JP4551628B2 - Method for producing nitrogen-free nickel powder - Google Patents
Method for producing nitrogen-free nickel powder Download PDFInfo
- Publication number
- JP4551628B2 JP4551628B2 JP2003119853A JP2003119853A JP4551628B2 JP 4551628 B2 JP4551628 B2 JP 4551628B2 JP 2003119853 A JP2003119853 A JP 2003119853A JP 2003119853 A JP2003119853 A JP 2003119853A JP 4551628 B2 JP4551628 B2 JP 4551628B2
- Authority
- JP
- Japan
- Prior art keywords
- nickel powder
- powder
- nickel
- nitrogen
- maleic anhydride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は窒素フリーニッケル粉の製造方法に関し、より詳しくは、窒素フリーで、平均粒径が0.05〜1μmの単分散で、高結晶、高純度のニッケル粉の製造方法に関する。
【0002】
【従来の技術】
ポリオール法でニッケル粉を製造した場合には、高結晶、高純度、均一粒径のニッケル粉が得られることは公知である(例えば、特許文献1、2参照。)。しかし、粒径制御のためには触媒と触媒の凝集を抑制するための分散剤の添加が必要不可欠である。一般的には、触媒として貴金属塩、貴金属酸化物等が用いられており、分散剤として、例えばポリビニルピロリドン、ポリエチレンイミン、ポリアクリルアミド等の含窒素有機化合物が用いられている。
【0003】
【特許文献1】
特公平4−24402号公報
【特許文献2】
特許第3005683号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記のような分散剤は生成するニッケル粒子の表面に強固に結合するので洗浄後においても粒子表面に残存し、従ってその除去は非常に困難であった。
本発明は、窒素フリーで、単分散、高結晶、高純度のニッケル粉の製造方法を提供することを目的としている。
【0005】
【課題を解決するための手段】
本発明者等は上記の目的を達成するために鋭意検討した結果、分散剤として特定の有機酸を用いることにより、窒素フリーで、単分散、高結晶、高純度のニッケル粉が得られることを見出し、本発明を完成した。
【0006】
即ち、本発明の平均粒径が0.05〜1μmの窒素フリーニッケル粉の製造方法は、無水マレイン酸、フマル酸及びn−ヘキサン酸からなる群から選ばれた分散剤、及び貴金属化合物触媒を含有するポリオール中に、ニッケル塩粉及びニッケル水酸化物粉からなる群より選ばれる粉体を懸濁させ、該粉体をニッケル粉に還元するのに十分な温度に加熱することを特徴とする。
【0007】
【発明の実施の形態】
本発明の製造方法で用いる分散剤は無水マレイン酸、フマル酸及びn−ヘキサン酸からなる群から選ばれた分散剤である。
【0008】
本発明の製造方法で用いる貴金属化合物触媒として、塩化パラジウム、硝酸パラジウム、酢酸パラジウム、塩化アンモニウムパラジウム、酸化パラジウム等のパラジウム化合物、硝酸銀、乳酸銀、酸化銀、硫酸銀、シクロヘキサン酸銀、酢酸銀等の銀化合物、塩化白金酸、塩化白金酸カリウム、塩化白金酸ナトリウム等の白金化合物、塩化金酸、塩化金酸ナトリウム等の金化合物等を挙げることができ、コスト、ニッケル粉の純度の観点から、硝酸パラジウム、酢酸パラジウム、酸化パラジウム、硝酸銀、酢酸銀、酸化銀が好ましい。
【0009】
本発明の製造方法で用いるポリオールとして、特公平4−24402号公報に記載されている種々のポリオールを挙げることができ、具体的には、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2−プロパンジオール、ジプロピレングリコール、1,2−ブタンジオール、1,3−ブタンジオール、1,4−ブタンジオール、2,3−ブタンジオール、それらの混合物を挙げることができる。本発明の製造方法においては、反応温度において液状のポリオールを用いる。
【0010】
本発明の製造方法で用いるニッケル塩、ニッケル水酸化物として、硫酸ニッケル、硝酸ニッケル、塩化ニッケル、臭化ニッケル、水酸化ニッケル等を挙げることができる。
【0011】
本発明の製造方法においては、反応速度を考慮して、ニッケル塩粉及びニッケル水酸化物粉からなる群より選ばれる粉体が懸濁している懸濁液を、該粉体をニッケル粉に還元するのに十分な温度に加熱する必要がある。この加熱温度は85℃以上であることが好ましく、100℃以上であることが一層好ましい。加熱温度の上限は使用する無水マレイン酸、フマル酸及びn−ヘキサン酸からなる群から選ばれた分散剤の沸点又は分解温度、ポリオールの沸点の内で一番低い温度によって制限される。
【0013】
本発明の製造方法においては、無水マレイン酸、フマル酸及びn−ヘキサン酸からなる群から選ばれた分散剤の含有量がポリオールの量の0.01質量%以上、好ましくはポリオールの量の0.05〜5質量%であることが好適である。無水マレイン酸、フマル酸及びn−ヘキサン酸からなる群から選ばれた分散剤の含有量がポリオールの量の0.01質量%未満である場合には、本発明で目的としている効果が不十分となる傾向がある。
【0014】
本発明の製造方法においては、無水マレイン酸、フマル酸及びn−ヘキサン酸からなる群から選ばれた分散剤を用いるが、無水マレイン酸又はフマル酸を用いることが好ましい。
【0015】
本発明の製造方法においては、上記の諸条件下で実施することにより、ニッケル粉の窒素含有量が10ppm以下の窒素フリーで、平均粒径が0.05〜1μmの単分散、高結晶、高純度のニッケル粉が得られる。
【0016】
【実施例】
以下に実施例及び比較例に基づいて本発明を具体的に説明する。
実施例1
500mLのセパラブルフラスコにエチレングリコール(和光純薬工業株式会社製)400mL及び分散剤としての無水マレイン酸(和光純薬工業株式会社製)1.91gを加え、回転数350rpmで攪拌して無水マレイン酸を溶解させた。
【0017】
上記の溶液に、水酸化ニッケル(OM Group社製)38.29g及び0.84g/1000mLに調製した硝酸パラジウム水溶液(田中貴金属工業株式会社製)0.1mLを添加し、190℃まで加温した。昇温に伴い、容器内の液色が緑色から黒色へと変化した。なお、副生成する水及び有機物等は留去ラインで留出させた。190℃に到達後、1時間ごとにサンプリングを行い、反応の進行状態をXRDで確認した。5時間で完全に還元されてニッケル粉が生成していることが確認された。
【0018】
反応終了後、室温まで降温させ、吸引濾過法により固液を分離した。得られた固形分(ケーク)を500mLのビーカーに入れ、純水300mLを加えて強攪拌した後、吸引濾過法により固液を分離した。この操作を二回行った。
次にケークを500mLのビーカーに入れ、メタノール300mLを加えて強攪拌した後、吸引濾過法でケークを回収し、80℃で5時間乾燥させてニッケル粉を得た。
【0019】
得られたニッケル粉のSEM観察による平均一次粒径(1次粒子の平均粒径)は0.3μmであり、また、粒度分布をレーザー回折散乱式粒度分布測定装置X−100(マイクロトラック社製)で測定した結果、D10が0.29μm、D50が0.41μm、D90が0.64μm、及びDmaxが1.38μmであった。
【0020】
ニッケル粉をFIBによって加工し、その断面を電子顕微鏡写真に撮った。その電子顕微鏡写真を図1に示す。図1の観察から明らかなように、粒界が殆どなく、高結晶であった。
【0021】
XRD測定を行い、シェラー法で結晶子サイズを求めた。その結果、111面は323Åであり、200面は193Åであり、220面は206Åであった。
また、純度分析を行った結果、Cは0.15質量%、Oは0.50質量%、Nは0.0009質量%(9ppm)であった。
【0022】
実施例2
無水マレイン酸の代わりにフマル酸を使用した以外は、実施例1と同様に処理してニッケル粉を得た。
得られたニッケル粉のSEM観察による平均一次粒径(1次粒子の平均粒径)は0.3μmであり、また、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.30μm、D50が0.42μm、D90が0.65μm、及びDmaxが1.38μmであった。
【0023】
ニッケル粉をFIBによって加工し、その断面を電子顕微鏡写真に撮って観察した。粒界が殆どなく、実施例1と同様に高結晶であった。
XRD測定を行い、シェラー法で結晶子サイズを求めた。その結果、111面は320Åであり、200面は188Åであり、220面は202Åであった。
また、純度分析を行った結果、Cは0.17質量%、Oは0.52質量%、Nは0.001質量%(10ppm)であった。
【0024】
実施例3
無水マレイン酸の代わりにn−ヘキサン酸を使用した以外は、実施例1と同様に処理してニッケル粉を得た。
得られたニッケル粉のSEM観察による平均一次粒径(1次粒子の平均粒径)は0.3μmであり、また、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.30μm、D50が0.44μm、D90が0.68μm、及びDmaxが1.41μmであった。
【0025】
ニッケル粉をFIBによって加工し、その断面を電子顕微鏡写真に撮って観察した。粒界が殆どなく、実施例1と同様に高結晶であった。
XRD測定を行い、シェラー法で結晶子サイズを求めた。その結果、111面は310Åであり、200面は185Åであり、220面は199Åであった。
また、純度分析を行った結果、Cは0.16質量%、Oは0.54質量%、Nは0.001質量%(10ppm)であった。
【0026】
比較例1
無水マレイン酸の代わりにポリビニルピロリドンK30(和光純薬工業株式会社製)を使用した以外は、実施例1と同様に処理してニッケル粉を得た。
即ち、500mLのセパラブルフラスコに400mLのエチレングリコール(和光純薬工業株式会社製)及び分散剤としての1.91gのポリビニルピロリドンK30を加え、小型攪拌機を用いて回転数350rpmで攪拌してポリビニルピロリドンK30を溶解させた。
【0027】
上記の溶液に、水酸化ニッケル(OM Group社製)38.29g及び0.84g/1000mLに調製した硝酸パラジウム水溶液(田中貴金属工業株式会社製)0.1mLを添加し、190℃まで加温した。昇温に伴い、容器内の液色が緑色から黒色へと変化した。なお、副生成する水及び有機物等は留去ラインで留出させた。190℃に到達後、1時間ごとにサンプリングを行い、反応の進行状態をXRDで確認した。5時間で完全に還元されてニッケル粉が生成していることが確認された。
【0028】
反応終了後、室温まで降温させ、吸引濾過法により固液を分離した。得られた固形分(ケーク)を500mLのビーカーに入れ、純水300mLを加えて強攪拌した後、吸引濾過法により固液を分離した。この操作を二回行った。
次にケークを500mLのビーカーへ入れ、メタノール300mLを加え、強攪拌した後、吸引濾過法でケークを回収し、80℃で5時間乾燥させてニッケル粉を得た。
【0029】
得られたニッケル粉のSEM観察による平均一次粒径(1次粒子の平均粒径)は0.3μmであり、また、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.36μm、D50が0.64μm、D90が2.82μm、及びDmaxが13.08μmであった。
【0030】
ニッケル粉をFIBによって加工し、その断面を電子顕微鏡写真に撮って観察した。粒界が多いニッケル粉であった。
XRD測定を行い、シェラー法で結晶子サイズを求めた。その結果、111面は237Åであり、200面は153Åであり、220面は161Åであった。
また、純度分析を行った結果、Cは0.40質量%、Oは1.26質量%、Nは0.028質量%(280ppm)であった。
【0031】
比較例2
無水マレイン酸を用いなかった以外は、実施例1と同様に処理してニッケル粉を得た。
得られたニッケル粉のSEM観察では、粒径は不均一(0.3〜1.5μm)であり、平均一次粒径(1次粒子の平均粒径)は0.8μmであり、また、粒度分布をレーザー回折散乱式粒度分布測定装置X100(マイクロトラック社製)で測定した結果、D10が0.76μm、D50が1.35μm、D90が2.58μm、及びDmaxが15.56μmであった。
【0032】
ニッケル粉をFIBによって加工し、その断面を電子顕微鏡写真に撮って観察した。粒界が多いニッケル粉であった。
XRD測定を行い、シェラー法で結晶子サイズを求めた。その結果、111面は325Åであり、200面は195Åであり、220面は202Åであった。また、純度分析を行った結果、Cは0.11質量%、Oは0.35質量%、Nは0.0009質量%(9ppm)であった。
【0033】
上記の実施例、比較例のデータから明らかなように、分散剤としてポリビニルピロリドンを用いた比較例1や分散剤を用いなかった比較例2の場合と比較して、本発明の実施例1〜3の場合には、窒素フリーで、平均粒径が0.05〜1μmの単分散で、高結晶、高純度のニッケル粉が得られている。
【0034】
【発明の効果】
本発明の製造方法で得られるニッケル粉は、上記の実施例からも明らかなように、窒素フリーで、平均粒径が0.05〜1μmの単分散で、高結晶、高純度のニッケル粉である。
【図面の簡単な説明】
【図1】 実施例1で得られたニッケル粉のFIBによって加工した断面の電子顕微鏡写真である。[0001]
BACKGROUND OF THE INVENTION
Relates to a manufacturing method of the present invention is a nitrogen-free nickel powder, and more particularly, a nitrogen-free, the average particle size in the monodisperse 0.05 to 1 [mu] m, high crystallinity, a method for producing a high purity nickel powder.
[0002]
[Prior art]
When nickel powder is produced by the polyol method, it is known that nickel powder having high crystallinity, high purity, and uniform particle diameter can be obtained (for example, see Patent Documents 1 and 2). However, in order to control the particle size, it is indispensable to add a dispersant for suppressing aggregation of the catalyst and the catalyst. In general, a noble metal salt, a noble metal oxide, or the like is used as a catalyst, and a nitrogen-containing organic compound such as polyvinyl pyrrolidone, polyethyleneimine, or polyacrylamide is used as a dispersant.
[0003]
[Patent Document 1]
Japanese Patent Publication No. 4-24402 [Patent Document 2]
Japanese Patent No. 3005683 [0004]
[Problems to be solved by the invention]
However, since the dispersant as described above is firmly bonded to the surface of the nickel particles to be generated, it remains on the surface of the particles even after washing, and therefore it is very difficult to remove the dispersant.
An object of the present invention is to provide a method for producing a nickel-free, monodispersed, high crystal, high purity nickel powder.
[0005]
[Means for Solving the Problems]
As a result of intensive investigations to achieve the above object, the present inventors have found that by using a specific organic acid as a dispersant, a nickel-free, monodispersed, high crystal, high purity nickel powder can be obtained. The headline and the present invention were completed.
[0006]
That is, the method for producing a nitrogen-free nickel powder having an average particle diameter of 0.05 to 1 μm according to the present invention comprises a dispersant selected from the group consisting of maleic anhydride, fumaric acid and n-hexanoic acid , and a noble metal compound catalyst. A powder selected from the group consisting of nickel salt powder and nickel hydroxide powder is suspended in the contained polyol, and the powder is heated to a temperature sufficient to reduce the powder to nickel powder. .
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The dispersant used in the production method of the present invention is a dispersant selected from the group consisting of maleic anhydride, fumaric acid and n-hexanoic acid.
[0008]
As a noble metal compound catalyst used in the production method of the present invention, palladium compounds such as palladium chloride, palladium nitrate, palladium acetate, ammonium chloride palladium and palladium oxide, silver nitrate, silver lactate, silver oxide, silver sulfate, silver cyclohexane acid, silver acetate and the like Silver compounds, platinum compounds such as chloroplatinic acid, potassium chloroplatinate, and sodium chloroplatinate, and gold compounds such as chloroauric acid and sodium chloroaurate. From the viewpoint of cost and nickel powder purity Palladium nitrate, palladium acetate, palladium oxide, silver nitrate, silver acetate and silver oxide are preferred.
[0009]
Examples of the polyol used in the production method of the present invention include various polyols described in Japanese Patent Publication No. 4-24402. Specifically, ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1 , 2-propanediol, dipropylene glycol, 1,2-butanediol, 1,3-butanediol, 1,4-butanediol, 2,3-butanediol, and mixtures thereof. In the production method of the present invention, a polyol which is liquid at the reaction temperature is used.
[0010]
Examples of the nickel salt and nickel hydroxide used in the production method of the present invention include nickel sulfate, nickel nitrate, nickel chloride, nickel bromide, nickel hydroxide and the like.
[0011]
In the production method of the present invention, in consideration of the reaction rate, a suspension in which a powder selected from the group consisting of nickel salt powder and nickel hydroxide powder is suspended is reduced to nickel powder. It needs to be heated to a temperature sufficient to do so. The heating temperature is preferably 85 ° C. or higher, and more preferably 100 ° C. or higher. The upper limit of the heating temperature is limited by the lowest temperature among the boiling point or decomposition temperature of the dispersant selected from the group consisting of maleic anhydride, fumaric acid and n-hexanoic acid used , and the boiling point of the polyol.
[0013]
In the production method of the present invention, the content of the dispersant selected from the group consisting of maleic anhydride, fumaric acid and n-hexanoic acid is 0.01% by mass or more of the amount of polyol, preferably 0 of the amount of polyol. It is suitable that it is 0.05-5 mass%. When the content of the dispersing agent selected from the group consisting of maleic anhydride, fumaric acid and n-hexanoic acid is less than 0.01% by mass of the amount of polyol, the effect intended in the present invention is insufficient. Tend to be.
[0014]
In the production method of the present invention, maleic anhydride, but use a dispersing agent selected from the group consisting of fumaric acid and n- hexanoic acid, has preferably be used maleic anhydride or fumaric acid.
[0015]
In the production method of the present invention, by carrying out under the above-mentioned various conditions, the nitrogen content of the nickel powder is 10 ppm or less and is nitrogen-free, with a monodisperse, high crystal, and high average particle size of 0.05 to 1 μm. A pure nickel powder is obtained.
[0016]
【Example】
The present invention will be specifically described below based on examples and comparative examples.
Example 1
400 mL of ethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.91 g of maleic anhydride (manufactured by Wako Pure Chemical Industries, Ltd.) as a dispersing agent are added to a 500 mL separable flask, and stirred at a rotation speed of 350 rpm for anhydrous maleic anhydride. The acid was dissolved.
[0017]
To the above solution, 38.29 g of nickel hydroxide (manufactured by OM Group) and 0.1 mL of palladium nitrate aqueous solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) prepared to 0.84 g / 1000 mL were added and heated to 190 ° C. . As the temperature increased, the liquid color in the container changed from green to black. By-product water, organic matter, and the like were distilled off through a distillation line. After reaching 190 ° C., sampling was performed every hour, and the progress of the reaction was confirmed by XRD. It was confirmed that nickel powder was produced by complete reduction in 5 hours.
[0018]
After completion of the reaction, the temperature was lowered to room temperature, and the solid and liquid were separated by suction filtration. The obtained solid (cake) was put into a 500 mL beaker, 300 mL of pure water was added and the mixture was vigorously stirred, and then the solid and liquid were separated by a suction filtration method. This operation was performed twice.
Next, the cake was put into a 500 mL beaker, 300 mL of methanol was added and vigorously stirred, and then the cake was collected by suction filtration and dried at 80 ° C. for 5 hours to obtain nickel powder.
[0019]
The average primary particle size (average particle size of primary particles) of the obtained nickel powder by SEM observation is 0.3 μm, and the particle size distribution is measured by a laser diffraction scattering type particle size distribution measuring device X-100 (manufactured by Microtrac). ) results measured at, D 10 is 0.29 .mu.m, D 50 is 0.41 .mu.m, D 90 is 0.64 .mu.m, and D max was 1.38 .mu.m.
[0020]
Nickel powder was processed by FIB, and the cross section was taken on an electron micrograph. The electron micrograph is shown in FIG. As is clear from the observation in FIG. 1, there was almost no grain boundary and the crystal was highly crystalline.
[0021]
XRD measurement was performed, and the crystallite size was determined by the Scherrer method. As a result, the 111th surface was 323mm, the 200th surface was 193mm, and the 220th surface was 206mm.
Further, as a result of purity analysis, C was 0.15% by mass, O was 0.50% by mass, and N was 0.0009% by mass (9 ppm).
[0022]
Example 2
Nickel powder was obtained in the same manner as in Example 1 except that fumaric acid was used instead of maleic anhydride.
The average primary particle size (average particle size of primary particles) of the obtained nickel powder by SEM observation is 0.3 μm, and the particle size distribution is measured with a laser diffraction scattering type particle size distribution measuring device X100 (manufactured by Microtrack). the measurement results, D 10 is 0.30 .mu.m, D 50 is 0.42 .mu.m, D 90 is 0.65 .mu.m, and D max was 1.38 .mu.m.
[0023]
The nickel powder was processed by FIB, and the cross section was taken and observed with an electron micrograph. There was almost no grain boundary, and it was highly crystalline as in Example 1.
XRD measurement was performed, and the crystallite size was determined by the Scherrer method. As a result, the 111th surface was 320 mm, the 200th surface was 188 mm, and the 220th surface was 202 mm.
As a result of the purity analysis, C was 0.17% by mass, O was 0.52% by mass, and N was 0.001% by mass (10 ppm).
[0024]
Example 3
Nickel powder was obtained in the same manner as in Example 1 except that n-hexanoic acid was used instead of maleic anhydride.
The average primary particle size (average particle size of primary particles) of the obtained nickel powder by SEM observation is 0.3 μm, and the particle size distribution is measured with a laser diffraction scattering type particle size distribution measuring device X100 (manufactured by Microtrack). the measurement results, D 10 is 0.30 .mu.m, D 50 is 0.44 .mu.m, D 90 is 0.68 .mu.m, and D max was 1.41.
[0025]
The nickel powder was processed by FIB, and the cross section was taken and observed with an electron micrograph. There was almost no grain boundary, and it was highly crystalline as in Example 1.
XRD measurement was performed, and the crystallite size was determined by the Scherrer method. As a result, the 111th surface was 310mm, the 200th surface was 185mm, and the 220th surface was 199mm.
As a result of the purity analysis, C was 0.16% by mass, O was 0.54% by mass, and N was 0.001% by mass (10 ppm).
[0026]
Comparative Example 1
Nickel powder was obtained in the same manner as in Example 1 except that polyvinylpyrrolidone K30 (manufactured by Wako Pure Chemical Industries, Ltd.) was used instead of maleic anhydride.
That is, 400 mL of ethylene glycol (manufactured by Wako Pure Chemical Industries, Ltd.) and 1.91 g of polyvinyl pyrrolidone K30 as a dispersing agent were added to a 500 mL separable flask, and the mixture was stirred at a rotation speed of 350 rpm using a small stirrer, and polyvinyl pyrrolidone. K30 was dissolved.
[0027]
To the above solution, 38.29 g of nickel hydroxide (manufactured by OM Group) and 0.1 mL of palladium nitrate aqueous solution (manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) prepared to 0.84 g / 1000 mL were added and heated to 190 ° C. . As the temperature increased, the liquid color in the container changed from green to black. By-product water, organic matter, and the like were distilled off through a distillation line. After reaching 190 ° C., sampling was performed every hour, and the progress of the reaction was confirmed by XRD. It was confirmed that nickel powder was produced by complete reduction in 5 hours.
[0028]
After completion of the reaction, the temperature was lowered to room temperature, and the solid and liquid were separated by suction filtration. The obtained solid (cake) was put into a 500 mL beaker, 300 mL of pure water was added and the mixture was vigorously stirred, and then the solid and liquid were separated by a suction filtration method. This operation was performed twice.
Next, the cake was put into a 500 mL beaker, 300 mL of methanol was added, and after vigorous stirring, the cake was collected by suction filtration and dried at 80 ° C. for 5 hours to obtain nickel powder.
[0029]
The average primary particle size (average particle size of primary particles) of the obtained nickel powder by SEM observation is 0.3 μm, and the particle size distribution is measured with a laser diffraction scattering type particle size distribution measuring device X100 (manufactured by Microtrack). the measurement results, D 10 is 0.36 .mu.m, D 50 is 0.64 .mu.m, D 90 is 2.82Myuemu, and D max was 13.08Myuemu.
[0030]
The nickel powder was processed by FIB, and the cross section was taken and observed with an electron micrograph. It was nickel powder with many grain boundaries.
XRD measurement was performed, and the crystallite size was determined by the Scherrer method. As a result, the 111th surface was 237 mm, the 200th surface was 153 mm, and the 220th surface was 161 mm.
As a result of the purity analysis, C was 0.40% by mass, O was 1.26% by mass, and N was 0.028% by mass (280 ppm).
[0031]
Comparative Example 2
Nickel powder was obtained by the same treatment as in Example 1 except that maleic anhydride was not used.
In the SEM observation of the obtained nickel powder, the particle size is non-uniform (0.3 to 1.5 μm), the average primary particle size (average particle size of primary particles) is 0.8 μm, and the particle size distribution result of measurement by a laser diffraction scattering particle size distribution analyzer X100 (manufactured by Microtrac Inc.), D 10 is 0.76 .mu.m, D 50 is 1.35 .mu.m, D 90 is 2.58Myuemu, and D max is 15.56μm Met.
[0032]
The nickel powder was processed by FIB, and the cross section was taken and observed with an electron micrograph. It was nickel powder with many grain boundaries.
XRD measurement was performed, and the crystallite size was determined by the Scherrer method. As a result, the 111th surface was 325 mm, the 200th surface was 195 mm, and the 220th surface was 202 mm. Further, as a result of purity analysis, C was 0.11% by mass, O was 0.35% by mass, and N was 0.0009% by mass (9 ppm).
[0033]
As is clear from the data of the above Examples and Comparative Examples, compared with Comparative Example 1 using polyvinyl pyrrolidone as a dispersant and Comparative Example 2 using no dispersant, Examples 1 to 1 of the present invention were used. In the case of No. 3 , nickel-free, high-crystallinity, high-purity nickel powder having a monodispersion with an average particle diameter of 0.05 to 1 μm is obtained.
[0034]
【The invention's effect】
Nickel powder obtained by the process of the present invention, as is apparent from the above examples, a nitrogen-free, the average particle size in the monodisperse 0.05 to 1 [mu] m, high crystallinity, a high purity nickel powder is there.
[Brief description of the drawings]
1 is an electron micrograph of a cross section processed by FIB of nickel powder obtained in Example 1. FIG.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119853A JP4551628B2 (en) | 2003-04-24 | 2003-04-24 | Method for producing nitrogen-free nickel powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003119853A JP4551628B2 (en) | 2003-04-24 | 2003-04-24 | Method for producing nitrogen-free nickel powder |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004323909A JP2004323909A (en) | 2004-11-18 |
JP4551628B2 true JP4551628B2 (en) | 2010-09-29 |
Family
ID=33498962
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003119853A Expired - Fee Related JP4551628B2 (en) | 2003-04-24 | 2003-04-24 | Method for producing nitrogen-free nickel powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4551628B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4947509B2 (en) * | 2004-12-09 | 2012-06-06 | 三井金属鉱業株式会社 | Nickel slurry, method for producing the same, and nickel paste or nickel ink using the nickel slurry |
JP2007009275A (en) * | 2005-06-30 | 2007-01-18 | Mitsui Mining & Smelting Co Ltd | Method for producing nickel particle, nickel particle obtained by using the production method, and electrically conductive paste using the nickel particle |
-
2003
- 2003-04-24 JP JP2003119853A patent/JP4551628B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2004323909A (en) | 2004-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5451074B2 (en) | Core-shell type nanoparticles and method for producing the same | |
JP5774756B2 (en) | Solid solution type alloy fine particles | |
JP4821014B2 (en) | Copper powder manufacturing method | |
JP5641385B2 (en) | Metal nanoparticles having dendritic parts and method for producing the same | |
JP5824067B2 (en) | Nanowire and manufacturing method thereof | |
JP5628225B2 (en) | Metal-containing colloidal particle-supported carrier and method for producing the same | |
JP4865210B2 (en) | Method for producing tellurium nanoparticles and method for producing bismuth telluride nanoparticles | |
JP2010043337A (en) | Silver powder and its manufacturing method | |
JP2006199982A (en) | Method for producing metallic fine powder | |
JP5548548B2 (en) | Method for producing metal particle supported catalyst, metal particle supported catalyst and reaction method. | |
TW201723195A (en) | Precious metal powder production method | |
JP4455654B2 (en) | Method for producing ruthenium powder from ammonium hexachlororuthenate | |
JP5163843B2 (en) | Method for producing silver fine particles | |
JP4551628B2 (en) | Method for producing nitrogen-free nickel powder | |
JP2020063487A (en) | AgPd CORE-SHELL PARTICLE AND USE THEREOF | |
JP7300565B1 (en) | Noble metal alloy powder and method for producing the same | |
CN112935273A (en) | Method for preparing CuPt alloy nanoparticles at room temperature | |
CN105642302A (en) | Copper bismuth catalyst for synthesis of 1, 4-butynediol and preparation method thereof | |
EP3730212A1 (en) | Precious metal and precious metal alloy nanoparticles having a bimodal size distribution | |
JPH10265812A (en) | Production of superfine silver particle | |
JP5312958B2 (en) | Method for producing crystal agglomerated particles useful as active material for nickel positive electrode | |
JP2004225087A (en) | Method for manufacturing copper powder | |
KR102458627B1 (en) | Fractal-shaped Alloy Nanostructure formed by using Amorphous Nanostructure and Method of manufacturing the same | |
EP2581153B1 (en) | Method for collecting fine noble metal particles, and method for producing fine noble metal particle dispersion using collected fine noble metal particles | |
CN102838159B (en) | Method for synthesizing nano-zinc oxide by micro-emulsion carbon black adsorption precipitation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060331 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20071016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071121 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080116 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080611 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100609 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100712 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130716 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140716 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |