KR20140112602A - Bonding wire for semiconductor device and manufacturing method thereof - Google Patents

Bonding wire for semiconductor device and manufacturing method thereof Download PDF

Info

Publication number
KR20140112602A
KR20140112602A KR20130025655A KR20130025655A KR20140112602A KR 20140112602 A KR20140112602 A KR 20140112602A KR 20130025655 A KR20130025655 A KR 20130025655A KR 20130025655 A KR20130025655 A KR 20130025655A KR 20140112602 A KR20140112602 A KR 20140112602A
Authority
KR
South Korea
Prior art keywords
metal layer
bonding wire
electrode
thickness
copper
Prior art date
Application number
KR20130025655A
Other languages
Korean (ko)
Inventor
차흥주
김정익
Original Assignee
엘에스전선 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘에스전선 주식회사 filed Critical 엘에스전선 주식회사
Priority to KR20130025655A priority Critical patent/KR20140112602A/en
Publication of KR20140112602A publication Critical patent/KR20140112602A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/05611Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05618Zinc [Zn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/4557Plural coating layers
    • H01L2224/45572Two-layer stack coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45601Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/45611Tin (Sn) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45618Zinc (Zn) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45639Silver (Ag) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45644Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45655Nickel (Ni) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45638Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45657Cobalt (Co) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45664Palladium (Pd) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45666Titanium (Ti) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45669Platinum (Pt) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45663Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/45671Chromium (Cr) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/78268Discharge electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/85009Pre-treatment of the connector or the bonding area
    • H01L2224/8503Reshaping, e.g. forming the ball or the wedge of the wire connector
    • H01L2224/85035Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball"
    • H01L2224/85045Reshaping, e.g. forming the ball or the wedge of the wire connector by heating means, e.g. "free-air-ball" using a corona discharge, e.g. electronic flame off [EFO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/1016Shape being a cuboid
    • H01L2924/10161Shape being a cuboid with a rectangular active surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

The present invention relates to a bonding wire for a semiconductor device and a manufacturing method thereof. A bonding wire according to the present invention comprises a core material composed of copper or copper alloy; and a first metal layer formed on the outer circumference of the core material, having strength weaker than that of an electrode.

Description

반도체소자용 본딩와이어 및 그 제작방법 {Bonding wire for semiconductor device and manufacturing method thereof}Technical Field [0001] The present invention relates to a bonding wire for a semiconductor device,

본 발명은 반도체소자용 본딩와이어 및 그 제작방법에 대한 것이다.The present invention relates to a bonding wire for a semiconductor device and a method of manufacturing the same.

일반적으로 반도체소자를 활용한 제품은 반도체 제품의 핵심이라고 할 수 있는 반도체소자를 제조하는 과정, 반도체소자를 보호하면서도 외부 기기와 전기적 입출입이 가능하도록 하는 패키지 과정을 거쳐 제작된다.In general, products using semiconductor devices are fabricated through a process of manufacturing semiconductor devices, which is considered to be the core of semiconductor products, and a package process, which allows semiconductor devices to be protected while allowing electric input / output with external devices.

여기서, 패키지 과정은 다시 반도체소자를 도전성 단자 역할을 하는 리드 프레임에 안착시킨 후, 리드 프레임과 반도체소자에 구비된 전극을 단면적이 매우 작으면서도 전기전도도가 뛰어난 본딩와이어(bonding wire)를 이용하여 전기적으로 연결하는 공정과 상기 본딩와이어에 의해 연결된 리드프레임과 반도체소자를 외부 충격으로부터 보호하기 위하여 몰드수지로 감싸는 몰딩 공정으로 구성된다.Here, the packaging process is performed by placing a semiconductor element on a lead frame serving as a conductive terminal, and then electrically connecting the lead frame and the semiconductor element with an electrical wire using a bonding wire having a very small cross- And a molding process for wrapping the lead frame and the semiconductor device connected by the bonding wire with a mold resin to protect the semiconductor device from external impacts.

상기 본딩와이어는 반도체소자와 리드프레임을 서로 전기적으로 연결하는 역할을 하게 되므로, 일반적으로 전기 전도도가 비교적 우수한 고순도의 금이 주로 사용되었다. 하지만, 최근 금 가격의 상승으로 인하여 보다 가격이 저렴한 소재를 활용한 본딩와이어의 개발이 요구되었다. 이러한 필요성에 의해 전기전도성이 매우 우수하며 가격이 저렴한 구리를 소재로 하는 본딩와이어의 개발이 활발하지만 표면산화 또는 표면부식 등의 문제점을 수반한다. 또한, 이러한 산화 및 부식 등의 문제를 해결하기 위하여 내산화성의 금속층을 도포하는 경우에 연결되는 반도체 소자의 전극에 현저히 높은 변형을 유발하여 접합 불량율이 높아지는 문제점을 수반한다.Since the bonding wire serves to electrically connect the semiconductor element and the lead frame to each other, high-purity gold having a relatively high electric conductivity is generally used. However, due to recent rise in gold prices, it has been required to develop a bonding wire using a material having a lower price. Due to this necessity, the development of a bonding wire made of copper, which is excellent in electric conductivity and low in price, is active, but it involves problems such as surface oxidation or surface corrosion. In addition, in order to solve the problems such as oxidation and corrosion, when a metal layer having an oxidation resistance is applied, the electrode of a semiconductor device connected to the electrode is significantly deformed to cause a problem of a high junction defect rate.

본 발명은 구리를 소재로 하면서도 표면산화에 의해 전극 또는 리드프레임과의 접합강도가 약해지거나, 또는 몰딩 공정에 의해 몰딩 수지로 감싸는 경우에 본딩와이어의 표면부식이 발생하는 등의 문제점을 해결할 수 있는 본딩와이어를 제공하는 것을 목적으로 한다.The present invention can solve the problems such as that the bonding strength with the electrode or the lead frame is weakened by oxidation of the surface while the copper is used as a material, or the surface of the bonding wire is corroded when it is wrapped with the molding resin by the molding process And to provide a bonding wire.

나아가, 본 발명은 반도체소자의 전극에 본딩와이어를 연결하는 경우에 상기 전극의 변형을 최대한 방지하여 접합불량을 방지할 수 있는 본딩와이어를 제공하는 것을 목적으로 한다.It is a further object of the present invention to provide a bonding wire capable of preventing deformation of the electrode when the bonding wire is connected to electrodes of a semiconductor device, thereby preventing defective bonding.

상기와 같은 본 발명의 목적은 반도체소자의 전극에 연결되는 반도체소자용 본딩와이어에 있어서, 구리 또는 구리합금으로 이루어진 심재 및 상기 심재의 외주에 구비되어 상기 전극 이하의 강도를 가지는 제1 금속층을 구비하는 것을 특징으로 하는 반도체소자용 본딩와이어에 의해 달성된다.It is an object of the present invention to provide a bonding wire for a semiconductor device connected to an electrode of a semiconductor device, which comprises a core made of copper or a copper alloy and a first metal layer provided on the periphery of the core, And a bonding wire for a semiconductor element.

여기서, 상기 제1 금속층은 알루미늄, 알루미늄 합금, 주석, 주석 합금, 아연 및 아연 합금 중에 어느 하나로 이루어질 수 있다. 이 경우, 상기 제1 금속층은 0.05 ㎛ 내지 150 ㎛의 두께를 가질 수 있으며, 바람직하게 상기 제1 금속층은 0.08㎛ 내지 100 ㎛의 두께를 가질 수 있다. 또한, 상기 제1 금속층은 컨펌 압출 방식으로 제작될 수 있다.Here, the first metal layer may be formed of any one of aluminum, aluminum alloy, tin, tin alloy, zinc and zinc alloy. In this case, the first metal layer may have a thickness of 0.05 μm to 150 μm, and preferably the first metal layer may have a thickness of 0.08 μm to 100 μm. Also, the first metal layer may be manufactured by a conform extrusion method.

한편, 상기 본딩와이어는 상기 심재와 상기 제1 금속층 사이에 내산화성의 제2 금속층을 더 구비할 수 있다. 상기 제2 금속층은 금, 은, 백금, 팔라듐, 니켈, 코발트, 크롬, 티타늄 중의 적어도 하나로 이루어질 수 있다. 이 경우, 상기 제2 금속층은 0.01 ㎛ 내지 10 ㎛의 두께를 가질 수 있으며, 바람직하게 상기 제2 금속층은 0.1 ㎛ 내지 5 ㎛의 두께를 가질 수 있다.The bonding wire may further include a second metal layer having oxidation resistance between the core and the first metal layer. The second metal layer may be formed of at least one of gold, silver, platinum, palladium, nickel, cobalt, chromium, and titanium. In this case, the second metal layer may have a thickness of 0.01 μm to 10 μm, and preferably the second metal layer may have a thickness of 0.1 μm to 5 μm.

한편, 상기와 같은 본 발명의 목적은 반도체소자의 전극에 연결되는 반도체소자용 본딩와이어를 제작하는 방법에 있어서, 구리 또는 구리합금으로 된 심재에 상기 전극 이하의 강도를 가지는 제1 금속층을 압출하여 선재를 만드는 단계 및 상기 선재를 열 가공하는 단계를 포함하는 것을 특징으로 하는 제작방법에 의해 달성된다. 여기서, 상기 압출단계는 컨펌 압출 방식으로 구비될 수 있다.According to another aspect of the present invention, there is provided a method of manufacturing a bonding wire for a semiconductor device, the method comprising: extruding a first metal layer having a strength lower than that of the electrode into a core made of copper or a copper alloy A step of forming a wire rod, and a step of thermally processing the wire rod. Here, the extrusion step may be provided by a conform extrusion method.

한편, 상기 제1 금속층은 알루미늄, 알루미늄 합금, 주석, 주석 합금, 아연 및 아연 합금 중에 어느 하나로 이루어질 수 있으며, 0.08 ㎛ 내지 100 ㎛의 두께를 가질 수 있다.Meanwhile, the first metal layer may be made of any one of aluminum, an aluminum alloy, a tin, a tin alloy, a zinc and a zinc alloy, and may have a thickness of 0.08 μm to 100 μm.

나아가, 상기 제작방법에서 상기 선재를 만드는 단계는 상기 심재에 내산화성 제2 금속층을 도포하는 단계를 더 포함할 수 있다. 여기서, 상기 내산화성 제2 금속층은 금, 은, 백금, 팔라듐, 니켈, 코발트, 크롬, 티타늄 중의 적어도 하나로 이루어질 수 있으며, 0.1 ㎛ 내지 5 ㎛의 두께를 가질 수 있다.Further, in the manufacturing method, the step of forming the wire rod may further include coating the core material with the oxidation-resistant second metal layer. Here, the oxidation-resistant second metal layer may be made of at least one of gold, silver, platinum, palladium, nickel, cobalt, chromium, and titanium, and may have a thickness of 0.1 to 5 탆.

상기와 같은 본 발명에 따르면 구리 또는 구리합금을 소재로 하는 심재에 내산화성의 제2 금속층을 도포하여 상기 심재의 부식 및/또는 산화를 방지할 수 있다.According to the present invention, corrosion resistance and / or oxidation of the core material can be prevented by applying a second metal layer having oxidation resistance to the core material made of copper or a copper alloy.

또한, 본 발명에 따르면 본딩와이어의 최외곽에 전극 이하의 강도를 가지는 제1 금속층을 구비하여 상기 본딩와이어를 전극에 연결하는 경우에 상기 전극의 변형을 최대한 방지하여 접합 불량율을 최대한 낮출 수 있다.In addition, according to the present invention, a first metal layer having an intensity lower than that of an electrode is provided at the outermost portion of a bonding wire, so that deformation of the electrode is prevented as much as possible when connecting the bonding wire to the electrode.

도 1은 반도체소자를 도시한 평면도,
도 2는 본딩장치를 도시한 사시도,
도 3은 본 발명의 일 실시예에 따른 본딩와이어의 단면을 도시한 단면도,
도 4는 본딩와이어가 전극에 연결된 경우에 연결상태를 도시한 개략도이다.
1 is a plan view showing a semiconductor device,
2 is a perspective view showing a bonding apparatus,
3 is a cross-sectional view of a bonding wire according to an embodiment of the present invention,
4 is a schematic view showing the connection state when the bonding wire is connected to the electrode.

이하, 도면을 참조하여 본 발명의 다양한 실시예들에 따른 반도체소자용 본딩와이어 및 그 제작방법에 대해서 살펴본다.Hereinafter, a bonding wire for a semiconductor device according to various embodiments of the present invention and a method of manufacturing the same will be described with reference to the drawings.

먼저, 반도체소자용 본딩와이어가 사용되는 예를 살펴본 다음, 이어서 본 실시예에 따른 반도체소자용 본딩와이어에 대해서 살펴보기로 한다.First, an example in which a bonding wire for a semiconductor device is used will be described. Next, a bonding wire for a semiconductor device according to the present embodiment will be described.

도 1은 반도체소자(10)와 외부단자를 반도체소자용 본딩와이어(30)에 의해 연결한 상태를 도시한 평면도이다.1 is a plan view showing a state in which a semiconductor element 10 and an external terminal are connected by a bonding wire 30 for a semiconductor element.

일반적으로 반도체소자를 활용한 제품은 반도체 제품의 핵심이라고 할 수 있는 반도체소자를 제조하는 과정, 반도체소자를 보호하면서도 외부 기기와 전기적 입출입이 가능하도록 하는 패키지 과정을 거쳐 제작된다.In general, products using semiconductor devices are fabricated through a process of manufacturing semiconductor devices, which is considered to be the core of semiconductor products, and a package process, which allows semiconductor devices to be protected while allowing electric input / output with external devices.

여기서, 패키지 과정은 다시 반도체소자를 도전성 단자 역할을 하는 리드 프레임에 안착시킨 후, 리드 프레임과 반도체소자에 구비된 전극을 와이어(wire)를 이용하여 전기적으로 연결하는 공정과 와이어에 의해 연결된 리드프레임과 반도체소자를 외부 충격으로부터 보호하기 위하여 몰드수지로 감싸는 몰딩 공정으로 구성된다.Here, the packaging process is a process of placing a semiconductor element on a lead frame serving as a conductive terminal, electrically connecting the lead frame and electrodes provided on the semiconductor element by using a wire, And a molding process to enclose the semiconductor device with mold resin to protect it from external impact.

이때, 리드프레임과 반도체소자를 연결하는 와이어를 '본딩 와이어 (bonding wire)'라 하게 된다. 도 1은 반도체소자(10)가 리드프레임(20)에 안착되어 리드프레임(20)과 본딩와이어(30)에 의해 연결된 상태를 도시한다. 반도체소자(10)의 소정부위에 알루미늄 등으로 구성된 전극(12)을 구비하고, 상기 전극(12)과 리드프레임(20)이 본딩와이어(30)에 의해 서로 전기적으로 연결되는 것이다.At this time, the wire connecting the lead frame and the semiconductor element is called a 'bonding wire'. 1 shows a state in which the semiconductor element 10 is seated on the lead frame 20 and connected by the lead frame 20 and the bonding wire 30. Fig. An electrode 12 made of aluminum or the like is provided on a predetermined portion of the semiconductor element 10 and the electrode 12 and the lead frame 20 are electrically connected to each other by a bonding wire 30. [

본딩와이어(30)와 전극(12)의 접합 및 본딩와이어(30)와 리드프레임(20) 사이의 접합은 열압착 방식이 주로 사용될 수 있다. 도 2는 본딩와이어(30)를 전극(12)과 리드프레임(20) 사이에 연결하는 본딩장치(100)의 주요부분만을 도시한 사시도이다.The bonding between the bonding wire 30 and the electrode 12 and the bonding between the bonding wire 30 and the lead frame 20 can be mainly performed using a thermocompression bonding method. 2 is a perspective view showing only a main portion of a bonding apparatus 100 for connecting the bonding wire 30 between the electrode 12 and the lead frame 20.

본딩장치(100)는 본딩와이어(30)의 단부에 방전열을 가하여 순간적으로 녹여서 본딩와이어의 표면 장력에 의해 본딩와이어의 단부가 미세 직경을 갖는 볼 형상이 되도록 가공한 다음, 본딩와이어의 단부를 반도체소자의 전극(12)에 연결을 하게 된다. 이하, 도면을 참조하여 본딩장치(100)에 대해서 살펴보도록 한다.The bonding apparatus 100 is formed by instantaneously melting the end portion of the bonding wire 30 by applying the heat to the end portion of the bonding wire 30 so that the end portion of the bonding wire is shaped into a ball having a minute diameter by the surface tension of the bonding wire, And is connected to the electrode 12 of the semiconductor element. Hereinafter, a bonding apparatus 100 will be described with reference to the drawings.

도 2를 참조하면, 상기와 같은 본딩 작업을 위하여 본딩장치(100)는 본딩와이어(30)가 관통하여 구비되는 캐필러리(110)와, 방전에 의한 방전열을 발생시키는 토치(120)를 구비한다. 도 2에서는 본딩작업을 하기 위한 기본적인 구성만을 도시하였음을 밝혀둔다.Referring to FIG. 2, the bonding apparatus 100 includes a capillary 110 through which a bonding wire 30 passes, and a torch 120 for generating discharge heat by discharging. Respectively. It is noted that FIG. 2 shows only the basic structure for performing the bonding operation.

본딩와이어(30)는 캐필러리(110)를 관통하여 단부가 소정길이만큼 돌출하게 되며, 캐필러리(110)는 이송장치(미도시)에 의해 반도체소자(10)의 전극(12)과 리드프레임(20)을 본딩와이어(30)에 의해 연결하게 된다. 이 경우, 토치(120)에 의해 방전열을 가하여 본딩와이어(30)의 단부에 미세 직경을 갖는 볼 형상이 형성되도록 가공한 다음, 본딩와이어(30)의 단부를 반도체소자의 전극(12)에 연결을 하게 된다.The bonding wire 30 penetrates through the capillary 110 and the end of the capillary 110 protrudes by a predetermined length and the capillary 110 is electrically connected to the electrode 12 of the semiconductor element 10 by a transfer device The lead frame 20 is connected by the bonding wire 30. In this case, after the arc heat is applied by the torch 120 to form a ball shape having a fine diameter at the end of the bonding wire 30, an end portion of the bonding wire 30 is applied to the electrode 12 of the semiconductor element Connection.

본딩와이어(30)는 반도체소자(10)와 리드프레임(20)을 서로 전기적으로 연결하는 역할을 하게 되므로, 일반적으로 전기 전도도가 비교적 우수한 고순도의 금이 주로 사용되었다. 하지만, 최근 금 가격의 상승으로 인하여 보다 가격이 저렴한 소재를 활용한 본딩와이어의 개발이 요구되었다. 이러한 필요성에 의해 전기전도성이 매우 우수하며 가격이 저렴한 구리를 소재로 하는 본딩와이어의 개발이 활발하다.Since the bonding wire 30 serves to electrically connect the semiconductor element 10 and the lead frame 20 to each other, high-purity gold, which has a relatively high electrical conductivity, is mainly used. However, due to recent rise in gold prices, it has been required to develop a bonding wire using a material having a lower price. Due to this necessity, the development of a bonding wire made of copper, which is excellent in electric conductivity and low in price, is actively developed.

그런데, 구리로 된 심재를 구비한 본딩와이어는 일반적으로 알루미늄으로 구성된 반도체소자(10)의 전극(12)의 강도보다 크게 된다. 따라서, 본딩와이어를 반도체소자(10)의 전극(12)에 연결하는 경우에 상기 심재에 의해 반도체소자(10)의 전극(12)에 변형 및/또는 크랙 등이 발생하여 접합 불량율이 높아지게 된다.Incidentally, the bonding wire having the core made of copper is generally larger than the strength of the electrode 12 of the semiconductor element 10 made of aluminum. Therefore, when the bonding wire is connected to the electrode 12 of the semiconductor element 10, deformation and / or cracks are generated in the electrode 12 of the semiconductor element 10 by the core material, thereby increasing the defective connection ratio.

또한, 구리를 소재로 한 본딩와이어는 표면산화에 의해 전극 또는 리드프레임과의 접합강도가 약해지거나, 또는 몰딩 공정에 의해 몰딩 수지로 감싸는 경우에 본딩와이어의 표면부식이 발생하는 문제점을 수반한다. 이러한 표면 산화를 막기 위하여 구리 표면을 금, 은, 백금, 팔라듐, 니켈, 코발트, 크롬, 티타늄 등의 내산화성 금속으로 도금하고, 도금된 구리 선재를 인발하여 본딩와이어를 제작할 수 있다. 하지만, 상기와 같은 성분을 가지는 내산화성 금속층의 강도도 마찬가지로 알루미늄으로 구성된 반도체소자(10)의 전극(12)의 강도보다 크게 된다. 따라서, 내산화성 금속층을 구비한 본딩와이어를 반도체소자(10)의 전극(12)에 연결하는 경우에 상기 내산화성 금속층에 의해 반도체소자(10)의 전극(12)에 변형 및/또는 크랙 등이 발생하여 접합 불량율이 높아지는 문제점이 여전히 수반된다.Further, a bonding wire made of copper has a problem in that the bonding strength with the electrode or the lead frame is weakened by surface oxidation, or surface corrosion of the bonding wire occurs when the bonding wire is wrapped with the molding resin by the molding process. In order to prevent such surface oxidation, the copper surface is plated with an oxidation-resistant metal such as gold, silver, platinum, palladium, nickel, cobalt, chromium or titanium, and the plated copper wire is drawn out to produce a bonding wire. However, the strength of the oxidation-resistant metal layer having the above-described components also becomes larger than that of the electrode 12 of the semiconductor element 10 made of aluminum. Therefore, when the bonding wire having the oxidation-resistant metal layer is connected to the electrode 12 of the semiconductor element 10, the electrode 12 of the semiconductor element 10 is deformed and / or cracked by the oxidation- Resulting in an increase in the defective junction ratio.

이하에서는 상기와 같은 문제점을 해결하기 위한 본딩와이어 및 그 제작방법에 대해서 살펴본다.Hereinafter, a bonding wire and a method of manufacturing the same will be described in order to solve the above problems.

도 3(A)는 본 발명의 일 실시예에 따른 본딩와이어(300)의 단면을 도시한 단면도이다.3 (A) is a cross-sectional view showing a cross section of a bonding wire 300 according to an embodiment of the present invention.

도 3(A)를 참조하면, 본딩와이어(300)는 구리 또는 구리합금으로 이루어진 심재(310) 및 상기 심재(310)의 외주에 구비되는 제1 금속층(330)을 구비할 수 있다. 이 경우, 상기 제1 금속층(330)은 반도체소자(10)의 전극(12) 이하의 강도를 가지도록 구성될 수 있다.3 (A), the bonding wire 300 may include a core 310 made of copper or a copper alloy, and a first metal layer 330 provided on the outer periphery of the core 310. In this case, the first metal layer 330 may be configured to have an intensity lower than that of the electrode 12 of the semiconductor element 10.

먼저, 심재(310)는 구리 또는 구리합금으로 이루어질 수 있다. 전술한 바와 같이 구리 또는 구리합금으로 된 심재(310)는 알루미늄 또는 알루미늄합금으로 된 전극(12)에 비해 강도가 높게 되므로 접합 시에 전극(12)에 상대적으로 많은 변형이 발행하게 되어 접합불량을 일으킬 수 있다. 따라서, 본 실시예에서는 상기 심재(310)의 외주에 상기 전극(12) 이하의 강도를 가지는 제1 금속층(330)을 구비할 수 있다.First, the core member 310 may be made of copper or a copper alloy. As described above, since the core member 310 made of copper or a copper alloy has a higher strength than the electrode 12 made of aluminum or an aluminum alloy, a relatively large deformation is generated in the electrode 12 at the time of bonding, Can cause. Therefore, in the present embodiment, the first metal layer 330 having the strength less than that of the electrode 12 may be provided on the outer periphery of the core member 310.

상기 제1 금속층(330)은 반도체소자(10)의 전극(12) 이하의 강도를 가지도록 구성될 수 있다. 예를 들어, 반도체소자(10)의 전극(12)이 알루미늄으로 이루어지는 경우에 상기 제1 금속층(330)은 알루미늄, 알루미늄 합금, 주석, 주석 합금, 아연 및 아연 합금 중에 어느 하나로 이루어질 수 있다.The first metal layer 330 may be configured to have an intensity lower than that of the electrodes 12 of the semiconductor device 10. For example, when the electrode 12 of the semiconductor element 10 is made of aluminum, the first metal layer 330 may be made of any one of aluminum, aluminum alloy, tin, tin alloy, zinc and zinc alloy.

한편, 상기 제1 금속층(330)은 적절한 두께를 가지도록 구성될 수 있다. 예를 들어, 제1 금속층(330)은 0.05 ㎛ 내지 150 ㎛의 두께를 가지도록 구성될 수 있다.Meanwhile, the first metal layer 330 may have an appropriate thickness. For example, the first metal layer 330 may be configured to have a thickness of 0.05 m to 150 m.

본딩와이어(300)를 반도체소자(10)의 전극(12)에 연결하는 경우에 제1 금속층(330)에 기계적 변형이 발생하여 전극(12)에 생기는 변형을 최소화하게 된다. 따라서, 상기 제1 금속층(330)은 기계적 변형이 발생하기에 충분한 최소한의 두께를 가져야 하며, 제1 금속층(330)의 두께가 0.05 ㎛ 이하로 내려가게 되면 기계적 변형이 발생하기에 충분하지 않게 된다. 따라서, 제1 금속층(330)의 최소 두께는 0.05 ㎛ 로 결정될 수 있다. 또한, 상기 제1 금속층(330)의 두께가 150 ㎛ 이상으로 증가하게 되면 제조 비용의 증가와 함께 본딩와이어(300)의 전기적 저항을 증가시키게 된다. 따라서, 제1 금속층(330)의 최대 두께는 150 ㎛ 로 결정될 수 있다. 한편, 상기 최소 두께 및 최대 두께는 전극(12)의 변형을 최소화하며 본딩와이어(300)의 성능을 유지하는 제1 금속층(330)의 두께의 한계값에 해당한다. 따라서, 실제 본딩와이어(300)를 구비하는 경우에는 상기 한계값에 여유값을 제공하는 것이 바람직하며, 예를 들어, 상기 제1 금속층(330)의 두께가 0.08 ㎛ 내지 100 ㎛의 범위를 가지도록 구성될 수 있다.When the bonding wire 300 is connected to the electrode 12 of the semiconductor device 10, the first metal layer 330 is mechanically deformed to minimize the deformation of the electrode 12. Therefore, the first metal layer 330 must have a minimum thickness sufficient for mechanical deformation to occur. If the thickness of the first metal layer 330 is lower than 0.05 μm, the first metal layer 330 is not sufficient to cause mechanical deformation . Therefore, the minimum thickness of the first metal layer 330 may be determined to be 0.05 탆. In addition, if the thickness of the first metal layer 330 is increased to 150 μm or more, the electrical resistance of the bonding wire 300 increases with an increase in manufacturing cost. Thus, the maximum thickness of the first metal layer 330 may be determined to be 150 占 퐉. The minimum thickness and the maximum thickness correspond to a limit value of the thickness of the first metal layer 330 that minimizes the deformation of the electrode 12 and maintains the performance of the bonding wire 300. For example, when the thickness of the first metal layer 330 is in the range of 0.08 mu m to 100 mu m, it is preferable that the thickness of the first metal layer 330 is in the range of 0.08 mu m to 100 mu m. Lt; / RTI >

한편, 상기 제1 금속층(330)은 컨펌압출 방식으로 구비될 수 있다. 상기 컨펌압출방식은 선재에 소정의 압력을 가하여 제1 금속층(330)과 함께 압출하는 방식으로 본 발명이 속하는 기술분야에서 널리 알려져 있으므로 구체적인 설명은 생략한다.Meanwhile, the first metal layer 330 may be formed by a conform extrusion method. The concrete extrusion method is widely known in the art in which the wire is extruded together with the first metal layer 330 by applying a predetermined pressure to the wire, so a detailed description thereof will be omitted.

한편, 구리를 원료로 하는 심재는 전술한 바와 같은 표면 부식 및 접합강도의 약화와 같은 문제점을 수반하므로 그 표면을 따라 내산화성의 제2 금속층(350)을 더 구비할 수 있다.On the other hand, the core material made of copper as a raw material has problems such as surface corrosion and weakened bonding strength as described above, so that the second metal layer 350 having oxidation resistance can be further provided along the surface thereof.

도 3(B)는 다른 실시예에 따른 본딩와이어(300')의 구성을 도시한 측단면도이다.3 (B) is a side cross-sectional view showing a configuration of a bonding wire 300 'according to another embodiment.

도 3(B)를 참조하면, 제2 금속층(350)은 상기 심재(310)와 제1 금속층(330) 사이에 구비될 수 있다.Referring to FIG. 3 (B), a second metal layer 350 may be provided between the core 310 and the first metal layer 330.

제2 금속층(350)은 구리 또는 구리합금으로 이루어진 심재(310)의 표면부식을 방지하기 위하여 내산화성 금속으로 이루어진다. 예를 들어, 상기 내산화성 제2 금속층(350)은 금, 은, 백금, 팔라듐, 니켈, 코발트, 크롬, 티타늄 중의 적어도 하나로 이루어질 수 있다.The second metal layer 350 is made of an oxidation-resistant metal to prevent surface corrosion of the core material 310 made of copper or a copper alloy. For example, the oxidation-resistant second metal layer 350 may be formed of at least one of gold, silver, platinum, palladium, nickel, cobalt, chromium, and titanium.

한편, 상기 제2 금속층(350)은 적절한 두께를 가지도록 구성될 수 있다. 예를 들어, 제2 금속층(350)은 0.01 ㎛ 내지 10 ㎛의 두께를 가지도록 구성될 수 있다. 제2 금속층(350)의 두께가 0.01 ㎛ 이하일 경우 심재의 산화를 방지하는 효과가 발휘되지 않으며, 나아가 제2 금속층(350)의 두께가 10 ㎛ 이상으로 커지게 되면 제조비용의 증가와 함께 전기적 저항이 커지게 된다.Meanwhile, the second metal layer 350 may be configured to have an appropriate thickness. For example, the second metal layer 350 may be configured to have a thickness between 0.01 μm and 10 μm. When the thickness of the second metal layer 350 is less than 0.01 탆, the effect of preventing oxidation of the core material is not exhibited. Further, if the thickness of the second metal layer 350 is increased to 10 탆 or more, .

상기 제2 금속층(350)의 최소 두께 및 최대 두께는 심재의 부식을 방지하면서 나아가 전극(12)과 본딩와이어의 접합력을 유지할 수 있는 한계값에 해당한다. 따라서, 실제 본딩와이어(300)를 구비하는 경우에는 상기 한계값에 여유값을 제공하는 것이 바람직하며, 예를 들어, 상기 제2 금속층(350)의 두께가 0.1 ㎛ 내지 5 ㎛의 두께를 가지도록 구성될 수 있다.The minimum thickness and the maximum thickness of the second metal layer 350 correspond to a limit value that can prevent corrosion of the core material and further maintain the bonding strength between the electrode 12 and the bonding wire. Therefore, when the actual bonding wire 300 is provided, it is preferable to provide a margin to the limit value. For example, if the thickness of the second metal layer 350 is 0.1 to 5 μm Lt; / RTI >

한편, 제2 금속층(350)의 표면에는 제1 금속층(330)이 구비된다. 전술한 바와 같이, 상기 제1 금속층(330)은 반도체소자(10)의 전극(12)과 동일하거나 또는 그 이하의 강도를 가지도록 구성된다. 즉, 본딩와이어(300')의 최외곽층에 상기 전극(12)의 강도 이하의 강도를 가지는 제1 금속층(330)을 구비하게 되면, 상기 본딩와이어(300')를 반도체소자(10)의 전극(12)에 연결하는 경우에 제1 금속층(330)에 변형을 유발하여 전극(12)에 발생하는 변형을 최소화할 수 있다. 이에 따라, 반도체소자(10)의 전극(12)에 발생하는 변형을 최소화하여 전극(12)과 본딩와이어(300')를 연결하는 경우에 접합 불량을 최소화할 수 있게 된다.On the other hand, the first metal layer 330 is provided on the surface of the second metal layer 350. As described above, the first metal layer 330 is configured to have an intensity equal to or less than that of the electrode 12 of the semiconductor element 10. [ That is, if the first metal layer 330 having the strength less than the strength of the electrode 12 is provided on the outermost layer of the bonding wire 300 ', the bonding wire 300' The deformation of the first metal layer 330 can be minimized when the electrode 12 is connected to the electrode 12. This minimizes the deformation of the electrode 12 of the semiconductor device 10 and minimizes the bonding failure when the electrode 12 and the bonding wire 300 'are connected.

한편, 도 4는 본 발명의 실시예들에 따른 본딩와이어와 종래 기술에 따른 본딩와이어가 전극(12)에 연결된 경우를 도시한 측단면도이다. 도 4(A)에서는 설명의 편의를 위해 전술한 실시예 중에서 도 3(B)에 따른 본딩와이어(300')만 도시하였음을 밝혀둔다.4 is a cross-sectional view illustrating a case where bonding wires according to embodiments of the present invention and bonding wires according to the related art are connected to the electrodes 12. As shown in FIG. In FIG. 4 (A), for convenience of explanation, it is noted that only the bonding wire 300 'according to FIG. 3 (B) is shown in the above embodiment.

도 4(A)는 본 발명의 실시예들에 따른 본딩와이어(300')가 연결된 경우를 도시한다. 도 4(A)를 참조하면, 본딩와이어(300')의 심재(310)와 제2 금속층(350)의 외주, 즉 본딩와이어(300)의 최외곽에 제1 금속층(330')을 구비하게 된다. 따라서, 본딩와이어(300')를 연결하는 경우에 제1 금속층(330')에 변형을 유발하여 전극(12)에 변형이 생기는 것을 최대한 방지하게 되어, 본딩와이어(300')와 전극(12)의 접합력이 매우 강화되어 접합불량이 발생할 가능성이 매우 낮게 된다.4 (A) shows a case where a bonding wire 300 'according to embodiments of the present invention is connected. Referring to FIG. 4A, the core 310 of the bonding wire 300 'and the first metal layer 330' are provided on the outer circumference of the second metal layer 350, that is, the outermost portion of the bonding wire 300 do. Accordingly, when the bonding wire 300 'is connected, deformation of the first metal layer 330' is caused to prevent the electrode 12 from being deformed to the maximum, so that the bonding wire 300 ' So that the possibility of occurrence of a bonding failure is extremely low.

이에 반해서, 도 4(B)는 종래기술과 같이 최외곽에 제1 금속층(330)을 구비하지 않는 본딩와이어(400)가 전극(12)에 연결된 경우를 도시한다. 도 4(B)를 참조하면, 본딩와이어가 전극(12)에 연결되는 경우에 본딩와이어(400)의 강도가 전극(12)의 강도에 비해 높게 되므로, 대부분의 변형이 전극(12)에 발생하게 된다. 따라서, 본딩와이어(400)와 전극(12)의 접합력이 매우 약화되어 접합불량이 발생할 가능성이 매우 높게 된다.4B shows a case where a bonding wire 400 having no first metal layer 330 at the outermost periphery is connected to the electrode 12 as in the related art. 4 (B), when the bonding wire is connected to the electrode 12, the strength of the bonding wire 400 becomes higher than the strength of the electrode 12, so that most deformation occurs in the electrode 12 . Therefore, the bonding force between the bonding wire 400 and the electrode 12 is extremely weakened, and the possibility of occurrence of bonding failure becomes very high.

이하, 상기와 같은 구성을 가지는 본 발명에 따른 본딩와이어를 제작하는 방법을 살펴보면 다음과 같다.Hereinafter, a method of manufacturing the bonding wire according to the present invention will be described.

상기 본딩와이어의 제작방법은 구리 또는 구리합금으로 된 심재(310)에 반도체소자(10)의 전극(12) 이하의 강도를 가지는 제1 금속층(330)을 압출하여 선재를 만드는 단계와, 상기 선재를 열 가공하는 단계를 포함한다.The method of manufacturing the bonding wire includes the steps of: forming a wire material by extruding a first metal layer 330 having a strength not more than the electrode 12 of the semiconductor element 10 on a core material 310 made of copper or a copper alloy; As shown in FIG.

상기 방법에 의해 제작된 본딩와이어는 최외곽에 반도체소자(10)의 전극(12) 이하의 강도를 가지는 제1 금속층(330)을 구비하게 되어, 본딩와이어를 전극(12)에 연결하는 경우에 상기 제1 금속층(330)의 변형을 유도하여 전극(12)의 변형을 최소화할 수 있게 된다.The bonding wire manufactured by the above method has the first metal layer 330 having the strength not higher than the electrode 12 of the semiconductor element 10 at the outermost portion thereof, The deformation of the electrode 12 can be minimized by inducing deformation of the first metal layer 330.

한편, 상기 선재를 만드는 단계는 상기 심재(310)에 내산화성 제2 금속층(350)을 도포하는 단계를 더 포함할 수 있다. 상기 내산화성 제2 금속층(350)을 구리 또는 구리합금으로 이루어진 심재에 도포하는 과정은 종래의 방법과 크게 다르지 않다. 예를 들어 직경이 대략 70 ㎛ 내지 90 ㎛에 해당하는 구리 또는 구리합금으로 된 심재에 내산화성 금속을 전기화학적 방법을 이용하여 대략 0.01 ㎛ 내지 10 ㎛의 두께로, 바람직하게는 0.1 ㎛ 내지 5 ㎛ 이하의 두께로 도포하게 된다. 상기 내산화성 금속은 금, 은, 백금, 팔라듐, 니켈, 코발트, 크롬, 티타늄 중의 적어도 하나로 이루어질 수 있다. The step of forming the wire rod may further include applying the oxidation resistant second metal layer 350 to the core material 310. The process of applying the oxidation-resistant second metal layer 350 to a core made of copper or a copper alloy is not significantly different from the conventional method. For example, a core material made of copper or a copper alloy having a diameter of about 70 탆 to 90 탆 is coated with an oxidation-resistant metal by an electrochemical method to a thickness of about 0.01 탆 to 10 탆, preferably 0.1 탆 to 5 탆 Or less. The oxidation-resistant metal may be at least one of gold, silver, platinum, palladium, nickel, cobalt, chromium, and titanium.

이어서, 상기 제2 금속층(350) 표면에 제1 금속층(330)을 구비하도록 압출과정을 거칠 수 있다. 상기 압출과정은 컨펌 압출 방식으로 이루어질 수 있다. 나아가, 상기 제1 금속층(330)은 전술한 바와 같이 전극(12)과 동일, 또는 그 이하의 강도를 가지도록 알루미늄, 알루미늄 합금, 주석, 주석 합금, 아연 및 아연 합금 중에 어느 하나로 이루어질 수 있다. 나아가, 상기 제1 금속층(330)의 두께는 0.05 ㎛ 내지 150 ㎛의 두께를 가지도록 구성되거나, 바람직하게는 0.08 ㎛ 내지 100 ㎛의 두께를 가지도록 구성될 수 있다.Subsequently, an extrusion process may be performed to provide the first metal layer 330 on the surface of the second metal layer 350. The extrusion process may be a conform extrusion process. Further, the first metal layer 330 may be made of any one of aluminum, aluminum alloy, tin, tin alloy, zinc and zinc alloy so as to have the same or lower strength as the electrode 12, as described above. Further, the thickness of the first metal layer 330 may be configured to have a thickness of 0.05 μm to 150 μm, or preferably to have a thickness of 0.08 μm to 100 μm.

한편, 내산화성 제2 금속층(350)과 심재 사이 및/또는 제1 금속층(330)과 제2 금속층(350) 사이의 밀착성을 향상시키기 위하여 상기 압출단계를 거친 후에 열가공하는 단계를 수행할 수 있다. 상기 압출단계에서 선재는 인발다이를 통과하여 그 직경이 감소하게 되므로 본딩와이어의 내부에 응력이 발생할 수 있다. 따라서, 압출단계에서 본딩와이어에 발생한 응력을 풀어주기 위하여 열가공단계를 수행하게 된다. 결국, 열가공단계는 압출계에서 본딩와이어에 생긴 응력을 풀어주는 역할과 함께 금속층 사이 및/또는 금속층과 심재 간의 밀착성을 향상시키는 역할도 하게 된다.On the other hand, in order to improve the adhesion between the oxidation-resistant second metal layer 350 and the core and / or the adhesion between the first metal layer 330 and the second metal layer 350, have. In the extrusion step, the wire rod passes through the drawing die and its diameter decreases, so stress may be generated inside the bonding wire. Accordingly, in the extrusion step, a thermal processing step is performed to release the stress generated in the bonding wire. As a result, the thermal processing step serves to relieve the stress generated in the bonding wire in the extrusion system, and also to improve the adhesion between the metal layers and / or between the metal layer and the core.

본 실시예에서 본딩와이어를 열가공하는 단계는 대략 200 ℃ 내지 500 ℃로 열가공하게 된다. 200 ℃ 보다 낮은 온도에서 열가공을 하게 되면 열 에너지가 충분히 확보되지 않아 도금층 입자와 심재 간의 필요한 수준의 밀착성을 얻을 수 없게 된다. 반면에 500 ℃ 이상의 온도로 열가공을 하게 되면 본딩와이어의 표면에서 급속한 고온 산화 현상을 일으킬 수 있다. 따라서, 열가공하는 단계는 대략 200 ℃ 내지 500 ℃로 본딩와이어를 열가공하는 것이 바람직하다.In this embodiment, the step of thermally processing the bonding wire is performed at a temperature of about 200 to 500 占 폚. If thermal processing is performed at a temperature lower than 200 ° C., sufficient heat energy can not be secured and a necessary level of adhesion between the plating layer particle and the core material can not be obtained. On the other hand, thermal processing at a temperature of 500 ° C or higher may cause rapid high-temperature oxidation at the surface of the bonding wire. Therefore, it is preferable to thermally process the bonding wire at a temperature of about 200 캜 to 500 캜.

한편, 열가공하는 방법에 있어서는 열원과 본딩와이어를 직접 접촉하는 방식도 있으나, 이러한 직접 접촉방식은 열원과 본딩와이어의 접촉에 의해 본딩와이어의 표면에 손상이 발생할 수 있다. 따라서, 본 실시예에서는 열원과 본딩와이어의 접촉없이 가열을 할 수 있는 간접가열방식 또는 유도가열방식에 의해 가열하게 된다.On the other hand, in the thermal processing method, there is a method in which the heat source and the bonding wire are in direct contact with each other. However, in this direct contact method, the surface of the bonding wire may be damaged by the contact of the heat source and the bonding wire. Therefore, in the present embodiment, the heating is performed by an indirect heating method or an induction heating method capable of heating without contacting the heat source and the bonding wire.

나아가, 열가공 단계 중에는 가열에 의해 본딩와이어의 표면에 발생할 수 있는 표면산화를 방지하기 위하여 질소, 아르곤과 같은 불활성 가스를 본딩와이어 표면에 취입하여 열가공을 수행할 수 있다. 불활성가스의 취입량은 열가공을 수행하는 장치의 구조 및 크기에 따라 적절하게 조절될 수 있다.Further, during the thermal processing step, an inert gas such as nitrogen or argon may be blown onto the surface of the bonding wire to perform thermal processing in order to prevent surface oxidation which may occur on the surface of the bonding wire by heating. The blowing amount of the inert gas can be appropriately adjusted according to the structure and size of the apparatus for performing thermal processing.

이하에서는 본 발명에 따른 본딩와이어의 성능을 실험하기 위하여 다양한 실시예와 비교예를 비교 실험한 발명자의 실험결과를 살펴보기로 한다. 여기서, 비교예는 하기 [표 1]과 같은 조건으로 제작된다.In order to test the performance of the bonding wire according to the present invention, experimental results of various inventive examples and comparative examples will be described below. Here, the comparative example is manufactured under the same conditions as in Table 1 below.


직경(㎛)
Diameter (탆)
심재 성분
Core material component
제2 금속층The second metal layer 제1 금속층The first metal layer
성분ingredient 두께(㎛)Thickness (㎛) 성분ingredient 두께(㎛)Thickness (㎛) 비교예1Comparative Example 1 500500 구리Copper silver 0.10.1 알루미늄aluminum 0.010.01 비교예2Comparative Example 2 500500 구리Copper silver 0.10.1 알루미늄aluminum 240240 비교예3Comparative Example 3 500500 구리Copper silver 0.10.1 없음none 없음none 비교예4Comparative Example 4 500500 구리Copper 없음none 없음none 없음none 없음none 비교예5Comparative Example 5 500500 알루미늄 합금Aluminum alloy 없음none 없음none 없음none 없음none

상기 [표 1]을 참조하면, 상기 '비교예 1' 및 '비교예 2'는 대략 500㎛의 구리로 된 심재에 은(Ag)으로 구성된 내산화성의 제2 금속층을 대략 0.1 ㎛ 의 두께를 가지도록 도포한다. 나아가 상기 '비교예 1'에서는 알루미늄으로 구성된 제1 금속층을 대략 0.01 ㎛의 두께로 구비하게 된다. 즉, '비교예 1'에 따른 본딩와이어에서는 최외곽에 제1 금속층을 구비하지만 그 두께가 0.01 ㎛ 에 해당하여 최소두께인 0.05 ㎛ 보다 작게 구비된다. 또한, 상기 '비교예 2'에서는 알루미늄으로 구성된 제1 금속층을 대략 240 ㎛의 두께로 구비하게 된다. 즉, '비교예 2'에 따른 본딩와이어에서는 최외곽에 제1 금속층을 구비하지만 그 두께가 240 ㎛ 에 해당하여 최대 두께인 150 ㎛ 보다 크게 구비된다.Referring to Table 1, the first comparative example and the second comparative example have a thickness of about 0.1 탆 and a second metal layer having oxidation resistance composed of silver (Ag) on a core of about 500 탆 copper. . Further, in the 'Comparative Example 1', the first metal layer made of aluminum is provided with a thickness of about 0.01 μm. That is, in the bonding wire according to 'Comparative Example 1', the first metal layer is provided at the outermost layer, but its thickness is less than 0.05 μm which corresponds to 0.01 μm. In addition, in the 'Comparative Example 2', the first metal layer made of aluminum has a thickness of about 240 μm. That is, in the bonding wire according to 'Comparative Example 2', the first metal layer is provided on the outermost periphery, but its thickness is greater than 240 μm, which is greater than the maximum thickness of 150 μm.

상기 '비교예 3'은 대략 500㎛의 구리로 된 심재에 은(Ag)으로 구성된 내산화성의 제2 금속층을 대략 0.1 ㎛ 의 두께를 가지도록 도포하지만, 제1 금속층을 구비하지 않는다. 상기 '비교예 4'는 대략 500㎛의 구리로 된 심재만을 구비하며, 제1 금속층 및 제2 금속층을 모두 구비하지 않는다. 또한, 상기 '비교예 5'는 대략 500㎛의 알루미늄 합금으로 된 심재만을 구비하며, 제1 금속층 및 제2 금속층을 모두 구비하지 않는다. 여기서, '비교예 5'에 따른 본딩와이어는 종래기술에 따라 알루미늄 합금을 심재로 사용한 본딩와이어에 해당한다.In Comparative Example 3, a second metal layer having an oxidation resistance composed of silver (Ag) was applied to a core material of approximately 500 탆 of copper to have a thickness of approximately 0.1 탆, but the first metal layer was not provided. The 'Comparative Example 4' has only a core of copper of about 500 μm and does not have both the first metal layer and the second metal layer. In addition, 'Comparative Example 5' has only a core made of an aluminum alloy of about 500 μm and does not have both the first metal layer and the second metal layer. Here, the bonding wire according to Comparative Example 5 corresponds to a bonding wire using an aluminum alloy as a core material according to the prior art.

한편, 본 발명에 따른 다양한 실시예에 따른 본딩와이어는 하기 [표 2]와 같은 조건으로 제작된다.Meanwhile, the bonding wires according to various embodiments of the present invention are manufactured under the conditions shown in Table 2 below.


직경(㎛)
Diameter (탆)
심재
Core material
제2 금속층The second metal layer 제1 금속층The first metal layer
성분ingredient 두께(㎛)Thickness (㎛) 성분ingredient 두께(㎛)Thickness (㎛) 실시예1Example 1 500500 구리Copper 없음none 없음none 알루미늄aluminum 0.050.05 실시예2Example 2 500500 구리Copper 없음none 없음none 알루미늄aluminum 0.100.10 실시예3Example 3 500500 구리Copper 없음none 없음none 알루미늄aluminum 0.150.15 실시예4Example 4 500500 구리Copper 없음none 없음none 알루미늄aluminum 1One 실시예5Example 5 500500 구리Copper 없음none 없음none 알루미늄aluminum 100100 실시예6Example 6 500500 구리Copper 없음none 없음none 알루미늄aluminum 150150 실시예7Example 7 500500 구리Copper silver 0.10.1 알루미늄aluminum 1One 실시예8Example 8 500500 구리Copper silver 0.10.1 알루미늄 합금Aluminum alloy 1One

상기 [표 2]를 참조하면, 상기 '실시예 1' 내지 '실시예 6'은 대략 500 ㎛의 구리로 된 심재에 내산화성의 제2 금속층을 구비하지 않고, 알루미늄으로 구성된 제1 금속층의 두께를 0.05 ㎛ 내지 150 ㎛의 두께로 구비하게 된다.Referring to Table 2, the first through sixth embodiments described above do not include a second metal layer having oxidation resistance in a core material of approximately 500 μm copper, and the thickness of the first metal layer made of aluminum To a thickness of 0.05 mu m to 150 mu m.

한편, 상기 '실시예 7' 내지 '실시예 8'은 대략 500 ㎛의 구리로 된 심재에 은으로 된 내산화성의 제2 금속층을 0.1 ㎛의 두께로 구비하고, 각각 알루미늄 및 알루미늄합급으로 구성된 제1 금속층을 1 ㎛ 의 두께로 구비하게 된다.In Examples 7 to 8, a core made of copper having a thickness of about 500 占 퐉, a second metal layer made of silver and having oxidation resistance, having a thickness of 0.1 占 퐉, 1 metal layer having a thickness of 1 mu m.

하기 [표 3]은 상기와 같은 비교예와 실시예에 따른 본딩와이어를 반도체소자의 전극에 연결하는 경우에 발생한 크랙, 전극의 잔류두께 및 저항율을 비교한 표이다.Table 3 below is a table comparing cracks, residual thicknesses of electrodes, and resistivities of the bonding wires according to the comparative examples and the examples to electrodes of semiconductor devices.

전극 크랙수Electrode Crack Number 전극 잔류두께(㎛)Electrode residual thickness (탆) 저항율(Ω/cm)Resistivity (Ω / cm) 실시예1Example 1 1One 0.350.35 8.538.53 실시예2Example 2 00 0.400.40 8.538.53 실시예3Example 3 00 0.410.41 8.538.53 실시예4Example 4 00 0.430.43 8.558.55 실시예5Example 5 00 0.450.45 11.1711.17 실시예6Example 6 00 0.480.48 12.3712.37 실시예7Example 7 00 0.450.45 8.558.55 실시예8Example 8 00 0.420.42 8.648.64 비교예1Comparative Example 1 2020 0.010.01 8.538.53 비교예2Comparative Example 2 00 0.440.44 13.5213.52 비교예3Comparative Example 3 3232 0.01 미만Less than 0.01 8.528.52 비교예4Comparative Example 4 3030 0.01 미만Less than 0.01 8.528.52 비교예5Comparative Example 5 00 0.440.44 13.5313.53

상기 실험에서는 0.70 ㎛의 두께를 가지는 알루미늄 전극을 사용하여 총 77회에 걸쳐 본딩와이어를 접합하였으며, 상기 접합 후에 전극에 발생하는 크랙의 개수, 상기 전극의 잔류두께 및 상기 전극의 저항율을 측정하였다.In this experiment, a total of 77 bonding wires were bonded using an aluminum electrode having a thickness of 0.70 mu m. After the bonding, the number of cracks generated in the electrode, the residual thickness of the electrode, and the resistivity of the electrode were measured.

여기서, 상기 잔류두께는 본딩와이어를 연결한 후에 전극의 최소두께로 정의된다. 즉, 반도체 소자의 전극은 접합 시에 전극의 수평방향으로 전달되는 진동 및 접합하중에 의해 중앙부에서 가장자리를 향해 이동하게 되며, 이에 따라 전극의 중앙부에는 초기에 비해 상대적으로 적은 양의 금속층이 잔류하게 된다. 이러한 중앙부의 두께가 상기 최소두께에 해당하여 전극의 잔류두께에 해당한다. 상기 잔류두께는 전극에 어느 정도의 변형이 발생하였는지를 확인할 수 있는 인자로서, 대략 초기 두께의 50 % 이상의 잔류두께를 가지는 것이 바람직하다.Here, the residual thickness is defined as the minimum thickness of the electrode after connecting the bonding wires. That is, the electrode of the semiconductor device moves toward the edge at the center portion due to vibration and bonding load transmitted in the horizontal direction of the electrode at the time of bonding, so that a relatively small amount of metal layer remains in the center portion of the electrode do. The thickness of the central portion corresponds to the minimum thickness and corresponds to the residual thickness of the electrode. It is preferable that the residual thickness has a residual thickness of 50% or more of the initial thickness, which is a factor for determining the degree of deformation of the electrode.

나아가, 상기 저항율은 본딩와이어의 저항율을 실제로 측정한 값에 해당하며(10-4,Ω/cm), 전술한 바와 같이 '비교예 5'가 종래기술에 따라 알루미늄의 심재를 구비한 본딩와이어에 해당하므로, 상기 '비교예 5'의 본딩와이어의 저항율을 기준치로 설정할 수 있다. 즉, 상기 '비교예 5'의 본딩와이어의 저항율보다 큰 저항율을 가지게 되면 저항율이 상대적으로 높은 것으로 보아 적합하지 않다고 판단할 수 있다.Further, the resistivity corresponds to a value obtained by actually measuring the resistivity of the bonding wire (10 -4 , Ω / cm), and as described above, the 'Comparative Example 5' was applied to a bonding wire having a core of aluminum The resistivity of the bonding wire of Comparative Example 5 can be set as a reference value. That is, if the resistivity of the bonding wire of Comparative Example 5 is higher than the resistivity of the bonding wire of Comparative Example 5, it can be judged that the resistivity is relatively inferior.

상기 [표 3]을 살펴보면 본 발명의 '실시예'에 따른 본딩와이어에서는 본딩와이어를 전극에 연결하는 경우에 크랙이 거의 발생하지 않는 것을 알 수 있다. 이는 본딩와이어의 최외곽층에 전극(12)과 동일 또는 그 이하의 강도를 가지는 제1 금속층(330)을 구비하여 전극(12)의 변형을 방지하기 때문이다. 또한, 잔류두께는 대략 0.35 ㎛ 내지 0.48 ㎛에 해당하며, 이는 초기 두께에 비하여 대략 50 % 내지 68 %에 해당하여 초기 두께와 대비하여 50 % 이상의 두께를 가지는 것을 알 수 있다. 나아가, 상기 '실시예'들의 저항율은 대략 8.53*10-4 Ω/cm 내지 12.37*10-4 Ω/cm의 값에 해당하여 종래 기술에 따른 '비교예 5'의 저항율에 비해 더 작은 값을 가지는 것을 알 수 있다. 따라서, 실시예들에 따른 본딩와이어는 크랙수, 전극의 잔류두께 및 저항율에 있어서 모두 기준치를 만족시키는 것을 알 수 있다.As can be seen from Table 3, cracks hardly occur when the bonding wires are connected to the electrodes in the bonding wires according to the embodiment of the present invention. This is because the first metal layer 330 having the same or lower strength as the electrode 12 is provided on the outermost layer of the bonding wire to prevent the electrode 12 from being deformed. In addition, the residual thickness corresponds to approximately 0.35 탆 to 0.48 탆, which corresponds to about 50% to 68% of the initial thickness, and has a thickness of 50% or more as compared with the initial thickness. Further, the resistivity of the 'embodiments' corresponds to a value of approximately 8.53 * 10 -4 Ω / cm to 12.37 * 10 -4 Ω / cm, which is smaller than the resistivity of Comparative Example 5 according to the prior art . Therefore, it can be seen that the bonding wires according to the embodiments satisfy the reference values in both the number of cracks, the residual thickness of the electrode, and the resistivity.

반면에 비교예에 따른 본딩와이어를 살펴보면, '비교예 1', '비교예 3' 및 '비교예 4'에 따른 본딩와이어에서는 크랙수가 20회를 넘어가며, 나아가 전극의 잔류두께가 0.01㎛ 이하의 값을 가짐을 알 수 있다. '비교예 1'은 제1 금속층을 구비하지만 그 두께가 요구되는 최소두께보다 작아서 전극의 변형을 방지하는 효과가 거의 발휘되지 않기 때문이다. 또한, '비교예 3' 및 '비교예 4'는 구리로 심재를 구성하여 제1 금속층을 구비하지 않으므로 본딩와이어를 접합하는 경우에 강도의 차이로 인해 크랙이 많이 발생하며 잔류두께가 현저히 작아지게 된다.On the other hand, according to the bonding wire according to the comparative example, the number of cracks exceeded 20 in the bonding wires according to Comparative Example 1, Comparative Example 3 and Comparative Example 4, and furthermore, Of the total amount of water. 'Comparative Example 1' has a first metal layer, but its thickness is smaller than the required minimum thickness, so that the effect of preventing deformation of the electrode is hardly obtained. In addition, 'Comparative Example 3' and 'Comparative Example 4' consisted of copper core material and did not have a first metal layer. Therefore, when bonding wires were bonded, cracks were generated due to difference in strength, do.

한편, '비교예 2'에 따른 본딩와이어에서는 크랙이 거의 발생하지 않으며 나아가 잔류두께도 초기 두께의 50% 이상이지만, 저항율이 13.53*10-4 Ω/cm으로 종래기술인 '비교예 5'와 동일하여 종래 기술과 대비하여 향상된 효과를 찾기 힘들다. '비교예 5'에 따른 종래기술에 의한 본딩와이어는 제1 금속층을 구비하지 않지만 알루미늄 합금으로 구성된 심재를 구비하여 접합 시에 전극의 변형을 줄일 수 있다. 하지만, 구리에 비해 전도도가 떨어져서 저항율이 증가하는 것을 알 수 있다.On the other hand, in the bonding wire according to Comparative Example 2, cracks hardly occur and the residual thickness is more than 50% of the initial thickness. However, the resistivity is 13.53 * 10 -4 Ω / cm, which is the same as that of Comparative Example 5 So that it is difficult to find an improved effect in comparison with the prior art. The conventional bonding wire according to 'Comparative Example 5' does not have the first metal layer but includes a core made of an aluminum alloy to reduce the deformation of the electrode at the time of bonding. However, the conductivity is lower than that of copper, and the resistivity increases.

결과적으로, 비교예에 따른 본딩와이어는 크랙수, 전극의 잔류두께 및 저항율에 있어서 적어도 어느 하나가 기준치를 만족시키지 못하여 반도체소자를 제조하는 경우에 적용하기 곤란함을 알 수 있다.As a result, it can be understood that the bonding wire according to the comparative example can not satisfy at least one of the number of cracks, the residual thickness of the electrode, and the resistivity, thereby failing to apply the present invention to the case of manufacturing a semiconductor device.

상기에서는 본 발명의 바람직한 실시 예를 참조하여 설명하였지만, 해당 기술분야의 당업자는 이하에서 서술하는 특허청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경 실시할 수 있을 것이다. 그러므로 변형된 실시가 기본적으로 본 발명의 특허청구범위의 구성요소를 포함한다면 모두 본 발명의 기술적 범주에 포함된다고 보아야 한다.It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention without departing from the spirit or scope of the invention as defined in the appended claims. You can do it. It is therefore to be understood that the modified embodiments are included in the technical scope of the present invention if they basically include elements of the claims of the present invention.

300...본딩와이어 310...심재
330...제1 금속층 350...제2 금속층
300 ... bonding wire 310 ... core material
330 ... first metal layer 350 ... second metal layer

Claims (16)

반도체소자의 전극에 연결되는 반도체소자용 본딩와이어에 있어서,
구리 또는 구리합금으로 이루어진 심재; 및
상기 심재의 외주에 구비되어 상기 전극 이하의 강도를 가지는 제1 금속층;을 구비하는 것을 특징으로 하는 반도체소자용 본딩와이어.
A bonding wire for a semiconductor device connected to an electrode of a semiconductor device,
A core made of copper or a copper alloy; And
And a first metal layer provided on an outer periphery of the core member and having a strength equal to or lower than that of the electrode.
제1항에 있어서,
상기 제1 금속층은 알루미늄, 알루미늄 합금, 주석, 주석 합금, 아연 및 아연 합금 중에 어느 하나로 이루어진 것을 특징으로 하는 반도체소자용 본딩와이어.
The method according to claim 1,
Wherein the first metal layer is made of any one of aluminum, aluminum alloy, tin, tin alloy, zinc and zinc alloy.
제1항에 있어서,
상기 제1 금속층은 0.05 ㎛ 내지 150 ㎛의 두께를 가지는 것을 특징으로 하는 반도체소자용 본딩와이어.
The method according to claim 1,
Wherein the first metal layer has a thickness of 0.05 占 퐉 to 150 占 퐉.
제1항에 있어서,
상기 제1 금속층은 0.08 ㎛ 내지 100 ㎛의 두께를 가지는 것을 특징으로 하는 반도체소자용 본딩와이어.
The method according to claim 1,
Wherein the first metal layer has a thickness of 0.08 mu m to 100 mu m.
제1항에 있어서,
상기 제1 금속층은 컨펌 압출 방식으로 구비되는 것을 특징으로 하는 반도체소자용 본딩와이어.
The method according to claim 1,
Wherein the first metal layer is formed by a conform extrusion method.
제1항에 있어서,
상기 심재와 상기 제1 금속층 사이에 내산화성의 제2 금속층을 더 구비하는 것을 특징으로 하는 반도체소자용 본딩와이어.
The method according to claim 1,
Further comprising a second metal layer having oxidation resistance between the core and the first metal layer.
제6항에 있어서,
상기 제2 금속층은 금, 은, 백금, 팔라듐, 니켈, 코발트, 크롬, 티타늄 중의 적어도 하나로 이루어지는 것을 특징으로 하는 반도체소자용 본딩와이어.
The method according to claim 6,
Wherein the second metal layer comprises at least one of gold, silver, platinum, palladium, nickel, cobalt, chromium, and titanium.
제6항에 있어서,
상기 제2 금속층은 0.01 ㎛ 내지 10 ㎛의 두께를 가지는 것을 특징으로 하는 반도체소자용 본딩와이어.
The method according to claim 6,
Wherein the second metal layer has a thickness of 0.01 占 퐉 to 10 占 퐉.
제6항에 있어서,
상기 제2 금속층은 0.1 ㎛ 내지 5 ㎛의 두께를 가지는 것을 특징으로 하는 반도체소자용 본딩와이어.
The method according to claim 6,
Wherein the second metal layer has a thickness of 0.1 占 퐉 to 5 占 퐉.
반도체소자의 전극에 연결되는 반도체소자용 본딩와이어를 제작하는 방법에 있어서,
구리 또는 구리합금으로 된 심재에 상기 전극 이하의 강도를 가지는 제1 금속층을 압출하여 선재를 만드는 단계; 및
상기 선재를 열 가공하는 단계;를 포함하는 것을 특징으로 하는 제작방법.
A method of manufacturing a bonding wire for a semiconductor device connected to an electrode of a semiconductor device,
Extruding a first metal layer having a strength lower than that of the electrode into a core material made of copper or a copper alloy to make a wire material; And
And thermally processing the wire rod.
제10항에 있어서,
상기 압출단계는 컨펌 압출 방식으로 구비되는 것을 특징으로 하는 제작방법.
11. The method of claim 10,
Wherein the extrusion step is provided by a conform extrusion method.
제10항에 있어서,
상기 제1 금속층은 알루미늄, 알루미늄 합금, 주석, 주석 합금, 아연 및 아연 합금 중에 어느 하나로 이루어진 것을 특징으로 하는 제작방법.
11. The method of claim 10,
Wherein the first metal layer is made of any one of aluminum, aluminum alloy, tin, tin alloy, zinc and zinc alloy.
제10항에 있어서,
상기 제1 금속층은 0.08 ㎛ 내지 100 ㎛의 두께를 가지는 것을 특징으로 하는 제작방법.
11. The method of claim 10,
Wherein the first metal layer has a thickness of 0.08 to 100 [mu] m.
제10항에 있어서,
상기 선재를 만드는 단계는 상기 심재에 내산화성 제2 금속층을 도포하는 단계를 더 포함하는 것을 특징으로 하는 제작방법.
11. The method of claim 10,
Wherein the step of forming the wire further comprises applying the oxidation resistant second metal layer to the core.
제14항에 있어서,
상기 내산화성 제2 금속층은 금, 은, 백금, 팔라듐, 니켈, 코발트, 크롬, 티타늄 중의 적어도 하나로 이루어지는 것을 특징으로 하는 제작방법.
15. The method of claim 14,
Wherein the oxidation-resistant second metal layer is made of at least one of gold, silver, platinum, palladium, nickel, cobalt, chromium, and titanium.
제14항에 있어서,
상기 제2 금속층은 0.1 ㎛ 내지 5 ㎛의 두께를 가지는 것을 특징으로 하는 제작방법.
15. The method of claim 14,
Wherein the second metal layer has a thickness of from 0.1 占 퐉 to 5 占 퐉.
KR20130025655A 2013-03-11 2013-03-11 Bonding wire for semiconductor device and manufacturing method thereof KR20140112602A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20130025655A KR20140112602A (en) 2013-03-11 2013-03-11 Bonding wire for semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20130025655A KR20140112602A (en) 2013-03-11 2013-03-11 Bonding wire for semiconductor device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20140112602A true KR20140112602A (en) 2014-09-24

Family

ID=51757403

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130025655A KR20140112602A (en) 2013-03-11 2013-03-11 Bonding wire for semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
KR (1) KR20140112602A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428335A (en) * 2015-12-09 2016-03-23 北京达博有色金属焊料有限责任公司 Bonding wire
WO2022158895A1 (en) * 2021-01-22 2022-07-28 신웅철 Bonding wire for semiconductor package

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105428335A (en) * 2015-12-09 2016-03-23 北京达博有色金属焊料有限责任公司 Bonding wire
WO2022158895A1 (en) * 2021-01-22 2022-07-28 신웅철 Bonding wire for semiconductor package

Similar Documents

Publication Publication Date Title
KR101844270B1 (en) Bus bar and preparing method for the same
US10497509B2 (en) Coil device
JP2010027453A (en) Cable with crimping terminal, and manufacturing method thereof
EP2166548A1 (en) External electrodes for ceramic electronic component and method for manufacturing the same
JP2010500703A (en) Glass plate with soldered electrical terminal connection
JP2014179541A (en) Semiconductor device and method of manufacturing the same
JP2008166457A (en) Structure of lead terminal of electronic component
CN101853826A (en) Link and printed board unit
WO2015106426A1 (en) Surge-resistant wire-wound resistor and method for manufacturing same
WO2015037072A1 (en) Semiconductor device and manufacturing method for same
KR20140112602A (en) Bonding wire for semiconductor device and manufacturing method thereof
KR101392889B1 (en) Fuse of resistor type and fuse resistor assembly having the same
JP2007265797A (en) Coaxial cable and its manufacturing method
US9318264B2 (en) Multilayer ceramic device
JP5671664B1 (en) Solid electrolytic capacitor, anode lead connection method thereof, and manufacturing method of solid electrolytic capacitor
JP6185793B2 (en) Terminal connection structure, manufacturing method and manufacturing apparatus thereof
WO2019117128A1 (en) Method for manufacturing resistor
EP2849194B1 (en) Electrode material for thermal-fuse movable electrode
JP6500299B2 (en) Lead frame and method of manufacturing semiconductor device using the same
JP4792713B2 (en) Lead wire, manufacturing method thereof, and solar cell assembly
JP5642312B1 (en) Semiconductor device and manufacturing method thereof
JP5822777B2 (en) 2-core parallel lead wire and thermistor with lead wire
JP2018006376A (en) Surface-mount thin film network
JP2535489B2 (en) Solid electrolytic capacitor
KR20130111666A (en) Bonding wire for semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
WITN Application deemed withdrawn, e.g. because no request for examination was filed or no examination fee was paid