KR20130086640A - 팔라듐 촉매제와 그 제조 방법 및 그 이용 - Google Patents

팔라듐 촉매제와 그 제조 방법 및 그 이용 Download PDF

Info

Publication number
KR20130086640A
KR20130086640A KR20137015408A KR20137015408A KR20130086640A KR 20130086640 A KR20130086640 A KR 20130086640A KR 20137015408 A KR20137015408 A KR 20137015408A KR 20137015408 A KR20137015408 A KR 20137015408A KR 20130086640 A KR20130086640 A KR 20130086640A
Authority
KR
South Korea
Prior art keywords
catalyst
reaction
formula
palladium
phenyl
Prior art date
Application number
KR20137015408A
Other languages
English (en)
Inventor
졸탄 달리제크
티보르 에스오에스
졸탄 에피엔티어
기져 티마리
가보르 비에라디
Original Assignee
하니게스에피 카에프티
키노인 기요기스제르 에스 베기에스제티 테르메크에크 기야라 제트알티.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 하니게스에피 카에프티, 키노인 기요기스제르 에스 베기에스제티 테르메크에크 기야라 제트알티. filed Critical 하니게스에피 카에프티
Publication of KR20130086640A publication Critical patent/KR20130086640A/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/006Palladium compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C201/00Preparation of esters of nitric or nitrous acid or of compounds containing nitro or nitroso groups bound to a carbon skeleton
    • C07C201/06Preparation of nitro compounds
    • C07C201/12Preparation of nitro compounds by reactions not involving the formation of nitro groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2409Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring with more than one complexing phosphine-P atom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/24Phosphines, i.e. phosphorus bonded to only carbon atoms, or to both carbon and hydrogen atoms, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, phosphole or anionic phospholide ligands
    • B01J31/2404Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring
    • B01J31/2442Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems
    • B01J31/2447Cyclic ligands, including e.g. non-condensed polycyclic ligands, the phosphine-P atom being a ring member or a substituent on the ring comprising condensed ring systems and phosphine-P atoms as substituents on a ring of the condensed system or on a further attached ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/02Reduction
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B37/00Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
    • C07B37/04Substitution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/50Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed
    • C07C15/52Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed containing a group with formula
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/50Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed
    • C07C15/54Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals polycyclic non-condensed containing a group with formula
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/26Preparation of halogenated hydrocarbons by reactions involving an increase in the number of carbon atoms in the skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • C07C2/64Addition to a carbon atom of a six-membered aromatic ring
    • C07C2/66Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/86Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation between a hydrocarbon and a non-hydrocarbon
    • C07C2/88Growth and elimination reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C205/00Compounds containing nitro groups bound to a carbon skeleton
    • C07C205/06Compounds containing nitro groups bound to a carbon skeleton having nitro groups bound to carbon atoms of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C41/00Preparation of ethers; Preparation of compounds having groups, groups or groups
    • C07C41/01Preparation of ethers
    • C07C41/18Preparation of ethers by reactions not forming ether-oxygen bonds
    • C07C41/30Preparation of ethers by reactions not forming ether-oxygen bonds by increasing the number of carbon atoms, e.g. by oligomerisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/127Preparation from compounds containing pyridine rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/14Preparation from compounds containing heterocyclic oxygen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/26Radicals substituted by halogen atoms or nitro radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/24Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D213/28Radicals substituted by singly-bound oxygen or sulphur atoms
    • C07D213/30Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/04Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms
    • C07D215/06Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to the ring carbon atoms having only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, attached to the ring nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/12Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D215/14Radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/02Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with only hydrogen atoms or radicals containing only carbon and hydrogen atoms, directly attached to carbon atoms of the nitrogen-containing ring; Alkylene-bis-isoquinolines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/12Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
    • C07D217/14Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals
    • C07D217/16Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring other than aralkyl radicals substituted by oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/12Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
    • C07D217/18Aralkyl radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D217/00Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems
    • C07D217/12Heterocyclic compounds containing isoquinoline or hydrogenated isoquinoline ring systems with radicals, substituted by hetero atoms, attached to carbon atoms of the nitrogen-containing ring
    • C07D217/18Aralkyl radicals
    • C07D217/20Aralkyl radicals with oxygen atoms directly attached to the aromatic ring of said aralkyl radical, e.g. papaverine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/02Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms containing only hydrogen and carbon atoms in addition to the ring hetero elements
    • C07D295/023Preparation; Separation; Stabilisation; Use of additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Other In-Based Heterocyclic Compounds (AREA)
  • Hydrogenated Pyridines (AREA)
  • Pyridine Compounds (AREA)
  • Indole Compounds (AREA)

Abstract

본 발명은 공식(I)의 팔라듐(0)-테트라키스{트리-[3,5-비스(트리플루오르메틸)-페닐]-포스핀} 착물과 그 제조 방법 및 그 이용에 관한 것이다. 이와 같은 화합물은 대단히 안정되고, 우수한 결과를 갖는 촉매제로 이용될 수 있다.
Figure pct00008

(I)

Description

팔라듐 촉매제와 그 제조 방법 및 그 이용{a new palladium catalyst, method for its preparation and its use}
본 발명은 새로운 팔라듐 촉매제(catalyst)에 관한 것이며, 보다 구체적으로는 공식(I)의 팔라듐(0)-테트라키스{트리-[3,5-비스(트리플루오르메틸)-페닐]-포스핀} 착물에 관한 것이며,
[실험식(empirical formula): Pd{[3,5-(CF3)2-C6H3]3P}4] (I)
Figure pct00001
(I)
그리고, 본 발명은 새로운 촉매제의 제조 방법에 관한 것이다. 본 발명은 새로운 촉재제를 제조하기 위한 방법에 관한 것이다. 또한 본 발명은 상기의 촉매제를 필요로 하는 반응에서 새로운 촉매제의 이용에 관한 것이며, 보다 구체적으로는 C-C 결합 (스즈키(Sujuki), 헥(Heck), 스틸(Stille) 등의 결합)을 이루기 위한 반응, C-이종원자(C-N, C-O, C-S, C-P, 프라이머리(primarily) C-N 결합 (예를 들면, 부크발트(Buchwald) 반응)을 이루기 위한 반응, 그리고 수소화 반응을 이루기 위한 새로운 촉매 이용에 관한 것이다.
천이 금속의 착물(complex)에 의하여 (가장 빈번하게는 Pd 및 Ni 착물에 의하여) 촉매화되는 크로스 결합 반응들은 C-C 결합 형성에 중요한 역할을 수행한다. 이와 같은 반응은 합성 과정에 있어서 래디컬(radical)에 있어서 변화를 초래한다. 본 발명은 이와 같은 이용 방법에 대한 범위를 한정하지 않고, 크로스 결합 반응에 대한 다음과 같은 사항들을 설명하고자 한다.
크로스 결합 반응의 전체 공정은 다음과 같이 설명될 수 있다.
MLn
R-X + R'-M' ------------ R-R'+ M'-X
상기의 공식에서, R 및 R'은 C-C 결합과 결합되는 유기 그룹(organic group)을 표시하며,
M은 촉매제 착물의 금속성 요소를 표시하며,
L은 촉매제 착물에서 리간드(ligands)를 표시하며,
n은 존재하는 리간드의 수를 표시하며,
X는 이탈(leaving) 원자 또는 그룹 (즉, Cl, Br, I, triflate, mesylate, tosylate)를 표시하며,
M'는 해당하는 크로스 결합 반응의 유형에 따른 금속 또는 그속 포함 그룹을 표시한다. (예를 들면, 스즈키-미야유라(Suzuki-Miyaura) 결합에 있어서 보론(Boron), 소노가시라(Sonogashira) 결합에 있어서 구리(copper), 카라시(Kharash) 결합에 있어서 마그네슘, 히야마(Huyama) 결합에 있어서 실리콘, 스틸(Stille) 결합에 있어서 주석, 네기시(Negishi) 결합에 있어서 아연 등).
크로스 결합 반응의 전체 메커니즘이 도1에 도시되어 있다.
Figure pct00002

그러나, 실제적인 이용에 있어서, 이러한 방법들은 몇가지 단점을 가지고 있으며, 이러한 단점들은 제약 산업 분야에서 주로 발견된다. 이들 단점들 중 한 단점은 상당히 많은 양의 촉매제(기재(substrate)에 따라 1-5mol)가 필요한 점이며, 그리고 촉매제로부터 발생하는 금속성 불순문들을 최종 제품에서 제거하는 것은 복잡하고, 고가의 방법을 통해서 이루어진다는 점이다. 이와같은 문제점으 팔라듐 촉매제에서 적용되어, 그의 분해(decomposition)를 초래하는 문제점이 있다. 한 가지 예로서, 공식(II)와 같은 팔라듐(0)-테트라키스(트리-페닐-포스핀)이 있다.
Figure pct00003
(II)
상기 촉매제는 산업 분야에서 빈번하게 사용되는 촉매제이며, 실온에서 공기 중에 저장될 수 있으며, 많은 양의 팔라듐 블렉(black)이 빠른 시간 내에 분리되며, 그래서 아르곤 분위기 하에서 냉장고에 저장된다. 공식(II)의 촉매제를 이용하는 크로스 결합 반응이 불활성 분위기 하에서 수행되지만, 팔라듐 블렉의 분리는 공통적으로 발생하며, 이와 같은 현상은 상당량의 촉매제 소실을 가져올뿐만 아니라, 많은 시간이 소모되고, 고가의 정화 공정들을 필요로 하는 문제점이 있다.
본 발명의 목적은 크로스 결합 반응에서 이전에 사용된 팔라듐(0) 착물 촉매제보다 훨씬 안정되고, 기재 1mol에 필요한 촉매의 양을 현저히 줄일 수 있는 새로운 팔라듐(0) 착물 촉매제를 제공하는 것이다. 이에 있어서, 본 발명의 기본적인 목적은 촉매제 분해에 의하여 촉매 효율이 전체적으로 현저히 낮아지는 Pd(0) 착물로부터 형성된 팔라듐 블렉의 최종 상태에서, 팔라듐 블렉의 형성을 제거하기 위한 것이다. 그리고, 촉매제의 제어 불가 분해에 의하여 많은 양의 P가 제품 내로 침출될 수 있다.
상기의 목적을 달성하기 위하여, 본 발명은 아래 공식(I)의 팔라듐(0)-테트라키스{트리-[3,5-비스(트리플루오르메틸)-페닐]-포스핀} 착물(complex) 화합물을 제공한다.
Figure pct00004
(I)
이에 따라, 본 발명의 공식(I)의 팔라듐(0) 착물 촉매제는 상기의 조건들을 충분히 만족시키고, 추가적인 장점들을 갖는다.
본 발명의 일 실시예에 따라, 본 발명은 공식(I)의 팔라듐(0) 착물에 관한것이다.
본 발명에 따른 화합물은 우수한 안정성을 갖는 밝은 레몬 황색(yellow) 고형물(solid)이다. 20개월 이상의 기간 동안, 대기 중 실온 상태에서 저장된 샘플들에서 팔라듐 블렉 형성이 관찰되지 않았다.
공식(I)의 화합물은 가변 온도 T 및 습도로 대기 중에 저장되었다. 저장된 제품들로부터 샘플들은 정기적으로 추출되었다. 제품의 분해 과정이 31P, 19F, 13C 및 1H NMR 스펙트라 상태에서 검사되었다. 그 결과는 다음의 표1에 요약되어 표시되어 있다.
기간(월) 온도 T℃ 습도 저장된 제품의 색상 및 분해 등급
1 5 점차 변화 레몬 황색; 샘플링이 만들어 지지 않음
25 60 레몬 황색; NMR에 분해가 나타나지 않음
30 65 레몬 황색; NMR에 분해가 나타나지 않음
40 75 레몬 황색; NMR에 분해가 나타나지 않음
4 5 점차 변화 레몬 황색; 샘플링이 만들어 지지 않음
25 60 레몬 황색; NMR에 분해가 나타나지 않음
30 65 레몬 황색; NMR에 분해가 나타나지 않음
40 75 레몬 황색; NMR에 분해가 나타나지 않음
7 5 점차 변화 레몬 황색; 샘플링이 만들어 지지 않음
25 60 레몬 황색; NMR에 분해가 나타나지 않음
30 65 레몬 황색; NMR에 분해가 나타나지 않음
40 75 레몬 황색; NMR에 분해가 나타나지 않음
13 5 점차 변화 레몬 황색; 샘플링이 만들어 지지 않음
25 60 레몬 황색; NMR에 분해가 나타나지 않음
30 65 레몬 황색; NMR에 분해가 나타나지 않음
40 75 레몬 황색; NMR에 분해가 나타나지 않음
20 5 점차 변화 레몬 황색; 샘플링이 만들어 지지 않음
25 60 레몬 황색; NMR에 분해가 나타나지 않음
30 65 레몬 황색; NMR에 분해가 나타나지 않음
40 75 레몬 황색; NMR에 분해가 나타나지 않음
DSC에 의하여 공식(I)의 화합물을 검사할 때는, 분해가 대기압 하에서 그리고 공기 중에서 169.5도씨에서 관찰되었다. 불활성 분위기 하에서 테스트를 실시할때, 화합물의 녹는 점은 220도씨였다. 비교를 위하여, 공식(II)의 플루오르(non-fluorinated)화되지 않은 촉매제는 98도씨에서 분해되기 시작하였다.
일반적으로 산업에서 광범위하게 사용되는 공식(II)의 구조 아날로그(analogue)의 그것과 비교하여 공식(I)의 화합물의 우수한 저장 안정성에 대한 가능한 사유들을 검토하면, DFT 계산이 금속-리간드 결합 에너지를 결정하기 위하여 수행되었으며. 매우 정확한 결과를 보여주는 M05/sddp 레벨에서, 다음 표2의 결과들을 얻을 수 있었다.
공식(II)에 대한 L = P(C6H5)3 공식(I)에 대한 L = P[C6H3(CF3)2]3
PdL->Pd+L

PdL2->PdL+L
-33.8kcal/mol

-31.7kcal/mol
-33.6kcal/mol

-31.9kcal/mol
4개의 리간드를 갖는 실제적인 한 개 이외에 단지 한 개 또는 2개의 리간드들로 구성되는 촉매제를 고려한 상기의 레벨에서, 공식(I) 및 (II)의 화합물들에 존재하는 리간드들의 금속 - 리간드 결합 에너지들 사이에는 아무런 차이를 발견하지 못하였다.
4개의 리간드들로 구성되는 실제 구조의 촉매제들을 이용한, B3LYP/lanl2dz 레벨에 따른 DFT 계산이 촉매제의 큰 크기때문에 고려될 수 있다. 이와 같은 방법은 결합 에너지 값에 있어서, 앞서 언급한 것보다는 정확하지 않은 데이터를 제공하지만, 결합 에너지의 비율에 실질적인 정보를 제공한다. 이와 같은 레벨에 따라 계산된 결과가 아래 표3에 도시되어 있다.
공식(II)에 대한 L = P(C6H5)3 공식(I)에 대한 L = P[C6H3(CF3)2]3
PdL4->PdL3+L -6.2kcal/mol -23.5kcal/mol
4개의 리간드(즉, 실제 구조)로 구성되는 화합물에 대한 상기의 계산법에 따라, 공식(I)의 화합물에서의 금속 - 리간드 결합 에너지는 공식(II)의 화합물에서 관측된 것보다 4배이다. 이와 같은 결과에 따라, 공식(I)의 화합물의 우수한 저장 안정성은 금속 - 리간드 상호 반응에 기여할 수 없지만, 보다 구체적인 리간드 - 리간드 상호 결합에는 기여할 수 있다는 사실을 추정할 수 있었다.
리간드 - 리간드 상호 작용의 구체성을 평가하기 위하여, 리간드 내에서 인(phosphorous) 원자에 부착된 3개의 3,5-(트리플루오르메틸)-메틸 그룹들 중에서 2개의 그룹이 유지되는 Pd(0)-테트라키스[트리-(치환 페닐)-포스핀] 착물 촉매제에 대하여 실시되었지만, 세번째 것이 모노-, 디- 또는 트리에톡시-페닐, 트리-이소프로필-페닐 또는 2-피리딜 그룹으로 교체되었다. 이들 화합물들 중 어떤 화합물도 저장 안정성 면에서 공식(I)의 화합물과 비슷한 결과를 내지 못하였다. 따라서, 공식(I)의 화합물의 우수한 저장 안정성은 매우 놀랄만한 특징이며, 이와 같은 특징은 매우 유사한 구조 아날로그(close structure analogues)로는 얻을 수 없는 것이다.
우리가 발견한 촉매제가 온도 상승에 민감하게 작용하지 않는다는 크로스 결합 조건에 있어서, 공식(I)의 촉매제의 안정성을 검사할때, 그 녹는점 이하의 어떤 온도에서라도 그 안정을 유지한다. 이와 유사하게, 압력의 증가는 촉매제의 안정성에 어떤 영향을 주지 않았다.
공식(I)의 촉매제의 안정성을 검사한 결과, 다음과 같은 결과를 얻었다.
촉매제는 산업 분야에서 사용하는 일상 온도에서 물에 용해되지 않으며, 물 내에 저장될 때 안정된 상태를 유지한다.
실온에서 알코올 내에서의 촉매제의 용해도는 알콜의 탄소 원자 수의 증가에 따라 증가한다. 그러나, 촉매 반응(110도씨 - 130도씨)의 검사 온도 간격에서, 알코올 내에서의 그의 안정정은 알코올의 탄소 원자수의 증가에 따라 이에 병행하여(in parallel)으로 감소한다. 그러나, 촉매제의 안정성은 물을 반응 혼합물에 추가하면, 증가시킬 수 있거나 또는 완전히 회복시킬 수 있다. 수정 알코올 내에서, 촉매제의 용해는 약 90도씨의 온도에서 시작하며, 사용된 알코올에 따라, 110도씨 - 130도씨에서 완전하게 되며, 상기의 온도에서 촉매 활성도를 최고 상태가 된다. 그러나, 완전한 용핵 일어나는 온도에서 조차도, 팔라듐 블렉의 분리가 관찰되지 않았다. 때때로, 약간의 허용 가능한 정도의 분해가 발생하였으며, 반응 혼합물의 색상이 약간 깊어지는 정도를 보였다 (레몬 황색에서 황색 브라운 색상). 이와 같은 조건 하에서도 완전한 100% 변환(conversions)이 얻어질 수 있는 놀랄만한 결과를 얻었다. 비교를 하면, 공식(II)의 화합물이 상기에 언급한 조건(대기압 조건: 반응 혼합물의 끓는 점) 보다 훨씬 더 완화된 조건하에서 촉매제로서 사용되는 경우, 팔라듐 블렉의 형성은 피할 수 없는 것이며, 이는 촉매제의 뚜렷한 분해를 분명하게 표시한다.
일반적인 산업적인 측면에서 바람직하지 않은 슈퍼 대기압의 이용을 피하기 위하여, 공식(I)의 촉매제의 안정성이 촉매제가 보다 낮은 온도에서 충분하게 용해되는 산업적으로 중요하게 사용되는 극성 비양성자성 및 비극성 비양성자성 용매(예를 들면, 디메틸설포옥사이드, 디메틸포름아미드, 에틸-메틸-케톤, 메틸-이소부틸-케톤, N-메틸-피롤리딘 및 테트라하이드로퓨란)들 내에서 테스트되었다. 이러한 용매들 내에서 팔라듐 브렉의 형성이 관찰되지 않았지만, 때때로 반응 혼합물의 색상이 촉매제 반응 동안에 어느 어느정도 더욱 깊은 색으로 되었다 (레몬 황색에서 핑크, 오렌지 색, 적색 또는 약한 갈색으로의 변색이 관찰되었다). 상기에 설명한 알코올을 이용한 경우와 같이, 이러한 용매들 중 약간의 경우에 있어서, 물을 반응 혼합물에 추가함으로서, 촉매제의 안정성 감소가 상당하게 억제됨을 알 수 있었다.
크로스 결합 반응에서 공식(I)의 화합물의 촉매 활성도를 검사할 때, 동일한 기재에서, 그리고 그렇치 않으면 동일한 반응 조건 하에서, 새로운 촉매제의 필요 양이 동일한 반응 시간 동안에 얻어진 수율 및 변환에서 현저한 감소없이 알려진 유사한 촉매제(기재 기준으로 1-5mol%에서 기재 기준으로 0.1-0.3mol%까지)의 양의 정도까지 낮출 수 있었다. 주어진 반응 시간 동안에 동일한 반응 조건 하에서 얻어진 수율 및 변환에 있어서, 촉매의 양이 상기 레벨 이하로 더욱 낮아질때 더욱 감소하였지만, 이와 같은 현상은 반응 온도 및/또는 반응 시간을 증가시킴으로서 균형을 잡을 수 있었다. 그에 대한 한 보기로서, K2CO3를 투입한 상태에서, 110도씨의 온도와 소정의 압력 하에서, 메탄올 및 물의 10:1v/v 혼합물 내에서 수행된 2-(4-에톡시-3-메틸-페닐)-1,2,3-디옥사보레인과의 2-보로모-피리딘의 스즈키 결합에서, 공식(I)의 촉매제의 0.2mol%를 이용하였을때, 1시간 내에 100% 변환을 이룰 수 있었다. 촉매제의 양을 0.05mole%(이전 값의 20%에 해당)으로 낮추었을 때, 1시간 내에 얻어진 변환은 상당히 높은(81%) 값으로 유지되었으며, 촉매제의 0.005mol% 만을 이용했을 때(이전 값의 2%에 해당하며, 통상적으로 산업 목적으로 사용되는 값의 1-5/1000에 해당), 50%의 변환이 1시간 내에 얻을 수 있었다.
대개의 경우에 있어서, 제품으로부터 팔라듐을 제거할 필요가 없다. 왜냐하면, 적은 양과 새로운 촉매제의 높은 안정성으로 인하여, 제품 내에 팔라듐이 남아 있지 않기 때문이며, 잔류 팔라듐의 양이 수용 가능한 레벨 이하이기 때문이다. 만약 잔류 팔라듐을 제거할 필요가 있으면, 이와 같은 목적을 위하여 일상적으로 사용되는 고가의 스케빈져(scanvenger) 방법[Pd(0) 결합을 위한 구체적인 방법]의 공정 전체 과정이 생략될 수 있다. 잔류 상태의, 착물 팔라듐은 산업 분야에서 일상적으로 보통 사용되는 간단한 방법(크로마토그래피; 저렴한 카본 필터를 이용한 여과, 등)으로 통하여 제거될 수 있으며, 한 종류 정도의 정화 단계가 보통 필요하다.
본 발명은 공식(I)의 화합물을 제조하기 위한 방법에 관한 것이다.
공식(I)의 촉매제는 트리-[3,5-비스(트리플루오르메틸)-페닐]-포스핀의 최소한 4배의 분자 이상을 팔라듐(II) 염(salt)과 반응시키고, 팔라듐(II)을 한 개의 용기 반응 방식(one-pot reaction)으로 착물 염 내에서 팔라듐(0)로 환원시키는 방법으로 쉽게 제조될 수 있다. 팔라듐(II) 염, 바람직하게는 염화 팔라듐이 사용될 수 있을 때는, 사용될 수 있는 바람직한 훤원제는 하이드라진 하이드레이트이다.
착물제로 자용되는 트리-[3,5-비스(트리플루오르메틸)-페닐]-포스핀은 공지의 물질이다. [H. G. Alt, R. Baumgaertner, H. A. Brune: Chemische Berichte 119(5), 1694-1703 (1986)을 참조하세요].
본 발명은 C-C 및 C-이종원자 결합 반응 및 수소화 반응에 사용되는 촉매제로서 공식(I)의 화합물의 이용에 관한 것이다.
공식(I)의 화합물이 이와 같은 반응들의 유형에 사용될 수 있다는 것을 알아냈다. 이와 같은 반응의 조건들은 다른 Pd(0) 착물 촉매제를 이용할때 적용되는 경우와 동일하며, 보통 보다 적은 양의 촉매제로서 공식(I)의 화합물을 이용할때, 때때로 훨씬 많은 양의 촉매제가 반응을 수행하는데 충분하다는 차이점이 있다. 이와 같은 일반적인 지식과 본 설명에 제시된 정보에 따라, 당업자는 일상적인 방법 또는 간단한 테스트들을 적용하고, 그리고 촉매제의 용해 특성들을 고려함으로써 공식(I)의 촉매제를 이용한 반응을 위하여 최적의 매개변수들을 쉽게 결정할 수 있다. 공식(I)에 따라 제조된 촉매제(예를 들면, PPh3(CF3)6을 이용한 Pd2(dba)3)를 이용하는 아이디어는 실행 가능한 것이 아니다. 왜냐하면, 제어되지 않는 착물 형성과 낮은 수율의 팔라듐 블렉의 빠른 출현(appearance) 때문이다.
다음의 예시들은 본 발명의 상세한 설명들을 제시한다.
실시예 1
공식(I)의 촉매제의 제조
아르곤을 실온에서 30ml의 디메틸 설포옥사이드를 통하여 버블링(bubbled) 되었으며, 이후에 6.7g(0.01mol)의 트리-[3,5-비스(트리플루오르메틸)-페닐]-포스핀과 공식(II)의 염화물 0.355g(0.002mol)을 추가하였다. 그 이후에, 혼합물은 110도씨 - 130도씨의 온도로 가열되었다. 착물이 형성되었음을 나타내는 완전하게 맑은 상태의 용액이 얻어졌을 때, 0.5g(0.01mol)의 하이드라진 하이드레이트를 혼합물에 추가하였다. 그 이후에, 플라스크는 얼음물 속에 넣었다. 분리된 제품은 소결 유리 필터(sintered glass filter)를 이용하여 여과 처리되었으며, 클로로포름을 이용하여 3번 세척하였다. 밝은 색의 레몬 황색의 결정체 고형물이 얻어졌으며, 수율은 90%였다.
NMR 스펙트라의 특성 데이터: 1H-NMR (300 MHz, THF-d8, d = 3.58 ppm) 8.17 (s, 12 H), 7.84 (s, 24 H); 13C-NMR (75 MHz, THF-d8, d = 67.3 ppm) 138,1 (C), 133.7 (q, J = 38.7 Hz, C), 133.4 (CH), 126.3 (CH), 123.4 (q, J = 271.57 Hz, CF3); 31P-NMR (300 MHz, THF-d8) 28.77; 19F-NMR (300 MHz, THF-d8) -62.94.
실시예 2
용매로서 메탄올 및 물의 혼합물 10/1 v/v과 촉매제로서 공식(I)의 화합물을 이용한 스즈키 결합 방법에 따fms 2-(4-에톡시-3-메틸-페닐)-피리딘의 제조
전체 설명
아래에 제시될 공식(I)의 촉매제의 양으로, 618mg(3mmols)의 2-(2-에톡시-3-메틸-페닐)-1,3,2-디옥사보레인 및 553mg(4mmoles)의 탄산 칼륨을 계량하여 플라크 내로 투입하였다. 그 이후, 플라스크를 아르곤 분위기 하에 두었으며, 10ml의 메탄올과 1ml의 물을 추가하였다. 마지막으로, 316mg(190μl, 2mmoles)의 2-브로모-피리딘(기재)를 자동 피펫을 이용하여 추가시켰다. 플라스크를 닫고, 반응 혼합물을 소정의 온도에서 젓고, 그리고 아래에 제시된 시간 동안 슈퍼 대기압 하에서 선택적으로 저었다.
공정의 목적을 위하여, 냉각되 반응 혼합물을 매회 5ml 클로로포름을 이용하여 4번 추출하였다. 이와 같은 방법으로, 거의 완전한 양의 촉매제가 제품으로부터 제거되었다. 클로로포름 추출물이 디옥사보레인 불순물을 아직 함유하고 있기 때문에, 이와 같이 분리된 물질은 실리카 겔 칼럼 크로마토그래피에 의하여, 용리 작용제로서 헥세인 및 에틸 아세테이트의 3/1 v/v혼합물을 이용하여 추가로 정제시켰다.
테스트 시리즈(A)
본 테스트 시리즈에서, 반응은 110도씨의 온도에서 1시간 동안 슈퍼대기압 하에서 수행되었다. 공식(I)의 화합물의 양이 변했으며, 이와 같은 변화가 변환에 어떻게 영향을 주는 지를 조사하였다.
본 설명에 제공되는 모든 경우에 있어서, 변환값은 1H NMR 스펙트라에 따라 결정되거나, 가스 크로마토그래피에 의하여 졀정된다. 이에 대한 결과들이 표 4에 요약되어 있다. 이러한 상당히 적은 규모의 테스트 반응에 따라, 혼합물의 공정이 분리 수율에 영향을 끼침에도 불구하고, 이러한 데이터들은 정보를 제공한다는 취지에 따라 제공된다.
촉매제의 양
1시간 이내 변환
분리 수율(%)
mg 기재 중심 mole%
56 1
28 0.5
14 0.25
2.8* 0.05
0.28* 0.005
100
100
100
81
50
89
87
88
69
39
* 테트라하이드로퓨란으로 형성된 저장액(stock solution)으로서 혼합물에 추가되었다.
파라듐 블렉의 분리가 어떤 경우에서도 관측이 되지 않았다. 반응 혼합물의 색상은 모든 반응에서 레몬 황색 상태로 남아 있었다. 공식(I)의 촉매제의 양이 0.005mole% 만큼 낮았을 때, 1시간 내에 50%의 변환을 얻을 수 있었다. 다른 테스트들 과정에 얻어진 결과에 따르면, 변환에서의 이와 같은 감소는 반응의 시간 및/또는 온도를 증가시킴으로써 균형을 맞출 수 있다.
본 발명의 목적을 성취하기 위하여 실시된 테스트들에 있어서, 상기의 반응은 반응 혼합물에 추가될 촉매제가 없도록 반복적으로 실시된다. 이와 같은 방법으로, 제품의 형성이 용매 내에 또는 플라스크 내에 존재할 수도 있는 소정의 금속성 불순물 효과에 영향을 미치는 것이 아니라, 매우 적은 양으로 투입되는 촉매제에 실제적으로 기여할 수 있다는 것을 확인하고자 하였다. 이러한 조건하에서, 변환은 제로(zero)였으며, 이에 따라 공식(I)의 촉매제가 0.005mole%의 양에서 활성 상태라는 것을 분명히 확인하였다.
테스트 시리즈(B)
본 테스트 시리즈에 있어서, 공식(I)의 0.25mol% 촉매제가 1mole의 2-브로모-피리딘 기재용으로 사용되었으며, 반응이 표 2에 기재된 온도에서 1시간 동안, 필요시에는 슈퍼대기압 하에서 실시되었다. 온도 변화가 어떻게 변환에 영향을 미치는지를 확인하였다. 그 결과들이 표 5에 기재되어 있다. 분리 수율들이 정보 제공 목적으로 제공되어 있다.
온도 ℃ 1시간 이내 변환 % 분리 수율 %
25
50
70
90
110
0
5
25
60
100
0
측정 안됨
16
47
88
관찰 결과들에 따르면, 반응 매개물로서 메탄올 및 물의 10/1 v/v 혼합물을 이용할 때, 90도씨의 온도 이상에서 그리고 반응 혼합물을 액체 상태로 유지시킬 수 있는 슈퍼대기압 하에서 결합 반응을 수행하는 것이 바람직하다. 이와 같은 것은 촉매제의 현저한 용해가 상기의 온도들에서 발생하는 사실로부터 설명될 수 있다. 팔라듐 블렉 형성 또는 촉매제의 다른 징후가 어떤 반응에서도 관측되지 않을 수 있다. 비교를 해보면, 110도씨에서 수행된 반응에서, 공식(I)의 촉매제는 공식(II)의 촉매제의 동일한 양으로 교체되며, 반응 혼합물은 동일한 시간 내에 블렉(black) 상태로 된다. 반응을 종료시키고 난 이후에, 금속성 불수물을 제거하는 것이 매우 어렵다. 이와 같은 반응에서 얻어진 제품은 팔라듐 블렉이 완전히 제거된 이후에도 오렌지 황색/다크(dark) 오렌지 황색으로 남아 있었으며, 반면에 본 발명에 따른 촉매제를 이용할 때, 스노우(snow) 화이트 제품이 얻어졌다.
실시예 2에서 얻어진 모든 제품 샘플들의 물리적 상수들은 측정 한계 내에서 진본(authentic) 상품 샘플의 매개변수들과 정확히 일치하였다. 정보 제공 목적을 위하여, 공식(I)의 0.25mol% 촉매를 이용하여, 1시간 동안 110도씨의 온도에서 메타올 및 물의 10/1 v/v 혼합물 내에서 제조된 2-(4-에톡시-3-메톡시-페닐)-피리딘 샘플에 대하여 측정된 물리적 상수들을 아래에 표시한다.
1H NMR (300 MHz, CDCl3, dTMS = 0 ppm): 8.65 (d, J=4.8 Hz, 1H), 7.75 (m, 4H), 7.16 (m, 1H), 6.90 (d, J=8.4 Hz, 1H), 4.10 (q, J=6.9 Hz, 2H), 2.31 (s, 3H), 1.45 (t, J=7.2 Hz).
13C-NMR (75 MHz, CDCl3, dCDCl3 = 77.00 ppm): 158.2 (C), 157.3 (C), 149.3 (CH), 136.7 (CH), 131.1 (C), 129 (CH), 127.1 (C), 125.5 (CH), 121.2 (CH), 119.9 (CH), 111.0 (CH), 63.6 (CH2), 16.4 (CH3), 14.9 (CH3).
IR (KBr, n cm-1): 1604, 1587, 1561, 1467, 1433, 1394, 1309, 1281, 1247, 1181, 1151, 1131, 1109, 1042, 926, 884, 777, 742, 618.
실시예 3
메탄올 및 물이 10/1 v/v 혼합물 외에 반응 매개물 내에서 스즈키 결합에 의하여 그리고 촉매제로서 공식(I)의 화합물을 이용한 2-(4-에톡시-3-메틸-페닐)-피리딘의 제조
실시예 2에 설명된 스즈키 결합은 기재로서 316mg(190μl, 2mmoles)의 2-브로모-피리딘과 전체량 11ml의 반응 매개물을 이용하여 반복적으로 실시되었지만, 반응 조건(반응 혼합물의 조성물; 촉매제의 양; 디옥소보레인 시약; 반응 시간; 온도)들이 표 6에 표시된 바와 같이 변하였다. 변환이 실시예 2에 기술된 바와 같이 측정되었따. 그 결과들이 표 3에 리스트되어 있다.
용매
10ml/1ml
촉매제
mg/mole%
시간
hour
디옥소보레인, equiv. 온도
변환
%
EtOH/H2O 14/0.25 1 1.5 110 100
iPrOH/H2O 14/0.25 1 1.5 110 100
tBuOH/H2O 14/0.25 1 1.5 110 100
Hexan/H2O 14/0.25 1 1.5 110 27
DME/H2O 14/0.25 1 1.5 110 48
THF/H2O 14/0.25 1 1.5 110 85
THF/H2O 0,112/0.002 19 1.5 110 26
THF/H2O 0,112/0.002 72 1.5 110 78
THF/H2O 0,112/0.002 1 1.5 130 39
THF/H2O 0,112/0.002 3 1.5 130 74
THF/H2O 0,112/0.002 19 1.5 130 100
THF/H2O 0,112/0.002 3 1.1 130 33
수성 에탄올, 수정 이소프로판올 및 수성 삼차 부탄올이 사용되었을 때, 1시간의 반응 시간 동안에, 반응 혼합물의 색상이 점점 깊어졌으며, 갈색으로 되었다. 짙어지는 색상의 순서는 에탄올 - 이소프로판올 - 삼차 부탄올이었다. 그러나, 어떤 경우에서도 팔라듐 블렉이 분리되지 않았으며, 변환이 100% 상태로 남아 있었으며, 이는 촉매제가 활성 상태를 유지하였음을 뜻한다. 이와 같은 반응을 헥세인/물, 디메톡시에탄/물 및 테트라하이드로퓨란/물 혼합물 내에서 실시될 때, 반응 혼합물의 유기성 용매 요소가 주어진 시간 내에 얻어질 수 있는 변환에 상당히 영향을 준다는 것을 알 수 있었다. 이와 같은 것은 크로스 결합 반응에서는 보통의 현상이다. 이러한 용매에서는 팔라듐 블렉의 형성이 관찰되지 않았지만, 반응이 진행되는 동안에 반응 혼합물의 색상이 깊어졌다. 테트라하이드로퓨란 내에서 수행된 태스트의 결과가 우수하였다. 테스트는 매우 적은 양의 촉매제를 이용하여 실시되었다 (0.002mole%; 알려진 촉매제에 필요한 양의 약 1/1000). 실시예 2에서와 같이, 이와 같이 매우 적은 양의 촉매제는 테트라하이드로퓨란 내에 저장액으로서 혼합물 내에 추가되었다. 데이터로부터 알 수 있는 바와 같이, 변환 감소는 반응 시간 및/또는 반응 온도를 증가시킴으로써 균형을 잡을 수 있음을 보여 준다. 온도를 130도씨까지 올리고 반응 시간을 19시간으로 증가시키면, 100%의 변환이 매우 적은 량의 촉매제를 이용해서 얻을 수 있다. 실시예 2에 설명된 체킹 테스트를 실시하여 (촉매제 없는 반응), 제품 형성이 용매 또는 프라스크 내에 존재할 수도 있는 금속 불순물의 효과에 영향을 미치는 것이 아니라, 촉매제 존재에 단독으로 영향을 줄 수 있다는 것을 다시 확인하였다. 공식(I)의 촉매제의 우수한 안정성은 매우 극단적인 조건에 해당하는 130도씨의 온도에서 19시간 동안의 반응 이후에도 촉매 분해에 대한 어떠한 징후도 관찰되지 않았다는 사실로 알 수 있다.
실시예 4
공식(I)의 촉매제를 이용하여 스즈키 결합에 의한 피리딘 유도체의 제조
전체 설명
14mg(2-브로모-피리딘 기재 기준 0.25mole%)의 공식(I)의 촉매제, 3mmoles의 디옥사보레인 시약 및 553mg(4mmole)의 탄산 칼륨이 계량되어, 플라스크 내로 투입되었다. 그 이후에, 플라스크를 아르곤 분위기 하에 두었으며, 10ml의 메탄올 및 1ml의 물을 추가하였다. 최종적으로, 316mg(190μl, 2mmoles)의 2-브로모-피리딘(기재)을 자동 피펫을 이용하여 추가하였다. 플라스크를 닫고, 반응 혼합물을 액체 반응 혼합물 상태를 유지하기 위하여 필요한 소정의 압력 하에서 1시간 동안, 110도씨에서 저었다. 그 이후에, 반응 혼합물은 실시예 2에서 설명한 바와 같이, 처리되었다.
사용된 반응물질, 얻어진 제품 및 그들의 물리적인 상수 및 분리 수율(%)이 표 7에 리스트되어 있다.
제품 반응물 1H-NMR (300 MHz, CDCl3) 수율, %
2-(4-메톡시-3-메틸-페닐)-피리딘 2-(4-메톡시-3-메틸-페닐)-1,2,3-디옥사-보레인 8,65 (d, J=4.5 Hz, 1H), 7.80 (m,7.70 (m, 2H), 7.14 (m, 1H), 6.91(d, J=8.1 Hz, 1H), 3.88 (s, 3H). 2.30 (s, 3H)
73
2-(3,4-디메톡시-페닐)-피리딘 2-(3,4-디메톡시-페닐)-붕산(boronic acid) 8.65 (d, J=4.5 Hz, 1H), 7.69 (m, 3H), 7.5 (d, J=8.1 Hz, 1H), 7.18 (m, 1H), 6.59 (d, J=8.1 Hz, 1H), 3.99 (s, 3H)
75
2-(4-메톡시-페닐)-피리딘 2-(4-메톡시-페닐)-1,3,2-디-옥사보레인 8.65 (d, J=4.8 Hz, 1H), 7.94 (d, J=9 Hz, 2H), 7.69 (m, 2H), 7.16 (m, 1H), 6.99 (d, J=8.7 Hz, 2H), 3.85 (s, 3H)
58
2-(p-톨릴)-피리딘

2-(p-톨릴)-1,3,2-디옥사보레인 8.68 (d, J=4.5 Hz, 1H), 7.90 (d, J=8.4 Hz, 2H), 7.73 (m, 2H), 7.26(m, 2H), 7.21 (m, 1H), 2.41(s, 3H) 62
2-(4-플루오르-페닐)-피리딘

2-(4-플루오르-페닐)-1,3,2-디옥사-3H) 보레인 8.67 (d, J=4.8 Hz, 1H), 7.98 (m, 3H) 26
90*
* 16시간의 반응 시간 이후의 수율
얻어진 모든 제품의 물리적 상수들은 측정 정확도 한계 내에서 진본 제품 샘플들의 매개변수들과 정확하게 일치하였다. 반응 혼합물들은 항상 16시간의 반응 시간 이후에도 레몬 황색으로 남아 있었다. 촉매제의 선택적 분해에 해당하는 어떠한 징후도 감지되지 않았다.
실시예 5
공식(I)의 촉매제를 이용한 스즈키 결합에 의한 인돌(indole) 유도체의 제조
전체 설명
14mg(5-브로모-인돌- 기재 기준 0.25mole%)의 공식(I)의 촉매제, 3mmoles의 디옥사보레인 시약, 553mg(4mmoles)의 탄산칼륨 및 390mg(2mmoles)의 5-브로모-인돌이 계량되어, 플라스크 내로 투입되었다. 그 이후에, 플라스크를 아르곤 분위기 하에 두고, 10ml의 메탄올 및 1ml의 물을 추가하였다. 플라스크를 닫고, 반응 혼합물을 액체 반응 혼합물 유지에 필요한 압력 하에서 1시간 동안 110도씨에서 저었다.
얻어진 최종 제품들 중에서, 5-(p-톨릴)-1H 만이 물에 용해 가능하였다. 이와 같은 화합물을 제조할때, 반응 혼합물은 실시예 2에 기술된 방법에 따라 처리되었다.
다른 (물에 용해되지 않는) 인돌 화합물들을 포함하는 반응 혼합물은 다음과 같이 처리되었다.
9ml의 물이 반응 혼합물에 추가되었고, 촉매제와 제품을 포함하는 분리된 고형물은 소결 유리 필터를 이용하여 여과처리되었다. 촉매제를 제거하기 위하여, 얻어진 고형물을 클로로포름 내에 용해시켰으며, 클로로포름에 용해되지 않는 촉매제는 여과 분리되었으며, 여과물은 소듐설페이트(sodium sulphate)를 이용항 건조시키고, 이후 진공 상태에서 증발시켰다.
사용된 반응물, 얻어진 제품 및 그들의 물리적인 상수 및 분리 수율(%)이 표 5에 표시되어 있다.
제품 반응물 1H-NMR (300 MHz, CDCl3) 수율, %
5-(4-에톡시-3- 메틸-페닐)-1H-인돌 2-(4-에톡시-3- 메틸-페닐)-1,3,2-디옥사보레인 8.10 (bs, 1H), 7.83 (s, 1H), 7.43 (m, 4H), 7.22 (m, 1H), 6.91 (d, J=8.4 Hz, 1H), 6.61 (s, 1H), 4.11(q, J=6.9 Hz, 2H), 2.34 (s, 3H),1.48 (t, J=6.9 Hz, 3H) 93
5-(4-메톡시-3-메틸-페닐)-1H-인돌 2-(4-메톡시-3-메틸-페닐)-1,3,2-디옥사보레인 8.13 (bs, 1H), 7.82 (s, 1H), 7.44 (m, 4H), 7.22 (m, 1H), 6.92 (d,J=9 Hz, 1H), 6.60 (s, 1H), 3.89 (s,1H), 2.32 (s, 3H) 90
5-(4-메톡시-페닐)-1H-인돌 2-(4-메톡시-페닐)-1,3,2-디옥사보레인 8.12 (bs, 1H), 7.84 (s, 1H), 7.60 (m, 2H), 7.44 (s, 2H), 7.22 (t, J=3 Hz, 1H), 7.02 (m, 2H), 6.62 (t,J=2.4 Hz, 1H), 3,83 (s, 3H) 87
5-(3,4-디메톡시-
페닐)-1H-인돌
2-(3,4-디메톡시-페닐)-붕산(boronic acid) 82 (bs, 1H), 7.81 (s, 1H), 7.42(s, 2H), 7.21 (m, 3H), 6.95 (d, J=8.7 Hz, 1H), 6.59 (m, 1H), 3.96 (s,3H), 3.92 (s, 3H) 94
5-(p-톨릴)-1H-인돌 2-(p-톨릴)-1,3,2-디옥사보레인 8.13 (bs, 1H), 7.87 (s, 1H), 7.58(d, J=8.1 Hz, 2H), 7.45 (m, 2H),7.28 (d, J=8.4 Hz, 2H), 7.24 (m, 1H), 6.6 (m, 1H), 2.43 (s, 3H) 92
5-페닐-1H-인돌 페닐 붕산(Phenylboronic acid) 8.12 (bs, 1H), 7.90 (s, 1H), 7.70(d, J=7.2 Hz, 2H), 7.47 (m, 4H), 7.35 (m, 1H), 7.24 (m, 1H), 6.64 (m, 1H) 84
5-(4-플루오르-페닐)-1H-인돌 2-(4-플루오르-페닐)-1,3,2-디옥사보레인 8.13 (bs, 1H), 7.84 (s, 1H), 7.62(m, 2H), 7.43 (m, 2H), 7.24 (m, 1H), 7.16 (m, 2H), 6.64 (m, 1H) 77
얻어진 모든 제품의 물리적 상수들은 측정 정확도 한계 내에서 진본 제품 샘플의 매개변수들과 정확하게 일치하였다. 반응 혼합물 내에서 팔라듐 블렉의 출현(appearance)이 관찰되지 않았다. 분리된 촉매제는 항상 레몬 황색을 유지하였다.
실시예 6
공식(I)의 촉매제를 이용한 스즈키 결합에 의한 이소퀴놀린 유도체의 제조
전체 설명
14mg(5-브로모-이소퀴놀린- 기재 기준 0.25mole%)의 공식(I)의 촉매제, 3mmoles의 디옥사보레인 시약, 553mg(4mmoles)의 탄산칼륨 및 416mg(2mmoles)의 5-브로모-이소퀴놀린이 계량되어, 플라스크 내로 투입되었다. 그 이후에, 플라스크를 아르곤 분위기 하에 두고, 10ml의 메탄올 및 1ml의 물을 추가하였다. 플라스크를 닫고, 반응 혼합물을 액체 반응 혼합물 유지에 필요한 압력 하에서 1시간 동안 110도씨에서 저었다. 결과적으로 얻어진 반응 혼합물은 실시예 2에서 설명한 바와 같이 처리되었다.
사용된 반응물, 얻어진 제품 및 그들의 물리적인 상수 및 분리 수율(%)가 표 6에 도시되어 있다.
제품 반응물 1H-NMR (300 MHz, CDCl3) 수율, %
5-(4-에톡시-3- 메틸-페닐)-이소
퀴놀린
2-(4-에톡시-3- 메틸-페닐)-1,3,2-디옥사-보레인 9.22 (s, 1H), 8.40 (d, J=6 Hz, 1H)7.87 (m, 1H), 7.70 (d, J=6 Hz, 1H)7.50 (d, J=6 Hz, 1H), 7.10 (d, J= 6 Hz, 1H), 6.87 (d, J=9 Hz, 1H), 4.05 (q, J=6.9 Hz, 2H), 2.24 (s, 3H), 1.41 (t, J=6.9 Hz, 3H)
89
5-(4-메톡시-3
메틸-페닐)-이소-
퀴놀린
2-(4-메톡시-3-메틸-페닐)-1,3,2-디옥사-보레인 9.29 (s, 1H), 8.48 (d, J=6 Hz, 1H)7.95 (m 1H), 7.77 (d, J=6 Hz, 1H), 7.60 (m, 2H), 7.28 (m, 2H), 6.96 (d, J=8.7 Hz, 1H), 3.92 (s, 3H), 2.32 (s, 3H) 85
5-(3,4-디메톡시-
페닐)-이소-퀴놀린
3,4-디메톡시- 페닐-붕산(boronic acid) 9.31 (bs, 1H), 8.47 (m, 1H), 7.95 (m, 1H), 7.78 (d, J=6 Hz, 1H), 7.65 (m, 2H), 7.00 (m, 3H), 3.97 (s, 3H), 3.91 (s, 3H) 89
5-(4-메톡시-페닐)-이소-퀴놀린 2-(4-메톡시-페닐)-1,3,2-디-옥사보레인 9.30 (s, 1H), 8.48 (d, J=6 Hz, 1H) 7.97 (m, 1H), 7.75 (d, J=6 Hz, 1H), 7.41 (s, 2H), 7.05 (m, 2H), 3.90 (s, 3H) 57
*90
5-(피-톨릴)-이소-퀴놀린 2-(피-톨릴)-1,3,2-디-옥사보레인 9.31 (s, 1H), 8.48 (d, J=6.3 Hz,1H), 7.98 (m, 1H), 7.75 (d, J=6 Hz, 1H), 7.66 (m, 2H), 7.35 (m,4H), 2.43 (s, 3H) 59
91*
5-(4-플루오르-페닐)-이소-퀴놀린 2-(4-플루오르-페닐-1,3,2-디-옥사보레인 9.3 (s, 1H), 8.49 (d, J=6.3 Hz,1H), 7.97 (m, 1H), 7.62 (m, 3H),7.42 (m, 2H), 7.22 (m, 2H) 56
* 반응 3시간 이후에 얻어진 수율
얻어진 모든 제품의 물리적 상수들은 측정 정확도 한계 내에서 진본 제품 샘플의 매개변수들과 정확하게 일치하였다. 반응 혼합물은 항상 레몬 황색을 유지하였으며, 촉매제의 선택적 분해에 대한 어떠한 징후도 검출되지 않았다.
실시예 7
공식(I)의 촉매제를 이용한 스즈키 결합에 의한 바이페닐(biphenyl) 유도체의 제조
전체 설명
14mg(p-브로모-톨루엔- 기재 기준 0.25mole%)의 공식(I)의 촉매제, 3mmoles의 디옥사보레인 시약, 553mg(4mmoles)의 탄산칼륨 및 342mg(2mmoles)의 5-브로모-톨루엔이 계량되어, 플라스크 내로 투입되었다. 그 이후에, 플라스크를 아르곤 분위기 하에 두고, 10ml의 메탄올 및 1ml의 물을 추가하였다. 플라스크를 닫고, 반응 혼합물을 액체 반응 혼합물 유지에 필요한 압력 하에서 1시간 동안 110도씨에서 저었다. 결과적으로 얻어진 반응 혼합물은 실시예 5에서 설명한 바와 같이 처리되었다.
사용된 반응물, 얻어진 제품 및 그들의 물리적인 상수 및 분리 수율(%)가 표 10에 도시되어 있다.
제품 반응물 1H-NMR (300 MHz, CDCl3) 수율, %
4-에톡시-3,4'-디-메틸-바이페닐 2-(4-에톡시-3- 메틸-페닐)-1,3,2-디옥사- 보레인 7.48 (m, 2H), 7.37 (m, 2H), 7.24 (m, 2H), 6.88 (m, 1H), 4.09 (q,J=6.9 Hz, 2H), 2.41 (s, 3H), 2.32(s, 3H), 1.47 (t, J=6.9 Hz) 95,5
4-메톡시-3,4'-디-
메틸-바이페닐
2-(4-메톡시-3-메틸-페닐)-1,3,2-디옥사-보레인 7.48 (m, 2H), 7.42 (m, 2H), 7.25 (m, 2H), 3.89 (s, 3H), 2.42 (s, 3H), 2.33 (s, 3H) 97
얻어진 모든 제품의 물리적 상수들은 측정 정확도 한계 내에서 진본 제품 샘플의 매개변수들과 정확하게 일치하였다. 반응 혼합물은 항상 레몬 황색을 유지하였으며, 촉매제의 선택적 분해에 대한 어떠한 징후도 검출되지 않았다.
실시예 8
공식(I)의 촉매제를 이용한 헥(Heck) 결합에 의한 스틸벤(stilbene)의 제조
스틸벤 유도체가 다음의 반응식(scheme)에 도시된 바와 같이 스티렌(styrene)을 다양한 아릴 브롬화물(aryl bromides)과 반응시켜 제조하였다.
Figure pct00005

전체 설명
552mg(4mmoles, 2eq)의 K2CO3, 14mg(아릴 브롬화물 기재 기준 0.25mole%)의 공식(I)의 촉매제, 312mg(0.343ml, 3mmoles, 1.5eq)의 스티렌, 2mmoles(1eq)의 아릴 브롬화물 기재 및 10ml의 메탄올 및 물의 10:1 혼합물을 건조 오븐 쉐렌크 튜브(oven-dried Schlenk tube) 내로 투입하였다. 반응은 체이블에 8에 표시된 바와 같이 3시간 또는 20시간 동안 110도씨에서 수행되었다. 변환은 반응 혼합물을 GC에 처리함으로서 수행되었고, 제품이 분리되었다. 테스트 번호 1, 2, 3 및 5에 대하여, 제품들을 냉각 즉시 혼합물로부터 침전시켰으며, 이후 간단한 여과 방법으로 그들을 분리시켰다. 반면에, 테스트 번호 3, 6 및 7에 대해서는, 제품을 플래쉬(flash) 크로마토그래피 방법으로 분리시켰다.
그 결과들이 표 11에 표시되어 있다.
테스트 번호
아릴 브롬화물 변환 % 분리 수율 %
A B C D E 3시간 20시간
1 H F H H H 95 - 73
2 H H NO2 H H 100 - 67
3 H H Me H H 100 - 93
4 OMe H OMe H H 57 78 60
5 H Me H Me H 98 - 96
6 Me H H H Me 53 64 38
7 iPr H iPr H iPr 90 - 33
결과적으로 얻어지는 스틸벤 유도체의 NMR 데이터는 다음과 같다.
(E)-3-플루오르시틀벤: 1H NMR (300 MHz, CDCl3) d 7.53 (d, J = 7.5 Hz, 2H), 7.39 (t, J = 7.5 Hz, 2H), 7.41-7.22 (m, 4H), 7.11 (s, 1H), 7.10 (s, 1H), 6.99-6.94 (m, 1H); 13C NMR (ATP) (75 MHz, CDCl3) d 163.5 (C, d, J = 244 Hz), 139.9 (C, d, J = 7.65 Hz), 137.1 (C), 130.3 (CH, d, J = 8.18 Hz), 129.0 (CH), 128.2 (CH), 127.7 (CH, d, J = 2.70 Hz), 126.9 (CH), 122.7 (CH, d, J = 2.78 Hz), 114.62 (CH, d, J = 21.5 Hz), 113.0 (CH, d, J = 21.5 Hz).
(E)-4-니트로스틸벤: 1H NMR (300 MHz, CDCl3) d 8.23-8.21 (m, 2H), 7.63 (d, J = 8.7 Hz, 2H), 7.55 (d, J = 7.5 Hz, 2H), 7.43-7.25 (m, 4H), 7.14 (d, J = 16.5 Hz, 1H);
13C NMR (ATP) (75 MHz, CDCl3) d 147.0 (C), 136.4 (C), 133.6 (CH), 129.1 (CH), 127.3 (CH), 127.1 (CH), 126.5 (CH), 124.4 (CH).
(E)-4-메틸스틸벤: 1H NMR (300 MHz, CDCl3) d 7.54 (d, J = 7.8 Hz, 2H), 7.46 (d, J = 7.8 Hz, 2H), 7.41-7.36 (m, 2H), 7.31-7.26 (m, 1H), 7.21 (d, J = 7.8 Hz, 2H), 7.12 )s, 2H), 2.40 (s, 3H); 13C NMR (ATP) (75 MHz, CDCl3) d 137.8 (C), 137.8 (C), 134.8 (C), 129.7 ((CH), 128.9 (CH), 128.0 (CH), 127.7 (CH), 126.7 (CH), 21.5 (CH3).
(E)-2,4-디메톡시스틸벤: 1H NMR (300 MHz, CDCl3) d 7.53 (d, J = 8.4 Hz, 3H), 7.42 (d, J = 16.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 2H), 7.24 (dd, J = 4.9 Hz, 12.1 Hz, 1H), 7.02 (d, J = 16.5 Hz, 1H), 6.53 (dd, J = 2.2 Hz, 9.9 Hz, 1H), 6.49 (d, J = 2.4 Hz, 1H), 3.88 (s, 1H), 3.84 (s, 1H); 13C NMR (ATP) (75 MHz, CDCl3) d 160.5 (C), 138.3 (C), 128.5 (CH), 127.2 (CH), 127.0 (CH), 126.9 (CH), 126.3 (CH), 123.3 (CH), 119.5 (C), 105.0 (CH), 98.5 (CH), 55.5 (CH3), 55.4 (CH3).
(E)-3,5-디메틸스틸벤: 1H NMR (300 MHz, CDCl3) d 7.55-7.53 (m, 2H), 7.41-7.36 (m, 2H), 7.31-7.26 (m, 1H), 7.18 (s, 2H), 7.11 (d, J = 2.4 Hz, 2H), 6.95 (s, 1H), 2.38 (s, 6H); 13C NMR (ATP) (75 MHz, CDCl3) d 138.3 (C), 137.5 (C), 129.7 (CH), 129.1 (CH), 128.9 (CH), 128.5 (CH), 127.7 (CH), 126.7 (CH), 124.7 (CH), 21.5 (CH3).
(E)-2,6-디메틸스틸벤: 1H NMR (300 MHz, CDCl3) d 7.54-7.52 (m, 2H), 7.42-7.37 (m, 2H), 7.32-7.26 (m, 1H), 7.13 (d, J = 16,8 Hz, 1H), 7.1 (m, 3H), (m, 3H), 6.63 (d, J = 16.8 Hz, 1H), 2.39 (s, 6H); 13C NMR (ATP) (75 MHz, CDCl3) d 137.6 (C), 137.0 (C), 136.2 (C), 134.0 (CH), 128.7 (CH), 127.9 (CH), 127.6 (CH), 126.9 (CH), 126.7 (CH), 126.3 (CH), 21.0 (CH3).
(E)-2,4,6-트리이소프로필스틸벤: 1H NMR (300 MHz, CDCl3) d 7.54-7.52 (m, 2H), 7.43-7.38 (m, 2H), 7.33-7.26 (m, 1H), 7.22 (d, J = 16.5 Hz, 1H), 7.07 (s, 2H), 6.52 (d, J = 16.8 Hz, 1H), 3.31 (h, J = 6.9 Hz, 2H), 2.94 (h, J = 6.9 Hz, 1H), 1.33-1.23 (m, 18H); 13C NMR (ATP) (75 MHz, CDCl3) d 142.4 (C), 141.4 (C), 132.3 (C), 128.6 (CH), 127.7 (C), 123.4 (CH), 122.1 (CH), 121.7 (CH), 121.0 (CH), 115.3 (CH), 29.0 (CH), 24.9 (CH), 18.7 (CH3), 18.5 (CH3).
실시예 9
공식(I)의 촉매제를 이용한, 소노기사라(Sonogishara) 결합에 의한 페닐아세틸렌 유도체의 제조
페닐아세틸렌 유도체를 페닐아세틸렌을 다음 반응식에 표시된 다양한 아릴 브롬화물(bromides)과 반응시켜 제조하였다.
Figure pct00006

전체 설명
276mg(2mmoles, 1eq)의 K2CO3, 7mg(아릴 브롬화물 기재 기준 0.25mole%)의 공식(I)의 촉매제, 0.165ml(1.5mmoles, 1.5eq)의 페닐아세틸렌, 1mmoles(1eq)의 알 브롬화물 기재, 5ml의 용매[용매(a): 메탄올 및 물의 5:1 혼합물; 용매(b): n-부탄올; 용매(c): 글리세롤-포말(formal)]을 오븐 건조 쉬렌크 튜브(oven-dried Schlenk tube) 내로 투입하였다. 반응을 표 9에 표시된 바와 같이 3시간 또는 24시간 동안 110도씨에서 수행하였다. 제품의 양(amount)은 반응 혼합물을 GC에 처리함으로서 결정되었다.
결과는 아래 표 12에 요약되어 있다.

아릴 브롬화물 용매
3시간 이후 24시간 이후
A B C D 변환 % 제품 % 변환 % 제품 %
1 H OMe Me H (a) 47 43 71 57
2 H NO2 H H (a) 88 43 100 56
3 H CH3 H H (a) 51 48 81 78
4 iPr iPr H iPr (a) 10 8 97 46
5 H OMe Me H (b) 91 65 100 66
6 H NO2 H H (b) 100 78 - -
7 H Me H H (b) 100 84 - -
8 iPr iPr H iPr (c) 36 31 100 87
결과적으로 얻어지는 페닐아세틸렌 유도체의 NMR 데이터는 다음과 같다.
1-메틸-4-(페닐에티닐)-벤젠: 1H NMR (300 MHz, CDCl3) d 7.43 (d, J = 8.0 Hz, 2H), 7.26-7.22 (m, 5H), 6.70 (d, J = 8.3 Hz, 1H), 3.75 (s, 3H), 2.13 (s, 3H);
13C NMR (ATP) (75 MHz, CDCl3) d 158.2 (C), 133.9 (CH), 131.5 (CH), 130.6 (CH), 128.5 (CH), 128.3 (CH), 127.9 (CH), 123.8 (C), 109.9 (CH), 89.9 (C), 55.4 (CH), 16.1 (CH).
1-니트로-4-(페닐에티닐)-벤젠: 1H NMR (300 MHz, CDCl3) d 8.17 (d, J = 9.0 Hz, 2H), 7.62 (d, J = 9.0 Hz, 2H), 7.58-7.55 (m, 2H), 7.41-7.38 (m, 3H); 13C NMR (ATP) (75 MHz, CDCl3) d 147.0 (C), 132.3 (CH), 131.9 (CH), 130.3 (C), 129.4 (CH), 129.0 (CH), 123.7 (CH), 122.2 (C), 94.8 (C), 87.7 (C).
1-메틸-4-(페닐에티닐)-벤젠: 1H NMR (300 MHz, CDCl3) d 7.60-7.57 (m, 2H), 7.49 (d, J = 8.1 Hz, 2H), 7.40-7.35 (m, 3H), 7.20 (d, J = 7.9 Hz, 2H), 2.41 (s, 3H); 13C NMR (ATP) (75 MHz, CDCl3) d 138.6 (C), 131.8 (CH), 131.7 (CH), 129.3 (CH), 128.5 (CH), 128.3 (CH), 123.7 (C), 120.4 (C), 89.8 (C), 89.0 (CH), 21.7 (CH3).
페닐-(2,4,6-트리이소프로필-페닐)-아세틸렌: 1H NMR (300 MHz, CDCl3) d 7.58 (dd, J = 8.0 Hz, 1.4 Hz, 2H), 7.43-7.35 (m, 3H), 7.07 (s, 2H), 3.65 (sept, J = 6.9 Hz, 2H), 2.96 (sept, J = 6.9 Hz, 1H), 1.36 (d, J = 6.9 Hz, 12H), 1.32 (d, J = 6.9 Hz, 6H);
13C NMR (ATP) (75 MHz, CDCl3) d 150.9 (C), 149.5 (C), 131.5 (CH), 128.6 (CH), 128.1 (CH), 124.6 (CH), 120.7 (CH), 118.7 (C), 97.0 (C), 87.3 (C), 4.9 (CH3), 32.2 (CH3), 24.2 (CH3), 23.6 (CH3).
상기의 반응은 기재로서 2-브로모-3-메틸-but-2-ene를 이용하여 반복 실시되었다. 얻어진 결과들은 표 13에 리스트되어 있다.
테스트 번호
용매
3시간 이후 24시간 이후
변환 % 제품 % 변환 % 제품 %
1 (a) 22 10 64 40
2 (b) 24 15 84 28
3 (c) 93 87 100 94
결과적으로 얻어지는 제품의 NMR 데이터는 다음과 같다.
1H NMR (300 MHz, CDCl3) d 7.45-7.39 (m, 2H), 7.34-7.22 (m, 3H), 2.02 (s, 3H), 1.89 (s, 3H), 1.79 (s, 3H).
실시예 10
촉매제로서 공식(I)의 화합물을 이용하는, 부흐발트 반응(Buchwald reaction)에 의한 N-페닐-피페리딘의 제조
224mg(2mmoles)의 칼륨 삼차-브톡시드(tert.-butoxide), 70mg(브로모벤젠 기준 2.5mole%)의 공식(I)의 촉매제, 105μl(1mmoles)의 브로모벤젠, 198μl(2mmoles)의 피페리딘 및 5ml의 용매를 오븐 건조 쉬렌크 튜브(oven-dried Schlenk tube) 내로 투입하였다. 반응 혼합물은 유욕(oil bath)에서 24시간 동안 110도씨에서 가열되고, 이후 실온으로 냉각시키고, 낮은 압력에서 증발되었다. 잔여물을 실리커 겔 상에서 칼럼 크로마토그래피 방법으로 정제시켜, 원하는 제품을 제조하였다. 1H NMR (300 MHz, CDCl3) d 7.31-7.26 (m, 2H), 7.00-6.97 (m, 2H), 6.89-6.84 (m, 1H), 3,19 (t, J = 5.6 Hz, 4H), 1.79-1.72 (m, 4H), 1.64-1.59 (m, 2H).
서로 다른 용매 내에서 실시된 테스트의 결과들은 표 14에 요약되어 있다.
테스트 번호
용매
변환 %
3시간 이후 24시간 이후
1 톨루엔 40 47
2 DMSO 35 37

Claims (11)

  1. 아래 공식(I)의 팔라듐(0)-테트라키스{트리-[3,5-비스(트리플루오르메틸)-페닐]-포스핀} 착물(complex) 화합물.
    Figure pct00007

    (I)
  2. 제1항의 공식(I)의 화합물에서, 상기 화합물은 고형물 형태인 것을 특징으로 하는 화합물.
  3. 제1항의 공식(I)의 화합물을 제조하기 위한 공정은,
    팔라듐(II) 염(salt)은 트리-[3,5-비스(트리플루오르메틸)-페닐]-포스핀의 최소한 4배의 분자 초과(excess)와 반응되고, 팔라듐(II)는 단일 용기 반응(single pot reaction) 내에서 결과적으로 얻어지는 착물 염에서 팔라듐(0)로 환원되는 것을 특징으로 하는 공정.
  4. 제3항에서, 염화 팔라듐은 팔라듐(II) 염으로 사용되는 것을 특징으로 하는 공정.
  5. 제3항 또는 제4항에서, 상기 환원은 하이드라진 하이드레이트로 수행되는 것을 특징으로 하는 공정.
  6. 청구항 1항에 따른 공식(I)의 화합물을 C-C 및 C-이종원자 결합 반응 및 수소화에 적용하는 특징으로 하는 촉매제.
  7. 제6항에서, 상기 반응은 C-C 크로스 결합 반응에 적용하는 특징으로 하는 촉매제.
  8. 제7항에서, 상기 크로스 결합 반응은 스즈키 결합(Suzuki coupling), 헥 결합(Heck coupling) 또는 소노가시라 결합(Sonogashira coupling)에 적용하는 특징으로 하는 촉매제.
  9. 제6항 내지 제8항 중 어느 한 항에 있어서, 1mole 기재(substrate)에 대한 반응에 사용된 공식(I)의 촉매제의 양은 0.25mole% 또는 그 이하로 적용하는 특징으로 하는 촉매제.
  10. 제6항에서, 상기 반응은 C-N 결합 반응으로 적용하는 특징으로 하는 촉매제.
  11. 제10항에서, 상기 반응은 부크발트 결합(Buchwald coupling)에 적용하는 특징으로 하는 촉매제.
KR20137015408A 2010-12-16 2011-12-13 팔라듐 촉매제와 그 제조 방법 및 그 이용 KR20130086640A (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
HU1000668A HU230438B1 (hu) 2010-12-16 2010-12-16 Új palládium katalizátor, eljárás előállítására és alkalmazása
HUP-1000668 2010-12-16
PCT/HU2011/000122 WO2012093271A1 (en) 2010-12-16 2011-12-13 A new palladium catalyst, method for its preparation and its use

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020157003472A Division KR101787211B1 (ko) 2010-12-16 2011-12-13 팔라듐 촉매제와 그 제조 방법 및 그 이용

Publications (1)

Publication Number Publication Date
KR20130086640A true KR20130086640A (ko) 2013-08-02

Family

ID=89990120

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020157003472A KR101787211B1 (ko) 2010-12-16 2011-12-13 팔라듐 촉매제와 그 제조 방법 및 그 이용
KR20137015408A KR20130086640A (ko) 2010-12-16 2011-12-13 팔라듐 촉매제와 그 제조 방법 및 그 이용

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020157003472A KR101787211B1 (ko) 2010-12-16 2011-12-13 팔라듐 촉매제와 그 제조 방법 및 그 이용

Country Status (8)

Country Link
US (2) US9101920B2 (ko)
EP (1) EP2651856A1 (ko)
JP (1) JP6113076B2 (ko)
KR (2) KR101787211B1 (ko)
CN (1) CN103402949B (ko)
BR (1) BR112013015220A2 (ko)
HU (1) HU230438B1 (ko)
WO (1) WO2012093271A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104529896B (zh) * 2014-12-11 2017-05-03 温州大学 一种二芳基取代异喹啉化合物的合成方法
CN104529895B (zh) * 2014-12-11 2017-02-08 温州大学 一种取代含氮杂环化合物的合成方法
CN109328190A (zh) * 2016-07-04 2019-02-12 贺利氏德国有限两合公司 四(三烃基磷烷)钯(0)的生产方法
KR20180058135A (ko) * 2016-11-23 2018-05-31 희성금속 주식회사 팔라듐 촉매의 제조방법 및 이로부터 제조된 팔라듐 촉매
JP2020070234A (ja) * 2018-10-29 2020-05-07 国立大学法人 筑波大学 遷移金属含有化合物及びその製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3530187A (en) * 1967-12-26 1970-09-22 Shell Oil Co Preparation of n-(alkadienyl)amines
NO166709C (no) * 1984-12-19 1991-08-28 Goodrich Co B F Fremgangsmaate for fremstilling av akrylamider.
EP1008601B1 (en) * 1998-12-10 2005-03-09 Central Glass Company, Limited Method for producing palladium complex compound
EP1270582B1 (en) 2000-03-14 2006-08-30 Mitsubishi Rayon Co., Ltd. Triphenylphosphine derivatives, palladium or nickel complexes thereof, and process for preparing biaryl derivatives
EP1308450A3 (en) 2001-11-06 2003-10-01 Symyx Technologies, Inc. Titanium substituted pyridyl amine complexes, catalysts and processes for polymerizing ethylene and styrene
FR2904314A1 (fr) * 2006-07-26 2008-02-01 Centre Nat Rech Scient Composes pyridaziniques et pyrroliques lineaires, procedes d'obtention et applications

Also Published As

Publication number Publication date
WO2012093271A1 (en) 2012-07-12
HU230438B1 (hu) 2016-06-28
US9056314B2 (en) 2015-06-16
CN103402949B (zh) 2015-07-01
BR112013015220A2 (pt) 2016-09-13
HU1000668D0 (en) 2011-02-28
RU2013132388A (ru) 2015-01-27
US20140012004A1 (en) 2014-01-09
CN103402949A (zh) 2013-11-20
US9101920B2 (en) 2015-08-11
HUP1000668A2 (en) 2012-08-28
JP2014511339A (ja) 2014-05-15
KR20150023949A (ko) 2015-03-05
JP6113076B2 (ja) 2017-04-12
US20130281700A1 (en) 2013-10-24
EP2651856A1 (en) 2013-10-23
KR101787211B1 (ko) 2017-10-18
WO2012093271A8 (en) 2013-09-12

Similar Documents

Publication Publication Date Title
Tabatabaeian et al. Ru (II) complexes bearing tertiary phosphine ligands: A novel and efficient homogeneous catalyst for one‐pot synthesis of dihydropyrano [3, 2‐c] chromene and tetrahydrobenzo [b] pyran derivatives
Xi et al. CuI/L (L= pyridine-functionalized 1, 3-diketones) catalyzed C–N coupling reactions of aryl halides with NH-containing heterocycles
Cacchi et al. Palladium-catalyzed conjugate addition reaction of aryl iodides with. alpha.,. beta.-unsaturated ketones
KR101787211B1 (ko) 팔라듐 촉매제와 그 제조 방법 및 그 이용
Ren et al. Palladium-catalyzed Suzuki–Miyaura cross-coupling reaction of potassium 2-pyridyl trifluoroborate with aryl (heteroaryl) halides
Lv et al. Structure–activity relationship of N‐heterocyclic carbene–Pd (II)–imidazole complexes in Suzuki–Miyaura coupling between 4‐methoxyphenyl chloride and phenylboronic acid
Birzan et al. 1-vinylazulenes–potential host molecules in ligands for metal ion detectors
Amadio et al. A new palladium (II)–allyl complex containing a thioether-triazole ligand as active catalyst in Suzuki–Miyaura reaction. Use of tetraalkylammonium salts as promoters: Influence of the salt anion and cation on the catalytic activity
Hackenberger et al. Bimetallic Cu/Pd Catalysts with Bridging Aminopyrimidinyl Phosphines for Decarboxylative Cross‐Coupling Reactions at Moderate Temperature
EP3099657B1 (en) Process of production of 2,5-dimethylphenol
Liu et al. Palladium (II)-catalyzed Suzuki–Miyaura reactions of arylboronic acid with aryl halide in water in the presence of 4-(benzylthio)-N, N, N-trimethybenzenammonium chloride
JP2014511339A5 (ko)
CN108558635B (zh) 3-芳基丙炔酸类及3-芳基丙炔酸酯类化合物的制备方法
WO2015110654A1 (en) Process of production of 2,3,6-trimethylphenol
Elvers et al. Photochemical Unmasking of 1, 3‐Dithiol‐2‐ones: An Alternative Route to Heteroleptic Dithiolene Complexes from Low‐Valent Molybdenum and Tungsten Precursors
CN106946641A (zh) 一种制备反式二苯基乙烯类化合物的方法
RU2575249C2 (ru) Новый палладиевый катализатор, способ его получения и его применение
CN101817775A (zh) 一种2-吡咯磺酰胺类化合物的制备方法
CN116496151B (zh) 一种利用Catellani策略制备芴酮衍生物的方法
Potapov et al. Synthesis of monomeric and oligomeric 1, 1′-methylenebis-(1 H-pyrazoles) contaning ethynyl fragments
JP2017132738A (ja) ビピリジル化合物の製造方法
KR100838122B1 (ko) 팔라듐 핀서 착화합물 및 그 제조 방법
Liu et al. Synthesis of 2-bromo-1H-indenes via copper-catalyzed intramolecular cross-coupling of gem-dibromoolefins
JP5980659B2 (ja) カルバゾール基を有するポリマー、カルバゾール基を有するモノマー及び化合物
CN109195935B (zh) 醛和酮的选择性还原

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
A107 Divisional application of patent
AMND Amendment
E801 Decision on dismissal of amendment
A107 Divisional application of patent