KR20140056084A - 플라즈마 균일성과 효율성 개선을 위한 인덕턴스 커플링 플라즈마 장치 및 이를 이용한 반도체 기판의 제조 방법 - Google Patents

플라즈마 균일성과 효율성 개선을 위한 인덕턴스 커플링 플라즈마 장치 및 이를 이용한 반도체 기판의 제조 방법 Download PDF

Info

Publication number
KR20140056084A
KR20140056084A KR1020130130035A KR20130130035A KR20140056084A KR 20140056084 A KR20140056084 A KR 20140056084A KR 1020130130035 A KR1020130130035 A KR 1020130130035A KR 20130130035 A KR20130130035 A KR 20130130035A KR 20140056084 A KR20140056084 A KR 20140056084A
Authority
KR
South Korea
Prior art keywords
regulator
radio frequency
gas
process gas
insulating material
Prior art date
Application number
KR1020130130035A
Other languages
English (en)
Other versions
KR101488243B1 (ko
Inventor
송린 쉬
강 스
투치앙 니
Original Assignee
어드밴스드 마이크로 패브리케이션 이큅먼트 인코퍼레이티드, 상하이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 어드밴스드 마이크로 패브리케이션 이큅먼트 인코퍼레이티드, 상하이 filed Critical 어드밴스드 마이크로 패브리케이션 이큅먼트 인코퍼레이티드, 상하이
Publication of KR20140056084A publication Critical patent/KR20140056084A/ko
Application granted granted Critical
Publication of KR101488243B1 publication Critical patent/KR101488243B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/3211Antennas, e.g. particular shapes of coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32633Baffles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • H01J37/32119Windows
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • H01J37/32449Gas control, e.g. control of the gas flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32458Vessel
    • H01J37/32513Sealing means, e.g. sealing between different parts of the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32623Mechanical discharge control means
    • H01J37/32642Focus rings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/32715Workpiece holder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma Technology (AREA)
  • Drying Of Semiconductors (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

본 발명은 일종의 인덕턴스 커플링 플라즈마를 제공한다. 그 중에는 기밀 셀을 포함하고, 상기 기밀 셀에 포함된 천정에는 최소한 절연재료로 제작된 절연재료 창이 구성되어 있다. 기판 지지대는 상기 기밀 셀의 상기 절연재료 창 하부에 설치된다. 무선주파수 파워서플라이는 상기 절연재료 창 상부에 위치하며, 방사된 무선주파수 에너지는 상기 절연재료 창을 꿰뚫고 상기 기밀 셀 내부로 들어간다. 복수의 처리기체 주입기는 상기 기판 지지대 상에 균일하게 분포되어 처리기체를 상기 기밀 셀 내부로 공급한다. 환형 조절기는 상기 기밀 셀 내부 및 상기 기판 지지대 상부와 상기 복수의 처리기체 주입기 하부에 위치하여 상기 처리기체를 안내한다.

Description

플라즈마 균일성과 효율성 개선을 위한 인덕턴스 커플링 플라즈마 장치 및 이를 이용한 반도체 기판의 제조 방법 {Inductively-coupled plasma reactor for plasma uniformity and efficiency enhancement and method for manufacturing semiconductor substrate using the device}
본 발명은 플라즈마 반응기와 관련되며, 특히 인덕턴스 커플링 플라즈마 반응기의 기체 균일 분포와 관련되는 플라즈마 반응기에 관한 것이다.
플라즈마 반응기 또는 반응 챔버는 이미 알려진 바와 같이 반도체 집적회로, 평면 표시장치, 발광다이오드(LED), 태양전지 배터리 등 제조공법에 널리 사용되고 있는바, 플라즈마 반응 챔버에서 통상적으로 한 개의 무선주파수 전원을 인가하는 방식으로 반응 챔버 속에서 플라즈마를 생성, 유지하게 된다. 그 중 각자 다른 방식으로 인가되는 복수의 무선주파수 파워는 각자 다양한 방식의 설계에 따라 효율, 플라즈마 해리, 균일성 등 다양한 특성을 나타내게 된다. 그 중 한 가지 설계가 바로 인덕턴스 커플링 플라즈마(ICP) 반응 챔버이다.
인덕턴스 커플링 플라즈마 반응 챔버에서 하나의 통상적 코일 모양의 안테나는 반응 챔버 내에 무선주파수 에너지를 방사하는데 사용된다. 안테나로부터 오는 무선주파수 에너지를 반응 챔버 내로 커플링하기 위해서는 안테나 위치에 한 개의 절연재료 창을 구비하게 된다. 반응 챔버는 실리콘 웨이퍼와 같은 각종 기판을 처리할 수 있고, 기판은 척에 고정되며, 플라즈마는 기판 상부에서 생성된다. 따라서 안테나는 반응 챔버의 천정 위에 설치되고 반응 챔버의 천정은 절연재료로 만들어지며, 하나의 절연재료 창을 포함한다.
플라즈마 반응 챔버에서 각종 처리기체가 상기 챔버로 주입되여 플라즈마와 기판 사이의 화학반응 및/또는 물리반응으로 하여금 상술한 기판 위에서 각종 특징구조를 형성하게 하는데 그 예로는 식각, 증착 등이 있다. 다수의 공정 절차에서 하나의 중요한 지수는 웨이퍼 내부의 공정 균일성이라 할 수 있다. 즉, 기판 중심 구역에 작용하는 일종의 공정 절차는 기판 변두리 구역에 작용하는 공정 절차와 동일하거나 혹은 매우 유사하여야 한다. 따라서 식각 절차를 집행한다고 가정하면 웨이퍼 중심 구역의 식각율은 반드시 웨이퍼 변두리 구역의 식각율과 같아야 한다.
이상적인 공정 균일성을 얻을 수 있는데 도움이 되는 파라미터는 반응 챔버 내에 균일하게 분포되어 있는 처리기체이다. 이와 같은 균일성을 얻으려면 다양한 반응 챔버 설계에서 웨이퍼 위에 기체 스프레이 헤드를 설치하는 방식을 적용함으로써, 처리기체를 균일하게 주입할 수 있다. 하지만 상기와 같이 인덕턴스 커플링 플라즈마(ICP) 반응 챔버 천정에는 반드시 안테나로부터 무선주파수를 반응 챔버 내부에로 발사할 수 있는 절연재료 창을 포함하여야 한다. 때문에 ICP 구조에는 기체 스프레이 헤드를 위한 상응한 공간을 남겨 기체의 균일한 주입 기능을 실현하는 기능을 포함하지 않았다.
도 1은 종래의 인덕턴스 커플링 플라즈마 반응 챔버 설계 단면도이다. ICP 반응 챔버(100)는 기본적으로 원통 모양의 금속 측벽(105), 절연 천정(107), 및 진공 펌프(125)에 의해 진공 상태로 되는 기밀 공간을 포함한다. 페데스털(110)은 척(115)을 지지하고, 척(115)은 처리를 기다리는 기판(120)을 지지한다. 무선주파수 파워서플라이(145)로부터 오는 무선주파수 에너지는 코일 모양의 안테나(140)에 인가된다. 에어서플라이(150)에서 오는 처리기체는 파이프라인(155)을 경과하여 반응 챔버에 공급됨과 동시에 플라즈마를 점화, 유지함으로써 기판(120)을 처리하게 된다. 표준 인덕턴스 커플링 플라즈마 반응 챔버에서 기체는 반응 챔버 주위의 주변 노즐(130)과 중심 노즐(135) 중 하나 혹은 양자를 함께 통과하는 방식으로 진공 용기 내에 공급된다.
도 1에서 알 수 있는 바와 같이, 주변 노즐(130)로부터 오는 처리기체는 기판(120)의 표면으로 대량 빠져나간다. 따라서 주변 노즐(130)로부터 주입되는 대량의 처리기체는 기판(120)의 변두리 구역을 처리할 가능성은 있으나, 기판(120)의 중심 구역에는 전부 도달할 수 없는바 이는 불균일성을 초래하게 된다. 반대로 중심 노즐(135)에서 주입되는 대량의 기체는 기판(120) 중심 구역에 집중되고 기판(120) 변두리 구역에 도달할 수 없어 역시 불균일성을 초래하게 된다.
따라서 본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위하여 안출 된 것으로, 본 발명의 목적은 처리기체의 불균일성을 해결할 수 있는 일종의 인덕턴스 커플링 플라즈마 반응 챔버를 설계할 필요성이 있으며, 이로써 반응 챔버 내부의 처리기체 분포를 최적화하여 처리 공정의 균일성을 실현하여야 한다.
본 발명의 고안 내용은 본 발명과 관련한 부분 측면과 특징에 대한 기본 이해를 제공할 뿐으로 결코 본 발명에 대한 광범위한 기술은 아닐 뿐더러 본 발명의 핵심 요소를 특별하게 제출하거나 발명범위를 구현하는데 사용되는 것이 아니다. 그 유일한 목적은 본 발명의 일부 개념을 간소화하고 본 발명에 대한 후속 구체 기술에 대하여 보탬이 되기 위함이다.
본 발명에 따른 한 가지 측면은 일종의 플라즈마 반응기를 제공하는 것으로 여기에는 기밀 셀, 절연재료 창, 절연재료 창 위에 설치된 무선주파수 안테나를 포함한다. 복수의 처리기체 주입기는 상기 기밀 셀에 처리기체를 공급하고, 상기 기밀 셀에 설치된 조절기는 처리기체 주입기의 기체 유동을 제한하거나 안내하는데 사용된다.
본 발명에 따른 한 가지 측면은 하나의 인덕턴스 커플링 플라즈마 반응기를 제공하는데 그중에는 기밀 셀을 포함하고, 그 중 상기 기밀 셀 천정의 최소 한 개 부분은 하나의 절연재료 창을 구성한다. 기판 지지대는 상기 기밀 셀과 상기 절연재료 창의 아래 측에 설치된다. 무선주파수 파워서플라이는 상기 절연재료 창 위에 설치되어 무선주파수 에너지를 발사하고 아울러 상기 절연재료 창을 꿰뚫고 기밀 셀에 이르게 한다. 복수의 처리기체 주입기는 상기 기판 지지대 상부에 균일하게 분포되어 처리기체를 상기 기밀 셀 내부로 제공한다. 기밀 셀 내부에 설치된 환형의 조절기는 상기 기판 지지대 상부와 복수의 처리기체 주입기 하부에 위치하여 처리기체의 유동을 안내한다. 본 발명에 따른 또 다른 한 가지 특징은 상기 조절기는 유도체 또는 절연재료로 제작할 수 있다는 것이다. 예를 들면 조절기는 양극의 알루미늄, 세라믹, 혹은 석영 등으로 제작할 수 있다.
본 발명의 또 다른 한 가지 측면은 조절기는 중심 개구를 가지는 환형 평판일 수 있다는 점이다. 상기 조절기는 중심 개구 주위에 분포된 보조 개구를 포함한다. 상기 조절기에는 상기 중심 개구에 집성된 한 개의 무선주파수 안테나를 포함할 수 있다. 상기 조절기는 절연재료에서 집성된 해당 무선주파수일 수 있고, 조절기 한 쪽면은 도체재료로 제작되어 절연재료 창에서 무선주파수 파워서플라이 혹은 무선주파수 안테나로 생성된 무선주파수 에너지가 해당 도체층을 통과하는 것을 차단할 수 있다. 상기 조절기는 상기 기판 지지대 상부에서 수직으로 이동할 수 있고 이로써 기판과의 사이에서 간극을 조절할 수 있다.
본 발명에 따른 또 다른 측면은 일종 기판 상에서 반도체 부품을 제조하는 방법을 제공하는 것으로 여기에는 플라즈마 반응기의 기판 지지대 위에 기판을 배치하는 것을 포함하며, 그 중의 플라즈마 반응기에는 기밀 셀을 포함하고, 거기에는 원통형 측벽과 천정을 포함하고, 천정에는 최소 하나의 절연재료 창을 포함하고, 상기 절연재료 창 상부에 위치한 무선주파수 파워서플라이는 무선주파수 방사에 사용되어 상기 절연재료 창을 꿰뚫고 기밀 셀 내부에 도달하게 된다. 기판 상부에는 복수의 처리기체 주입기가 균일하게 분포되어 있고, 기밀 셀 내부에는 환형의 조절기가 설치되는데, 상기 조절기를 기판 지지대 상부와 복수의 처리기체 주입기 하부에 배치되도록 하여 상기 조절기와 상기 기판 사이에 직접 하나의 간극을 형성하게 하며, 처리기체를 처리기체 주입기로 제공하고, 무선주파수를 파워서플라이로 인가하게 된다.
위에서 설명한 바와 같이, 본 발명에 의한 기밀 셀 내부에 설치된 환형의 조절기에 의하면 기판 지지대 상부와 처리기체 주입기 하부 사이에 위치함으로써, 처리기체의 흐름을 안내하고, 기판의 중심 구역과 변두리 구역에 균등하게 처리기체를 처리할 수 있다.
첨부도면은 본 발명 설명내용의 일부분으로 본 발명의 실시예를 보여주게 되며 설명서와 함께 본 발명의 원리를 해석하고 설명하게 된다. 첨부도면은 도해 방식으로 실시예의 기본 특징을 해석하게 된다. 첨부 도면은 실시예의 모든 특징에 사용되는 것이 아니며 도면 중 요소사이의 상대 사이즈를 설명하는데 사용되는 것도 아니고, 비율에 따라 그려낸 것도 아니다.
도 1은 종래 기술에 의한 인덕턴스 커플링 플라즈마 반응 챔버의 단면도.
도 2는 본 발명의 제1실시예에 의한 인덕턴스 커플링 플라즈마 반응 챔버의 단면도.
도 3은 본 발명의 제2실시예에 의한 인덕턴스 커플링 플라즈마반응 챔버의 단면도.
도 4는 본 발명의 제3실시예에 의한 인덕턴스 커플링 플라즈마 반응 챔버의 단면도.
도 5는 본 발명의 제4실시예에 의한 인덕턴스 커플링 플라즈마 반응 챔버의 단면도.
도 6은 본 발명의 제5실시예에 의한 인덕턴스 커플링 플라즈마 반응 챔버 단면도.
도 7은 본 발명의 제6실시예에 의한 방사상 비대칭을 개선하기 위한 인던턴스 커플링 플라즈마 반응 챔버 단면도.
도 8은 본 발명의 제7실시예에 의한 중심 개구의 직경이 변경 가능한 것을 나타내는 조절기 평면도.
그 중 동일하거나 유사한 첨부도면 표기는 동일 혹은 유사한 장치(모듈)를 표시한다.
본 발명과 관련되는 인덕턴스 커플링 플라즈마 반응 챔버의 실시예는 균일성, 특히 기체 분포의 균일성을 개선하였다. 본 발명 실시예 중의 반응 챔버에 사전 설정장치를 추가하여 노즐로부터 나오는 기체로 하여금 유동방향을 다시 인도받게 하고, 이로써 반응 챔버 중의 기체 분포를 개선하여 웨이퍼 상의 균일성이 증진될 수 있다.
아래 도 2와 결부하여 본 발명의 한 가지 실시예에 대하여 상세히 기술하고자 한다. 도 2는 본 발명의 일 실시예에 따른 플라즈마 처리장치(200)의 표시도이다. 2백번대의 첨부도면 표기 외에 도 2에서의 표시내용은 도 1의 요소와 대응되어 동일한 첨부도면 표기를 갖게 된다. 그 중의 플라즈마 반응기(200)는 일 실시예에 불과하며, 플라즈마 반응기(200)는 실제상 더 적거나 예외의 부품을 포함할 수도 있고, 부품 배열은 도 2에서 표시한 것과 다를 수도 있다는 점을 이해하여야 한다.
도 2는 본 발명에 따른 제1실시예의 ICP 반응 챔버의 단면도로 제어상태에서의 기체의 유동 특징을 설명한다. ICP 반응기(200)는 금속 측벽(205)과 절연 천정(207)을 포함하여 하나의 기체 진공의 기밀 셀을 구성하고, 진공 펌프(225)에 의해 진공 상태로 된다. 절연 천정(207)은 실시예에 불과하며 돔형 천정, 절연재료 창을 구비한 금속 천정 등 기타 천정 양식을 적용할 수 있다. 페데스털(210)은 척(215)을 지지하고, 척(215)에는 처리를 기다리는 기판(220)이 배치되어 있다. 이와 같은 페데스털(210)과 척(215)은 기판(220)을 지지하는 기판 지지대의 기능을 수행한다. 바이어스 에너지는 척(215)에 인가되는데, 본 발명의 실시예와 관련이 없기 때문에 도 2에서는 생략한다. RF 파워서플라이(245)의 무선주파수 에너지는 안테나(240)에 인가되고 안테나(240)는 기본적으로 코일모양을 할 수 있다.
처리기체는 에어서플라이(250)로부터 파이프라인(255)을 경유하여 반응 챔버 내부에 공급되고, 이로써 플라즈마를 점화, 유지함으로써 기판(220)을 처리하게 된다. 실시예 중 처리기체는 처리기체 주입기 가령, 주변 노즐(230)을 통하여 진공 공간으로 공급된다. 하지만 추가적인 기체는 처리기체 주입기 가령, 중심 노즐(235)로부터 선택적으로 반응 챔버에 공급된다. 만약 처리기체가 주변 노즐(230)과 중심 노즐(235)로부터 동시에 공급될 경우, 각자 기체 유량은 모두 단독 제어될 수 있다. 기체주입에 사용되는 임의의 설정을 플라즈마 기체 흐름 조절기라 부를 수 있다. 도 2에서 조절기(270)를 반응 챔버에 설치하여 산발 기체를 제한하거나 혹은 주변 노즐(230)의 기체 유동을 안내할 수 있다. 조절기(270)는 기체 노즐(230, 235) 하부에 위치하되 기판(220)의 상부에 있어야 한다. 이와 같이 도 2에서 점선 화살표로 표시된 바와 같이 처리기체가 하부의 기판(220)으로 흘러 가기 전에 제한을 받아 진일보하게 반응 챔버 속으로 흘러갈 수 있다.
통상적으로 조절기(270)는 양극의 알루미늄 같은 금속재료로 제작될 수 있다. 금속재료를 사용하여 조절기(270)를 제작하면 조절기(270) 상부의 플라즈마를 제한하는데 유리하다. 그 이유는 코일로부터 오는 무선주파수 에너지는 조절기(270)에 의해 전파가 장애를 받기 때문이다. 또 다른 한 면으로는 조절기(270) 또한 세라믹이나 석영 같은 절연재료로 만들 수 있다. 절연 조절기(270)를 적용한 실시예 중 코일로부터 오는 무선주파수(RF) 에너지는 조절기(270)를 꿰뚫어 플라즈마로 하여금 조절기(270) 하부(실선부분 표시)에서 유지되게 하고, 조절기(270) 하부에 도달한 기체량에 의존하게 된다.
부분 응용상황에서 기체 유동을 진일보하게 제한하여 처리기체로 하여금 더 많은 시간 동안 웨이퍼 중심 위치 상부에 있게 하면 전반적으로 웨이퍼 상부에 충족한 플라즈마 해리를 얻을 수 있도록 보장할 수 있다. 상기 응용 실예가 도 3에 표시되어 있다. 번호 3백번대 첨부도면 표시 외에 도 3과 도 2의 같은 요소는 같은 첨부도면 표기를 갖추게 된다. 도 2 및 도 3에서의 첨부도면 표기가 보여주는 바와 같이 본 실시예의 조절기(372)는 원판형 외형을 구비하고 아울러 고리 형태의 수직 연장부(373)를 구비하여 기본적으로 하나의 원통 모양을 하게 된다. 수직 연장부(373)와 기판(320) 사이에는 간극(374)을 구성하고, 이 간극(374)을 통한 기체는 변두리로 흘러갈 수 있게 된다. 예를 들면 반응 챔버 내의 기판 외부 구역을 초과하여 흘러가게 된다. 간극(374)의 사이즈는 기판(320) 상부 기체의 유동 및 기체가 기판(320)을 흘러 지나는데 필요한 시간을 결정하여 처리기체로 하여금 플라즈마에 의해 해리될 수 있게 한다.
도 3의 실시예 중 환형 개구의 직경(d) 사이즈는 기판(320)의 직경과 같거나, 혹은 기판(320)의 직경보다 크거나 작을 수도 있다. 상기 환형 개구의 직경(d)은 필요 기체의 유동 제한성에 의해 결정된다. 동시에 수직방향의 환형 연장부위에 대한 설정은 원판형 기판(320)과 직각을 이루기에 환형의 수직 연장부(373)의 개구 직경과 환형의 조절기(372) 자체의 개구 직경은 같게 된다.
그 밖에, 링에서 기판으로 가스 유출이 제한될 수 있는데, 일단 기체가 기판 방향으로 유동하게 되면 일부 기체는 수평방향으로 상부 챔버의 외부로 향해 유동하게 된다. 상기 설정에 따른 설계는 도 4에서 표시되어 있다. 도 4에서 조절기(475)는 하나의 환형부와 하나의 원추형 연장부(476)로 구성된다. 원추형 연장부(476)는 개구 직경(d)을 구비하고, 이는 원추형 연장부(476)의 하부 개구 직경(d')보다 작다. 그 중, 상기 하부 개구는 기판(420)과 가까이에 위치해 있다. 하부 개구를 설치하여 간극(477)을 정의하면, 처리기체는 이 간극(477)을 통하여 수평방향으로 반응 챔버 측벽으로 유동하게 된다. 원추형 부분의 측벽과 환형부 사이 협각(φ)을 구성하고, 그 중 이 협각(φ)은 90도보다 작다.
상기 임의의 실시예에서 일부의 경우에는 부분 기체로 하여금 조절기 중심 개구에 도착하기 전에 유출되게 한다. 도 5에서 설명한 제4 실시예는 도 2의 실시예에 대하여 부분 변경을 하였다. 도 5에서 표시하는 바와 같이 조절기(578)는 한 개의 중심 개구판 모양의 구조를 구비하고, 일부는 도 2에서 표시한 조절기(272)와 유사한가 하면 상기 중심 개구의 직경은 도 2에서와 같거나 다르다. 그 밖에 보조 개구(589)는 상기 중심 개구 주변에 설치하여 처리기체로 하여금 상기 중심 개구 앞쪽 하부에 이르게 한다. 보조 개구(589)의 직경은 상기 중심 개구의 직경보다 작을 수 있다. 보조 개구(589)는 전술한 임의의 실시예에 응용할 수 있고 중심 개구 주변에 균일하게 설정할 수 있다. 예를 들면 도 5에서 도 3의 조절기와 유사한 조절기(580)를 표시하였다. 연장부를 제외한 주위에 보조 개구를 배치하여 기체로 하여금 중심 개구 앞쪽 하부에 도달하여 모든 연장부로 흘러갈 수 있게 하였다.
상기 실시예 중 조절기는 기체 유동에 대한 제어처리에 사용된다. 그 외 조절기 또한 피동적으로 플라즈마를 제어하는데 사용된다. 통상적으로 플라즈마는 조절기 위의 구멍을 통하여 반응 챔버 하부로 확산된다. 상기 구멍이 클수록 상기 플라즈마 농도가 더 높게 된다. 상기 구멍 수량과 위치를 개변하는 것을 통하여 반응 챔버에 분포된 플라즈마 농도 또한 함께 변하게 된다. 조절기 또한 상기 플라즈마에 대한 능동적인 제어에 사용할 수 있다. 도 6에서 실시예를 표시하였다.
도 6에 표시된 실시예에서 조절기(680)는 능동적으로 플라즈마를 제어한다. 도면에 따르면 보조 안테나(682)는 조절기(680)에 삽입되어 있다. 보조 안테나(682)는 코일 모양일 수 있다. 도면에 도시된 바와 같이, 보조 안테나(682)는 단일 코일일 수 있으나(그림에서 실선으로 표시) 기타 설계를 적용할 수도 있다. 보조 안테나(682)는 메인 안테나(640)와 같은 전원(645)(실선 화살표 표시)을 적용하여 전기를 공급할 수 있거나 다른 무선주파수 전원(647)을 적용하여 전기를 공급할 수 있다. 어떤 전원을 적용하는 것과는 무관하게 보조 안테나(682)에 인가되는 파워 폭(amplitude)은 메인안테나(640)에 인가되는 전원 파워와는 무관하게 제어된다.
상기 실시예에 따르면 조절기(680)는 절연재료로 제작되고, 상기 코일은 해당 절연재료에 삽입되어 있다. 예를 들면 조절기(680)는 소결 세라믹재료로 만들 수도 있는바 그 중의 금속 코일은 상기 세라믹재료에 삽입된다. 따라서 보조 코일로부터 오는 에너지는 조절기 상부와 하부 플라즈마에 인가될 수 있다. 또한, 다른 실시예에 따르면 조절기(680) 역시 한쪽은 절연재료이고 다른 한쪽은 도체재료로 만들어 무선주파수 에너지가 조절기(680)의 한쪽 면을 향해서만 인가되게 할 수 있다. 예를 들면 조절기(680)의 상층은 도체재료로 제작되어 보조 안테나(682)의 무선주파수는 조절기(680) 하부 플라즈마에만 인가되게 하는 것이다. 이와 같은 설계는 도 6에 표시되어 있다. 그 중 보조 안테나(682)의 코일은 세라믹판(685)에 삽입되고 상기 코일에서 생성되는 무선주파수 에너지는 조절기(680) 하부 플라즈마에 인가 될 수 있으나 도체판(683)은 세라믹판(685) 상부에 설치되어 보조 안테나(682) 코일로부터 오는 무선주파수 에너지는 조절기(680) 상부에 인가되기 전에 차단되는 것이다. 그 밖에, 이와 같은 설계구조 또한 메인 안테나(640) 코일에서 생성되는 무선주파수 에너지를 조절기(680) 하부에 인가할 수 있다. 따라서 메인 안테나(640)의 무선주파수 에너지는 조정되어(예를 들면 주파수, 파워 등) 조절기(680) 상부의 플라즈마를 제어할 수 있음과 동시에 보조 안테나(682)의 주파수 에너지는 조정을 통하여 조절기(680) 하부의 플라즈마를 제어할 수 있게 된다.
전술한 임의의 실시예 모두 진일보하게 개선하여 조절기로 하여금 이동되게 할 수 있다. 이과 같은 설계는 도 6에 표시되어 있다. 도 6에서 스텝모터(690)는 래크와 기어류 기구를 조절기(680)로 커플링하여 스텝모터(690)로 하여금 통전되게 할 수 있고 수직으로 조절기(680)를 상하로 구동할 수 있게 함으로써 조절기(680)와 기판(620) 사이의 간극을 조정할 수 있다.
도 7은 본 발명의 또 다른 실시예에 의한 방사상 비대칭을 개선하도록 설계된 인덕턴스 커플링 플라즈마(ICP) 반응 챔버의 단면도이다. 예컨대, 구조에 따라서 상기 챔버의 내부 공간은 반응 처리 중인 웨이퍼의 중심축에 대하여 대칭이 아닌 경우가 있다. 그와 같은 구조는 상기한 플라즈마 반응에 있어서 대전 물질 혹은 중성 물질의 비대칭 분산의 원인이 될 수 있다. 이온 분산은 RF 파워 커플링을 통해 제어될 수 있다. 그러나 중성 물질 분산은 RF 파워에 의하여 영향을 받기 보다는, 상기 챔버 내부의 가스 흐름에 더 의존하는 경향이 있다. 그러므로 도 7을 참조할 때 본 발명 실시예의 조절기(772)는 중성 물질의 흐름을 제어하기 위하여 가스 흐름을 변경하도록 디자인 될 수 있다.
도 7을 참조하면, 조절기(772)는 중심 개구를 가지는 조절기 플레이트(771)로부터 상향 연장되는 플레이트 측벽(773)을 포함한다. 플레이트 측벽(773)은 플레이트(771)로부터 상향 연장되되, 상기 웨이퍼에서 멀어지고 상기 챔버의 천정을 향하도록 형성된다. 상기 가스는 상기 천정과 조절기(772) 사이로 공급됨으로써, 플레이트 측벽(773)은 상기 가스 흐름에 장벽을 형성한다. 하지만, 확대도 A 내지 C에 도시된 바와 같이, 상기 장벽은 방사상으로 일정하지 않기 때문에, 일방 반경 위치에서의 상기 가스 흐름은 타방 반경 위치와 비교하여 더 클 수 있다. 확대도 A 내지 C는 위와 같은 예의 일부에 불과하다.
확대도 A를 참조하면, 플레이트 측벽(773)은 비대칭이다. 즉, 플레이트 측벽(773)의 제1높이(h1)는 반대편에 있는 제2높이(h2)보다 높다. 물론, 최대 높이와 최소 높이가 반드시 반대편에 있을 필요는 없다. 또한, 확대도 A에 도시된 바와 같이, 높이는 갑자기 변경되기보다 점차적으로 변경될 수 있는데, 사안에 따라 다양하게 설계될 있는 것으로 필수적인 것은 아니다.
또한, 확대도 B를 참조하면, 플레이트 측벽(773)은 측벽 구멍들을 포함함으로써, 상기 가스 흐름을 제어할 수 있다. 확대도 B에 도시된 바와 같이, 상기 측벽 구멍들은 불규칙하고 비대칭이기 때문에, 상기 가스 흐름은 일정하지 않다. 특히, 확대도 B를 보면, 측벽 구멍들이 우측보다 좌측에 더 많이 형성되어 있다. 그러나 이것은 선택적인 것이며, 확대도 C에 도시된 바와 같이, 상기 측벽 구멍들의 사이즈와 모양에 따라 여러 가지 비대칭 분산의 원인이 될 수 있다.
전술한 바와 같이 상기 조절기가 상기 챔버 내부에 장착되면, 상기 챔버를 분해하거나 상기 조절기를 교환하지 않고는 변경될 수 없는 특정한 가스 분산을 제공하듯이, 가스 분산은 고정적일 수 있다. 그러나 상기 챔버를 분해하지 않더라도 상기 챔버의 가스 흐름을 변경하는 것이 바람직하다. 그러므로 본 발명의 다른 실시예에 의하면, 상기 조절기는 상기 챔버를 분해하지 않고도 얼마든지 변경될 수 있다. 도 8을 참조하면, 상기 조절기는 회전 링(871)을 포함하고 있다. 회전 링(871)은 수동으로 혹은 스테핑 모터 등을 이용하여 상기 챔버의 외측으로부터 회전할 수 있다. 가령, 중심 개구(876) 사이즈가 변경되는 카메라 조리개처럼, 회전 링(871)이 회전하면 날개(874)가 움직인다.
본 발명에서 언급한 처리 절차와 기술은 특정장치나 본 발명의 여러 부품의 조합에만 국한되는 것이 아님을 알아야 한다. 더 구체적으로 말하면 각종 유형의 통용 설비 또한 본 발명기술에서 적용될 수 있는 것이다. 본 발명은 여러 특정된 실시예에 대하여 설명하였고, 이와 같은 실시예는 모두 각 개 측면에서 본 발명의 내용에 대하여 설명하였는바 이는 본 발명 내용에 대하여 제한하는 것이 아니며, 본 영역의 기술자는 본 발명에서 열거한 예는 다른 기타 많은 조합을 통하여 본 발명에 적용할 수도 있다는 점에 대해 이해하여야 할 것이다.
그 외 본 영역의 기술자는 본 발명 설명서에 대한 이해와 본발명 내용에 대한 실천을 통하여 기타 실현 방식을 쉽게 생각해 낼 수 있을 것이다. 본문에서 설명한 여러 실시예중 각개 측면 및/혹은 부품은 모두 단독 혹은 조합방식으로 적용할 수 있다. 강조하고자 하는 점은 설명서와 실시예는 단지 예제에 지나지 않으며 본 발명의 실제 범위와 사고는 다음의 권리 요구로써 정의하는 바이다.
200: 반응기 205: 측벽
207: 천정 210: 페데스털
215: 척 220: 기판
225: 파이프라인 230: 주변 노즐
235: 중심 노즐 240: 안테나
245: 파워서플라이 250: 에어서플라이
270: 조절기

Claims (19)

  1. 절연재료 창이 형성되는 천정을 포함하는 기밀 셀;
    상기 기밀 셀 내부의 상기 절연재료 창 하부에 위치하는 기판 지지대;
    상기 절연재료 창 상부에 위치하고, 무선주파수 에너지를 상기 기밀 셀로 방사하는 무선주파수 파워서플라이;
    플라즈마 처리기체를 상기 기밀 셀 내부로 공급하는 처리기체 주입기; 및
    상기 기밀 셀 내부에 장착되고, 상기 기판 지지대 상에 위치하나, 상기 처리기체의 흐름을 방사상으로 불규칙하게 제한하기 위하여 상기 처리기체 주입기 하부에 위치하는 조절기를 포함하는 것을 특징으로 하는 플라즈마 반응기.
  2. 제 1 항에 있어서,
    상기 조절기는 중심 개구를 포함하는 플레이트, 및 상향 연장되는 플레이트 측벽을 포함하고, 상기 플레이트 측벽은 상기 플레이트로부터 상기 천정을 향하여 연장되는 것을 특징으로 하는 플라즈마 반응기.
  3. 제 2 항에 있어서,
    상기 플레이트 측벽은 반경 위치에 따라 높이가 다른 것을 특징으로 하는 플라즈마 반응기.
  4. 제 2 항에 있어서,
    상기 플레이트 측벽은 불규칙한 가스 흐름의 원인이 되는 것을 특징으로 하는 플라즈마 반응기.
  5. 제 4 항에 있어서,
    상기 플레이트 측벽은 방사상으로 분산된 다수의 측벽 구멍들을 포함하는 것을 특징으로 하는 플라즈마 반응기.
  6. 제 5 항에 있어서,
    상기 플레이트 측벽의 구멍들은 비대칭 되게 상기 방사상으로 분산되는 것을 특징으로 하는 플라즈마 반응기.
  7. 제 5 항에 있어서,
    상기 플레이트 측벽의 구멍들은 다양한 사이즈를 가지는 것을 특징으로 하는 플라즈마 반응기.
  8. 제 5 항에 있어서,
    상기 플레이트 측벽의 구멍들은 다양한 모양을 가지는 것을 특징으로 하는 플라즈마 반응기.
  9. 제 1 항에 있어서,
    상기 조절기는 도체재료로 구성되는 것을 특징으로 하는 플라즈마 반응기.
  10. 제 1 항에 있어서,
    상기 조절기는 그 안에 삽입되는 무선주파수 안테나를 포함하는 것을 특징으로 하는 플라즈마 반응기.
  11. 제 10 항에 있어서,
    상기 조절기는 상기 무선주파수 안테나를 포함하는 절연 원판과, 무선주파수 에너지가 상기 조절기를 꿰뚫는 것을 차단하는 상기 조절기의 일면에 설치된 도체판을 포함하는 것을 특징으로 하는 플라즈마 반응기.
  12. 제 1 항에 있어서,
    상기 조절기는 수직 이동이 가능한 것을 특징으로 하는 플라즈마 반응기.
  13. 원통 형상의 측벽 및 천정을 포함하고, 상기 천정의 일부 또는 전부가 절연재료 창을 형성하는 기밀 셀;
    상기 기밀 셀 내부의 상기 절연재료 창 하부에 위치하는 기판 지지대;
    상기 절연재료 창 상부에 위치하고, 무선주파수 에너지를 상기 절연재료 창을 통하여 상기 기밀 셀로 방사하는 무선주파수 파워서플라이;
    상기 기판 지지대 상에 균일하게 배치되어, 처리기체를 상기 기밀 셀 내부로 공급하는 복수개의 처리기체 주입기; 및
    상기 기밀 셀 내부에 장착되고, 상기 기판 지지대 상에 위치하나, 상기 처리기체의 흐름을 제한하기 위하여 상기 복수의 처리기체 주입기 하부에 위치하며, 직경이 변경 가능한 중심 개구를 가지는 환형의 조절기를 포함하는 플라즈마 반응기.
  14. 제 13 항에 있어서,
    상기 중심 개구의 직경은 상기 챔버의 외측으로부터 변경되는 것을 특징으로 하는 플라즈마 반응기.
  15. 제 13 항에 있어서,
    상기 조절기는 양극의 알루미늄, 세라믹, 석영 중에서 선택된 한 가지로 구성되는 것을 특징으로 하는 플라즈마 반응기.
  16. 제 14 항에 있어서,
    상기 조절기는 회전 링, 및 다수의 날개를 포함하고, 상기 날개는 상기 회전 링의 회전에 의하여 구동됨으로써, 상기 중심 개구의 직경이 변경되는 것을 특징으로 하는 플라즈마 반응기.
  17. 플라즈마 반응기 내에 위치하는 기판 지지대 상에 기판을 배치하고, 상기 플라즈마 반응기는 원통 형상의 측벽 및 천정을 포함하고, 상기 천정의 일부 또는 전부가 절연재료 창을 형성하며, 무선주파수 파워서플라이가 상기 절연재료 창을 통하여 무선주파수 에너지를 방사하도록 상기 절연재료 창 상에 위치하며, 복수의 처리기체 주입기가 상기 기판 상에 균일하게 배치되며,
    상기 기밀 셀 내부에 개구를 가지는 환형 조절기를 배치하며, 상기 조절기가 상기 기판 지지대 상에 위치하나 상기 조절기가 상기 처리기체 주입기 아래에 위치하되, 상기 조절기와 상기 기판 사이에는 일정한 간극이 존재함으로써, 가스 흐름 분산을 변경하며,
    상기 처리기체를 상기 처리기체 주입기로 공급하며, 그리고
    무선주파수 에너지를 상기 무선주파수 파워서플라이에 인가하는 것을 특징으로 하는 반도체 기판의 제조 방법.
  18. 제 17 항에 있어서,
    상기 개구의 직경이 변화하는 것을 더 포함하는 것을 특징으로 하는 플라즈마 반응기.
  19. 제 17 항에 있어서,
    상기 가스 흐름 분산을 변경하는 것은 방사상 불규칙한 가스 흐름을 발생하는 것을 특징으로 하는 반도체 기판의 제조 방법.
KR20130130035A 2012-11-01 2013-10-30 플라즈마 균일성과 효율성 개선을 위한 인덕턴스 커플링 플라즈마 장치 및 이를 이용한 반도체 기판의 제조 방법 KR101488243B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201210431839.1A CN103796413B (zh) 2012-11-01 2012-11-01 等离子反应器及制作半导体基片的方法
CN201210431839.1 2012-11-01

Publications (2)

Publication Number Publication Date
KR20140056084A true KR20140056084A (ko) 2014-05-09
KR101488243B1 KR101488243B1 (ko) 2015-01-30

Family

ID=50547641

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20130130035A KR101488243B1 (ko) 2012-11-01 2013-10-30 플라즈마 균일성과 효율성 개선을 위한 인덕턴스 커플링 플라즈마 장치 및 이를 이용한 반도체 기판의 제조 방법

Country Status (5)

Country Link
US (2) US9431216B2 (ko)
JP (1) JP5782090B2 (ko)
KR (1) KR101488243B1 (ko)
CN (1) CN103796413B (ko)
TW (1) TWI541891B (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107633991A (zh) * 2017-09-20 2018-01-26 武汉华星光电半导体显示技术有限公司 一种干法刻蚀设备
KR102078364B1 (ko) * 2019-04-25 2020-02-17 주식회사 기가레인 배출흐름조절부 및 이를 포함하는 플라즈마 처리장치

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105448633B (zh) * 2014-08-22 2018-05-29 中微半导体设备(上海)有限公司 等离子体处理装置
JP6570993B2 (ja) * 2015-12-16 2019-09-04 東京エレクトロン株式会社 プラズマ処理装置
CN107306473B (zh) * 2016-04-25 2019-04-30 中微半导体设备(上海)股份有限公司 一种半导体处理装置及处理基片的方法
CN108690965B (zh) * 2017-03-31 2020-06-30 芝浦机械电子装置株式会社 等离子体处理装置
CN108103480A (zh) * 2018-01-11 2018-06-01 宁波晶钻工业科技有限公司 一种化学气相沉积炉
CN110299276B (zh) * 2018-03-21 2022-11-25 北京北方华创微电子装备有限公司 电感耦合等离子体产生装置及半导体加工设备
CN108493089A (zh) * 2018-05-23 2018-09-04 武汉华星光电技术有限公司 气流分配装置及干刻蚀设备
JP7190894B2 (ja) 2018-12-21 2022-12-16 昭和電工株式会社 SiC化学気相成長装置
WO2020245493A1 (en) 2019-06-06 2020-12-10 Picosun Oy Substrate processing methods and apparatus
CN112713075B (zh) * 2019-10-25 2024-03-12 中微半导体设备(上海)股份有限公司 等离子体隔离环、等离子体处理装置与基片处理方法
KR20230029643A (ko) * 2020-06-01 2023-03-03 램 리써치 코포레이션 챔버 중앙 플로우 최적화기
TW202230442A (zh) * 2020-10-09 2022-08-01 美商蘭姆研究公司 無面板噴淋頭
WO2022207563A1 (en) * 2021-04-01 2022-10-06 Universiteit Gent A device and method for generating a plasma jet
KR102490264B1 (ko) * 2022-10-24 2023-01-18 김무환 가스의 흐름이 개선된 수평형 플라즈마 챔버 구조
KR102497734B1 (ko) * 2022-11-25 2023-02-07 김무환 가스의 흐름 및 플라즈마 시인성이 개선된 수평형 플라즈마 챔버 구조
CN116779412B (zh) * 2023-08-25 2023-11-24 江苏鲁汶仪器股份有限公司 离子源挡板装置和离子束刻蚀机

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512147B1 (ko) * 1970-08-19 1976-01-23
JPS62146268A (ja) * 1985-12-20 1987-06-30 Anelva Corp 薄膜製造装置
JPH05102147A (ja) * 1991-10-07 1993-04-23 Sony Corp アモルフアス金属の形成方法及びアモルフアス金属膜を有する半導体装置
JP3344429B2 (ja) * 1993-03-15 2002-11-11 富士写真光機株式会社 絞り装置
JPH0729890A (ja) * 1993-07-08 1995-01-31 Kokusai Electric Co Ltd プラズマ発生装置
JP2638443B2 (ja) * 1993-08-31 1997-08-06 日本電気株式会社 ドライエッチング方法およびドライエッチング装置
US5885358A (en) 1996-07-09 1999-03-23 Applied Materials, Inc. Gas injection slit nozzle for a plasma process reactor
JPH1064893A (ja) * 1996-08-16 1998-03-06 Tokyo Electron Ltd 熱処理炉のシャッタ−装置
EP0978138A1 (en) * 1997-04-21 2000-02-09 Tokyo Electron Arizona, Inc. Method and apparatus for ionized sputtering of materials
CN1102087C (zh) * 1997-10-15 2003-02-26 东京电子株式会社 处理基片的等离子体处理系统和方法
WO2000017906A2 (en) * 1998-09-22 2000-03-30 Applied Materials, Inc. Rf plasma etch reactor with internal inductive coil antenna and electrically conductive chamber walls
US6132805A (en) * 1998-10-20 2000-10-17 Cvc Products, Inc. Shutter for thin-film processing equipment
JP4388627B2 (ja) * 1999-07-05 2009-12-24 東京エレクトロン株式会社 処理装置
US20030047536A1 (en) * 2002-10-02 2003-03-13 Johnson Wayne L. Method and apparatus for distributing gas within high density plasma process chamber to ensure uniform plasma
JP4450407B2 (ja) * 2003-03-27 2010-04-14 キヤノンアネルバ株式会社 プラズマ処理装置及び処理方法
KR100752622B1 (ko) * 2006-02-17 2007-08-30 한양대학교 산학협력단 원거리 플라즈마 발생장치
KR100864111B1 (ko) 2006-05-22 2008-10-16 최대규 유도 결합 플라즈마 반응기
US7909961B2 (en) * 2006-10-30 2011-03-22 Applied Materials, Inc. Method and apparatus for photomask plasma etching
US7919722B2 (en) * 2006-10-30 2011-04-05 Applied Materials, Inc. Method for fabricating plasma reactor parts
JP6097471B2 (ja) * 2007-04-27 2017-03-15 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 環状のバッフル
WO2011067820A1 (ja) * 2009-12-04 2011-06-09 キヤノンアネルバ株式会社 スパッタリング装置、及び電子デバイスの製造方法
JP2011190530A (ja) * 2010-02-16 2011-09-29 Canon Anelva Corp シャッター装置及び真空処理装置
KR101926571B1 (ko) * 2011-05-31 2018-12-10 어플라이드 머티어리얼스, 인코포레이티드 유도성 커플링된 플라즈마(icp) 반응기를 위한 동적인 이온 라디칼 시브 및 이온 라디칼 개구
CN102355792B (zh) * 2011-10-19 2016-04-06 中微半导体设备(上海)有限公司 改进等离子均匀性和效率的电感耦合等离子装置
CN102395243A (zh) * 2011-10-19 2012-03-28 中微半导体设备(上海)有限公司 改进等离子均匀性和效率的电感耦合等离子装置
US9095038B2 (en) * 2011-10-19 2015-07-28 Advanced Micro-Fabrication Equipment, Inc. Asia ICP source design for plasma uniformity and efficiency enhancement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107633991A (zh) * 2017-09-20 2018-01-26 武汉华星光电半导体显示技术有限公司 一种干法刻蚀设备
CN107633991B (zh) * 2017-09-20 2019-10-11 武汉华星光电半导体显示技术有限公司 一种干法刻蚀设备
KR102078364B1 (ko) * 2019-04-25 2020-02-17 주식회사 기가레인 배출흐름조절부 및 이를 포함하는 플라즈마 처리장치

Also Published As

Publication number Publication date
US20140120731A1 (en) 2014-05-01
CN103796413A (zh) 2014-05-14
US9431216B2 (en) 2016-08-30
KR101488243B1 (ko) 2015-01-30
US20160322205A1 (en) 2016-11-03
JP5782090B2 (ja) 2015-09-24
TW201421579A (zh) 2014-06-01
JP2014130803A (ja) 2014-07-10
TWI541891B (zh) 2016-07-11
CN103796413B (zh) 2017-05-03

Similar Documents

Publication Publication Date Title
KR101488243B1 (ko) 플라즈마 균일성과 효율성 개선을 위한 인덕턴스 커플링 플라즈마 장치 및 이를 이용한 반도체 기판의 제조 방법
KR20150108344A (ko) 플라즈마 균일성과 효율성 개선을 위한 인덕턴스 커플링 플라즈마 장치 및 이를 이용한 반도체 기판의 제조 방법
CN109994363B (zh) 频率调制射频电源以控制等离子体不稳定性的系统和方法
KR100988085B1 (ko) 고밀도 플라즈마 처리 장치
KR101246170B1 (ko) 반도체 제조에 사용되는 분사부재 및 그것을 갖는 플라즈마 처리 장치
KR101504084B1 (ko) 유도 결합 플라즈마 챔버에서 에지 성능을 제어하기 위한 장치 및 방법
US20090159424A1 (en) Dual zone gas injection nozzle
US20090159002A1 (en) Gas distribution plate with annular plenum having a sloped ceiling for uniform distribution
US20190148121A1 (en) Inline dps chamber hardware design to enable axis symmetry for improved flow conductance and uniformity
CN102355792B (zh) 改进等离子均匀性和效率的电感耦合等离子装置
WO2015085882A1 (zh) 下电极装置以及等离子体加工设备
TWI556308B (zh) A plasma reactor with improved gas distribution
US10297457B2 (en) Controlling azimuthal uniformity of etch process in plasma processing chamber
KR20130091271A (ko) 유도 결합 플라즈마 처리 방법 및 유도 결합 플라즈마 처리 장치
KR100862686B1 (ko) 플라즈마 조절기 및 이를 구비한 플라즈마 처리 장치
TW201318063A (zh) 改進等離子均勻性和效率的電感耦合等離子裝置
KR101997145B1 (ko) 가스 분배 장치 및 이를 구비하는 기판 처리 장치
KR20140144383A (ko) 배플 유닛, 이를 이용한 기판 처리 장치 및 기판 처리 방법
TWI633811B (zh) Plasma processing device and method for processing semiconductor substrate
CN103874314A (zh) 一种电感耦合等离子装置
KR20100012418A (ko) 자기 조절 수단을 구비한 플라즈마 반응기
KR20190082709A (ko) 가스 분배 장치 및 이를 구비하는 기판 처리 장치
KR20160142230A (ko) 플라즈마 처리 장치

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180119

Year of fee payment: 4