KR20130129850A - 이미징 시스템을 위한 소스측 모니터링 디바이스 - Google Patents

이미징 시스템을 위한 소스측 모니터링 디바이스 Download PDF

Info

Publication number
KR20130129850A
KR20130129850A KR1020130056534A KR20130056534A KR20130129850A KR 20130129850 A KR20130129850 A KR 20130129850A KR 1020130056534 A KR1020130056534 A KR 1020130056534A KR 20130056534 A KR20130056534 A KR 20130056534A KR 20130129850 A KR20130129850 A KR 20130129850A
Authority
KR
South Korea
Prior art keywords
detector
module assembly
rays
ray
monitoring lens
Prior art date
Application number
KR1020130056534A
Other languages
English (en)
Other versions
KR102057033B1 (ko
Inventor
아브델라지즈 이클레프
조셉 제임스 랙시
Original Assignee
제너럴 일렉트릭 캄파니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제너럴 일렉트릭 캄파니 filed Critical 제너럴 일렉트릭 캄파니
Publication of KR20130129850A publication Critical patent/KR20130129850A/ko
Application granted granted Critical
Publication of KR102057033B1 publication Critical patent/KR102057033B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4064Arrangements for generating radiation specially adapted for radiation diagnosis specially adapted for producing a particular type of beam
    • A61B6/4078Fan-beams
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biophysics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Mathematical Physics (AREA)
  • Pulmonology (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

발명은 소스측 방사 검출기(SSRD)(50)에 관한 것으로, 이는 검출기 모듈 어셈블리(102)와, 검출기 모듈 어셈블리에 연결되는 모니터링 렌즈(100)를 포함하되, 상기 검출기 모듈 어셈블리 및 상기 모니터링 렌즈는 상기 x선 소스(12)에 인접하게 위치되며, 상기 모니터링 렌즈는 상기 x선 소스로부터 자신을 통해 x선(14)을 수신하도록 구성되는 복수의 슬릿(140 및 142)을 포함하고, 상기 검출기 모듈 어셈블리는 상기 슬릿을 통해 전달되는 상기 x선을 검출하고, 상기 x선 소스의 초점(200)의 위치를 추적하기 위해 정보를 생성한다.

Description

이미징 시스템을 위한 소스측 모니터링 디바이스{SOURCE SIDE MONITORING DEVICE FOR AN IMAGING SYSTEM}
본 명세서에 개시된 청구대상은 전반적으로 촬영 시스템에 관한 것으로, 특히 촬영 시스템용 소스측 초점 모니터링 디바이스에 관한 것이다.
컴퓨터 단층 촬영(CT) 촬영 시스템과 같은 어떤 알려진 촬영 시스템은 간트리(gantry)에 연결된 x선 소스 및 검출기 어셈블리를 포함한다. 동작에서, x선 소스는 팬 형상 x선 빔 또는 원뿔 형상 x선 빔을 테이블상에 위치된 피검체 또는 물체를 향해 방사한다. X선 빔은 피검체에 의해 감쇠된 후, 검출기 어셈블리에 충돌한다(impinges). 검출기 어셈블리에서 수신된 감쇠된 x선 빔의 세기는 통상적으로 피검체에 의한 x선의 감쇠에 의존한다. 검출기 어셈블리의 각 검출기 소자는 수신된, 감쇠된 x선을 표시하는 개별적인 전기 신호를 발생시킨다. 이들 전기 신호는 집합적으로 x선 감쇠 측정 또는 x선 이미지라고 지칭한다.
기준 정규화(Reference normalization)는 x선 소스 출력 변동의 영향을 감소시키거나 제거하기 위해 CT 전처리 동작에서 사용된다. 이를 위해, 종래 검출기 어셈블리는 기준 채널(또는 기준 검출기) 세트를 포함한다. 통상적으로, 기준 채널은 검출기 어셈블리의 재구성 시야(field of view , FOV)보다 다소 외부에 위치되어, 기준 채널이 스캐닝된 피검체로부터 간섭받지 않고 x선 소스로부터 직접 x선 광자를 수신하게 된다. 동작에서, 기준 채널은 x선 소스 플럭스를 모니터링하고 측정된 신호가 측정된 프로젝션에 적용된다. 이로써, 측정된 프로젝션에 대한 x선 소스 출력의 임의의 변동의 영향이 실질적으로 제거된다.
그러나, CT 촬영 시스템이 비교적 큰 피검체 또는 물체를 촬영하는 데에 사용되는 경우, 피검체 또는 물체는 스캔 동안에 기준 채널의 일부 또는 전부를 막을 가능성이 있다. 따라서, 기준 채널이 막히면, 기준 채널은 감쇠된 x선을 수신한다. 결과적으로, 기준 채널은 무효 정규화 값을 발생시킬 수 있으며, 이는 화질을 저하시킨다. 보다 구체적으로, 올바르지 않은 정규화는 디스플레이되는 이미지에 줄무늬 및 아티팩트(streaks and artifacts)가 나타나게 한다.
일 실시예에서, 소스측 방사 검출기(SSRD)가 제공된다. SSRD는 검출기 모듈 어셈블리와, 검출기 모듈 어셈블리에 연결되는 모니터링 렌즈를 포함하되, 검출기 모듈 어셈블리 및 모니터링 렌즈는 x선 소스에 인접하게 위치되며, 모니터링 렌즈는 x선 소스로부터 자신을 통해 x선을 수신하도록 구성되는 복수의 슬릿을 포함하고, 검출기 모듈 어셈블리는 슬릿을 통해 전달되는 x선을 검출하고, x선 소스의 초점의 위치를 추적하기 위해 정보를 생성한다.
다른 실시예에서, 촬영 시스템이 제공된다. 이 촬영 시스템은, 물체를 향해 에너지를 방출하도록 구성되는 x선 소스와, 물체의 제 1 측에 위치되는 소스측 방사 검출기(SSRD)와, 물체의 제 2 반대측에 위치되는 촬영 검출기를 포함하되, 이 SSRD는 촬영 검출기에 의해 생성되는 투영 데이터를 정규화하기 위해 사용되는 데이터를 출력한다.
다른 실시예에서, 이미징 데이터를 보정하는 방법이 제공된다. 이 방법은, 소스측 방사 검출기(SSRD)로부터 정보를 수신하는 단계와, 이미징 검출기로부터 투영 데이터세트를 수신하는 단계와, SSRD로부터 수신된 정보를 사용하여 투영 데이터세트를 보정하는 단계를 포함한다.
다른 실시예에서, 기준 추적 방사 검출기가 제공된다. 기준 추적 방사 검출기는, 검출기 모듈 어셈블리와, 검출기 모듈 어셈블리에 연결되는 모니터링 렌즈를 포함한다. 검출기 모듈 어셈블리 및 모니터링 렌즈는 포스트 환자 이미징 검출기에 인접하게 위치된다. 모니터링 렌즈는 x선 소스로부터 자신을 통해 x선을 수신하도록 구성되는 복수의 슬릿을 포함한다. 검출기 모듈 어셈블리는 슬릿을 통해 전달되는 x선을 검출하고, x선 소스의 초점의 위치를 추적하기 위해 정보를 생성한다.
도 1은 다양한 실시예에 따라 구성되는 소스측 방사 검출기(SSRD)를 포함하는 촬영 시스템의 간략화된 개략적인 블록도이다.
도 2는 도 1에 도시된 SSRD의 부분적인 분해도이다.
도 3은 다양한 실시예에 따라 구성된 도 2에 도시된 모니터링 렌즈의 전면 사시도이다.
도 4는 도 2에 도시된 모니터링 렌즈의 상부도이다.
도 5는 도 2에 도시된 모니터링 렌즈의 측면도이다.
도 6는 도 2에 도시된 모니터링 렌즈의 일부의 단면도이다.
도 7은 다양한 실시예에 따른 도 2에 도시된 검출기 모듈 어셈블리에 대한 한 쌍의 슬릿 및 복수의 개구의 배열을 도시하는 도면이다.
도 8은 다양한 실시예에 따른 도 1에 도시된 x선 소스에 의해 방출될 수 있는 예시적인 x선 빔 패턴의 개략적인 도면이다.
도 9는 다양한 실시예에 따라 생성될 수 있는 초점 모션 보정 값을 설명하기 위한 그래프이다.
도 10은 다양한 다른 실시예에 따라 생성될 수 있는 초점 모션 보정 값을 설명하기 위한 그래프이다.
도 11은 다양한 실시예에 따라 구성되는 멀티-모댈리티 촬영 시스템의 도면이다.
도 12는 도 8에 도시된 시스템의 개략적인 블록도이다.
전술한 개요 및 이하의 실시예의 상세한 설명은 첨부된 도면과 함께 읽을 때 보다 잘 이해될 것이다. 도면이 다양한 실시예의 기능 블록의 도면을 도시하는 범위에서, 기능 블록은 반드시 하드웨어 회로 사이의 구분을 표시하는 것은 아니다. 따라서, 가령, 기능 블록(가령, 프로세서, 제어기, 회로 또는 메모리) 중 하나 이상은 하나의 하드웨어 또는 다수의 하드웨어로 구현될 수 있다. 다양한 실시예는 도면에 도시된 배열 및 수단에 한정되지 않는 다는 것을 이해해야 한다.
본 명세서에서 사용되는 바와 같이, 단수로 표시되고 "하나의"라는 단어로 수식되는 요소 또는 단계는, 명시적으로 언급되지 않는 한, 이러한 요소 또는 단계를 복수로 포함하는 것을 배제하지 않는다는 것을 이해해야 한다. 또한, "일 실시예"에 대한 참조는 기재된 특징을 역시 포함하는 추가적인 실시예의 존재를 배제하는 것으로 해석되도록 의도된 것이 아니다. 또한, 특별히 반대로 언급되지 않는 한, 특정 특성을 갖는 한 요소 또는 복수의 요소를 "포함하는" 또는 "갖는" 실시예는 그 특성을 갖지 않는 추가적인 요소를 포함할 수 있다.
본 명세서에서 사용되는 바와 같이, "모듈"이라는 용어는 소프트웨어, 하드웨어, 가령, 프로세서, 또는 알고리즘 또는 방법을 수행하기 위한 인스트럭션으로 프로그래밍되는 그 조합을 지칭할 수 있다. 본 명세서세서 설명되는 모듈은 무선 또는 유선 접속을 통해 통신할 수 있다.
실시예는 x선 소스와 촬영되는 피검체 사이에 위치되는 소스측 방사 검출기(SSRD)를 제공한다. SSRD는 피검체에 의해 x선이 감쇠되기 전에 x선 소스로부터 직접 x선을 수신하도록 구성된다. SSRD로부터 수신된 정보는, 촬영되는 피검체의 반대측에 위치되는 제 2 이미징 검출기로부터 얻어지는 정보에 대한 정보 정규화를 수행하는 데에 사용될 수 있다. 따라서, 다양한 실시예의 기술적 효과는 SSRD를 x선 소스 부근에 위치시켜서 SSRD가 x선 소스로부터 정규화 정보를 획득하기 위해 기준 센서로서 기능하고 다양한 실시예에서 이미징 검출기로부터 얻어진 정보를 보정하는 데에 사용될 수 있다. 또한, SSRD는 x선 소스(12)를 추적할 수도 있는데, 통상적으로 x선 튜브 초점 및 x선 소스(12)로부터 방출되는 x선의 세기를 추적한다.
도 1은 다양한 실시예에 따라 구성되는 검퓨터 단층 촬영(CT) 촬영 시스템(10)의 간략화된 블록도이다. 촬영 시스템(10)은 복사선, 가령, x선 (14)을 피검체(16), 가령, 촬영되는 환자를 포함하는 볼륨(volume)을 통해 방출하도록 구성되는 x선 소스(12)를 포함한다. 도 1에 도시된 실시예에서, 촬영 시스템(10)은 조절 가능한 콜리메이터(18)를 포함한다. 동작에서, 방출된 x선 (14)은 일차 이상의 차원인 볼륨을 통해 x선(14)과 연관되는 각 범위를 제한하는 조절 가능한 콜리메이터(18)의 개구를 통해 진행한다. 보다 구체적으로, 콜리메이터(18)는 방출된 x선(14)의 모양을 형성하는데, 피검체(16)로 진입하여 관통하는 대체적으로 원뿔 또는 팬 형상 빔 등으로 구성한다. 콜리메이터(18)는 상이한 스캔 모드를 수용하도록 조절될 수 있는데, 헬리컬 스캔 모드에서는 좁은 팬 형상 x선 빔을 제공하고 축방향 스캔 모드에서는 넓은 원뿔 형상 빔을 제공한다. 일 실시예에서, 콜리메이터(18)는 피검체(16)를 통과하는 x선(14)의 형상 또는 각 범위를 조절하기 위해 회전하는 2개의 원통형 디스크로부터 구성될 수 있다. 선택적으로, 콜리메이터(18)는 2개 이상의 이동 판(translating plates) 또는 셔터를 사용하여 구성될 수 있다. 다양한 실시예에서, 콜리메이터(18)는, 콜리메이터(18)에 의해 정의되는 구경이 이미징 검출기(20)의 형상에 대응하도록 구성될 수 있다.
동작에서, x선(14)은 피검체(16)를 통하여 이미징 검출기(20)에 충돌한다. 이미징 검출기(20)는 하나의 행 또는 복수의 행으로 배열될 수 있는 복수의 검출기 소자(24)를 포함하여 검출기 소자(24) 어레이를 구성한다. 검출기 소자(24)는 입사 x선(14)의 세기를 나타내는 전기 신호를 발생시킨다. 전기 신호는 피검체(16) 내의 하나 이상의 특징 또는 구조의 이미지를 재구성하기 위해 획득되고 처리된다.
촬영 시스템(10)은 또한, x선 소스(12)에 파워 및 타이밍 신호를 제공하도록 구성되는 x선 제어기(26)를 포함한다. 촬영 시스템(10)은 데이터 수집 시스템(28)을 더 포함한다. 동작에서, 데이터 수집 시스템(28)은 이미징 검출기(20)의 판독 전자 섹션에 의해 수집되는 데이터를 수신한다. 데이터 수집 시스템(28)은 이미징 검출기(20)로부터 샘플링된 아날로그 신호를 수신하고 프로세서(20)에 의한 후속 처리를 위해 데이터를 디지털 신호로 변환한다. 선택적으로, 디지털 대 아날로그 변환은 이미징 검출기(20)에 제공되는 회로에 의해 수행될 수 있다.
프로세서(30)는 본 명세서에서 설명되는 기능을 수행하도록 프로그래밍되며, 본 명세서에서 사용되는 바와 같이, 프로세서라는 용어는 이 기술 분야에서 컴퓨터로 지칭되는 집적회로에만 한정되는 것이 아니라, 넓게는 컴퓨터, 마이크로콘트롤러, 마이크로컴퓨터, 프로그래밍 가능한 로직 콘트롤러, 주문형 집적회로 및 기타 프로그래밍 가능한 회로를 지칭하며, 이들 용어는 본 명세서에서 상호 교환 가능하게 사용된다.
시스템(10)은 또한, x선 소스(12)과 피검체(16) 사이에 위치되는 SSRD(50)를 포함한다. 도시된 실시예에서, SSRD(50)는 콜리메이터(18)에 인접하게 위치된다. 그러나, SSRD(50)는 x선 소스와 피검체(16) 사이의 임의의 위치에 위치된 배치될 수 있으며 도 1에 도시된 위치는 단지 예시에 불과하다는 것을 이해해야 한다. 동작에서, x선 소스(12)로부터 방출되는 x선(14)은 SSRD(50)에 충돌한다. 또한, SSRD(50)가 x선 소스(12)의 시야가 방해받지 않는다면 SSRD(50)는 피검체(16)의 뒤에 위치될 수도 있다는 것을 이해해야 한다. 보다 상세히 후술할 바와 같이, SSRD(50)는 행과 열로 배열되어 검출기 소자 어레이를 구성하는 복수의 검출기 소자를 포함한다. SSRD 검출기 소자는 입사 x선(14)의 세기를 나타내는 전기 신호를 발생시킨다. 전기 신호는 피검체(16) 내의 하나 이상의 특징 또는 구조의 이미지를 재구성하기 위해 획득되고 처리되며, 이는 보다 상세히 후술할 것이다.
다양한 실시예에서, 촬영 시스템(10)은 또한, SSRD(50)으로부터 정보를 수신하고 x선 빔(14)의 초점의 위치를 표시하는 정보를 생성하도록 구성되는 초점 모니터링 모듈(52)을 포함한다. 다양한 실시예에서, 모듈(52)은 또한, x선 빔(14)의 초점 세기 및/또는 파워 레벨(kVp)을 표시하는 정보를 생성하도록 구성된다. 모듈(52)은 x선 빔(14)의 초점 위치, 초점 세기 및/또는 파워 레벨을 자동적으로 결정하도록 구성될 수 있다. 모듈(52)은 프로세서(30)에 설치되는 하나의 하드웨어로서 구현될 수 있다. 선택적으로, 모듈(52)은 프로세서(30)에 설치되는 인스트럭션 세트로서 구현될 수 있다. 인스트럭션 세트는, 독립형 프로그램이거나, 프로세서(30)에 설치되는 운영 시스템의 서브루틴으로 포함되거나, 프로세서(30)상의 설치된 소프트웨어 패키지의 함수(functions)이거나, 소프트웨어 및 하드웨어의 조합일 수 있다.
도 2는 도 1에 도시된 SSRD(50)의 부분적인 분해도이다. SSRD(50)는 모니터링 렌즈(100) 및 검출기 모듈 어셈블리(102)를 포함한다. 다양한 실시예에서, 검출기 모듈 어셈블리(102)는 복수의 신틸레이터(scintillator, 110)를 포함한다. 인입 x선 빔이 타격하면, 신틸레이터(110)는 x선 빔의 에너지를 흡수하고 빛의 형태로 흡수된 에너지를 재방출한다. 검출기 모듈 어셈블리(102)는, 인접 신틸레이터로부터 빛 에너지를 수신하고 이로부터 전기 신호를 발생시키는 복수의 포토 센서 또는 포토 다이오드(112)를 더 포함한다. 통상적으로, 각 신틸레이터(110)는 x선을 빛 에너지로 변환한다. 또한, 각 포토 다이오드(112)는 빛 에너지를 검출하고, 대응 신틸레이터(110)에 의해 방출되는 빛의 함수로서 대응 전기 신호를 발생시킨다. 전기 신호는 판독 전자 섹션(114)에 의해 처리되며, 후속 처리 및 이미지 재구성을 위해 데이터 프로세서(30) 및/또는 모듈(50)에 전송된다. 다양한 실시예에서, 검출기 모듈 어셈블리(102)는, 가령, 연성 케이블(116) 및 커넥터(118)를 사용하여 프로세서(30)에 연결될 수 있다.
다양한 실시예에서, 모니터링 렌즈(100)는 제 1 측(130) 및 반대의 제 2 측(132)을 포함한다. 모니터링 렌즈(100)는 또한, 제 1 측(130)으로부터 외부로 연장되거나 돌출하는 부분(134)를 포함한다. 다양한 실시예에서, 복수의 개구는 부분(134)을 통해 구성되며, 이는 상세히 후술할 것이다. 제 2 측(132)은 내부에 리세스(136)를 갖는다. 이 리세스(136)는 내부에 검출기 모듈 어셈블리(102)를 수신할 수 있는 크기를 갖는다. 따라서, 도시된 실시예에서, 리세스(136)는 검출기 모듈 어셈블리(102)의 형상 또는 크기와 유사한 형상 또는 크기를 가지며, 리세스(136)에 설치되면 검출기 모듈 어셈블리(102)의 이동을 제한한다. 다양한 실시예에서, 모니터링 렌즈(100)는 단일 디바이스로 제조된다. 보다 구체적으로, 모니터링 렌즈(100)는 단일 몰딩 동작에서 하나의 피스로 제조되거나 하나의 피스로 스탬핑될 수 있다. 모니터링 렌즈(100)는 x선이 통과하는 것을 실질적으로 저지하는 물질로 제조될 수 있다. 예를 들어, 모니터링 렌즈(100)는 납 물질로부터 제조될 수 있다. 또한, 모니터링 렌즈(100)는 여러 개의 개별적인 피스가 조합하여 모니터링 렌즈(100)를 구성하도록 제조될 수도 있다. 또한, 다수의 슬롯 또는 다수의 홀이 초점 추적을 위해 사용될 수 있다는 것을 이해해야 한다. 모니터링 렌즈(100)는, 가령, 물질의 고체 블록 매칭, 캐스팅, 금속 주입 몰딩 및/또는 다수의 피스 렌즈 설계를 위한 이들 기술의 조합으로 구성될 수 있다.
도 3은 도 2에 도시된 모니터링 렌즈(100)의 전면 사시도이다. 도 4는 도 2에 도시된 모니터링 렌즈(100)의 상부도이다. 도 5는 도 2에 도시된 모니터링 렌즈(100)의 측면도이다. 도 6는 도 2에 도시된 모니터링 렌즈(100)의 일부의 단면도이다. 도 3 내지 6에 도시된 바와 같이, 다양한 실시예에서, 모니터링 렌즈(100)는 복수의 슬릿 및 이를 통해 형성되는 복수의 개구를 포함한다. 보다 구체적으로, 슬릿 및 개구는, 제 1 측(130)에 충돌하는 x선이 모니터링 렌즈(100)를 통해 제 2 측(132)으로 전달되어 검출기 모듈 어셈블리(102)에 충돌할 수 있게 한다. 그 후, 검출기 모듈 어셈블리(102)는 x선을 검출하고 출력을 생성하는데, 이는 보다 상세히 후술할 것이다.
다양한 실시예에서, 모니터링 렌즈(100)는 제 1 슬릿 쌍(140) 및 제 2 슬릿 쌍(142)을 포함한다. 본 명세서에서 사용되는 바와 같이, 슬릿은 상대적으로 좁은 폭 및 폭보다 실질적으로 큰 길이를 갖는 개구, 가령 직사각형 개구이다. 또한, 모니터링 렌즈(100)은 적어도 하나의 개구(144)를 포함한다. 도시된 실시예에서, 모니터링 렌즈는 3개의 개구(144)를 포함한다. 그러나, 모니터링 렌즈는 단일 개구(144), 2개의 개구(144) 또는 3개 이상의 개구(144)를 포함할 수 있다는 것을 인식해야 한다. 도시된 실시예에서, 제 1 슬릿 쌍(140)은 제 1 슬릿(150) 및 제 2 슬릿(152)을 포함한다. 마찬가지로, 슬릿(160 및 162)은 슬릿 쌍 (150 및 152)으로부터 90도로 배치되는 다른 슬릿 쌍을 구성한다. 각 슬릿 쌍은 슬릿들간의 중심 평면으로부터 반대 각 오프셋을 갖는 평면상에 놓인다. 중심 평면은 X슬릿에 대해서는 Y-Z 평면이고, Z슬릿에 대해서는 Y-X 평면일 것이다. 슬릿 쌍의 각은, 통상적으로 초점 이전에 떨어지는 슬릿 쌍의 초점을 결정한다. 즉, 슬릿 쌍은 서로에 대해 어떤 각을 이루는 교차 평면에 수렴하는 프로젝트를 생성한다. 슬릿의 종횡비(폭 대 깊이)는 초점을 추적하기 위한 렌즈의 감도를 결정하는 설계 파라미터인데, 폭에 대한 길이의 비가 클수록 추적 기능이 더 민감하다. 또한, 이 종횡비는 축을 벗어나 산란하는 x선을 거부하는 슬릿 기능을 결정하는데, 이는 전체 신호 대 잡음 비에 관련된다.
전술한 바와 같이, 슬릿(150, 152, 160 및 162)에 추가하여, 모니터링 렌즈(100)는 적어도 하나의 개구(144)도 포함한다. 도시된 실시예에서, 모니터링 렌즈(100)는 제 1 개구(170), 제 2 개구(172) 및 제 3 개구(174)를 포함한다. 도시된 실시예에서, 제 1 개구(170)는 제 4 측(166)에 인접하게 배치되고, 제 3 개구(174)는 제 3 측(164)에 인접하게 배치되며, 제 2 개구(172)는 제 1 개구(170)와 제 3 개구(174) 사이에 배치된다. 또한, 복수의 개구(144)는 제 1 슬릿 쌍(140) 및 제 2 슬릿 쌍(142) 각각으로부터 내측으로 배치된다. 도 6에 도시된 바와 같이, 개구(170)는 모니터링 렌즈(100)의 일부로서 통합되는 칸막이(180)에 의해 개구(172)로부터 분리된다. 또한, 제 2 개구(172)는, 역시 모니터링 렌즈(100)와 통합되는 칸막이(182)에 의해 제 3 개구(174)로부터 분리된다. 동작에서, 칸막이(180 및 182)는 콜리메이터로서 기능하며, x선을 제 1 , 제 2 또는 제 3 개구(170, 172 또는 174)로 각각 시준한다. 개구(144)의 동작을 보다 상세히 설명한다.
도 3을 참조하면, 슬릿(150, 152, 154 및 156) 각각은 폭(184) 및 길이(186)를 갖는다. 슬릿(150)은 거리(188)만큼 슬릿(152)으로부터 분리되고, 슬릿(160)은 거리(190)만큼 슬릿(162)으로부터 분리된다. 도시된 실시예에서, 슬릿(150 및 152)의 길이 및 폭은 슬릿(160 및 162)의 길이 및 폭과 실질적으로 동일하다. 그러나, 다양한 다른 실시예에서, 슬릿(150 및 152)의 길이 및 폭은 슬릿(160 및 162)의 길이 및 폭과 상이할 수 있다는 것을 인식해야 한다. 또한, 모니터링 렌즈(100)는 두께(192)를 갖는다.
도 7은 검출기 모듈 어셈블리(102)에 대한 제 1 및 제 2 슬릿 쌍(140 및 142) 및 복수의 개구(144)의 배치를 도시하는 간략화된 도면이다. 전술한 바와 같이, 슬릿(150, 152, 160 및 162)은 상대적으로 좁은 폭 및 폭보다 실질적으로 큰 길이를 갖는 개구, 가령 직사각형 개구이다. 도시된 실시예에서, 슬릿(150, 152, 160 및 162) 각각은 대략 하나의 픽셀 와이드인 폭을 갖는다. 또한, 슬릿(150, 152, 160 및 162) 각각은 대략 12개의 픽셀을 지나 연장되는 길이를 갖는다. 또한, 개구(144) 각각은 대략 4개의 픽셀을 지나 연장되는 폭과, 대략 3개의 픽셀을 지나 연장되는 폭을 갖는다. 따라서, 동작에서, 각 개구(144)를 통해 전달되는 x선은 M x N 픽셀 어레이에 의해 검출되는데, 도시된 실시예에서 M=3이고 N=4이다. 또한, 슬릿(150, 152, 160 및 162)를 통해 전달되는 x선 각각은 O x P 픽셀 어레이에 의해 검출되는데, 도시된 실시예에서 O=1이고 P=12이다. 도시된 실시예에서, 각 포토 센서(112)는 픽셀(194)을 정의한다. 따라서, 각 픽셀(194)에 의해 발생되는 전기 신호는 최종 이미지의 픽셀에 대응한다.
다양한 실시예에서, SSRD(50)는 (인접 채널 사이에서 반영(penumbra) 및 이득 변동을 야기할 수 있는) 초점 모션을 보정하거나 보상하는 데에 사용될 수 있다. 보다 구체적으로, SSRD(50)는 슬릿(140 및 142)의 제 1 및 제 2 쌍을 사용하여 초점 추적을 수행할 수 있다. 동작에서, 제 1 슬릿 쌍(140)은 제 1 방향으로 또는 제 1 이미징 축, 가령, x축을 따라 x선 초점의 이동을 추적하는 데에 사용되고,제 2 슬릿 쌍(142)은 제 2 방향으로 또는 제 2 이미징 축, 가령, z축을 따라 x선 초점의 이동을 추적하는 데에 사용된다. 가령, 제 1 슬릿 쌍(140)은 z방향으로 초점 위치를 추적하는 데세 사용될 수 있고, 제 2 슬릿 쌍(142)은 z방향으로 초점 위치를 추적하는 데에 사용될 수 있다.
초점은 복사선이 (도 1에 도시된) x선 소스(12)로부터 투영하는 영역이다. 다양한 실시예에서, x선 소스(12)에 의해 발생된 x선(14)은 원뿔 패턴으로 초점으로부터 발산한다. 수용 가능한 해상도로 축방향 스캔으로부터 이미지를 생성하기 위해, 가령, 임상적으로 관련되는 이미지 세부 사항을 제공하기 위해, 초점이 x축 및 z축으로 올바르게 정렬되는 것이 바람직하다. 예를 들어, 동작에서, 촬영 시스템(10)은 상이한 요인으로 인해 가열될 수 있다. 가열은 복사 소스 구조의 일부의 열 팽창을 야기하여, 초점 위치가 해당하는 만큼 이동하게 할 수 있다. 초점 위치의 이동을 보정하기 위해, SSRD(50), 즉, 제 1 및 제 2 슬릿 쌍(140 및 142)으로부터 얻어진 정보가 사용되어 이미징 절차 동안의 초점 위치를 정확하게 결정할 수 있다. 슬릿(140 및 142)의 제 1 및 제 2 쌍으로부터 유도된 정보는 이미징 검출기(20)로부터 얻어진 이미징 데이터를 보정하는 데에 사용될 수 있다.
또한, x선 소스(12)의 초점은 x선 소스(12) 및/또는 검출기 어셈블리(20)상에서 발생하는 회전력에 의해 야기되는 기계적 편향으로 인해 검출기 콜리메이터(18)에 대해 위치를 변경할 수 있다. SSRD(50)의 하나의 다른 가능한 용도는, 회전 속도에 대해 초점 위치 사이의 전달 함수를 수립하는 것이다. 이러한 정보는 수집된 모듈 데이터에 적용되어 화질을 개선할 수 있다.
도 8은 도 1에 도시된 x선 소스(12)에 의해 방출될 수 있는 예시적인 x선 빔 패턴의 개략적인 도면이다. 도 8에 도시된 바와 같이, x선 빔(14)은 초점(200)으로부터 발산한다. 또한, 슬릿(150)은 사전 결정된 초점 길이(202)로 시준된다. 단 하나의 슬릿, 즉, 슬릿(150)만이 도시되어 있지만, 다른 슬릿(152, 160 및 162)의 동작과 슬릿(150)의 동작이 유사하는 것을 인식해야 한다. 다양한 실시예에서, 초점(200)은 상하로 이동하며, 슬릿(150)에 의해 발생되는 신호가 변할 수 있다는 것을 인식해야 한다. 가령, 초점(200)이 x선이 슬릿(150)을 자유롭게 통과하는 제 1 위치에 있는 경우, 판독 전자 섹션(114)에 의해 기록되는 슬릿(150)으로부터의 출력은 상대적으로 높은 레벨, 즉, 상대적으로 높은 신호일 것인데, 이는 x선이 슬릿(150) 뒤에 위치된 픽셀(194)에 충돌하기 때문이다. 유사하게, 초점(200)이 제 1 위치에 있는 동안, x선은 슬릿(152)을 자유롭게 통과하지 못할 수 있으므로, 판독 전자 섹션(114)에 의해 기록되는 슬릿(152)으로부터의 출력은 제 1 슬릿(150)으로부터의 출력보다 상대적으로 낮은 레벨일 것이다. 그러므로, 초점(200)의 위치가 z축을 따라 이동함에 따라, 가령, 제 1 및 제 2 슬릿(150 및 152)으로부터의 출력이 변할 것이라는 것을 인식해야 한다. 따라서, 다양한 실시예에서, 제 1 축, 가령, z축으로의 초점 시프트를 결정하기 위해, 슬릿(150 및 152)으로부터의 출력의 비 (S150/S152) 가 계산된다. 이 비(S150/S152)는 제 1 축을 따른 초점 이동을 나타낸다. 다양한 실시예에서, z축을 따른 초점의 위치, 가령, 비 (S150/S152) 는 초점 위치 모듈(52) 및/또는 프로세서(30)를 사용하여 계산될 수 있다.
유사하게, 도 3을 참조하면, 초점(200)이 좌우로 이동함에 따라, 슬릿(160 및 162)에 의해 발생되는 신호가 변한다는 것을 인식해야 한다. 가령, 초점(200)이 x선이 슬릿(160)을 자유롭게 통과하는 제 1 위치에 있는 경우, 판독 전자 섹션(114)에 의해 기록되는 슬릿(160)으로부터의 출력은 상대적으로 높은 레벨, 즉, 상대적으로 높은 신호일 것인데, 이는 x선이 슬릿(160) 뒤에 위치된 픽셀(194)에 충돌하기 때문이다. 유사하게, 초점(200)이 제 1 위치에 있는 동안, x선은 슬릿(162)을 자유롭게 통과하지 못할 수 있으므로, 판독 전자 섹션(114)에 의해 기록되는 슬릿(162)으로부터의 출력은 제 1 슬릿(160)으로부터의 출력보다 상대적으로 낮은 레벨일 것이다. 그러므로, 초점(200)의 위치가 x축을 따라 이동함에 따라, 가령, 제 1 및 제 2 슬릿(160 및 162)으로부터의 출력이 변할 것이라는 것을 인식해야 한다. 따라서, 다양한 실시예에서, 제 2 축, 가령, x축으로의 초점 시프트를 결정하기 위해, 제 2 비 (S160/S162) 가 계산되고 제 2 축을 따른 초점 이동을 나타낸다.
도 9는 다양한 실시예에 따라 생성될 수 있는 초점 모션 보정 값(302)을 도시하는 그래프(300)인, x축은 초점(200)의 위치를 나타내고, y축은 이미징 검출기(20)로부터 얻어진 정보에 적용되어 z축 방향으로의 초점 이동을 파악하기 위해 다양한 시점을 보상 또는 보정할 수 있는 이득 값을 나타낸다. 본 실시예에서, 라인(302)은 슬릿(150 및 152)을 사용하여 계산되는 비(S150/S152)를 나타낸다. 따라서, 도 9에 도시된 바와 같이, 비(S150/S152)가 변함에 따라, z방향으로의 각 시야에 적용되는 이득도 따라서 변한다.
유사하게, 도 10은 다양한 실시예에 따라 생성될 수 있는 초점 모션 보정 값(312)을 도시하는 그래프(310)인데, x축은 초점(200)의 위치를 나타내고, y축은 이미징 검출기(20)로부터 얻어진 정보에 적용되어 x축 방향으로의 초점 이동을 파악하기 위해 다양한 시점을 보상 또는 보정할 수 있는 이득 값을 나타낸다. 본 실시예에서, 라인(312)은 슬릿(160 및 162)을 사용하여 계산되는 비(S160/S162)를 나타낸다. 따라서, 도 10에 도시된 바와 같이, 비(S160/S162)가 변함에 따라, x방향으로의 각 시야에 적용되는 이득도 따라서 변한다. 다양한 실시예에서, 초점(200)이 x축방향으로는 이동하지 않고 z축 방향으로는 이동하는 경우, 비(S3/S4)는 이미지 데이터를 보정하는 데에 사용될 수 있다. 유사하게, 초점(200)이 z축방향으로는 이동하지 않고 x축 방향으로는 이동하는 경우, 비(S1/S2)는 이미지 데이터를 보정하는 데에 사용될 수 있다.
도 3을 참조하면, 전술한 바와 같이, 모니터링 렌즈(100)는 단일 개구(144), 2개의 개구(144) 또는 3개 이상의 개구(144)를 포함할 수 있다. 도시된 실시예에서, 모니터링 렌즈(100)는 3개의 개구(144)를 포함한다. 동작에서, 개구(144)는 x선 빔(14)의 세기 값 및/또는 x선 소스(12)의 파워 레벨(kVp) 모두를 결정하기 위해 사용된다. 보다 구체적으로, 개구(144)는 촬영 시스템(10)이 x선 빔(14)의 세기 값 및/또는 x선 소스(12)의 파워 레벨(kVp) 을 추적할 수 있게 한다. 다양한 실시예에서, 개구 각각은 내부에 설치된 필터를 포함한다. 가령, 제 1 개구(170)는 필터(250)를 내부에 설치하고, 제 2 개구(172)는 필터(252)를 내부에 설치하며, 제 3 개구(174)는 필터(254)를 내부에 설치한다. 다양한 실시예에서, 필터(250, 252, 254)는 이미징 검출기(20)로부터 얻어진 투영 데이터를 정규화하기 위해 사용되는 보정 값을 생성하도록 사용된다. 구체적으로, x선 세기와 무관하게 화질을 유지하기 위해, 이미징 검출기(20)로부터 얻어진 투영 데이터는 이미지를 생성하기 전에 정규화된다. 특히, 매 시야마다, 투영 데이터는 이미징 검출기(20)에 충돌하는 x선의 세기에 대해 정규화된다. 따라서, 다양한 실시예에서, 필터(250, 252 및 254)로부터 얻어지는 필터링된 정보는 이미징 검출기(20)로부터 얻어진 투영 데이터를 정규화하기 위해 사용된다. 다양한 실시예에서, 필터(250, 252 및 254)는 동일한 필터이다. 예를 들어, 필터(250, 252 및 254)는 k-엣지 필터로 구현될 수 있다. 따라서, 필터(250, 252 및 254)는 동일한 k-엣지 필터로 구현되기 때문에 유사한 방식으로 x선을 흡수한다. 그러므로, 각 필터(250, 252 및 254)에서 관측되는 x선 세기는 실질적으로 동일해야 한다. 결과적으로, 3개의 필터(250, 252 및 254)로부터의 출력은 모두 평균화되어, 이미징 검출기(20)에 의해 획득되는 각 시야 또는 투영을 보정하거나 정규화하는 데에 사용되는 보정 값을 생성한다. 유의해야 할 점으로, 기준 정규화 또는 kVp 측정을 위해 사용되는 개구의 형상은 판독이 초점 모션 또는 위치에 영향 받지 않도록 구성된다는 점이다. 이를 가능하게 하기 위해, X 및 Z 추적 슬릿의 반대로 가늘어 져서, 개구 벽에 평행하게 구성되는 평면이 (x선 경로를 따라) SSRD(50) 후에 수렴하게 된다.
다양한 다른 실시예에서, 필터(250)는 필터(252)와 상이하다. 또한, 필터(254)는 필터(250) 및 필터(252)와 상이하다. 예를 들어, 다양한 실시예에서, 필터(250, 252 및 254)는 모두 k-엣지 필터로 구현될 수 있다. 그러나, 필터(250)는 kV의 함수로서 필터(252)와는 상이한 레이트로 x선을 흡수하는 물질로 제조될 수 있다. 또한, 필터(254)는 kV의 함수로서 필터(250 및 252)와는 상이한 레이트로 x선을 흡수할 수 있다. 따라서, 필터 중 둘의 비는 x선 소스(12)의 kV 레벨을 나타내는 값을 생성한다. 예를 들어, 비(250/252)는 x선 소스의 kV 레벨을 나타낸다. 또한, 비(252/254)는 x선 소스(12)의 kV 레벨을 나타낼 수 있다. 따라서, 필터(250, 252 및 254)는 이미징 검출기(20)에 의해 획득된 투영 데이터를 정규화하기 위해 사용될 수도 있는 정보를 제공한다.
도 11은 본 명세서에서 설명되는 다양한 실시예를 구현하도록 구성될 수 있는 예시적 촬영 시스템(400)의 사시도이다. 도 12는 (도 11에 도시된) 촬영 시스템(400)의 개략적인 블록도이다. 다양한 실시예는 CT 촬영 시스템 및 PET(positron emission tomography) 촬영 시스템을 포함하는 예시적 듀얼 모댈리티 촬영 시스템과 관련하여 설명되지만, 본 명세서에서 설명되는 기능을 수행할 수 있는 다른 촬영 시스템이 사용되는 것도 고려된다는 것을 이해해야 한다.
멀티-모댈리티 촬영 시스템(400)이 설명되며, CT 촬영 시스템(402) 및 PET 촬영 시스템(404)을 포함한다. 촬영 시스템(400)은 상이한 모댈리티로 다수의 스캔을 허용하여 하나의 모댈리티 시스템을 통한 진단 능력을 증가시킨다. 일 실시예에서, 예시적 멀티-모댈리티 촬영 시스템(400)은 CT/PET 촬영 시스템(400)이다. 선택적으로, CT 및 PET 이외의 모댈리티가 촬영 시스템(400)에 사용된다. 예를 들어, 촬영 시스템(400)은, 특히, 독립형 CT 촬영 시스템, 독립형 PET 촬영 시스템, 자기 공명 촬영(MRI) 시스템, 초음파 촬영 시스템, x선 촬영 시스템 및/또는 SPECT(single photon emission computed tomography) 촬영 시스템, 중재적 C-Arm 단층촬영(interventional C-Arm tomography), 극한 스캐닝 또는 흉부 스캐닝과 같은 전용을 위한 CT 시스템(CT systems for a dedicated purpose such as extremity or breast scanning), 및 그 조합일 수 있다.
CT 촬영 시스템(402)은, 간트리(410)의 반대측의 이미징 검출기(20)를 향해 x선(14) 빔을 투영하는 x선 소스(12)를 갖는 간트리(410)를 포함한다. 또한, x선 소스(12)는 또한, x선 소스와 피검체(16) 사이에 장착되는 SSRD(50)를 향해 x선(14) 빔을 투영한다. 이미징 검출기(20)는 피검체(16)와 같은 물체를 통과하는 투영된 x선을 함께 감지하는, 행으로 배열된 복수의 검출기 소자(24) 및 채널을 포함한다. 촬영 시스템(400)은 또한, 이미징 검출기(20)로부터 투영 데이터를 수신하고 피검체(16)의 이미지를 재구성하기 위해 투영 데이터를 처리하는 프로세서(30)를 포함한다. 또한, 전술한 바와 같이, 프로세서(30)는 SSRD(50)로부터 데이터를 수신하고 이미징 검출기(20)로부터 얻어진 이미징 데이터를 보정하기 위해 데이터를 처리한다.
동작에서, 조작자가 제공한 명령 및 파라미터는 프로세서(30)에 의해 사용되어, 모터화 테이블(motorized table, 422)을 재위치시키는 제어 신호 및 정보를 제공한다. 보다 구체적으로, 모터화 테이블(422)은 피검체(16)를 간트리(410) 내외부로 이동시키는 데에 사용된다. 특히, 이 테이블(422)은 간트리(410)를 통해 연장되는 간트리 개구(424)를 통해 피검체(16)의 적어도 일부를 이동시킨다.
촬영 시스템(400)은 또한, 본 명세서에서 설명되는 다양한 방법을 구현하도록 구성되는 초점 모니터링 모듈(52)을 포함한다. 예를 들어, 모듈(52)은 x선 소스(12)의 초점의 위치를 자동으로 결정하고, 초점의 세기를 결정하며, 또한 x선 소스(12)로부터 x선의 파워를 결정하도록 구성될 수 있다. 초점 모니터링 모듈(52)에 의해 결정되는 정보는 이미징 검출기(20)로부터 얻어진 전송 데이터에 적용되어 전술한 바와 같이 다양한 투영 데이터 보정을 수행한다.
모듈(52)은 프로세서(30)에 설치되는 하나의 하드웨어로서 구현될 수 있다. 선택적으로, 모듈(52)은 프로세서(30)에 설치되는 인스트럭션 세트로서 구현될 수 있다. 인스트럭션 세트는, 독립형 프로그램이거나, 프로세서(30)에 설치되는 운영 시스템의 서브루틴으로 포함되거나, 프로세서(30)상의 설치된 소프트웨어 패키지의 함수(functions) 등일 수 있다. 다양한 실시예는 도면에 도시된 배열 및 수단에 한정되지 않는 다는 것을 이해해야 한다.
전술한 바와 같이, 검출기(20)는 복수의 검출기 소자(24)를 포함한다. 각 검출기 소자(24)는 전기 신호 또는 충돌 x선 빔의 세기를 나타내는 출력을 생성하여, 빔이 피검체(16)를 통과함에 따라 빔의 감쇠의 추정을 허용한다. x선 투영 데이터를 얻기 위한 스캔 동안, 간트리(410) 및 그 위에 장착된 요소들은 회전 중심(440) 주위를 회전한다. 도 12는 한 줄로 배열된 검출기 소자(24)(즉, 검출기 행)만을 도시하고 있다. 그러나, 멀티 슬라이스 검출기 어레이(20)는 복수의 평행한 검출기 소자(24)의 검출기 행들을 포함하여, 복수의 슬라이스에 대응하는 투영 데이터가 스캔 동안에 동시에 획득될 수 있다.
간트리(410)의 회전 및 x선 소스(12)의 동작은 제어 메커니즘(442)에 의해 통제된다. 제어 메커니즘(442)은, x선 소스(12)에 파워 및 타이밍 신호를 제공하는 x선 제어기(26)와, 간트리(410)의 회전 속도 및 위치를 제공하는 간트리 모터 제어기(446)를 포함한다. 제어 메커니즘(442)의 데이터 수집 시스템(DAS, 28)은 검출기 소자(24) 및 SSRD(50)로부터 아날로그 데이터를 샘플링하고, 후속 처리를 위해 데이터를 디지털 신호로 변환한다. 예를 들어, 후속 처리는 본 명세서에서 설명되는 다양한 방법을 구현하기 위해 모듈(52)을 사용하는 것을 포함할 수 있다. 이미지 재구성기(450)는 DAS(28)로부터 샘플링되고 디지털화된 x선 데이터를 수신하고, 고속 이미지 재구성을 수행한다. 재구성된 이미지는 저장 디바이스(452)에 이미지를 저장하는 프로세서(30)에 대한 입력이다. 선택적으로, 프로세서(30)는 DAS(28)로부터 샘플링되고 디지털화된 x선 데이터를 수신할 수 있고, 모듈(52)을 사용하여 본 명세서에서 설명되는 다양한 방법을 수행할 수 있다. 프로세서(30)는 또한, 키보드를 갖는 콘솔(460)을 통해 조작자로부터 명령 및 스캐닝 파라미터를 수신한다. 연관된 시각적 디스플레이 유닛(462)은 조작자로 하여금 컴퓨터로부터 재구성된 이미지 및 다른 데이터를 관측할 수 있게 한다.
조작자 제공 명령 및 파라미터는 프로세서(30)에 의해 사용되어, DAS(28), x선 제어기(26) 및 간트리 모터 제어기(446)에 제어 신호 및 정보를 제공한다. 또한, 프로세서(30)는 피검체(406)를 간트리(410)에 위치시키도록 모터화 테이블(422)를 제어하는 테이블 모터 제어기(464)를 동작시킨다. 특히, 이 테이블(422)은 도 11에 도시된 바와 같이 간트리 개구(424)를 통해 피검체(16)의 적어도 일부를 이동시킨다.
도 12를 다시 참조하면, 일 실시예에서, 프로세서(30)는 디바이스(470), 가령, CD-ROM 드라이브, DVD 드라이브, MOD(magnetic optical disk) 디바이스, 또는 이더넷 디바이스와 같은 네트워크 접속 디바이스를 포함하는 임의의 다른 디지털 디바이스를 포함하여, CD-ROM, DVD 또는 네트워크 또는 인터넷과 같은 다른 디지털 소스와 같은 비일시적 컴퓨터 판독 가능한 매체(472)로부터 인스트럭션 및/또는 데이터를 판독한다. 다른 실시예에서, 프로세서(30)는 펌웨어(도시 생략)에 저장되는 인스트럭션을 실행한다. 프로세서(30)는 본 명세서에서 설명되는 기능을 수행하도록 프로그래밍되며, 본 명세서에서 사용되는 바와 같이, 컴퓨터라는 용어는 이 기술 분야에서 컴퓨터로 지칭되는 집적회로에만 한정되는 것이 아니라, 넓게는 컴퓨터, 프로세서, 마이크로콘트롤러, 마이크로컴퓨터, 프로그래밍 가능한 로직 콘트롤러, 주문형 집적회로 및 기타 프로그래밍 가능한 회로를 지칭하며, 이들 용어는 본 명세서에서 상호 교환 가능하게 사용된다.
실시예에서, x선 소스(12), 이미징 검출기(20) 및 SSRD(50)는 이미징 평면 내 및 촬영될 피검체(16) 주위에서 간트리(410)와 함께 회전하여, x선 빔(474)이 피검체(16)와 교차하는 각이 일정하게 변화된다. 하나의 간트리 각으로 이미징 검출기(20)로부터의 x선 감쇠 측정치 그룹, 즉, 투영 데이터는 "뷰(view)"라고 지칭한다. 피검체(16)의 "스캔"은 x선 소스(12), 이미징 검출기(20) 및 SSRD(50)의 한 회전 동안에 상이한 간트리 각 또는 뷰 각으로 이루어진 시야 세트를 포함한다. CT 스캔에서, 투영 데이터는 피검체(16)를 통해 취해진 2차원 슬라이스에 대응하는 이미지를 재구성하게 위해 처리된다.
멀티-모댈리티 촬영 시스템의 실시예를 상세히 전술하였다. 설명되는 멀티-모댈리티 촬영 시스템 요소는 본 명세서에서 설명되는 특정 실시예에 제한되지 않으며, 오히려 각 멀티-모댈리티 촬영 시스템의 요소는 본 명세서에서 설명되는 다른 요소로부터 독립적이고 별도로 사용될 수 있다. 예를 들어, 전술한 멀티-모댈리티 촬영 시스템 요소는 다른 촬영 시스템과 조합하여 사용될 수도 있다.
본 명세서에서 사용되는 바와 같이, 단수로 표시되고 "하나의" 라는 단어로 수식되는 요소 또는 단계는, 명시적으로 언급되지 않는 한, 이러한 요소 또는 단계를 복수로 포함하는 것을 배제하지 않는다는 것을 이해해야 한다. 또한, 본 발명의 "일 실시예"에 대한 참조는 기재된 특징을 역시 포함하는 추가적인 실시예의 존재를 배제하는 것으로 해석되도록 의도된 것이 아니다. 또한, 특별히 반대로 언급되지 않는 한, 특정 특성을 갖는 한 요소 또는 복수의 요소를 "포함하는" 또는 "갖는" 실시예는 그 특성을 갖지 않는 추가적인 요소를 포함할 수 있다.
또한, 본 명세서에서 사용되는 바와 같이, "이미지를 재구성한다"는 문구는, 이미지를 나타내는 데이터가 생성되지만 가시적인 이미지는 생성되지 않는 본 발명의 실시예를 배제하도록 의도된 것이 아니다. 그러므로, 본 명세서에서 사용되는 바와 같이, "이미지"라는 용어는 가시적인 이미지 및 가시적인 이미지를 나타내는 데이터 모두를 넓게 지칭한다. 그러나, 많은 실시예는 적어도 하나의 가시적인 이미지를 생성하거나 생성하도록 구성된다.
본 명세서에서 사용되는 바와 같이, "소프트웨어" 및 "하드웨어"라는 용어는 상호 교환 가능하며, 컴퓨터에 의한 실행을 위해 메모리에 저장되는 임의의 컴퓨터 프로그램을 포함하며, RAM 메모리, ROM 메모리, EPROM 메모리, EEPROM 메모리, 및 비 휘발성 RAM (NVRAM) 메모리를 포함한다. 전술한 메모리 유형은 단지 예시적인 것이며, 따라서 컴퓨터 프로그램의 저장을 위해 사용 가능한 메모리 유형을 제한하는 것이 아니다.
전술한 설명을 예시적인 것이며 제한적인 것이 아니라는 것을 이해해야 한다. 가령, 전술한 실시예 (및/또는 그 양태)는 서로 조합되어 사용될 수 있다. 또한, 특정 상황 또는 재료에 적용하기 위해 본 발명의 범위를 벗어나지 않고 본 발명의 개시 내용에 많은 수정이 이루어질 수 있다. 본 명세서에서 설명되는 크기 및 재료의 종류는 본 발명의 파라미터를 정의하도록 정의되지만, 이들은 어떤 경우에도 제한적인 것이 아니며 예시적인 실시 형태이다. 전술한 설명으로부터 많은 다른 실시예가 당업자에게 자명할 것이다. 그러므로, 본 발명의 범위는 첨부된 청구범위 및 이러한 청구범위가 부여되는 균등물의 전체 범위를 함께 참조하여 결정되어야 한다. 첨부된 청구범위에서, <포함하는> 및 <여기에서>라는 용어는 각각 <포함하는> 및 <여기에서>라는 일반 영문 대체 표현으로 사용된다. 또한, 이하의 청구범위에서 <제 1>, <제 2>, <제 3> 등은 단지 명칭에 불과하며 그 대상에 수치적 요구조건을 부과하도록 의도된 것이 아니다. 또한, 이하의 청구범위의 한정사항은 기능식 표현(means-plus-function)으로 기재되지 않으며, 이러한 청구범위 한정 사항이 명시적으로 "위한 수단"이란 문구를 사용하고 이어서 추가 구조 없이 기능의 진술이 기재되지 않는 한, 35 U.S.C 112 제 6 단락에 기초하여 해석되도록 의도된 것이 아니다.
본 명세서는 최적 실시형태를 포함하는 본 발명의 다양한 실시예를 개시하고, 임의의 디바이스 또는 시스템을 구성하고 사용하며 임의의 포함된 방법을 수행하는 것으로 포함하여 당업자가 본 발명의 다양한 실시예를 실시할 수 있도록 예를 들어 설명하였다. 본 발명의 다양한 실시예의 특허 받을 수 있는 범위는 청구범위에 의해 정의되며, 당업자가 고려할 수 있는 다른 예를 포함할 수 있다. 이러한 다른 예는, 청구범위의 표현과 상이하지 않은 구조적 요소를 가지거나 청구범위의 표현과 비실질적인 차이를 갖는 균등한 구조적 요소를 포함하는 경우에 청구범위 내에 존재하도록 의도된다.

Claims (10)

  1. 소스측 방사 검출기(SSRD)(50)로서,
    검출기 모듈 어셈블리(102)와,
    상기 검출기 모듈 어셈블리에 연결되는 모니터링 렌즈(100)를 포함하되,
    상기 검출기 모듈 어셈블리 및 상기 모니터링 렌즈는 x선 소스(12)에 인접하게 위치되며, 상기 모니터링 렌즈는 상기 x선 소스로부터 자신을 통해 x선(14)을 수신하도록 구성되는 복수의 슬릿(140 및 142)을 포함하고, 상기 검출기 모듈 어셈블리는 상기 슬릿을 통해 전달되는 x선을 검출하고, 상기 x선 소스의 초점(200)의 위치를 추적하기 위해 정보를 생성하는
    소스측 방사 검출기.
  2. 제 1 항에 있어서,
    상기 복수의 슬릿(140, 142)은
    제 1 방향으로 배열되는 제 1 슬릿 쌍(140)과,
    상이한 제 2 방향으로 배열되는 제 2 슬릿 쌍(142)을 포함하는
    소스측 방사 검출기.

  3. 제 1 항에 있어서,
    상기 복수의 슬릿(140, 142)은
    제 1 방향으로 배열되는 제 1 슬릿 쌍(140) - 상기 제 1 슬릿 쌍은 제 1 방향으로 상기 초점(200)의 모션을 표시하는 정보를 생성함 - 과,
    제 1 방향과 상이한 제 2 방향으로 배열되는 제 2 슬릿 쌍(142) - 상기 제 1 슬릿 쌍은 상기 제 2 슬릿 쌍에 수직하고, 상기 제 2 슬릿 쌍은 제 2 방향으로 상기 초점의 모션을 표시하는 정보를 생성함 -을 포함하는
    소스측 방사 검출기.
  4. 제 1 항에 있어서,
    상기 모니터링 렌즈(100)는 상기 복수의 슬릿들 사이에 배치되는 적어도 하나의 개구(170, 172, 174)를 더 포함하되, 상기 개구는 상기 x선 소스(12)로부터 자신을 통해 x선(14)을 수신하도록 구성되고, 상기 검출기 모듈 어셈블릭(102)는 상기 개구를 통해 전달되는 상기 x선을 검출하고 상기 초점(200)의 세기를 표시하는 정보를 생성하는
    소스측 방사 검출기.

  5. 제 1 항에 있어서,
    상기 모니터링 렌즈(100)는 복수의 개구(170, 172, 174)를 더 포함하되, 상기 개구 각각은 내부에 인스톨된 필터(250, 252, 254)를 가지며, 상기 복수의 개구는 상기 x선 소스로부터 자신을 통해 x선(14)을 수신하도록 구성되며, 상기 검출기 모듈 어셈블리(102)는 상기 복수의 개구를 통해 전달되는 상기 x선을 검출하고, 상기 초점(200)의 세기를 표시하는 정보를 생성하는
    소스측 방사 검출기.
  6. 제 1 항에 있어서,
    상기 모니터링 렌즈(100)는 복수의 개구(170, 172, 174)를 더 포함하되, 상기 개구 각각은 내부에 인스톨된 상이한 필터(250, 252, 254)를 가지며, 상기 복수의 개구는 상기 x선 소스(12)로부터 자신을 통해 x선(14)을 수신하도록 구성되며, 상기 검출기 모듈 어셈블리(102)는 상기 복수의 개구를 통해 전달되는 상기 x선을 검출하고, 상기 x선의 파워를 표시하는 정보를 생성하는
    소스측 방사 검출기.
  7. 제 1 항에 있어서,
    상기 모니터링 렌즈(100)는 3개의 개구(170, 172, 174)를 더 포함하되,
    상기 개구 각각은 내부에 인스톨된 상이한 필터(250, 252, 254)를 가지며, 상기 3개의 개구는 상기 x선 소스(12)로부터 자신을 통해 x선(14)을 수신하도록 구성되며, 상기 검출기 모듈 어셈블리(102)는 제 1 개구로부터의 출력과 제 2 개구로부터의 출력을 비교하여, 상기 x선의 파워를 표시하는 정보를 생성하는
    소스측 방사 검출기.
  8. 제 1 항에 있어서,
    상기 초점 정보는, 상기 모니터링 렌즈(100)와 상기 물체(16)의 반대측에 위치되는 제 2 이미징 검출기(20)로부터 획득된 데이터를 정규화하는 데에 사용되는
    소스측 방사 검출기.
  9. 물체(16)를 촬영하기 위한 촬영 시스템(10)으로서,
    상기 물체를 향해 에너지를 방출하도록 구성되는 x선 소스(12)와,
    상기 물체의 제 1 측에 위치되는 소스측 방사 검출기(SSRD)(50)와,
    상기 물체의 제 2 반대측에 위치되는 촬영 검출기(20)를 포함하되,
    상기 SSRD는 상기 촬영 검출기에 의해 생성되는 투영 데이터를 정규화하기 위해 사용되는 데이터를 출력하는
    촬영 시스템.
  10. 제 9 항에 있어서,
    상기 SSRD(50)는
    검출기 모듈 어셈블리(102)와,
    상기 검출기 모듈 어셈블리에 연결되는 모니터링 렌즈(100)를 포함하되,
    상기 모니터링 렌즈는 상기 x선 소스(12)로부터 자신을 통해 x선(14)을 수신되도록 구성되는 복수의 슬릿(140 및 142)을 포함하고, 상기 검출기 모듈 어셈블리는 상기 슬릿을 통해 전달되는 상기 x선을 검출하고, 상기 x선 소스의 초점(200)의 위치를 추적하기 위해 정보를 생성하는
    촬영 시스템.
KR1020130056534A 2012-05-21 2013-05-20 이미징 시스템을 위한 소스측 모니터링 디바이스 KR102057033B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/476,130 US8926177B2 (en) 2012-05-21 2012-05-21 Source side monitoring device for an imaging system
US13/476,130 2012-05-21

Publications (2)

Publication Number Publication Date
KR20130129850A true KR20130129850A (ko) 2013-11-29
KR102057033B1 KR102057033B1 (ko) 2019-12-18

Family

ID=49581307

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130056534A KR102057033B1 (ko) 2012-05-21 2013-05-20 이미징 시스템을 위한 소스측 모니터링 디바이스

Country Status (4)

Country Link
US (1) US8926177B2 (ko)
JP (1) JP6378470B2 (ko)
KR (1) KR102057033B1 (ko)
CN (1) CN103417233B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200087686A (ko) * 2019-01-11 2020-07-21 제너럴 일렉트릭 캄파니 X-선 이미징 시스템 사용 및 교정

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014202330B3 (de) * 2014-02-10 2015-06-03 Siemens Aktiengesellschaft Single Source DualEnergy mit zwei Filtern zur Röntgenspektrumsdifferenzierung bei Strahlerblenden mit Schlitzplatte
CN104027127B (zh) * 2014-06-13 2016-08-24 中国科学院高能物理研究所 一种ct机及其球管焦点的实时监测方法
US10485501B2 (en) * 2016-09-09 2019-11-26 Koninklijke Philips N.V. Computer tomography X-ray imaging
CN108158597B (zh) * 2016-12-07 2021-08-06 北京东软医疗设备有限公司 确定原始x射线能量数据的方法、装置及ct设备
US11350892B2 (en) * 2016-12-16 2022-06-07 General Electric Company Collimator structure for an imaging system
CN107095690B (zh) 2017-05-31 2021-05-07 上海联影医疗科技股份有限公司 一种跟踪x光源焦点位置的装置、系统及方法
CN107582089B (zh) * 2017-09-29 2021-06-29 上海联影医疗科技股份有限公司 准直器、成像设备、焦点位置跟踪方法及校正方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272328A (ja) * 1985-09-26 1987-04-02 株式会社東芝 X線ctスキヤナ
JPH06269443A (ja) * 1993-03-18 1994-09-27 Toshiba Corp X線ct装置
US5550886A (en) * 1994-11-22 1996-08-27 Analogic Corporation X-Ray focal spot movement compensation system
US6996206B2 (en) 2004-04-12 2006-02-07 General Electric Company Method, system and storage medium for reference normalization for blocked reference channels
US7307694B2 (en) * 2005-06-29 2007-12-11 Asml Netherlands B.V. Lithographic apparatus, radiation beam inspection device, method of inspecting a beam of radiation and device manufacturing method
CN101266297A (zh) * 2007-03-16 2008-09-17 通用电气公司 焦点对准的ct检测器
JP5582514B2 (ja) * 2008-02-29 2014-09-03 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー X線ct装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200087686A (ko) * 2019-01-11 2020-07-21 제너럴 일렉트릭 캄파니 X-선 이미징 시스템 사용 및 교정

Also Published As

Publication number Publication date
JP2013240594A (ja) 2013-12-05
CN103417233A (zh) 2013-12-04
US20130308748A1 (en) 2013-11-21
JP6378470B2 (ja) 2018-08-22
US8926177B2 (en) 2015-01-06
KR102057033B1 (ko) 2019-12-18
CN103417233B (zh) 2017-04-12

Similar Documents

Publication Publication Date Title
KR102057033B1 (ko) 이미징 시스템을 위한 소스측 모니터링 디바이스
US6670614B1 (en) Volume cone beam acquisition on a nuclear spect system using a digital flat panel
JP6192542B2 (ja) Spect/ctシステムのための反復コーンビームct再構成のための打ち切り補正
US9173618B2 (en) Diagnostic imaging system and method using multiple types of imaging detectors
US9579075B2 (en) Detector array comprising energy integrating and photon counting cells
JP6009755B2 (ja) 画像診断装置及び方法
US7723674B2 (en) Attenuation correction for SPECT imaging using non-classical orbits of many small gamma cameras
US20100282972A1 (en) Indirect radiation detector
JP3961468B2 (ja) 放射線計算断層画像装置およびそれに用いる放射線検出器
US6661865B1 (en) Variable axial shielding for pet imaging
CN110891489A (zh) 与防散射准直器相结合的参考检测器元件
JP2007296338A (ja) X線コンピュータ断層撮影装置における散乱放射線補正方法およびx線コンピュータ断層撮影装置
JP2000028730A (ja) ガンマ線カメラ
JP6776024B2 (ja) X線検出器、x線検出器モジュール、支持部材及びx線ct装置
EP2783240B1 (en) Gantry-free spect system
JP5158053B2 (ja) 放射線断層撮影装置
JP4071765B2 (ja) 核医学診断装置
JP3881403B2 (ja) 核医学診断装置
JP2000249766A (ja) 核医学診断装置
JP6132477B2 (ja) 医用画像診断装置
JP4371636B2 (ja) 核医学診断装置
JP6521697B2 (ja) 核医学イメージング装置及び核医学イメージング方法
KR20180058792A (ko) 방사선 단층 촬영 장치
JP2022158914A (ja) 較正方法及びx線スキャナシステム
JP6000550B2 (ja) 単一光子放射断層撮影装置及び単一光子放射断層撮影プログラム

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant