KR20130117864A - 터보식 과급기가 구비된 내연 기관의 제어 장치 - Google Patents

터보식 과급기가 구비된 내연 기관의 제어 장치 Download PDF

Info

Publication number
KR20130117864A
KR20130117864A KR1020137022165A KR20137022165A KR20130117864A KR 20130117864 A KR20130117864 A KR 20130117864A KR 1020137022165 A KR1020137022165 A KR 1020137022165A KR 20137022165 A KR20137022165 A KR 20137022165A KR 20130117864 A KR20130117864 A KR 20130117864A
Authority
KR
South Korea
Prior art keywords
scavenging
amount
internal combustion
combustion engine
exhaust
Prior art date
Application number
KR1020137022165A
Other languages
English (en)
Other versions
KR101544295B1 (ko
Inventor
다케시 츠유키
나오즈미 가토오
다이스케 다카키
Original Assignee
닛산 지도우샤 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 닛산 지도우샤 가부시키가이샤 filed Critical 닛산 지도우샤 가부시키가이샤
Publication of KR20130117864A publication Critical patent/KR20130117864A/ko
Application granted granted Critical
Publication of KR101544295B1 publication Critical patent/KR101544295B1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B25/00Engines characterised by using fresh charge for scavenging cylinders
    • F02B25/14Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke
    • F02B25/145Engines characterised by using fresh charge for scavenging cylinders using reverse-flow scavenging, e.g. with both outlet and inlet ports arranged near bottom of piston stroke with intake and exhaust valves exclusively in the cylinder head
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D13/00Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing
    • F02D13/02Controlling the engine output power by varying inlet or exhaust valve operating characteristics, e.g. timing during engine operation
    • F02D13/0261Controlling the valve overlap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1448Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure
    • F02D41/145Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an exhaust gas pressure with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/146Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration
    • F02D41/1461Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine
    • F02D41/1462Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an NOx content or concentration of the exhaust gases emitted by the engine with determination means using an estimation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D2041/001Controlling intake air for engines with variable valve actuation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/703Atmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1458Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with determination means using an estimation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

흡기측 또는 배기측 중 적어도 한쪽에 가변 밸브 기구를 구비하는 터보식 과급기가 구비된 내연 기관의 제어 장치에 있어서, 밸브 오버랩 기간 중에 흡기 통로로부터 실린더 내를 통과하여 배기 통로로 빠져나가는 소기량의, 내연 기관에 대한 성능 요구를 만족시키기 위한 상한값을 정하는 소기량 설정 수단과, 소기량에 따라서 밸브 오버랩 기간의 길이를 제어하는 가변 밸브 제어 수단을 구비한다.

Description

터보식 과급기가 구비된 내연 기관의 제어 장치 {CONTROL DEVICE FOR INTERNAL COMBUSTION ENGINE EQUIPPED WITH TURBOCHARGER}
본 발명은, 가변 밸브 기구 및 터보 과급기를 구비하는 내연 기관의 제어에 관한 것이다.
가변 밸브 기구를 제어하여 밸브 오버랩 기간을 마련하고, 이 밸브 오버랩 기간 중에, 흡기압과 배기압의 차압을 이용하여, 실린더 내 잔류 가스를 배기 통로로 소기(掃氣)함으로써 실린더 내의 신기량(新氣量)을 증가시키는 기술이 알려져 있다.
예를 들어, JP2006-283636A에서는, 밸브 오버랩 기간 중에 흡기압이 배기압보다 높아지도록 스로틀 밸브 개방도를 제어하여, 소기 효과를 얻는 기술이 개시되어 있다.
그런데, 밸브 오버랩 기간 중의 소기량은, 동일한 밸브 오버랩 기간 길이라도, 내연 기관의 운전 상태나 운전하는 환경에 따라 다르다. 특히, 터보식 과급기를 구비하는 경우에는, 과급기의 회전 속도가 일정해진 정상 상태와, 회전 속도가 상승하는 과도 상태에서는 배기압이 다르므로, 엔진 회전 속도나 부하 등의 운전 상태가 동일하고, 또한 동일 오버랩 기간 길이라도 소기량이 다르다.
따라서, JP2006-283636A와 같이 밸브 오버랩 기간을 엔진 회전 속도 및 부하에 할당한 맵을 검색함으로써 밸브 오버랩 기간을 제어하면, 반드시 그 운전 상태나 운전 환경에 적합한 소기량이 얻어진다고는 할 수 없다.
따라서, 본 발명에서는, 터보식 과급기가 구비된 내연 기관에 있어서도, 운전 상태나 운전 환경에 적합한 소기량이 얻어지도록 하는 것을 목적으로 한다.
본 발명의 상세 및 다른 특징이나 이점은, 명세서의 이후의 기재 중에서 설명되는 동시에, 첨부된 도면에 도시된다.
도 1은 본 실시 형태를 적용하는 시스템의 구성도이다.
도 2는 직렬 4기통 내연 기관의 행정 순서를 도시하는 도면이다.
도 3은 컨트롤 유닛이 실행하는, 연료 분사량을 설정하기 위한 연산 내용을 도시하는 블록도이다.
도 4는 컨트롤 유닛이 실행하는, 밸브 오버랩 기간을 저감할지 여부를 판단하기 위한 제어의 블록도이다.
도 5는 컨트롤 유닛이 실행하는, 소기율을 구하기 위한 연산 내용을 도시하는 블록도이다.
도 6은 컨트롤 유닛이 실행하는, 배기 압력을 구하기 위한 연산 내용을 도시하는 블록도이다.
도 7은 컨트롤 유닛이 실행하는, 과도 배기 압력 변동을 구하기 위한 연산 내용을 도시하는 블록도이다.
도 8은 컨트롤 유닛이 실행하는, 가변 밸브 기구의 변환각을 결정하기 위한 연산 내용을 도시하는 블록도이다.
도 9는 컨트롤 유닛이 실행하는, 촉매 온도에 기초하는 소기량 상한값 산출을 위한 블록도이다.
도 10은 컨트롤 유닛이 실행하는, NOx 배출량에 기초하는 소기량 상한값 산출을 위한 블록도이다.
도 11은 컨트롤 유닛이 실행하는, 토크 급변시의 소기량 상한값 산출을 위한 블록도이다.
(제1 실시 형태)
도 1은 본 실시 형태를 적용하는 내연 기관의 시스템 구성도이다.
내연 기관(1)의 흡기 매니폴드(2)의 입구에는, 내연 기관(1)에 유입되는 공기량을 조정하기 위한 스로틀 챔버(4)가 설치되고, 그 상류에는 흡기 통로(6)가 접속되어 있다. 흡기 통로(6)의 스로틀 챔버(4)보다 상류측에는, 과급기(5)의 컴프레서(5a)가 설치되고, 또한 그 상류에는, 흡입 공기량을 검출하는 에어플로우 미터(8)가 설치되어 있다.
내연 기관(1)의 각 실린더에는 연료를 실린더 내에 직접 분사하는 연료 분사 밸브(15)가 배치되어 있다. 배기 통로(7)에는, 과급기(5)의 터빈(5b)이 설치되어 있다.
과급기(5)는, 이른바 터보식 과급기로, 컴프레서(5a)와 터빈(5b)이 샤프트(5c)를 통해 접속되어 있다. 이로 인해, 터빈(5b)이 내연 기관(1)의 배기 에너지에 의해 회전하면, 컴프레서(5a)가 회전하여 흡입 공기를 하류측으로 압송한다.
터빈(5b)의 하류측에는, 배기 정화용 배기 촉매(18)가 배치된다. 배기 촉매(18)로서는, 예를 들어 3원 촉매가 사용된다.
재순환(Recirculation) 통로(10)는, 흡기 통로(6a)와, 에어플로우 미터(8)보다 하류측, 또한 컴프레서(5a)보다 상류측의 흡기 통로[이하, 흡기 통로(6b)라 함]를 접속하는 통로로, 도중에 설치한 재순환 밸브(9)가 개방되면 양 흡기 통로(6a, 6b)가 연통되고, 폐쇄되면 연통이 차단된다.
재순환 밸브(9)는, 일반적으로 알려져 있는 것과 마찬가지로, 과급압과 흡기 매니폴드(2) 내의 압력(이하, 흡기관압이라 함)의 차압이 소정값 이상으로 되었을 때에 개방된다. 예를 들어, 내부에 구비하는 밸브체에 대해, 내장하는 스프링의 반력이 밸브 폐쇄 방향으로 가압되고 있고, 또한 밸브체의 밸브 개방 방향으로 과급압이 작용하고, 밸브 폐쇄 방향으로는 흡기관압이 작용하고 있어, 과급압과 흡기관압의 차압이 스프링의 반력을 초과한 경우에 밸브 개방된다. 이에 의해, 과급 상태에서 주행 중에 스로틀 챔버(4)가 완전 폐쇄로 된 경우에, 과급압의 과상승을 방지할 수 있다. 또한, 재순환 밸브(9)가 개방될 때의 과급압과 흡기관압의 차압은, 스프링의 스프링 상수에 의해 임의의 값으로 설정할 수 있다.
가변 밸브 기구(14)는, 배기 밸브와 흡기 밸브가 모두 개방된 오버랩 기간이 발생하도록, 흡기 밸브 폐쇄 시기(IVC)를 변화시키는 것이면 충분하다. 예를 들어, 크랭크 샤프트에 대한 흡기 캠 샤프트의 회전 위상을 변화시키는 것이나, 흡기 밸브의 작동각을 변화시키는 것 등, 일반적으로 알려져 있는 가변 밸브 기구를 사용할 수 있다. 또한, 배기 밸브측에도 마찬가지의 가변 밸브 기구(14)를 설치하여, 흡기 밸브 및 배기 밸브의 밸브 타이밍을 가변 제어하도록 해도 된다.
컨트롤 유닛(12)은, 에어플로우 미터(8)에 의해 검출하는 흡입 공기량, 액셀러레이터 개방도 센서(13)에 의해 검출하는 액셀러레이터 개방도, 크랭크각 센서(20)에 의해 검출하는 엔진 회전 속도 등과 같은 운전 상태에 관한 파라미터를 판독하고, 이들에 기초하여 점화 시기, 밸브 타이밍, 공연비 등의 제어를 행한다.
다음에, 컨트롤 유닛(12)이 행하는 밸브 타이밍 제어 및 공연비 제어에 대해 설명한다.
컨트롤 유닛(12)은, 흡기 매니폴드(2) 내의 압력이 배기 매니폴드(3) 내의 압력보다 높은 경우에는, 흡기 밸브 및 배기 밸브가 개방되어 있는 밸브 오버랩 기간이 발생하는 밸브 타이밍으로 되도록 가변 밸브 기구(14)를 작동시킨다.
이것은, 밸브 오버랩 기간 중에, 흡기 매니폴드(2)로부터 유입된 신기가 소기 가스로서 그대로 배기 매니폴드(3)로 빠져나가는, 이른바 소기 효과를 이용하여, 터빈(5b)의 회전 속도를 높여, 실린더 내로의 충전 효율을 높이기 위함이다.
이 효과에 대해 도 2를 사용하여 구체적으로 설명한다. 도 2는 점화 순서가 1번 기통-3번 기통-4번 기통-2번 기통인 직렬 4기통 내연 기관의 행정 순서에 대해 나타낸 것이다. 도면 중의 사선을 부여한 부분은 밸브 오버랩 기간을 나타낸다.
밸브 오버랩 기간을 마련하면, 배기 매니폴드(3)에서는 배기 행정 중의 기통으로부터 배출되는 배기 가스와, 그때 흡기 행정 중의 다른 기통의 소기 가스가 합류한다. 예를 들어, 도 2의 3번 기통의 배기 행정 #3ex에서 배기되는 배기 가스와, 그때 흡기 행정으로 되는 1번 기통의 밸브 오버랩 기간 #1sc에 소기되는 소기 가스가 합류한다.
이로 인해, 밸브 오버랩 기간이 없는 경우, 즉, 소기가 없는 경우에 비해 터빈(5b)에 도입되는 가스량이 증가한다. 이에 의해, 터빈(5b)의 회전 속도가 높아져, 컴프레서(5a)에 의한 과급압이 높아진다. 또한, 소기에 의해 신기 가스와 함께 실린더 내의 잔류 가스도 배출되므로, 결과적으로 실린더의 신기의 충전 효율이 높아진다.
또한, 본 실시 형태에서는, 후술하는 공연비 제어에 의해, 배기 매니폴드(3)에서 합류한 배기 가스와 소기 가스의 혼합기(混合氣)를, 터빈(5b)에 유입되기 전에 연소시킴으로써, 터빈(5b)을 회전시키기 위한 에너지를 증대시킨다.
이를 위해, 어느 실린더로부터 배기 행정 중에 배기되는 배기 가스와, 동 시기에 흡기 행정으로 되는 실린더로부터 밸브 오버랩 기간 중에 소기되는 소기 가스의 혼합기가, 터빈(5b)으로 유입되기 전에 연소되기 쉬운 공연비로 되도록 연료 분사량을 설정한다. 즉, 실린더 내의 공연비를 이론 공연비보다도 리치(rich)한 공연비로 하여, 미연 탄화수소를 포함한 배기 가스를 배출시키고, 이 배기 가스와 소기 가스가 혼합됨으로써 연소되기 쉬운 공연비, 예를 들어 이론 공연비로 되는 연료 분사량을 설정한다.
예를 들어, 도 2의 3번 기통의 흡기 행정 #3in에서 흡입한 공기량에 대한 연료 분사량을 설정하는 경우는, 3번 기통의 배기 행정 #3ex에서 배출되는 배기 가스와 1번 기통의 밸브 오버랩 기간 #1sc에서 배출되는 소기 가스의 혼합기가 연소되기 쉬운 공연비로 되는 연료 분사량을 설정한다. 즉, 3번 기통의 실린더 내의 공연비에 착안하면, 이론 공연비보다 리치한 공연비로 되어, 배기 행정에서는 미연 연료를 포함하는 배기 가스가 배출된다.
상기한 바와 같이 설정한 연료 분사량은, 1행정당 1회의 연료 분사에 의해 모두 분사한다. 연료 분사 시기는, 흡기 행정 중의 밸브 오버랩 기간 종료 후, 즉, 배기 밸브 폐쇄 후, 또는 압축 행정 중으로 한다. 또한, 공연비 제어의 상세에 대해서는 후술한다.
이와 같이 분사하면, 배기 가스 중의 미연 탄화수소로 되는 연료는, 팽창 행정 중의 연소열을 받음으로써 탄소 사슬이 긴 고급 탄화수소로부터 탄소 사슬이 짧은 저급 탄화수소로 변화되어, 보다 연소성이 높아진다. 또한, 실린더 내의 공연비가 이론 공연비보다 리치하게 됨으로써, 출력 공연비에 근접하므로, 이론 공연비로 운전하는 경우보다 출력을 향상시킬 수 있다. 또한, 연료가 실린더 내에서 기화될 때의 기화 잠열에 의해 실린더 내가 냉각되므로, 충전 효율의 향상에 기여한다.
도 3은 실린더 내에 분사하는 연료 분사량을 설정하는 연산 내용을 도시하는 블록도이다. 또한, 이 블록도에는, 설정한 연료 분사량을 사용하여 행하는, 실린더 내 및 배기 매니폴드(3) 내의 공연비의 추정도 포함되어 있다.
배기관 내 공연비 목표값 설정부(301)는, 배기 매니폴드(3) 내의 목표 공연비인 배기관 내 목표 공연비를 설정한다. 목표 공연비는, 배기 가스와 소기 가스의 혼합기가 연소되기 쉬운 공연비, 예를 들어 이론 공연비로 설정한다.
또한, 이론 공연비에 한정되지 않고, 예를 들어 배기 가스와 소기 가스의 혼합기가 배기 성능의 요구값을 만족시키는, 즉, 배기 촉매(18)의 전환 효율을 저하시키지 않을 정도의 공연비로 되도록 설정해도 된다. 이 경우라도, 소기 효과에 의해 실린더 내의 충전 효율은 향상되어 발생 토크는 증대되고, 또한 배기 성능의 저하를 방지할 수 있다.
실린더 내 트랩 흡입 공기량 추정부(302)는, 에어플로우 미터(8)에 의해 검출한 흡입 공기량과, 소기율에 기초하여, 흡입 공기량 중 흡기 행정 종료 시점에서 실린더 내에 가두어져 있는 양인 실린더 내 트랩 흡입 공기량을 추정한다. 또한, 소기율은 신기량을 실린더 내 가스량으로 나눈 값을 말한다. 소기율의 산출 방법에 대해서는 후술한다.
실린더 소기 가스량 추정부(303)는, 실린더 내 트랩 흡입 공기량을 산출한 기통이 배기 행정시에 흡기 행정으로 되는 기통에 대해, 흡입 공기량 중 밸브 오버랩 기간 중에 배기 매니폴드(3)로 유출되는 양인 실린더 소기 가스량을 소기율과 흡입 공기량에 기초하여 추정한다.
실린더 내 연료 분사량 설정부(304)에서는, 배기관 내 목표 공연비, 실린더 내 트랩 흡입 공기량, 실린더 소기 가스량에 기초하여, 실린더 내로의 연료 분사량을 결정한다.
배기 가스는, 배기 매니폴드(3)에서 소기 가스와 혼합되면, 소기 가스에 희석되는 분만큼 공연비가 린(lean)측으로 변화된다. 예를 들어, 실린더 내 트랩 흡입 공기량에 대해 이론 공연비로 되도록 연료 분사량을 설정하면, 배기의 공연비는 이론 공연비로 되어, 배기 매니폴드(3)에서 소기 가스와 혼합되면 이론 공연비보다 린으로 된다.
따라서, 실린더 내 트랩 흡입 공기량 및 실린더 소기 가스량에 기초하여, 소기 가스에 희석되었을 때에 배기관 내 목표 공연비로 되는 데 필요한 탄화수소량을 구하고, 이 탄화수소량을 발생시키는 데 필요한 연료 분사량을, 실린더 내 트랩 흡입 공기량에 기초하여 설정한다.
실린더 내 공연비 추정부(305)에서는, 연료 분사량과 실린더 내 트랩 흡입 공기량으로부터 실린더 내의 공연비를 추정한다. 배기관 내 공연비 추정부(306)에서는, 실린더 내 공연비와 실린더 소기 가스량으로부터 배기 매니폴드(3) 내의 공연비를 추정한다. 이들 추정값과 배기관 내 목표 공연비에 기초하여, 실린더 내 연료 분사량을 피드백 제어하면, 배기 매니폴드(3) 내의 공연비를 보다 고정밀도로 제어할 수 있다.
도 4는 실린더 내 공연비 추정부(305)에서 구한 실린더 내 공연비 추정값에 기초하여 밸브 오버랩 기간을 저감할지 여부를 판단하는 제어의 블록도이다. 소기량이 증대될수록, 배기관 내 공연비를 원하는 공연비로 하기 위해 필요한 연료량도 증대되고, 이것에 수반하여 실린더 내의 공연비도 보다 리치화된다. 따라서, 도 3의 연산에 의해 구해진 연료 분사량으로 하였을 때에 실린더 내의 공연비가 연소 한계를 초과해 버리는 경우에는, 밸브 오버랩 기간을 짧게 하여 소기량을 감소시키기 위해, 도 4의 연산을 행한다.
실린더 내 공연비 허용값 산출부(401)에서는, 연소 한계 등의 조건에 기초하여 구해지는 실린더 내 공연비 허용값을 설정한다. 실린더 내 공연비 추정부(402)는, 도 3의 실린더 내 공연비 추정부(305)에서 추정한 실린더 내 공연비를 판독한다.
판정부(403)에서는, 실린더 내 공연비 허용값과 실린더 내 공연비 추정값을 비교하여, 실린더 내 공연비 추정값의 쪽이 리치하다고 판정되면, 가변 밸브 기구(14)의 제어부인 VTC 제어부(404)에 밸브 오버랩 기간의 저감 요구를 행한다. 이에 의해, 밸브 오버랩 기간이 저감되어, 소기량이 감소한다. 즉, 성능 요구를 만족시키기 위한 소기량의 상한값이 정해지게 된다.
상술한 도 3, 도 4의 제어에 의해, 배기 매니폴드(3) 내의 배기 가스와 소기 가스의 혼합기의 공연비를 연소되기 쉬운 공연비로 제어하고, 또한 실린더 내의 연소 안정성을 확보할 수 있다.
다음에, 도 3에서 실린더 내 트랩 흡입 공기량 및 실린더 소기 가스량의 추정에 사용하는 소기율에 대해 설명한다.
도 5는 소기율을 산출하기 위한 연산 내용을 도시하는 블록도이다.
소기율은, 정상 운전시이면 엔진 회전 속도나 흡입 공기량으로부터 구해지는 발열량이나 배기 매니폴드(3)를 통과하는 가스량에 기초하여 정해진다. 그러나, 과도 운전시에는 배기 매니폴드(3)를 흐르는 가스량의 증가 속도에 대해 터빈(5b)의 회전 속도 상승이 지연되므로, 압력 손실이 발생한다. 그 결과, 과도 운전시에 있어서의 배기 압력은, 동일 흡입 공기량, 동일 엔진 회전 속도의 정상 운전시에 있어서의 배기 압력에 비해 높아진다. 따라서, 도 5의 연산에서는, 정상 운전시의 배기 압력을, 과도 운전시에 있어서의 배기 압력 변동량(이하, 과도 압력 변동이라 함)의 증감분에 의해 보정하여 소기율을 산출한다.
콜렉터 압력 판독부(501)에서, 흡기 매니폴드(2) 내의 압력을 콜렉터 압력으로서 판독한다. 배기 압력 판독부(502)에서는 후술하는 연산에 의해 구한 배기압을 판독한다. 과도 압력 변동 판독부(503)에서, 후술하는 연산에 의해 구한 과도 배기 압력 변동량을 판독한다.
배기 밸브 전후 차압 산출부(504)에서는, 콜렉터 압력으로부터 배기 압력을 감산하고, 그것에 과도 압력 변동을 가산하여 배기 밸브 전후 차압을 산출한다. 이에 의해 과도 배기 압력 변동량을 포함한 배기 밸브 전후 차압이 산출된다.
한편, 엔진 회전 속도 판독부(505)에서 크랭크각 센서(20)의 검출값에 기초하여 엔진 회전 속도를 판독하고, 오버랩량 판독부(506)에서 후술하는 연산에 의해 구한 밸브 오버랩량을 판독한다.
그리고, 소기율 연산부(507)에서, 엔진 회전 속도, 밸브 오버랩량 및 배기 밸브 전후 차압에 기초하여 미리 설정한 맵을 사용하여 소기율을 구하고, 그 연산 결과를 소기율 설정부(508)에서 소기율로서 판독한다. 여기서 사용하는 맵은, 도 5에 도시하는 바와 같이, 종축이 배기 밸브 전후 차압, 횡축이 밸브 오버랩량으로 되어 있고, 컨트롤 유닛(12)은 이 맵을 엔진 회전 속도마다 복수 기억하고 있다.
도 6은 배기 압력 판독부(502)에서 판독하는 배기 압력을 구하기 위한 연산 내용을 도시하는 블록도이다. 배기 압력은, 대기압이나 배기 온도의 영향을 크게 받으므로, 이들에 기초하는 보정을 행함으로써 배기 압력의 추정 정밀도를 높이고, 나아가서는 소기율의 추정 정밀도를 높인다. 구체적으로는, 다음과 같은 연산을 행한다.
배기 온도 판독부(601)에서 배기 온도 센서(17)의 검출값을 판독하고, 흡입 공기량 판독부(602)에서 에어플로우 미터(8)의 검출값을 판독한다. 기준 배기 압력 산출부(603)에서, 이들 판독한 값에 기초하여, 미리 작성해 둔 맵을 사용하여 기준으로 되는 배기 압력을 산출한다. 이에 의해 흡입 공기량 및 배기 온도에 따른 배기 압력을 기준값으로 할 수 있다.
한편, 기준 대기압 판독부(604)에서, 기준 배기압을 산출하였을 때의 대기압 센서(16)의 검출값을 판독한다. 또한, 대기압 판독부(605)에서, 대기압 센서(16)의 현재의 검출값을 판독한다. 그리고, 대기압 보정부(606)에서, 기준 배기 압력으로부터 기준 대기압을 감산한 값과 대기압의 합을 연산하고, 연산 결과를 배기 압력 산출부(607)에서 배기 압력으로서 판독한다. 이에 의해, 대기압에 따른 배기 압력을 추정할 수 있다.
도 7은 과도 압력 변동 판독부에서 판독하는 과도 배기 압력 변동량을 산출하기 위한 블록도이다.
여기서는, 과도 운전인지 여부를 판정하는 트리거로서 흡입 공기량 및 스로틀 밸브 개방도의 변화량을 사용하여, 과도 배기 압력 변동량을 산출한다.
흡입 공기량 판독부(701)에서 에어플로우 미터(8)의 검출값을 판독한다. 스로틀 밸브 개방도 판독부(702)에서 스로틀 개방도를 판독한다. 스로틀 밸브 개방도는, 스로틀 포지션 센서에 의해 검출해도 되고, 전자 제어 스로틀인 경우에는 스로틀 밸브를 구동하는 액추에이터에의 지시값을 판독해도 된다.
흡기 변화 속도 산출부(703)에서는, 흡입 공기량 판독부(701)에서 판독한 흡입 공기량에 기초하여 흡입 공기량의 변화 속도인 흡기 변화 속도 △QA를 산출한다. 흡기 변화 속도 보정값 연산부(714)에서는 하기 식 (1)에 의해 흡기 변화 속도 △QA에 1차 지연을 부여한 값을 흡기 변화 속도 보정값 QMv로서 산출한다.
Figure pct00001
과도 배기압 변화량 추정부(711)에서, 상기한 바와 같이 하여 구한 흡기 변화 속도 보정값 QMv에 기초하여, 미리 작성한 맵으로부터 기준으로 되는 과도 배기압을 산출하고, 산출 결과를 스위치부(712)에 입력한다.
흡기량 변화량 산출부(704)에서 흡입 공기량의 변화량을 산출하고, 제1 판정부(708)에서, 제1 과도 판정 크라이테리어 설정부(705)에 미리 저장해 둔 제1 과도 판정 크라이테리어와 흡기량 변화량을 비교한다.
스로틀 밸브 개방도 변화량 산출부(706)에서 스로틀 밸브 개방도의 변화량을 산출하고, 제2 판정부(709)에서, 제2 과도 판정 크라이테리어 설정부(707)에 미리 저장해 둔 제2 과도 판정 크라이테리어와 스로틀 밸브 개방도 변화량을 비교한다.
제3 판정부(710)는, 제1 판정부(708) 및 제2 판정부(709)의 판정 결과를 판독한다. 그리고, 제1 판정부(708)에서 흡기량 변화량이 제1 과도 판정 크라이테리어보다 크거나, 또는 제2 판정부(709)에서 스로틀 밸브 개방도 변화량이 제1 과도 판정 크라이테리어보다 큰 것 중 적어도 한쪽이 성립되어 있으면, 과도 운전시라고 판정한다. 이 판정 결과는 스위치부(712)에 입력되고, 스위치부(712)는 과도 운전시인 경우는 과도 배기 압력 변동을 부가하는 측으로 전환되고, 과도 운전시가 아닌 경우는 과도 배기 압력 변동량을 부가하지 않는 측으로 전환된다. 과도 배기 압력 변동 결정부(713)에서는, 스위치부(712)로부터 출력된 값을 과도 배기 압력 변동량으로서 설정한다.
도 8은 컨트롤 유닛(12)이 실행하는, 가변 밸브 기구(14)의 변환각을 결정하기 위한 제어 루틴을 나타내는 흐름도이다. 이 제어 도중에 밸브 오버랩 기간을 산출한다.
스텝 S801에서, 컨트롤 유닛(12)은, 내연 기관(1)의 운전 상태, 예를 들어 콜렉터압, 엔진 회전 속도, 흡기 온도, 대기압, 기본 분사 펄스 등을 판독한다. 기본 분사 펄스는 내연 기관(1)의 출력에 상관이 있는 값이다.
스텝 S802에서, 컨트롤 유닛(12)은, 상기 운전 상태로부터 구해지는 소기량 상한값을 산출한다. 여기서, 소기량 상한값을 구하는 방법의 일례에 대해 설명한다.
도 9는 촉매 온도에 기초하는 소기량 상한값 산출을 위한 블록도이다.
소기분을 포함한 배기 매니폴드(3) 내의 공연비가 이론 공연비로 되도록 연료 분사를 하여, 배기 매니폴드(3) 내에서 배기 가스와 소기 가스의 혼합기를 연소시키는 경우에는, 연소 에너지가 클수록 과급기(5)의 효율이 높아진다. 또한, 소기율이 높을수록 실린더 내의 신기의 비율이 높아져 충전 효율이 높아진다. 즉, 내연 기관(1)에 대한 출력 향상 등의 성능 요구를 만족시키기 위해서는, 소기량은 가능한 한 큰 쪽이 좋다. 단, 도 4에 도시한 바와 같이, 연소 한계 등의 조건에 의해 밸브 오버랩 기간이 제한되므로, 소기량의 상한도 제한된다.
한편, 소기량이 많아질수록 배기 매니폴드(3) 내에서의 연소에 의해 배기 촉매(18)가 보다 고온까지 가열된다. 배기 촉매(18)는, 온도가 과잉으로 상승하면 배기 정화 성능이 떨어지므로, 배기 촉매(18)의 온도 상승을 억제하기 위해 소기량의 상한값을 설정할 필요가 있다.
따라서, 소기량을, 배기 촉매(18)의 열화를 초래하지 않을 정도로 제한하고, 이것을 소기량 상한값으로 한다.
또한, 운전 상태로서는, 콜렉터압 Boost, 엔진 회전 속도 NE, 기본 분사 펄스 TP, 흡기 온도 TAN 및 대기압 PAMB를 판독한다.
촉매 상한 온도 산출부(901)는, 운전 상태에 따라서 정해지는 배기 촉매(18)의 상한 온도인 촉매 상한 온도를 산출한다.
마찬가지로, 소기 없음 촉매 상한 온도 산출부(902)에서 소기가 없는 통상 운전 상태, 즉, 소기 가스와 배기 가스의 혼합기를 연소시키지 않는 운전 상태에서의 배기 촉매(18)의 추정 온도인 소기 없음 촉매 추정 온도를 산출한다.
소기시 촉매 승온 허용값 산출부(903)는, 촉매 상한 온도와 소기 없음 촉매 추정 온도의 차인 소기시 촉매 승온 허용값을 산출한다. 이 소기시 촉매 승온 허용값만큼, 소기시의 배기 촉매(18)의 승온을 허용할 수 있다.
촉매 온도 허용 소기량 산출부(905)에서는, 소기시 촉매 승온 허용값과, 실린더 내 공연비 산출부(904)에서 구한 내연 기관(1)의 실린더 내의 공연비로부터, 미리 작성한 맵을 사용하여 배기 촉매(18)의 온도로부터 정해지는 소기량 상한값인 촉매 온도 허용 소기량을 산출한다. 여기서 사용하는 맵은, 실린더 내 공연비마다 소기량과 촉매 승온량의 관계를 나타내는 것이다.
그리고, 산출 결과를 촉매 온도 허용 소기량 결정부(906)에서 촉매 온도 허용 소기량을 소기량 상한값으로서 설정한다.
상기한 바와 같이 엔진 회전 속도 등과 같은 내연 기관(1)의 운전 상태나, 흡기 온도나 대기압과 같은 내연 기관(1)이 운전하는 환경에 기초하여 소기량 상한값을 결정하는 경우에는, 소기 없음 촉매 상한 온도 산출부(902)의 산출 결과가 운전 상태나 환경에 따라서 다르다. 그 결과, 촉매 온도 허용 소기량도 운전 상태나 환경에 따른 값으로 된다.
또한, 도 9의 연산에 있어서, 입력하는 엔진 회전 속도 등으로서, 다음 사이클의 상태를 추측한 값을 사용하면, 다음 사이클에 있어서의 소기량 상한값을 구할 수 있다. 따라서, 피드 포워드 제어가 요구되는 과도 운전시의 제어라도, 마찬가지로 소정 시간 후의 소기량 상한값을 산출함으로써 대응할 수 있다.
도 8의 설명으로 되돌아간다.
도 8의 스텝 S802에서, 컨트롤 유닛(12)은, 촉매 온도 허용 소기량 외에, 도 4의 연산에 의해 정해지는 성능 요구를 만족시키는 소기량 상한값도 산출한다. 그리고, 어느 한 작은 쪽을 소기량 상한값으로서 설정한다. 도 8의 스텝 S803에서, 컨트롤 유닛(12)은, 스텝 S802에서 구한 소기량에 기초하여 밸브 오버랩 기간을 결정한다. 적용하는 내연 기관의 사양에 따라서, 소기량과 밸브 오버랩 기간을 미리 구해 두면, 소기량에 기초하여 용이하게 밸브 오버랩 기간을 설정할 수 있다. 그리고, 도 5의 오버랩량 판독부(506)에서는, 이 값을 판독한다.
스텝 S804에서, 컨트롤 유닛(12)은, 스텝 S803에서 결정한 밸브 오버랩 기간을 실현하기 위한 가변 밸브 기구(14)의 변환각을 결정한다. 적용하는 내연 기관(1)의 흡기 캠, 배기 캠의 프로필 등에 따라서, 밸브 오버랩 기간과 변환각의 관계를 미리 구해 두면, 밸브 오버랩 기간에 따라서 용이하게 변환각을 결정할 수 있다.
상기한 바와 같이 하여 도 3의 연산에 의해 연료 분사량을 설정하면, 배기 매니폴드(3) 내에서 혼합된 소기 가스와 배기 가스의 혼합기를 연소하기 쉬운 공연비로 제어할 수 있다.
또한, 본 실시 형태는, 내연 기관(1)이 실린더 내 직접 분사식인 경우에 대해 설명하였지만, 이것에 한정되는 것은 아니며, 각 실린더에 연통되는 흡기 포트 내에 연료를 분사하는, 이른바 포트 분사식 내연 기관에도 적용할 수 있다. 포트 분사식 내연 기관의 경우에는, 상기 연료 분사를 밸브 오버랩 기간 종료 후, 즉, 배기 밸브 폐쇄 후에 행하도록 하면, 분사된 연료가 소기 가스와 함께 배기 매니폴드(3)로 배출되는 일이 없으므로, 상술한 연료 분사량의 설정 방법을 그대로 적용할 수 있다.
또한, 도 3에서는, 실린더 소기 가스량 추정부(303)에 있어서, 실린더 내 트랩 흡입 공기량을 산출한 기통이 배기 행정일 때에 흡기 행정으로 되는 기통에 대해 실린더 소기 가스량을 추정하고 있다. 이것은, 과도 운전 상태에도 대응하기 위함이다. 그러나, 정상 운전인 경우에는, 실린더 내 트랩 흡입 공기량 및 실린더 소기 가스량은 모두 각 기통과도 동일하므로, 실린더 내 트랩 흡입 공기량을 산출한 기통과 동일한 기통의 실린더 소기 가스량을 사용해도 연료 분사량을 결정할 수 있다.
이상에 의해 본 실시 형태에서는, 다음의 효과가 얻어진다.
컨트롤 유닛(12)은, 내연 기관(1)에 대한 성능 요구를 만족시키기 위한 소기량을 설정하고, 이 소기량에 따라서 밸브 오버랩 기간의 길이를 제어하므로, 소기에 의해 실린더 내의 신기의 비율, 즉, 충전 효율이 향상된다.
컨트롤 유닛(12)은, 배기 촉매(18)의 추정 온도에 기초하여 소기량 상한값을 제한하므로, 소기 가스를 배기 매니폴드(3) 내에서 배기 가스와 혼합시켜 연소시켰을 때에, 배기 촉매(18)의 온도가 과잉으로 상승하는 것을 방지할 수 있다.
컨트롤 유닛(12)은, 내연 기관(1)의 운전 상태 및 배치된 환경에 기초하여 소기량 상한값을 제한하므로, 적절한 소기량 상한값을 설정할 수 있다. 즉, 운전 상태 및 배치된 환경이 다르면, 흡입 공기량이나 배기 온도 등도 다르고, 이들에 기초하여 산출하는 촉매 승온 허용 소기량도 다르지만, 제어에 따르면 적절한 소기량 상한값을 설정할 수 있다.
예를 들어, 기압이 낮은 경우에는 터보식 과급기(5)는 회전하기 쉬워지므로, 기압이 높은 상태와 비교하면, 소기량이 동일해도 회전 속도가 상승하기 쉬워, 과회전할 우려가 있다. 이 경우, 웨이스트 게이트 등에 의해 배기의 일부를 바이패스시키면 과회전을 억제하여 과급기(5)를 보호할 수 있지만, 이것으로는 소기 가스와 배기 가스의 연소에 의한 에너지가 낭비되게 된다. 따라서, 내연 기관(1)이 배치된 환경에 기초하여 소기량 상한값을 설정하면, 과회전으로 되지 않도록 소기량을 설정할 수 있어, 에너지를 낭비하는 일 없이 과급기(5)를 보호할 수 있다.
컨트롤 유닛(12)은, 운전 상태에 기초하여 추정하는 소기 미실행 상태와, 실린더 내의 목표 공연비에 기초하여 추정하는 소기 실행 후의 상태에 기초하여 소기량 상한값을 설정한다. 즉, 흡기 온도 등의 운전 상태에 따라 정해지는 배기 매니폴드(3) 내의 온도와, 소기 가스와 배기 가스의 혼합 가스를 연소시키는 것에 의한 온도 상승분에 기초하여 촉매 온도 허용 소기량을 설정하므로, 적절한 소기량 상한값을 설정할 수 있다.
컨트롤 유닛(12)은, 운전 상태 추정값에 기초하여 추정하는 소정 시간 경과 후, 예를 들어 1 사이클 후의 소기 미실행 상태와, 실린더 내의 목표 공연비에 기초하여 추정하는 소기 실행 후의 상태에 기초하여 소기량의 상한값을 설정한다. 즉, 엔진 회전 속도나 부하 등으로서 다음 사이클의 상태를 추정한 값을 입력함으로써, 다음 사이클의 소기량 상한값을 설정할 수 있다. 가속시와 같이 피드 포워드 제어가 요구되는 과도 운전시에도, 적절한 소기량 상한값을 설정할 수 있다.
컨트롤 유닛(12)은, 복수의 조건에 기초하여 복수의 소기량 상한값을 산출한 경우에는, 가장 작은 소기량 상한값을 선택하므로, 시스템의 성능 저하를 확실하게 방지할 수 있다.
(제2 실시 형태)
다음에 제2 실시 형태에 대해 설명한다.
본 실시 형태를 적용하는 시스템은 제1 실시 형태와 마찬가지이다. 제어에 대해서도 기본적으로는 마찬가지이지만, NOx 생성량에 기초하여 소기량 상한값을 산출하는 점에서 다르다. 따라서, 소기량 상한값의 산출 방법에 대해 설명한다.
실린더 내 직접 분사식 내연 기관의 경우에는, 흡기 통로로부터 배기 통로로 빠져나가는 소기 가스에 연료가 포함되어 있지 않으므로, 배기 촉매(18)에 유입되는 가스의 공연비는, 소기량이 증가할수록 린측으로 어긋난다. 배기 촉매(18) 내가 이론 공연비보다도 린화되면, NOx 전환 효율이 악화되어, 유입되는 NOx를 완전히 처리할 수 없게 되어 배기 성능이 악화될 우려가 있다.
따라서, 배기 촉매(18)에서 완전히 처리할 수 없을 정도의 NOx가 발생하지 않도록, 소기량 상한값을 설정한다.
도 10은 본 실시 형태에서 컨트롤 유닛(12)이 실행하는, NOx 생성량에 기초하여 소기량 상한값을 설정하기 위한 연산 내용을 나타내는 내용을 도시하는 블록도이다.
NOx 생성량 산출부(1001)에서, 엔진 회전 속도 NE 및 기본 분사 펄스 TP를 판독하여, 이들에 기초하여 맵 검색함으로써, 당해 운전 상태에 있어서 허용할 수 있는 NOx 생성량(소기시 NOx 배출 허용값)을 산출한다. 여기서 말하는 NOx 생성량은 내연 기관(1)으로부터 배출되는 양을 말한다.
NOx 생성량 산출부(1001)에서 사용하는 맵의 종축은 콜렉터압 Boost로 되어 있다. 기본 분사 펄스 TP는 실린더 흡입 공기 질량에 따라서 정해지고, 콜렉터압 Boost와 상관 관계가 있다. 따라서, 맵 검색할 때에는, 판독한 기본 분사 펄스 TP를 상기 상관 관계에 기초하여 콜렉터압 Boost로 변환한다. 또한, 콜렉터압 Boost를 직접 판독해도 상관없다.
실린더 내 공연비 판독부(1002)에서, 도 3의 실린더 내 공연비 추정부(305)에서 추정한 실린더 내 공연비를 판독한다.
소기량 산출부(1003)에서, 실린더 내 공연비마다 미리 작성해 둔 소기량과 NOx 생성량의 관계를 나타내는 맵을, NOx 생성량 산출부(1001)에서 산출한 NOx 생성량으로 검색함으로써 당해 운전 상태에 있어서 허용할 수 있는 소기량을 산출한다. 이 소기량을 NOx 발생 허용 소기량으로 한다.
NOx 발생 허용 소기량 설정부(1004)에서는, NOx 발생 허용 소기량을 소기량 상한값으로서 설정한다.
상기한 바와 같이 소기량 상한값을 설정함으로써, 배기 매니폴드(3) 내에서 소기 가스와 배기 가스의 혼합기를 연소시키는 경우의, 배기 촉매(18)의 NOx 전환 효율 악화를 방지할 수 있다.
또한, 상기한 바와 같이 엔진 회전 속도 등과 같은 내연 기관(1)의 운전 상태나, 흡기 온도나 대기압과 같은 내연 기관(1)이 운전하는 환경에 기초하여 소기량 상한값을 결정하면, NOx 생성량 산출부(1001)의 산출 결과가 운전 상태나 환경에 따라서 다르다. 그 결과, NOx 발생 허용 소기량도 운전 상태나 환경에 따른 값으로 된다.
이상에 의해 본 실시 형태에서는, 제1 실시 형태와 마찬가지의 효과에 더하여, 다음 효과가 더 얻어진다.
컨트롤 유닛(12)은, 내연 기관(1)으로부터 배기 매니폴드(3)로의 NOx 배출량의 추정값에 기초하여 소기량 상한값을 제한하므로, 소기하는 것에 의한 배기 촉매(18)의 NOx 전환 효율의 저하를 방지할 수 있다.
(제3 실시 형태)
다음에 제3 실시 형태에 대해 설명한다.
본 실시 형태는, 제1 실시 형태 등과 마찬가지의 시스템에 있어서, 가속시와 같이 토크 요구가 급격하게 증가하는 경우의 제어에 관한 것이다. 기본적인 제어는 제1 실시 형태와 마찬가지이지만, 도 6의 스텝 S602에서 실행하는 소기량 상한값의 설정이 다르다. 이하, 소기량 상한값의 설정에 대해 설명한다.
도 11은 소기량 상한값을 설정하기 위한 연산의 내용을 도시하는 블록도이다. 여기서는, 원칙적으로, 촉매 온도 허용 소기량 또는 NOx 발생 허용 소기량 중 작은 쪽의 소기량을 소기량 상한값으로 한다. 단, 급가속시와 같이 내연 기관(1)에 대한 토크 요구값이 급격하게 커지는 경우에는, 도 1에 도시하는 내연 기관(1)이나 과급기(5)와 같은 시스템에 악영향을 미치지 않는 범위에서, 토크 요구를 만족시키는 것을 우선한, 보다 큰 소기량 상한값으로 전환한다.
이와 같이 소기량 상한값을 크게 하면, 배기 매니폴드(3) 내에서 소기 가스와 배기 가스의 혼합기가 연소하였을 때의 에너지가 커져, 그 결과, 터빈(5b)의 회전 상승 속도가 높아지므로, 내연 기관(1)의 토크 응답성이 높아진다.
도 11의 연산 블록(1101-1104) 및 연산 블록(105-1108)은, 각각 도 9, 도 10과 동일한 내용이므로 설명을 생략한다.
최소값 선택부(1109)는, 촉매 온도 허용 소기량 또는 NOx 발생 허용 소기량 중 작은 쪽을 선택하고, 그 결과를 스위치(1113)에 입력한다.
토크 변화 속도 판정부(1110)는, 내연 기관(1)에 대한 토크 요구값의 변화 속도가 미리 설정한 임계값을 초과하였는지 여부를, 예를 들어 액셀러레이터 개방도 변화량 등에 기초하여 판정한다. 임계값은, 촉매 온도나 NOx 생성량보다도 토크 응답을 우선시킬 필요가 있는지 여부를 판정하기 위한 값이며, 본 제어를 적용하는 차종마다 미리 설정해 둔다.
토크 요구값 변화 속도가 임계값을 초과하고 있었던 경우에는, 타이머(1111)를 작동시켜, 미리 설정한 타이머 작동 기간 중에만 스위치(1113)를 후술하는 토크 픽업 허용 소기량측으로 전환한다. 타이머 작동 기간은 임의로 설정할 수 있지만, 시스템에의 악영향을 방지하기 위해, 후술하는 토크 픽업 허용 소기량이 클수록 짧게 설정한다.
토크 픽업 허용 소기량 설정부(1112)에서는, 내연 기관(1)의 운전 상태 및 운전 환경에 기초하여, 토크 응답을 우선시키는 경우의 소기량 상한값인 토크 픽업 허용 소기량을 설정한다.
토크 픽업 허용 소기량은, 타이머(1111)가 작동하고 있는 시간 내이면, 그 소기량을 유지해도 배기 촉매(18)나 과급기(5) 등의 성능 저하를 초래하지 않는 값을 설정한다. 즉, 통상의 소기량 상한값이 정상적으로 작동해도 성능 저하를 초래하지 않는 레벨인 것에 반해, 토크 픽업 허용 소기량은, 일시적이라면 허용할 수 있는 레벨이다.
구체적으로는, 내연 기관(1)이나 배기 촉매(18)의 사양이나, 배기 경로 길이 등에 따라서 바뀌는 것이므로, 운전 상태 및 운전 환경마다의 토크 픽업 허용 소기량을 미리 맵화해 두고, 이것을 검색한다. 예를 들어, 촉매 온도 허용 소기량 및 NOx 발생 허용 소기량보다도 크고, 또한 연소 안정도를 확보할 수 있을 정도의 값으로 설정한다.
소기량 상한값 설정부(1114)는, 스위치(1113)에 의해 선택된 소기량을 소기량 상한값으로서 설정한다.
상술한 바와 같이, 컨트롤 유닛(12)은, 토크 요구 등과 같은 내연 기관(1)에의 성능 요구, 촉매 온도나 NOx 발생량 등과 같은 제약 조건의 각각에 기초한 소기량 상한값을 산출한다. 그리고, 급가속시 등과 같이 토크 요구값 변화 속도가 임계값을 초과하고 있는 경우에는, 이들 복수의 소기량 상한값 중으로부터 토크 픽업 허용 소기량을 선택하고, 그 이외의 경우에는, 제약 조건에 기초하는 소기량 상한값 중 작은 쪽을 선택한다.
정상 운전 상태이면, 제약 조건에 기초하는 소기량 상한값 중 작은 쪽이 선택되므로, 시스템에 영향을 미치지 않는 범위에서 가장 큰 소기량이 설정되게 된다.
한편, 가속시와 같이 토크 요구의 급격한 증대가 있었던 경우에는, 일정 기간만큼, 제약 조건에 기초하는 소기량보다도 큰 소기량 상한값이 설정된다. 즉, 소기량의 상한값이 일정 기간만큼 끌어올려진다. 이에 의해, 터빈(5b)에 공급하는 에너지가 증대되고, 그 결과 토크 응답성이 높아진다.
이상에 의해 본 실시 형태에서는, 제1 실시 형태와 마찬가지의 효과에 더하여, 다음 효과가 더 얻어진다.
토크 요구가 급격하게 증가한 경우는, 컨트롤 유닛(12)은 소기량을 증대시킨다. 이에 의해, 배기 매니폴드(3) 내에서의 연소 에너지, 즉, 터빈(5b)에 공급하는 에너지가 증대되므로, 내연 기관(1)의 토크 응답이 향상된다.
토크 요구가 급격하게 증가한 경우는, 컨트롤 유닛(12)은 일정 기간만큼 소기량 상한값을 완화시키므로, 토크 응답을 향상시키면서, 시스템의 성능 저하를 방지할 수 있다.
이상, 본 발명의 실시 형태에 대해 설명하였지만, 상기 실시 형태는 본 발명의 적용예의 일부를 나타낸 것에 불과하며, 본 발명의 기술적 범위를 상기 실시 형태의 구체적 구성에 한정하는 취지는 아니다.
본원은 2011년 2월 7일에 일본 특허청에 출원된 일본 특허 출원 제2011-24132에 기초하는 우선권을 주장하고, 이 출원의 모든 내용은 참조에 의해 본 명세서에 포함된다.

Claims (9)

  1. 흡기측 또는 배기측 중 적어도 한쪽에 가변 밸브 기구를 구비하는 터보식 과급기가 구비된 내연 기관의 제어 장치이며,
    상기 내연 기관에 대한 성능 요구를 검지하는 성능 요구 검지 수단과,
    밸브 오버랩 기간 중에 흡기 통로로부터 실린더 내를 통과하여 배기 통로로 빠져나가는 소기량의, 상기 성능 요구를 만족시키기 위한 상한값을 정하는 소기량 설정 수단과,
    상기 소기량의 상한값에 따라서 밸브 오버랩 기간의 길이를 제어하는 가변 밸브 제어 수단을 구비하는, 터보식 과급기가 구비된 내연 기관의 제어 장치.
  2. 제1항에 있어서, 배기 통로 중에 설치한 배기 촉매의 온도를 추정하는 수단을 더 구비하고,
    상기 소기량 설정 수단은, 상기 배기 촉매의 추정 온도에 기초하여 상기 소기량의 상한값을 제한하는, 터보식 과급기가 구비된 내연 기관의 제어 장치.
  3. 제1항 또는 제2항에 있어서, 내연 기관으로부터 배기 통로로 배출되는 NOx 배출량을 추정하는 수단을 더 구비하고,
    상기 소기량 설정 수단은, 상기 NOx 배출량의 추정값에 기초하여 상기 소기량의 상한값을 제한하는, 터보식 과급기가 구비된 내연 기관의 제어 장치.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 소기량 설정 수단은, 상기 내연 기관의 운전 상태 및 상기 내연 기관이 배치된 환경에 기초하여 상기 소기량의 상한값을 설정하는, 터보식 과급기가 구비된 내연 기관의 제어 장치.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 상기 내연 기관의 운전 상태를 검출하는 운전 상태 검출 수단과,
    실린더 내의 목표 공연비를 설정하는 목표 공연비 설정 수단을 더 구비하고,
    상기 소기량 설정 수단은, 상기 운전 상태에 기초하여 추정하는 소기 미실행 상태와, 상기 목표 공연비에 기초하여 추정하는 소기 실행 후의 상태에 기초하여 상기 소기량의 상한값을 설정하는, 터보식 과급기가 구비된 내연 기관의 제어 장치.
  6. 제5항에 있어서, 상기 내연 기관의 소정 시간 경과 후의 운전 상태를 추정하는 운전 상태 추정 수단을 더 구비하고,
    상기 소기량 설정 수단은, 운전 상태 추정값에 기초하여 추정하는 소정 시간 경과 후의 소기 미실행 상태와, 상기 목표 공연비에 기초하여 추정하는 소기 실행 후의 상태에 기초하여 상기 소기량의 상한값을 설정하는, 터보식 과급기가 구비된 내연 기관의 제어 장치.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, 상기 내연 기관에 대한 토크 요구의 증가 속도가 미리 설정한 임계값을 초과한 경우는, 상기 소기량 설정 수단은, 상기 소기량을 증대시키는, 터보식 과급기가 구비된 내연 기관의 제어 장치.
  8. 제1항 내지 제7항 중 어느 한 항에 있어서, 상기 내연 기관에 대한 토크 요구의 증가 속도가 미리 설정한 임계값을 초과한 경우는, 상기 소기량 설정 수단은, 일정 기간만큼 상기 소기량의 상한값을 완화하는, 터보식 과급기가 구비된 내연 기관의 제어 장치.
  9. 제1항 내지 제8항 중 어느 한 항에 있어서, 상기 소기량 설정 수단은, 복수의 조건에 기초하여 복수의 소기량 상한값을 산출한 경우에는, 가장 작은 소기량 상한값을 선택하는, 터보식 과급기가 구비된 내연 기관의 제어 장치.
KR1020137022165A 2011-02-07 2012-01-31 터보식 과급기가 구비된 내연 기관의 제어 장치 KR101544295B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-024132 2011-02-07
JP2011024132A JP2012163047A (ja) 2011-02-07 2011-02-07 ターボ式過給機付き内燃機関の制御装置
PCT/JP2012/052077 WO2012108296A1 (ja) 2011-02-07 2012-01-31 ターボ式過給機付き内燃機関の制御装置

Publications (2)

Publication Number Publication Date
KR20130117864A true KR20130117864A (ko) 2013-10-28
KR101544295B1 KR101544295B1 (ko) 2015-08-12

Family

ID=46638512

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020137022165A KR101544295B1 (ko) 2011-02-07 2012-01-31 터보식 과급기가 구비된 내연 기관의 제어 장치

Country Status (6)

Country Link
US (1) US9255534B2 (ko)
EP (1) EP2674595B1 (ko)
JP (1) JP2012163047A (ko)
KR (1) KR101544295B1 (ko)
CN (1) CN103348117B (ko)
WO (1) WO2012108296A1 (ko)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2871350B1 (en) * 2012-07-05 2017-12-20 Toyota Jidosha Kabushiki Kaisha Internal combustion engine
JP2015200294A (ja) * 2014-04-10 2015-11-12 日産自動車株式会社 エンジン
US9567886B2 (en) * 2014-12-02 2017-02-14 MAGNETI MARELLI S.p.A. Method to control the temperature of the exhaust gases of a supercharged internal combustion engine
DE102015214702A1 (de) * 2015-07-31 2017-02-02 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
JP6319254B2 (ja) 2015-09-29 2018-05-09 マツダ株式会社 エンジンの制御装置
KR101766076B1 (ko) 2015-12-08 2017-08-07 현대자동차주식회사 내연기관의 제어 장치 및 제어 방법
CN105649755B (zh) * 2015-12-30 2017-12-26 南京航空航天大学 一种确定涡轮增压汽油机扫气率的方法
SE541558C2 (en) * 2016-10-19 2019-10-29 Scania Cv Ab Method and system for controlling the intake and exhaust valves in an internal combustion engine
JP6503037B1 (ja) * 2017-10-04 2019-04-17 本田技研工業株式会社 内燃機関の制御装置
US10233854B1 (en) * 2017-11-07 2019-03-19 Fca Us Llc Engine control systems and methods for regulating emissions during scavenging
US10221794B1 (en) * 2017-11-07 2019-03-05 Fca Us Llc Measurement, modeling, and estimation of scavenging airflow in an internal combustion engine
DE102022207802A1 (de) 2022-07-28 2024-02-08 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren und einer Vorrichtung zur Steuerung einer Brennkraftmaschine mit einer verstellbaren Ventilüberschneidung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3183405B2 (ja) 1989-09-25 2001-07-09 ヤマハ発動機株式会社 2サイクルディーゼルエンジンの給気装置
JPH10274069A (ja) 1997-03-28 1998-10-13 Mazda Motor Corp 機械式過給機付筒内噴射式エンジン
JP2001098964A (ja) * 1999-09-30 2001-04-10 Mazda Motor Corp 火花点火式直噴エンジンの制御装置
JP2003293801A (ja) * 2002-03-29 2003-10-15 Mazda Motor Corp パワートレインの制御装置
JP2005048678A (ja) * 2003-07-30 2005-02-24 Nissan Motor Co Ltd 内燃機関の燃焼制御装置
JP4031765B2 (ja) * 2004-03-22 2008-01-09 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP4433861B2 (ja) * 2004-04-05 2010-03-17 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP2006283636A (ja) 2005-03-31 2006-10-19 Toyota Motor Corp エンジンの制御装置
JP4367398B2 (ja) * 2005-10-19 2009-11-18 トヨタ自動車株式会社 内燃機関の制御装置
JP4253339B2 (ja) 2006-09-21 2009-04-08 株式会社日立製作所 内燃機関の制御装置
JP4506842B2 (ja) * 2008-01-23 2010-07-21 トヨタ自動車株式会社 内燃機関の制御装置
JP4386134B2 (ja) * 2008-01-23 2009-12-16 トヨタ自動車株式会社 内燃機関の排気浄化装置
JP5050917B2 (ja) * 2008-02-25 2012-10-17 マツダ株式会社 過給機付エンジンシステム
US8364376B2 (en) * 2009-02-27 2013-01-29 GM Global Technology Operations LLC Torque model-based cold start diagnostic systems and methods
JP5262863B2 (ja) 2009-03-10 2013-08-14 マツダ株式会社 多気筒エンジンの排気システムの制御方法およびその装置
JP5206565B2 (ja) 2009-04-15 2013-06-12 トヨタ自動車株式会社 内燃機関の制御システム
US8135535B2 (en) * 2009-06-09 2012-03-13 Ford Global Technologies, Llc Modeling catalyst exotherm due to blowthrough
US8191354B2 (en) * 2009-10-20 2012-06-05 Ford Global Technologies, Llc Method and aftertreatment configuration to reduce engine cold-start NOx emissions

Also Published As

Publication number Publication date
US9255534B2 (en) 2016-02-09
JP2012163047A (ja) 2012-08-30
CN103348117B (zh) 2017-01-18
KR101544295B1 (ko) 2015-08-12
WO2012108296A1 (ja) 2012-08-16
CN103348117A (zh) 2013-10-09
EP2674595A1 (en) 2013-12-18
EP2674595A4 (en) 2016-12-07
EP2674595B1 (en) 2018-03-07
US20130305713A1 (en) 2013-11-21

Similar Documents

Publication Publication Date Title
JP5668763B2 (ja) 多気筒内燃機関の制御装置
KR20130117864A (ko) 터보식 과급기가 구비된 내연 기관의 제어 장치
RU2616727C2 (ru) Способ работы двигателя (варианты) и система управления двигателем
US8612120B2 (en) Control apparatus for internal combustion engine
KR101448415B1 (ko) 과급기가 부착된 내연 기관의 제어 장치
US20140331651A1 (en) Control apparatus for internal combustion engine
US10731580B2 (en) Method for determining a dilution of recirculated gases in a split exhaust engine
US10648413B2 (en) Method for determining a dilution of recirculated gases in a split exhaust engine
JP6112186B2 (ja) ターボ式過給機付き内燃機関の制御装置
JP6536299B2 (ja) 内燃機関制御方法及び内燃機関制御装置
CN110259589B (zh) 内燃机的控制装置
KR20180091047A (ko) 내연 기관을 작동시키기 위한 방법
JP5644342B2 (ja) 多気筒内燃機関の制御装置
JP4956473B2 (ja) 燃料噴射制御装置
JP5614320B2 (ja) 内燃機関の制御装置
JP5857678B2 (ja) 内燃機関の制御装置及び内燃機関の制御方法
JP2013231407A (ja) 内燃機関の制御装置
JPWO2013080362A1 (ja) 内燃機関の制御装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20180718

Year of fee payment: 4