KR20140066276A - 웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법 - Google Patents

웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법 Download PDF

Info

Publication number
KR20140066276A
KR20140066276A KR1020120132831A KR20120132831A KR20140066276A KR 20140066276 A KR20140066276 A KR 20140066276A KR 1020120132831 A KR1020120132831 A KR 1020120132831A KR 20120132831 A KR20120132831 A KR 20120132831A KR 20140066276 A KR20140066276 A KR 20140066276A
Authority
KR
South Korea
Prior art keywords
wafer
laser beam
pattern image
liquid crystal
crystal display
Prior art date
Application number
KR1020120132831A
Other languages
English (en)
Other versions
KR101423497B1 (ko
Inventor
신동식
서정
최상규
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Priority to KR1020120132831A priority Critical patent/KR101423497B1/ko
Publication of KR20140066276A publication Critical patent/KR20140066276A/ko
Application granted granted Critical
Publication of KR101423497B1 publication Critical patent/KR101423497B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76886Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances
    • H01L21/76892Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern
    • H01L21/76894Modifying permanently or temporarily the pattern or the conductivity of conductive members, e.g. formation of alloys, reduction of contact resistances modifying the pattern using a laser, e.g. laser cutting, laser direct writing, laser repair
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices

Abstract

본 발명은 레이저 빔을 발생시키는 빔 발생기와, 상기 빔 발생기에서 나온 레이저 빔을 웨이퍼에 집광시키는 집광 유닛과, 상기 빔 발생기와 집광 유닛 사이의 상기 레이저 빔의 광경로 상에 배치되며 상기 레이저 빔의 편광 특성을 변경시키는 패턴 이미지를 출력하는 실리콘 액정표시유닛(LCoS)과, 상기 실리콘 액정표시유닛에 연결되며 상기 실리콘 액정표시 유닛에 상기 패턴 이미지의 제어를 위한 신호를 인가하는 제어유닛을 포함하는 웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법을 개시한다.

Description

웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법{LASER PROCESSING DEVICE FOR WAFER DICING AND WAFER DICING METHOD USING THE SAME}
본 발명은 웨이퍼를 고정밀도로 다이싱하기 위해 레이저를 이용하여 웨이퍼 내부를 개질 가공하는 웨이퍼 다이싱용 레이저 가공 장치 및 웨이퍼 다이싱 방법에 관한 것이다.
웨이퍼 다이싱 공정(wafer dicing process)은 반도체 생산 공정 가운데 웨이퍼 제조 공정과 패키징 공정 사이에 위치하여 웨이퍼를 개별칩 단위로 분리하는 공정이다.
웨이퍼의 다이싱은 일반적으로 다이아몬드 블레이드를 사용하여 웨이퍼를 물리적으로 절단하는 방법, 소위 쏘잉(sawing)에 의해 이루어지고 있다. 쏘잉을 이용한 웨이퍼 다이싱의 경우 절단 방법이 간편한 장점이 있으나, 이러한 기계적 가공은 가공 속도가 느릴 뿐만 아니라 절단면이 깨끗하지 못하여 고정밀도로 다이싱하는데는 부적합하다.
이러한 문제를 해결하기 위하여 레이저를 이용하여 웨이퍼의 절단하고자 하는 부위를 개질 가공한 후 웨이퍼에 인장력을 가하여 웨이퍼를 절단하는 방법이 사용되고 있다.
이와 같은 레이저 가공을 통한 웨이퍼 다이싱 방법에 있어서 가공 정밀도를 일정 이상으로 만족시키면서 가공속도, 가공 면적의 향상이 가능한 기술 개발을 통해 다이싱 효율을 보다 향상시키기 위한 다양한 시도가 이루어지고 있는 실정이다.
본 발명은 상기와 같은 점을 감안하여 안출된 것으로서, 실리콘 액정표시장치(LCos) 기술을 레이저 가공 기술에 적용하여 가공 정밀도 및 생산성 향상이 가능한 웨이퍼 다이싱용 레이저 가공장치를 제공하기 위한 것이다.
상기한 과제를 실현하기 위해 본 발명은 레이저 빔을 발생시키는 빔 발생기와, 상기 빔 발생기에서 나온 레이저 빔을 웨이퍼에 집광시키는 집광 유닛과, 상기 빔 발생기와 집광 유닛 사이의 상기 레이저 빔의 광경로 상에 배치되며 상기 레이저 빔의 편광 특성을 변경시키는 패턴 이미지를 출력하는 실리콘 액정표시유닛(LCoS)과, 상기 실리콘 액정표시유닛에 연결되며 상기 실리콘 액정표시 유닛에 상기 패턴 이미지의 제어를 위한 신호를 인가하는 제어유닛을 포함하는 웨이퍼 다이싱용 레이저 가공장치를 개시한다.
상기 패턴 이미지는 멀티 빔의 구현을 위한 다중 슬릿 이미지를 포함할 수 있다. 상기 다중 슬릿 이미지는 2가지 이상의 휘도를 갖는 슬릿의 조합에 의해 구현되며, 상기 제어유닛은 상기 다중 슬릿 이미지의 슬릿 간 피치를 제어하여 상기 멀티 빔의 피치를 조절할 수 있다.
상기 패턴 이미지는 복수의 동심원이 일정 간격을 이루는 프리넬 패턴 이미지를 포함할 수 있으며, 상기 제어유닛은 상기 프리넬 패턴 이미지의 중심원 반경 및 동심원 간 피치를 제어하여 상기 레이저 빔의 초점 깊이를 조절할 수 있다.
상기 패턴 이미지는 멀티 빔의 구현을 위한 다중 슬릿 이미지와 복수의 동심원이 일정 간격을 이루는 프리넬 패턴 이미지가 중첩된 이미지를 포함하며, 상기 제어유닛은 상기 패턴 이미지를 제어하여 상기 멀티 빔의 개수, 피치, 초점 깊이 중 적어도 하나를 조절할 수 있다.
한편 본 발명은 이송 중인 웨이퍼에 레이저 빔을 조사하여 상기 웨이퍼의 내부에 일정 두께의 개질 영역을 형성하는 단계와, 상기 웨이퍼가 개질 부위를 기준으로 절단되도록 웨이퍼에 인장력을 가하는 단계를 포함하는 상기 레이저 가공 장치를 이용한 웨이퍼 다이싱 방법을 개시한다.
상기와 같은 구성의 본 발명에 의하면, 웨이퍼 내부에 개질 영역을 형성시켜 절단하므로 고정밀도의 다이싱이 가능하며, 실리콘 액정표시 유닛을 이용하여 멀티 빔의 구현이 가능한바 한 번의 작업으로 여러 줄의 개질 영역을 형성시킬 수 있어 생산성 향상의 효과가 있다.
아울러 간단한 구조 및 방식으로도 레이저 빔의 개수, 피치, 초점의 조절이 실시간으로 가능한 이점이 있다.
또한 복잡한 광학계 및 구동 장치를 사용할 필요가 없어 시스템 부피를 감소시킬 수 있고, 레이저 빔의 초점 조절이 실리콘 액정 표시 유닛의 제어만으로 가능하므로 기계적 방식 대비 시스템의 안정성이 높은 이점이 있다
도 1은 본 발명의 일 실시예에 따른 웨이퍼 다이싱용 레이저 가공장치의 개념도.
도 2는 도 1의 실리콘 액정표시유닛에 의해 출력된 패턴 이미지의 일 예를 보인 도면.
도 3a 및 3b는 도 1의 실리콘 액정표시유닛의 작동 상태를 보인 개념도.
도 4a는 멀티 빔 구현을 위한 패턴 이미지의 일 예를 보인 도면.
도 4b는 멀티 빔 구현을 위한 패턴 이미지의 다른 예를 보인 도면.
도 4c는 도 4a의 패턴 이미지를 이용한 실제 가공 상태를 보인 사진.
도 4d는 멀티 빔 구현을 위한 패턴 이미지의 또 다른 예를 보인 도면.
도 5는 본 발명의 웨이퍼 다이싱용 레이저 개질 시스템을 이용한 웨이퍼 다이싱 방법의 일 예를 나타낸 도면.
도 6a 내지 6c는 도 5의 A-A 라인을 따르는 단면도.
도 7은 멀티 빔의 피치 조절을 위한 패턴 이미지 제어의 일 예를 보인 도면.
도 8은 도 7에 보인 패턴 이미지 제어를 이용한 실제 가공 상태를 보인 사진.
도 9는 레이저 빔의 초점 깊이 조절을 위한 패턴 이미지 제어의 일 예를 보인 사진.
도 10은 도 9에 보인 패턴 이미지 제어를 이용하여 레이저 빔의 초점 깊이를 조절하는 과정을 보인 개념도.
도 11은 다중 슬릿 이미지와 프리넬 패턴 이미지가 중첩된 형태를 갖는 패턴 이미지의 일 예를 보인 도면.
이하, 본 발명과 관련된 웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법에 대하여 도면을 참조하여 보다 상세하게 설명한다.
도 1은 본 발명의 일 실시예에 따른 웨이퍼 다이싱용 레이저 가공장치의 개념도이다.
본 실시예에 따른 웨이퍼 다이싱용 레이저 가공장치는 빔 발생기(110), 집광 유닛(120), 실리콘 액정표시유닛(130, LCoS), 및 제어유닛(140)을 포함한다.
빔 발생기(110)는 웨이퍼(10)의 가공을 위한 레이저 빔(L)을 발생시킨다. 본 실시예에 적용되는 레이저는 나노초 이하의 펄스 레이저가 적용될 수 있으며, 구체적으로는 고정밀도의 정밀도를 위해서는 1012W/cm2 이상의 출력밀도를 갖는 피코초 또는 팸토초 레이저가 적용되는 것이 바람직하다.
집광 유닛(120)은 빔 발생기(110)에서 나온 레이저 빔(L)을 웨이퍼(10)에 집광시키는 기능을 한다. 집광 유닛(120)으로서 레이저 스캐너 또는 고배율 대물 렌즈 등의 적용이 가능하다. 도 1은 집광 유닛(120)으로서 레이저 스캐너를 사용한 것을 예시하고 있다.
빔 발생기(110)와 집광 유닛(120)은 컨트롤러(180)에 연결되며, 사용자는 컨트롤러(180)를 통해 빔 발생기(110)와 집광 유닛(120)의 동작을 제어할 수 있다.
실리콘 액정표시유닛(130)은 빔 발생기(110)와 집광 유닛(120) 사이의 레이저 빔(L)의 광경로 상에 배치된다. 실리콘 액정표시유닛(130), 즉 LCoS(Liquid Crystal on Silicon)는 액정디스플레이(LCD)소자에서 하판의 유리를 실리콘 웨이퍼로 대치하고 그 위에 회로를 형성한 디스플레이 장치를 말하며, 본 발명에서는 레이저 빔(L)의 편광 특성을 변경시키는 패턴 이미지를 출력하기 위한 용도로 사용된다. 실리콘 액정표시유닛(130)은 공지된 구성이므로 구체적인 구성에 대한 설명은 생략하기로 한다.
도 2는 도 1의 실리콘 액정표시유닛에 의해 출력된 패턴 이미지의 일 예를 보인 도면이고, 도 3a 및 3b는 도 1의 실리콘 액정표시유닛의 작동 상태를 보인 개념도이다.
도 2에 도시된 바와 같이 실리콘 액정표시유닛(130)은 흰색(밝은색) 부분과 검정색(어두운색) 부분의 조합에 의해 특정 이미지를 출력하는데, 도 2의 경우 복수의 슬릿이 반복적으로 배열된 다중 슬릿의 형태의 이미지를 출력한 것을 예시하고 있다. 도 2에서 흰색 부분은 실리콘 액정표시유닛(130)의 액정에 전압이 인가된 부분이며, 검정색 부분은 액정으로의 전압 인가가 오프(OFF)된 부분을 의미한다.
도 3a 및 3b는 왼쪽에서 레이저 빔(L)이 입사되어 실리콘 액정표시유닛(130)에 반사되어 오른쪽으로 나가는 것을 나타내고 있으며, 레이저 빔(L)에 표시된 화살표는 레이저 빔의 편광 방향을 나타내고 있다.
도 3a는 전압이 인가된 부분의 액정 분자(131) 정렬 상태를 나타내고 있으며, 도 3b는 전압 인가가 오프된 부분의 액정 분자(131) 정렬 상태를 나타내고 있다. 전압 인가가 오프된 부분의 액정 분자(131)는 전압 인가된 부분의 분자 정렬 상태에서 일정 각도 회전된 상태로 배열되며, 그에 따라 레이저 빔(L)의 편광 회전각을 회전시킬 수 있게 된다.
도 3a와 같이 특정 편광 방향을 갖는 레이저 빔(L)이 전압 인가 부분에 입사되었다 반사되는 경우 레이저 빔(L)의 편광 방향이 그대로 유지되게 된다. 그러나 도 3b와 같이 특정 편광 방향을 갖는 레이저 빔(L)이 전압 오프 부분에 입사되었다 반사되는 경우 레이저 빔의 편광 방향이 90도만큼 회전하게 된다. 도 3b에 도시된 반사광의 편광 방향은 지면에 수직한 방향을 나타내고 있다.
이와 같이 패턴 이미지를 출력한 실리콘 액정표시유닛(130)에 레이저 빔(L)이 반사(또는 통과)하게 되면, 레이저 빔은 편광 방향을 유지하는 성분과 편광 방향이 회전된 성분의 2 종류의 성분을 포함하게 되어 편광 특성이 변경되게 되는 것이다. 본 발명에서는 실리콘 액정표시유닛(130)을 이용하여 레이저 빔(L)의 편광 특성을 변경시킴으로써 멀티 빔을 구현하거나 레이저 빔(L)의 개수, 피치, 초점 깊이 등의 실시간 조절이 가능하며, 추후 이에 대하여 상세히 설명하기로 한다.
다시 도 1을 참조하면, 제어유닛(140)은 실리콘 액정표시유닛(130)에 연결되며, 실리콘 액정표시유닛(130)에 패턴 이미지의 제어를 위한 신호를 인가하는 기능을 한다. 제어유닛(140)은 사용자의 입력에 따라 실리콘 액정표시유닛(130)에 출력되는 패턴 이미지의 형태를 변경시키도록 구성된다.
빔 발생기(110)와 실리콘 액정표시유닛(130)의 사이에는 레이저 빔(L)의 편광 방향을 특정 각도 회전시키기 위한 웨이브 플레이트(150, wave plate 또는 retarder)가 추가로 설치될 수 있으며, 웨이브 플레이트(150)의 후방에는 웨이브 플레이트(150)를 통과한 레이저 빔(L)의 사이즈를 확대시키기 위한 빔 익스팬더(160)가 설치될 수 있다.
한편 실리콘 액정표시유닛(130)과 집광유닛(120)의 사이에는 레이저 빔(L)의 방향을 전환하기 위한 미러(170)가 설치될 수 있다. 본 실시예의 경우 실리콘 액정표시유닛(130)과 집광유닛(120)이 90도만큼 이격되어 있어 미러(170)를 사용하여 레이저 빔(L)의 방향을 전환하였으나, 실리콘 액정표시유닛(130)과 집광유닛(120)의 배치 상태에 따라 미러(170)가 적용되거나 적용되지 않을 수 있다.
도 4a는 멀티 빔 구현을 위한 패턴 이미지의 일 예를 보인 도면이다. 도 4b는 멀티 빔 구현을 위한 패턴 이미지의 다른 예를 보인 도면이며, 도 4c는 도 4a의 패턴 이미지를 이용한 실제 가공 상태를 보인 사진이다. 그리고 도 4d는 멀티 빔 구현을 위한 패턴 이미지의 또 다른 예를 보인 도면이다.
도 4a는 실리콘 액정표시유닛(130)이 출력하는 패턴 이미지의 일 예로서 다중 슬릿 이미지를 나타내고 있다. 레이저 빔(L)이 실리콘 액정표시유닛(130)을 통과하면서 편광 방향을 유지하는 성분과 편광 방향이 회전된 성분의 2 종류의 성분으포 편광 특성이 변경되며, 이 2 종류의 성분은 방향은 동일하지만 파면(wave front)이 다른 특성을 갖는다. 이와 같은 파면이 상이한 2종류 성분의 빔은 진행 방향을 따라 진행하면서 회절을 일으키게 되며, 각 성분 사이의 간섭 현상에 의해 멀티 빔이 구현되게 되는 것이다.
도 4a의 경우 검은색과 흰색 두 종류의 휘도가 조합된 다중 슬릿 이미지를 예시하였으나, 도 4c 및 4d와 같이 휘도의 종류를 다양화한 다중 슬릿 이미지를 구현할 수 있다. 이는 전압 인가의 정도에 따라 휘도의 종류를 다양화할 수 있으며, 전압 인가의 정도에 따라 해당 영역의 레이저 편광 각도가 달리할 수 있다. 이와 같이 전압 인가된 정도가 다른 영역이 2가지 이상인 경우 2가지 이상의 파면을 갖는 성분을 포함하도록 레이저 빔의 편광 특성을 변경시킬 수 있다.
레이저 빔의 성분이 많아질수록 멀티 빔의 가운데 영역의 빔 강도와 가장 자리 영역의 빔 강도를 평탄화시킬 수 있는데, 이를 이용하여 일정 강도 이상의 강도를 갖는 빔의 개수를 조정할 수 있다. 도 4c는 도 4b의 패턴 이미지를 이용한 가공 모습을 보여주고 있으며, 이에 따르면 5개의 동일(또는 유사)한 강도를 갖는 레이저 빔이 구현되어 이를 이용하여 가공된 것을 확인할 수 있다.
도 4d는 다중 슬릿의 휘도 종류를 보다 증가시켜 레이저 빔에 포함된 성분의 종류를 보다 증가시킨 경우를 나타내고 있는데, 이에 따르면 7개의 유사 강도를 갖는 레이저 빔을 구현할 수 있다. 참고로 도 4a의 패턴 이미지를 사용한 경우 3개의 유사 강도를 갖는 레이저 빔을 구현할 수 있었다.
도 5는 본 발명의 웨이퍼 다이싱용 레이저 개질 시스템을 이용한 웨이퍼 다이싱 방법의 일 예를 나타낸 도면이며, 도 6a 내지 6c는 도 5의 A-A 라인을 따르는 단면도이다.
먼저 이송 중인 웨이퍼(10)에 레이저 빔(L)을 조사하여 웨이퍼(10)의 내부에 일정 두께(t)의 개질 영역을 형성시킨다. 웨이퍼(10)는 이송 장치(컨베이어 벨트 등)에 의해 일정 방향으로 이송되며, 집광 유닛(120)을 통과한 레이저 빔(L)을 웨이퍼(10) 내에 집광시켜 웨이퍼(10)의 내부 영역을 개질시킨다.
도 5는 멀티 빔을 구현하여 한 번의 작업으로 여러 줄의 개질 영역을 형성시키는 것을 도시하고 있으며, 도 6a 내지 6c는 웨이퍼 내부에 일정 두께(t)의 개질 영역을 형성하는 과정을 나타내고 있다.
웨이퍼(10) 내부에 레이저 빔(L)이 집광되는 상태에서 웨이퍼(10)를 특정 방향(D1)으로 이동시키면 웨이퍼(10) 내부에 복수의 개질 영역(도 6a의 해칭 영역)이 라인의 형태로 형성된다.
웨이퍼(10)를 계속 이동시켜 웨이퍼(10)의 끝 부분까지 개질이 이루어지면, 도 6b와 같이 웨이퍼(10)를 아래 방향(D3)으로 하강시킨 후 웨이퍼(10)를 반대 방향(D2)으로 이동시켜 개질된 부분의 윗부분이 개질되도록 한다. 이를 위해 이송 장치는 웨이퍼(10)를 왕복 이송 및 승강시킬 수 있게 구성 가능하다.
상기와 같은 작업(웨이퍼의 하강 및 이송)을 반복하면 도 6c와 같이 웨이퍼(10)의 내부에 일정 두께(t)의 개질 영역을 형성시킬 수 있다.
웨이퍼 내부에 일정 두께(t)의 개질 영역의 형성을 완료한 후, 웨이퍼(10)의 개질 영역을 중심으로 인장력을 가하면 웨이퍼(10)가 개질 영역을 기준으로 절단되게 되는 것이다.
이와 같이 웨이퍼(10)의 내부에 개질 영역을 형성하는 것은 웨이퍼(10)를 절단할 때 웨이퍼(10)의 표면에 일직선으로 크랙이 형성되는 것을 도와주도록 하기 위함이다. 이에 따라 웨이퍼(10)의 절단시 깨끗한 절단면을 구현할 수 있어 고정밀도의 다이싱이 가능하다. 아울러 멀티 빔의 구현을 통해 한 번의 작업으로 여러 줄의 개질 영역을 형성시킬 수 있으므로 생산성의 향상이 가능하다.
이상에서는 멀티 빔을 구현하여 웨이퍼를 다이싱하는 것을 기초로 웨이퍼 다이싱 방법을 설명하였으나, 이하에서 설명되는 실시예 또한 동일한 방법(개질 영역 형성 및 인장력 인가)을 통해 이루어지며 추후 이에 대한 설명은 앞선 설명에 갈음하기로 한다.
도 7은 멀티 빔의 피치 조절을 위한 패턴 이미지 제어의 일 예를 보인 도면이며, 도 8은 도 7에 보인 패턴 이미지 제어를 이용한 실제 가공 상태를 보인 사진이다.
제어유닛(140)은 다중 슬릿 이미지의 슬릿 간 피치(예를 들어, 검정색 슬릿 사이의 간격)를 제어하여 멀티 빔의 피치(레이저 빔 사이의 거리)를 조절할 수 있다.
도 7은 왼쪽 도면의 다중 슬릿 이미지에서 오른쪽 도면의 다중 슬릿 이미지로 슬릿 간 피치가 좁아지도록 제어한 것을 나타내고 있으며, 도 8을 통해 개질 부위 간의 피치가 변경된 것을 확인할 수 있다.
이에 따르면 사용자 원하는 다이싱 크기에 따라 멀티 빔의 피치를 간단한 방법으로 제어할 수 있는 이점이 있다. 예를 들어 다이싱하고자 하는 칩의 가로 길이와 세로 길이가 서로 다른 경우 멀티 빔의 피치 조절을 통해 손쉬운 가공이 가능하다 할 것이다. 다시 말해 가로 방향 가공시의 멀티 빔의 피치와 세로 방향 가공시의 멀티 빔의 피치를 서로 다르게 제어하기만 하면 되는 것이다.
도 9는 레이저 빔의 초점 깊이 조절을 위한 패턴 이미지 제어의 일 예를 보인 도면이며, 도 10은 도 9에 보인 패턴 이미지 제어를 이용하여 레이저 빔의 초점 깊이를 조절하는 과정을 보인 개념도이다.
실리콘 액정표시유닛(130)은 복수의 동심원이 일정 간격을 이루는 프리넬 패턴 이미지를 출력할 수 있으며, 제어유닛(140)은 프리넬 패턴 이미지의 중심원 반경을 제어하여 레이저 빔(L)의 초점 깊이를 조절하도록 구성된다.
프리넬 패턴을 통과한 레이저 빔은 앞서 설명한 다중 슬릿을 통과한 경우와 달리 특정 지점에 초점이 맺히는 특성을 갖는다. 프리넬 렌즈의 초점거리(f)는 r2/λ(참고로, r은 중심원 반경이며 λ는 빛의 파장임)에 비례하므로, 프리넬 패턴의 중심원 반경을 증가시킬수록 초점 깊이를 깊게 제어할 수 있다.
도 9를 참조하면, 도 9의 왼쪽 도면에서 오른쪽 도면으로 갈수록 프리넬 패턴의 중심원 반경이 증가하도록 제어된 것을 알 수 있다. 도 10은 도 9의 각 도면에 대응되는 레이저 빔(L)의 초점 깊이를 나타낸 것으로 프리넬 패턴의 중심원 반경이 증가할수록 레이저 빔(L)의 초점 깊이가 깊어진 것을 알 수 있다.
이와 같은 초점 깊이 조절 방식은 기계적인 방식(스테이지 이송, 광학계 이송 등)을 취하지 않으므로 시스템의 안정성을 향상시킬 수 있으며 간편한 방식을 통한 초점 조절이 가능한 이점이 있다.
이와 같은 초점 깊이 조절은 웨이퍼 다이싱 공정에에서 다양한 방법으로 활용 가능한데, 예를 들어, 도 6b에 보인 이송장치를 사용한 웨이퍼(10) 이송 공정을 생략하고 레이저 빔(L)의 초점을 조절함으로써 동일한 목적을 이룰 수 있을 것이다.
도 11은 다중 슬릿 이미지와 프리넬 패턴 이미지가 중첩된 형태를 갖는 패턴 이미지의 일 예를 보인 도면이다.
본 실시예에 따르면, 실리콘 액정표시유닛(130)의 패턴 이미지는 도 4a에서 보인 다중 슬릿 이미지와 도 9a에서 보인 프리넬 패턴 이미지가 중첩된 형태를 갖는다.
실리콘 액정표시유닛(130)이 이와 같은 패턴 이미지를 출력하는 경우, 멀티 빔을 구현하면서 이와 동시에 멀티 빔의 초점 깊이 제어가 가능하다 할 것이다.
제어유닛(140)은 패턴 이미지를 제어하여 상기 멀티 빔의 개수, 피치, 초점 깊이 중 적어도 하나를 조절할 수 있다. 예를 들어 패턴 이미지의 슬릿 개수, 피치를 조절하여 멀티 빔의 개수, 피치의 조절이 가능하며, 중심원 반경 및 동심원 간 피치를 조절하여 레이저 빔(L)의 초점 깊이의 조절이 가능하다.
이상에서 설명한 웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법는 위에서 설명된 실시예들의 구성과 방법에 한정되는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.

Claims (8)

  1. 레이저 빔을 발생시키는 빔 발생기;
    상기 빔 발생기에서 나온 레이저 빔을 웨이퍼에 집광시키는 집광 유닛;
    상기 빔 발생기와 집광 유닛 사이의 상기 레이저 빔의 광경로 상에 배치되며, 상기 레이저 빔의 편광 특성을 변경시키는 패턴 이미지를 출력하는 실리콘 액정표시유닛(LCoS); 및
    상기 실리콘 액정표시유닛에 연결되며, 상기 실리콘 액정표시 유닛에 상기 패턴 이미지의 제어를 위한 신호를 인가하는 제어유닛을 포함하는 웨이퍼 다이싱용 레이저 가공장치.
  2. 제1항에 있어서,
    상기 패턴 이미지는 멀티 빔의 구현을 위한 다중 슬릿 이미지를 포함하는 것을 특징으로 하는 웨이퍼 다이싱용 레이저 가공장치.
  3. 제2항에 있어서,
    상기 다중 슬릿 이미지는 2가지 이상의 휘도를 갖는 슬릿의 조합에 의해 구현되는 것을 특징으로 하는 웨이퍼 다이싱용 레이저 가공장치.
  4. 제2항에 있어서,
    상기 제어유닛은 상기 다중 슬릿 이미지의 슬릿 간 피치를 제어하여 상기 멀티 빔의 피치를 조절하는 것을 특징으로 하는 웨이퍼 다이싱용 레이저 가공장치.
  5. 제1항에 있어서,
    상기 패턴 이미지는 복수의 동심원이 일정 간격을 이루는 프리넬 패턴 이미지를 포함하며,
    상기 제어유닛은 상기 프리넬 패턴 이미지의 중심원 반경 및 동심원 간 피치를 제어하여 상기 레이저 빔의 초점 깊이를 조절하는 것을 특징으로 하는 웨이퍼 다이싱용 레이저 가공장치.
  6. 제1항에 있어서,
    상기 패턴 이미지는 멀티 빔의 구현을 위한 다중 슬릿 이미지와 복수의 동심원이 일정 간격을 이루는 프리넬 패턴 이미지가 중첩된 이미지를 포함하며,
    상기 제어유닛은 상기 패턴 이미지를 제어하여 상기 멀티 빔의 개수, 피치, 초점 깊이 중 적어도 하나를 조절하는 것을 특징으로 하는 웨이퍼 다이싱용 레이저 가공장치.
  7. 제1항에 있어서,
    상기 빔 발생기와 실리콘 액정표시유닛의 사이에 설치되며, 상기 레이저빔의 편광 방향을 특정 각도 회전시키기 위한 웨이브 플레이트; 및
    상기 웨이브 플레이트를 통과한 레이저 빔의 사이즈를 확대시키는 빔 익스팬더를 더 포함하는 것을 특징으로 하는 웨이퍼 다이싱용 레이저 가공장치.
  8. 제1항 내지 제7항 중 어느 한 항을 따르는 웨이퍼 다이싱용 레이저 가공장치를 이용한 웨이퍼 다이싱 방법에 있어서,
    이송 중인 웨이퍼에 레이저 빔을 조사하여 상기 웨이퍼의 내부에 일정 두께의 개질 영역을 형성하는 단계; 및
    상기 웨이퍼가 개질 부위를 기준으로 절단되도록 웨이퍼에 인장력을 가하는 단계를 포함하는 것을 특징으로 하는 웨이퍼 다이싱 방법.
KR1020120132831A 2012-11-22 2012-11-22 웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법 KR101423497B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120132831A KR101423497B1 (ko) 2012-11-22 2012-11-22 웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120132831A KR101423497B1 (ko) 2012-11-22 2012-11-22 웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법

Publications (2)

Publication Number Publication Date
KR20140066276A true KR20140066276A (ko) 2014-06-02
KR101423497B1 KR101423497B1 (ko) 2014-07-29

Family

ID=51123033

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120132831A KR101423497B1 (ko) 2012-11-22 2012-11-22 웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법

Country Status (1)

Country Link
KR (1) KR101423497B1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102176416B1 (ko) 2019-04-24 2020-11-10 스카이다이아몬드 주식회사 형광 박판 다이싱 방법
JP7460193B2 (ja) 2022-09-05 2024-04-02 ゼリン カンパニー リミテッド 半導体完全切断のためのレーザービーム照射装置およびその動作方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009282112A (ja) 2008-05-20 2009-12-03 Mitsutoyo Corp 共焦点顕微鏡
JP5254761B2 (ja) * 2008-11-28 2013-08-07 浜松ホトニクス株式会社 レーザ加工装置
KR101757937B1 (ko) * 2009-02-09 2017-07-13 하마마츠 포토닉스 가부시키가이샤 가공대상물 절단방법
KR101221828B1 (ko) * 2010-08-20 2013-01-15 한국기계연구원 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법

Also Published As

Publication number Publication date
KR101423497B1 (ko) 2014-07-29

Similar Documents

Publication Publication Date Title
JP5094994B2 (ja) ウェハ
KR101757937B1 (ko) 가공대상물 절단방법
TWI466748B (zh) 雷射處理設備
JP6258787B2 (ja) レーザ加工装置及びレーザ加工方法
TWI633962B (zh) 使用直接雷射刻劃在工件中形成複數個劃痕溝槽之儀器及方法
JP6272145B2 (ja) レーザ加工装置及びレーザ加工方法
TWI649145B (zh) Laser processing device and laser processing method
JP5905274B2 (ja) 半導体デバイスの製造方法
KR20100105386A (ko) 광학계 및 레이저 가공 장치
JP2009248173A (ja) レーザー加工装置、レーザービームのピッチ可変方法、及びレーザー加工方法
US11000919B2 (en) Laser processing apparatus
KR101582632B1 (ko) 프레넬 영역 소자를 이용한 기판 절단 방법
KR20060120230A (ko) 반도체 소자 분리 방법, 디바이스 및 회절 격자
KR100789277B1 (ko) 투명도전막 식각방법
KR101918203B1 (ko) 레이저 처리 장치 및 방법
KR101423497B1 (ko) 웨이퍼 다이싱용 레이저 가공장치 및 이를 이용한 웨이퍼 다이싱 방법
KR20120016456A (ko) 레이저 가공장치 및 레이저 가공방법
KR101421091B1 (ko) 극초단파 펄스 레이저를 이용한 미세패턴 가공장치 및 미세패턴 가공방법
JP2004146823A5 (ko)
JP2007030033A (ja) 透明材料へのマーキング方法およびこれを用いた装置
KR20100023930A (ko) 레이저 빔 분할을 이용한 레이저 가공 장치 및 방법
JP2006080205A (ja) レーザ加工装置及びレーザ加工方法
KR20160140212A (ko) 레이저 가공장치 및 레이저 가공방법
KR20210157964A (ko) 레이저 절단 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170621

Year of fee payment: 4