles in the obtained colloid had D 50 = 4.5 nm, D 90 = 8.1 nm, and D 90 / D 50 = 1.8. Moreover, FIG. 2 shows that the Co (OH) 2 particles in the obtained colloid have a sharp particle size distribution and a uniform particle size.
In addition, when a cobalt hydroxide particle-containing colloidal solution was prepared a plurality of times (n = 3) in the same manner as described above, D 50 = 3.5 to 4.5 nm, D 90 = 3.5 to 8.1 nm, pH 9 A colloidal solution of 2 was obtained. In addition, about the particle | grains contained in the obtained colloid solution, when the average particle diameter was calculated | required from the average particle diameter obtained from scattering intensity distribution, and (sigma) value (dispersion), it was 5.5 +/- 3.3nm. Further, the obtained colloidal solution had a greenish blue color even after 1 day had passed after the preparation, and the cobalt hydroxide particles did not change.

Claims (4)

水酸化コバルト粒子と高分子分散剤とを含むコロイド溶液であって、
前記高分子分散剤が、アクリル系重合体及び/又はその塩から選ばれる少なくとも1種であり、
前記水酸化コバルト粒子の粒度分布の累積質量の50%となる粒子径D50が3.5〜4.5nmであり、且つ、前記水酸化コバルト粒子の粒度分布の累積質量の90%となる粒子径D90が前記粒子径D50の2.0倍以下であることを特徴とする、コロイド溶液。
A colloidal solution containing cobalt hydroxide particles and a polymer dispersant,
The polymer dispersant is at least one selected from an acrylic polymer and / or a salt thereof,
The particle diameter D 50 which is 50% of the cumulative weight particle size distribution of the cobalt hydroxide particles are 3.5~4.5Nm, and, is 90% of the cumulative mass of the particle size distribution of the cobalt hydroxide particles particles wherein the diameter D90 is less than 2.0 times the particle diameter D 50, colloidal solution.
水酸化コバルト粒子と高分子分散剤とを含むコロイド溶液の製造方法であって、
(1)溶媒溶解性コバルト化合物と該コバルト化合物を溶解可能な溶媒とを含む第1の原料溶液、及び
(2)中和剤とアクリル系重合体及び/又はその塩からなる高分子分散剤とを含み、前記中和剤の含有量が前記第1の原料溶液に含まれる全てのコバルトイオンを中和するために必要な量の0.5倍を超えて1.2倍未満である第2の原料溶液を、
せん断速度3000sec−1以上の領域で混合することを特徴とする、コロイド溶液の製造方法。
A method for producing a colloidal solution containing cobalt hydroxide particles and a polymer dispersant,
(1) a first raw material solution containing a solvent-soluble cobalt compound and a solvent capable of dissolving the cobalt compound, and (2) a polymer dispersant comprising a neutralizing agent and an acrylic polymer and / or a salt thereof. And the content of the neutralizing agent is more than 0.5 times and less than 1.2 times the amount necessary for neutralizing all cobalt ions contained in the first raw material solution. The raw material solution
A method for producing a colloidal solution, wherein mixing is performed in a region where the shear rate is 3000 sec −1 or more.
前記第2の原料溶液(2)における前記中和剤の含有量が、前記第1の原料溶液(1)に含まれる全てのコバルトイオンを中和するために必要な量の0.8倍以上1.1倍以下である、請求項2に記載のコロイド溶液の製造方法。   The content of the neutralizing agent in the second raw material solution (2) is 0.8 times or more the amount necessary for neutralizing all the cobalt ions contained in the first raw material solution (1). The method for producing a colloidal solution according to claim 2, which is 1.1 times or less. 前記中和剤がアンモニアである、請求項2又は請求項3に記載のコロイド溶液の製造方法。   The method for producing a colloidal solution according to claim 2 or 3, wherein the neutralizing agent is ammonia.
JP2010092481A 2010-04-13 2010-04-13 Method for producing colloidal solution of cobalt hydroxide Expired - Fee Related JP5672754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010092481A JP5672754B2 (en) 2010-04-13 2010-04-13 Method for producing colloidal solution of cobalt hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010092481A JP5672754B2 (en) 2010-04-13 2010-04-13 Method for producing colloidal solution of cobalt hydroxide

Publications (2)

Publication Number Publication Date
JP2011219328A true JP2011219328A (en) 2011-11-04
JP5672754B2 JP5672754B2 (en) 2015-02-18

Family

ID=45036780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010092481A Expired - Fee Related JP5672754B2 (en) 2010-04-13 2010-04-13 Method for producing colloidal solution of cobalt hydroxide

Country Status (1)

Country Link
JP (1) JP5672754B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054236A1 (en) 2018-09-14 2020-03-19 花王株式会社 Method for producing positive electrode active material for lithium ion secondary battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891103A (en) * 1981-11-25 1983-05-31 Konishiroku Photo Ind Co Ltd Production of dispersion of colloidal silver particles
JPS605027A (en) * 1983-05-31 1985-01-11 Sumitomo Metal Mining Co Ltd Production of cobalt hydroxide soluble easily in organic acid
JPH09175825A (en) * 1995-12-19 1997-07-08 Samsung Display Devices Co Ltd Production of compound oxide using sol-gel method
JP2005139029A (en) * 2003-11-06 2005-06-02 Toyota Central Res & Dev Lab Inc Oxide powder, its preparation process, and catalyst
JP2006272250A (en) * 2005-03-30 2006-10-12 Nissan Motor Co Ltd Method for arraying fine particle, catalyst for cleaning exhaust gas, electrode catalyst and magnetic material
JP2008248136A (en) * 2007-03-30 2008-10-16 Toyota Motor Corp Method for producing dispersion liquid of metal oxide minute particles, method for producing metal oxide minute particle dispersion paste, resin composition, and coating composition
JP2009184884A (en) * 2008-02-07 2009-08-20 National Institute Of Advanced Industrial & Technology Core-shell type cobalt oxide fine particles or dispersion containing the same, method for producing them, and their application
WO2009116378A1 (en) * 2008-02-29 2009-09-24 国立大学法人東京大学 SOLID TRANSITION METAL HYDROXIDE FILM, α-COBALT HYDROXIDE FILM, MANUFACTURING METHOD FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR α-COBALT HYDROXIDE, MANUFACTURING DEVICE FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR HYDRATED LITHIUM COBALT OXIDE, TRANSITION METAL OXIDE FILM, AND ELECTRODE MATERIAL
JP2010110720A (en) * 2008-11-07 2010-05-20 Toyota Central R&D Labs Inc Colloidal solution of metallic compound, and method of producing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5891103A (en) * 1981-11-25 1983-05-31 Konishiroku Photo Ind Co Ltd Production of dispersion of colloidal silver particles
JPS605027A (en) * 1983-05-31 1985-01-11 Sumitomo Metal Mining Co Ltd Production of cobalt hydroxide soluble easily in organic acid
JPH09175825A (en) * 1995-12-19 1997-07-08 Samsung Display Devices Co Ltd Production of compound oxide using sol-gel method
JP2005139029A (en) * 2003-11-06 2005-06-02 Toyota Central Res & Dev Lab Inc Oxide powder, its preparation process, and catalyst
JP2006272250A (en) * 2005-03-30 2006-10-12 Nissan Motor Co Ltd Method for arraying fine particle, catalyst for cleaning exhaust gas, electrode catalyst and magnetic material
JP2008248136A (en) * 2007-03-30 2008-10-16 Toyota Motor Corp Method for producing dispersion liquid of metal oxide minute particles, method for producing metal oxide minute particle dispersion paste, resin composition, and coating composition
JP2009184884A (en) * 2008-02-07 2009-08-20 National Institute Of Advanced Industrial & Technology Core-shell type cobalt oxide fine particles or dispersion containing the same, method for producing them, and their application
WO2009116378A1 (en) * 2008-02-29 2009-09-24 国立大学法人東京大学 SOLID TRANSITION METAL HYDROXIDE FILM, α-COBALT HYDROXIDE FILM, MANUFACTURING METHOD FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR α-COBALT HYDROXIDE, MANUFACTURING DEVICE FOR SOLID TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR TRANSITION METAL HYDROXIDE, MANUFACTURING METHOD FOR HYDRATED LITHIUM COBALT OXIDE, TRANSITION METAL OXIDE FILM, AND ELECTRODE MATERIAL
JP2010110720A (en) * 2008-11-07 2010-05-20 Toyota Central R&D Labs Inc Colloidal solution of metallic compound, and method of producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6014005273; HOU, Y et al: 'High-Yield Preparation of Uniform Cobalt Hydroxide and Oxide Nanoplatelets and Their Characterizatio' J. Phys. Chem. B Vol.109, No.41, 20050924, p.19094-19098 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020054236A1 (en) 2018-09-14 2020-03-19 花王株式会社 Method for producing positive electrode active material for lithium ion secondary battery
EP3852175A4 (en) * 2018-09-14 2022-06-29 Kao Corporation Method for producing positive electrode active material for lithium ion secondary battery

Also Published As

Publication number Publication date
JP5672754B2 (en) 2015-02-18

Similar Documents

Publication Publication Date Title
EP2238636B1 (en) Homogeneous nanoparticle core doping of cathode material precursors
JP4640961B2 (en) Fine particle manufacturing method and apparatus
TWI273936B (en) Slurry of ultrafine copper powder and method for producing the slurry
JP2008075181A (en) Method for manufacturing copper nanoparticle using microwave
JP2009540111A (en) Method for producing highly dispersible spherical silver powder particles and silver particles formed therefrom
JP2006022394A (en) Method for producing metallic copper fine particle
CN102770370B (en) Method of synthesizing metal composite oxide and metal composite oxide obtained by same
JP2006045655A (en) Silver nanoparticle and production method therefor
WO2019117027A1 (en) Nickel-containing hydroxide and production method therefor
JP2006307341A (en) Method for producing metallic nanoparticle, and metallic nanoparticle
JP5672754B2 (en) Method for producing colloidal solution of cobalt hydroxide
JP3973236B2 (en) Method for producing monodisperse noble metal powder
KR20020026019A (en) Method for making super-fine metal powders
JP2009256776A (en) Method for producing silver fine particle
CN114530592A (en) Ternary cathode material and preparation method thereof
JPH11189812A (en) Manufacture of granular silver powder
JP2007302798A (en) Cobalt-containing black pigment
WO2019135306A1 (en) Copper nano ink production method and copper nano ink
JP2013185251A (en) Silver powder
JP6450438B2 (en) High voltage positive electrode material for lithium battery and method for producing the same
CN107216775B (en) A kind of electromagnetic screen coating and preparation method thereof
JP2020169395A (en) Silver nanoparticle colloid, silver nanoparticle, method for producing silver nanoparticle colloid, and method for producing silver nanoparticle
CN117206539B (en) Preparation method of nano silver seed crystal, nano silver seed crystal and application
JP4551628B2 (en) Method for producing nitrogen-free nickel powder
JPH01290706A (en) Production of fine copper powder

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130201

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141215

R151 Written notification of patent or utility model registration

Ref document number: 5672754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees