KR20130031206A - 전기기계 변환장치의 제조 방법 - Google Patents

전기기계 변환장치의 제조 방법 Download PDF

Info

Publication number
KR20130031206A
KR20130031206A KR1020120099744A KR20120099744A KR20130031206A KR 20130031206 A KR20130031206 A KR 20130031206A KR 1020120099744 A KR1020120099744 A KR 1020120099744A KR 20120099744 A KR20120099744 A KR 20120099744A KR 20130031206 A KR20130031206 A KR 20130031206A
Authority
KR
South Korea
Prior art keywords
insulating layer
substrate
silicon substrate
height
silicon
Prior art date
Application number
KR1020120099744A
Other languages
English (en)
Other versions
KR101473709B1 (ko
Inventor
아야코 카토
카즈토시 토라시마
Original Assignee
캐논 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 캐논 가부시끼가이샤 filed Critical 캐논 가부시끼가이샤
Publication of KR20130031206A publication Critical patent/KR20130031206A/ko
Application granted granted Critical
Publication of KR101473709B1 publication Critical patent/KR101473709B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0292Electrostatic transducers, e.g. electret-type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • B81B3/0064Constitution or structural means for improving or controlling the physical properties of a device
    • B81B3/0067Mechanical properties
    • B81B3/0075For improving wear resistance
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/84Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of applied mechanical force, e.g. of pressure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/005Electrostatic transducers using semiconductor materials
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2201/00Specific applications of microelectromechanical systems
    • B81B2201/02Sensors
    • B81B2201/0221Variable capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/01Suspended structures, i.e. structures allowing a movement
    • B81B2203/0127Diaphragms, i.e. structures separating two media that can control the passage from one medium to another; Membranes, i.e. diaphragms with filtering function
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0369Static structures characterized by their profile
    • B81B2203/0392Static structures characterized by their profile profiles not provided for in B81B2203/0376 - B81B2203/0384
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49007Indicating transducer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Pressure Sensors (AREA)

Abstract

절연층의 평탄성의 변동에 의해 생긴 절연파괴 강도의 변동을 저감한 전기기계 변환장치의 제조 방법을 제공한다. 전기기계 변환장치의 제조 방법에 있어서, 제1 기판 위에 제1 절연층을 형성하고, 제1 절연층의 일부를 제거해서 차단벽을 형성하고, 제1 절연층의 일부가 제거된 제1 기판의 영역 위에 제2 절연층을 형성한다. 다음에, 제2 기판을 차단벽 위에 접합해서 틈을 형성하고, 제2 기판으로부터, 틈을 거쳐서 제2 절연층과 대향하는 진동막을 형성한다. 차단벽을 형성하는 공정에서는, 제1 기판에 수직한 방향에 있어서 틈측의 높이가 중앙부의 높이보다도 낮아진다.

Description

전기기계 변환장치의 제조 방법{METHOD OF MANUFACTURING AN ELECTROMECHANICAL TRANSDUCER}
본 발명은, 초음파 변환소자 등으로서 사용된 정전용량형 트랜스듀서 등의 전기기계 변환장치의 제조 방법에 관한 것이다.
종래, 마이크로머시닝 기술에 의해 제조된 미소기계 부재는 마이크로미터 오더의 가공이 가능하고, 이것을 사용해서 여러 가지의 미소 기능소자가 실현되었다. 이러한 기술을 사용한 정전용량형 트랜스듀서(Capacitive Micromachined Ultrasonic Transducer: CMUT)는, 압전소자의 대체물로서 연구되고 있다. 이 CMUT에 의하면, 진동막의 진동을 사용해서 초음파를 송신 및 수신할 수 있고, 특히, 액중에 있어서 뛰어난 광대역특성이 용이하게 얻어질 수 있다.
상기 기술에 관해서, 실리콘 기판 위에 접합 등에 의해 배치한 단결정 실리콘 진동막을 사용하여서 정전용량형 트랜스듀서를 제조하는 방법이 있다(미국 특허 제6,958,255호, Sensors and Actuators A 138(2007)221-229 참조). 미국 특허 제6,958,255호에서는, 실리콘 기판에 열산화막을 형성하고, 열산화막의 일부를 제거한 후에 실리콘 기판의 접합을 행함으로써, 열산화막을 제거한 부분이 공극이 된다. 접합 후, 단결정 실리콘 진동막을 노출시켜, 단결정 실리콘 진동막을 진동막으로서 사용하는 셀을 형성하는 것에 의해, 정전용량형 트랜스듀서를 제조한다. Sensors and Actuators A 138(2007)221-229에서는, 실리콘 기판에 열산화막을 형성하고, 상기 제1 열산화막의 일부를 제거한 후에 2회째의 열산화막을 형성한다. 또한, 2회째의 열산화막 형성후에, 접합 계면이 되는 부분에 생성된 열산화막의 돌기를 제거하고, 실리콘 기판의 접합을 행한다. 접합 후, 실리콘 기판의 가공을 행하고, 단결정 실리콘 진동막을 노출시키고, 이것을 진동막으로서 사용하는 셀을 형성하여서, 정전용량형 트랜스듀서를 제조한다.
전술한 것처럼, 실리콘 기판에 열산화막을 형성하는 공정; 그 형성된 열산화막의 일부를 실리콘 기판의 위치까지 제거하는 공정; 및 상기 실리콘 기판을 접합하여, 2매의 접합된 실리콘 기판 사이에 공극을 형성하는 공정으로 정전용량형 트랜스듀서를 제조할 수 있다. 정전용량형 트랜스듀서는, 공극을 거쳐서 서로 대향하는 두개의 전극간에 전압을 인가하여서 구동된다. 두개의 전극간의 절연을 위해서는, 공극 내벽과 공극 저면은 절연체인 것이 바람직하다. 종래, Sensors and Actuators A 138(2007)221-229에 나타낸 것처럼, 열산화막의 일부를 실리콘 기판의 위치까지 제거한 후에 2회째의 열산화막을 형성하여서, 공극 저면에 절연체를 설치하였었다. 그러나, 2회째의 열산화막을 형성하면, 접합 계면이 되는 부분에 열산화막의 돌기가 생성되기도 한다. 이 돌기가 실리콘 기판의 접합 불량의 원인이 되므로, 접합 전에 제거할 필요가 있었다. 돌기를 제거하면 접합은 양호하게 되지만, 돌기를 제거할 때에 공극 저면에 형성된 열산화막도 일부 제거되는 경우가 있다. 이로 인해, 공극 저면의 절연층의 평탄성이 나빠져서, 전압을 인가할 때에 공극내에서 전기장 강도에 분포가 생성되기도 한다. 전기장 강도에 분포가 생성되면, 정전용량형 트랜스듀서의 셀간 또는 셀을 포함하는 엘리먼트간에 절연파괴 강도가 달라서, 장치의 신뢰성이 저하한다.
상기 과제를 감안하여, 본 발명에 따른 전기기계 변환장치의 제조 방법은, 제1 기판 위에 제1 절연층을 형성하고, 상기 제1 절연층의 일부를 상기 제1 기판까지 제거해서 차단벽(barrier wall)을 형성하는 공정; 상기 제1 절연층의 일부가 제거된 제1 기판의 영역 위에 제2 절연층을 형성하는 공정; 제2 기판을 상기 차단벽 위에 접합해서 틈(gap)을 형성하는 공정; 및 상기 제2 기판으로부터, 상기 틈을 거쳐서 상기 제2 절연층과 대향하는 진동막을 형성하는 공정을 포함하고, 상기 차단벽을 형성하는 공정에서는, 상기 제1 기판에 수직한 방향에 있어서 상기 차단벽의 틈측의 높이가 중앙부의 높이보다도 낮아지도록 상기 차단벽을 형성한다.
본 발명에 의하면, 제2 절연층을 형성하기 전에, 제1 절연층으로 구성된 차단벽을 형성한다. 상기 제1 기판에 수직한 방향에 있어서 차단벽의 틈측의 높이가 중앙부의 높이보다도 낮아지도록 상기 차단벽을 형성하므로, 제2 절연층을 형성한 후에 생성되는 상기 차단벽상의 돌기를 저감할 수 있다. 이 때문에, 제2 기판을 접합하기 전에 차단벽상의 돌기를 제거하는 공정이 불필요해지고, 틈 저면의 절연층의 평탄성의 변동을 저감할 수 있다. 이렇게 해서, 본 발명에 의하면, 전기기계 변환장치의 셀간 및 셀을 포함하는 엘리먼트간의 절연파괴 강도의 변동이 저감하여서, 장치의 균일성을 높여 신뢰성을 향상할 수 있다.
본 발명의 또 다른 특징들은 첨부도면을 참조하여 이하의 예시적 실시예들의 설명으로부터 명백해질 것이다.
도 1a, 도 1b, 도 1c, 도 1d, 도 1e, 도 1f 및 도 1g는 본 발명의 실시예에 따른 정전용량형 트랜스듀서의 제조 방법의 설명도다.
도 2는 정전용량형 트랜스듀서를 설명하는 평면도다.
도 3은 도 1c의 일부 확대도다.
도 4a, 도 4b, 도 4c, 도 4d, 도 4e, 도 4f, 도 4g, 도 4h 및 도 4i는, 비교 예에 있어서의 정전용량형 트랜스듀서의 제조 방법의 설명도다.
도 5a, 도 5b, 도 5c, 도 5d, 도 5e, 도 5f 및 도 5g는 다른 실시예의 정전용량형 트랜스듀서의 제조 방법의 설명도다.
도 6은 도 5c의 일부 확대도다.
도 7a는 제2 절연층 두께와 돌기 높이간의 관계를 나타내는 그래프다.
도 7b는 제2 절연층 두께와 돌기 폭간의 관계를 나타내는 그래프다.
도 8a는 차단벽의 둘째 단의 높이와 돌기 높이의 그래프다.
도 8b는 차단벽의 둘째 단의 높이와 돌기 폭의 그래프다.
이하, 본 발명의 바람직한 실시예들을 첨부도면에 따라 상세히 설명한다.
본 발명의 특징은, 제1 기판 위에, 이 기판에 수직한 방향에 있어서 차단벽의 틈측의 높이가 중앙부의 높이보다도 낮아지도록 차단벽을 형성하고, 그 후에 제1 기판 위에 산화막인 제2 절연층을 형성하고, 제2 기판을 차단벽 위에 접합해서 틈을 형성하는 것이다. 상기 제1 기판이 후술하는 실시예들과 예시에서는 실리콘 기판이지만, 실리콘층을 사파이어판 위에 형성한 기판 등이어도 된다. 제2 기판은, SOI등의 실리콘 기판 등이다. 차단벽을 형성하기 위한 제1 절연층은, SiO2등의 산화막, SiN 등이며, 제2 절연층은, 버즈 비크(bird's beak)를 생성하는 열산화막등의 산화막이다. 틈을 거쳐서 제2 절연층과 대향하는 진동막은, 제2 기판으로부터 형성된 실리콘막등이며, 제2 기판을 박화해서 형성되어도 된다.
이하에, 본 발명의 실시예인 정전용량형 트랜스듀서의 제조 방법을 설명한다. 도 2는 정전용량형 트랜스듀서의 평면도이며, 도 1g는 도 2의 1G-1G 단면도다. 도 3은, 도 1c의 일부 확대도다. 정전용량형 트랜스듀서는, 도 2에 나타낸 것처럼, 복수의 셀(102)을 각각 포함하는 복수의 정전용량형 트랜스듀서의 엘리먼트(101)를 어레이 모양으로 배치하고 있다. 도 2에서는, 6개의 엘리먼트(101)만을 도시하고 있지만, 엘리먼트수는 원하는 대로 결정되어도 된다. 또한, 엘리먼트는 16개의 셀로 구성되어 있지만, 셀 개수는 원하는 대로 결정되어도 된다. 여기에서는, 셀 형상은, 원형이지만, 사각형, 육각형등이어도 된다. 또한, 셀(102)과 엘리먼트(101)의 배치 위치는 원하는 대로 결정되어도 된다. 이렇게, 정전용량형 트랜스듀서는, 후술의 제1 기판의 한쪽의 면과 진동막과의 사이에 형성된 틈을 갖는 적어도 하나의 셀(102)을 각각 포함하는 복수의 엘리먼트(101)를 구비한다.
도 1g에 나타낸 것처럼, 셀(102)은, 단결정 실리콘 진동막(23), 틈(대기압으로부터 압력이 내려간 공극, 가스가 봉입된 공극등)(24), 진동막(23)을 지지하는 지지부인 차단벽(3), 제1 실리콘 기판(1), 및 전극(27)을 구비한다. 차단벽(3)은, 그 횡단면 형상이 도 1g에 나타낸 것처럼 되어 있다. 단결정 실리콘 진동막(23)은, 적층 성막한 진동막(예를 들면, 질화 실리콘막)과 비교하여, 잔류응력이 거의 없고, 두께 변동이 작고, 진동막의 용수철 정수의 변동이 작다. 그 때문에, 정전용량형 트랜스듀서의 엘리먼트간 및 셀간의 특성 변동이 작아진다.
차단벽(3)은, 절연체가 바람직하고, 산화 실리콘, 질화 실리콘 등이다. 단결정 실리콘 진동막(23)을 직접 접합으로 형성하는 경우에는, 차단벽(3)은 산화 실리콘인 것이 바람직하다. 여기에서는, 제1 실리콘 기판(1)은, 복수의 엘리먼트간의 공통 전극으로서 사용하기 위해서, 쉽게 오믹 특성을 나타내는 저저항 기판이 바람직하고, 그 저항률은 0.1Ωcm이하인 것이 바람직하다. "오믹"은, 전류의 방향과 전압의 크기에 의하지 않고 저항치가 일정한 성질을 가리킨다. 또한, 단결정 실리콘 진동막(23)은, 도 1g의 전기적 분리의 경계선(103)의 부분에 분할됨으로써, 신호를 추출하는 전극 패드(104)로서 사용될 수 있다(도 2 참조). 제1 실리콘 기판(1)과 단결정 실리콘 진동막(23)의 도전 특성을 향상하기 위해서, 얇은 알루미늄 등의 금속막을 제1 실리콘 기판(1)과 진동막(23) 위에 형성해도 된다. 단결정 실리콘 진동막(23)은, 신호 출력 전극으로서 사용되므로, 단결정 실리콘 진동막(23)이 저저항인 것이 바람직하고, 그 저항률은 0.1Ωcm이하인 것이 바람직하다.
본 실시예의 엘리먼트(101)를 구성하는 셀(102)의 차단벽(3)은, 제1 실리콘 기판측의 횡단면의 폭 4가, 그 반대측의 횡단면의 폭 5보다도 크다(도 1b 참조). 도 3에 나타낸 것처럼, 또 다른 국면에서 말하면, 차단벽(3)의 후술하는 틈(24)측의 높이가 차단벽(3)의 중앙부의 높이보다 낮다. 차단벽(3)은, 산화에 의해 제2 절연층(10)을 형성하기 전에 형성된다. 이에 따라, 제2 절연층(10)을 형성한 후에 차단벽(3)에 생성된 돌기를 저감할 수 있다. 따라서, 제2 실리콘 기판(18)(도 1d 참조)을 접합하기 전에 돌기를 제거하는 공정이 불필요해지고, 틈 저면(33)의 평탄성의 변동(제2 절연층(10)의 두께 12의 변동)을 저감할 수 있다. 본 실시예에 의하면, 정전용량형 트랜스듀서의 엘리먼트 및 셀의 절연파괴 강도의 변동을 저감함으로써, 엘리먼트내의 셀간 및 엘리먼트간의 균일성을 높여, 신뢰성을 향상할 수 있다.
본 실시예의 구동원리를 설명한다. 정전용량형 트랜스듀서로 초음파를 수신할 때, 도면에 나타나 있지 않은 전압인가부에 의해 직류전압을 단결정 실리콘 진동막(23)에 인가한다. 상기 초음파를 수신할 때 단결정 실리콘 진동막(23)이 변형하므로, 진동막(23)과 제1 실리콘 기판(1)간의 거리 22(도 1d 참조)가 변화되고, 정전용량이 변화된다. 이 정전용량 변화에 의해, 단결정 실리콘 진동막(23)에 전류가 흐른다. 이 전류를, 도면에 나타나 있지 않은 전류-전압변환소자에 의해 전압으로 변환하여서, 초음파를 수신할 수 있다. 또한, 단결정 실리콘 진동막(23)에 직류전압과 교류전압을 인가하고, 정전기력에 의해, 상기 진동막(23)을 진동시킬 수 있다. 이 때문에, 초음파를 송신할 수 있다.
다음에, 본 실시예의 정전용량형 트랜스듀서의 구성, 제조 방법 등을, 도 1a~도 1g, 도 4a~도 4i등을 참조하여, 비교 예와 비교하여 상세하게 설명한다. 도 7a, 도 7b, 도 8a 및 도 8b는, 후술하는 버즈 비크에 의해 생긴 돌기의 높이 및 폭과 제2 절연층의 두께등과의 관계를 나타낸 그래프다.
상기 제조 방법에 있어서, 우선, 도 1a에 나타낸 것처럼, 제1 실리콘 기판(1) 위에 제1 절연층(2)을 형성한다. 제1 실리콘 기판(1)은, 저저항 기판이며, 그 저항률은 0.1Ωcm이하가 바람직하다. 제1 절연층(2)은, 산화 실리콘, 또는 질화 실리콘 등이다. 제1 절연층(2)은, 화학기상증착(CVD) 또는, 열산화등에 의해 형성될 수 있다. 열산화는, 산소와 수소를 사용하는 웨트 산화나, 산소를 사용하는 드라이 산화로 행해질 수 있다. 산화 온도는, 800도~1100도정도가 바람직하다.
다음에, 도 1b에 나타낸 것처럼, 제1 절연층(2)의 일부를 실리콘 기판(1)까지 제거하고, 차단벽(3)을 배치 간격 9로 이산적으로 형성한다. 차단벽(3)은, 드라이에칭, 웨트 에칭 등에 의해, 형성될 수 있다. 차단벽(3)은, 도 1b에 나타낸 것처럼, 제1 실리콘 기판측의 폭 4가 그 반대측의 폭 5보다도 커지도록, 바꾸어 말하면, 차단벽의 틈(24)측의 높이가 중앙부의 높이보다 낮아지도록, 형성된다. 이에 따라, 차단벽(3)을 형성하는 공정에서는, 후술의 제2 절연층을 형성하는 공정 후에 차단벽의 틈측의 높이가 중앙부의 높이보다 높아지지 않도록, 차단벽을 형성한다. 차단벽(3)의 벽면형상(제1 실리콘 기판에 수직한 단면형상)은, 도 1b와 같이 계단형이어도 좋거나, 후술하는 예시와 같이 경사형이어도 좋다. 계단형의 차단벽의 벽면은, 적어도 1단을 포함하는 계단형이어도 된다. 이러한 형상의 차단벽(3)을 형성함으로써, 제2 절연층(10)을 형성한 후에 생성되기도 하는 돌기(도 4c의 공정 참조)를 저감할 수 있다. 비교 예를 설명하는 도 4c에 나타나 있는 바와 같은 돌기(14)는, 버즈 비크(13)에 기인해서 생긴다. 버즈 비크(13)는 새의 주둥이 모양의 산화막이다. 버즈 비크(13)는, 차단벽(3) 형성 후에 제1 실리콘 기판(1)을 열산화하여서 제2 절연층(10)을 형성할 때에, 제1 실리콘 기판(1)의 열산화량이 부분적으로 변화되어서 불균일해지는 부분에서, 차단벽 아래에의 산소의 침입 현상이 발생하는 것으로 생긴다. 예를 들면, 제1 실리콘 기판(1)에 단차가 있는 경우나, 도 4c와 같이 다른 물질(여기에서는 차단벽(3))이 존재할 경우, 열산화량이 부분적으로 변화되어서 불균일해지고, 여기서에서 버즈 비크(13)가 생긴다. 이 현상에 의해, 제2 실리콘 기판(18)을 접합하는 쪽의 차단벽의 계면에, 버즈 비크(13)에 의해 툭 튀어나와 올려진 도 4c에 도시된 것과 같은 와 같은 돌기(14)가 생긴다.
도 1의 설명으로 되돌아가서, 도 1c에 나타낸 것처럼, 제2 절연층(10)을 형성한다. 도 1c의 경우에, 버즈 비크(13)에 의해서 제1 돌기(14)가 생성된다. 제1 돌기(14)는, 차단벽(3)이 절연층인 것과, 상기 높이의 차이가 제1 실리콘 기판(1)의 면으로부터의 차단벽(3)의 첫째 단의 높이 6의 양을 갖는 것으로 인해, 차단벽의 벽면부근의 영역에 있어서 제1 실리콘 기판(1)측의 열산화량이 불균일해지기 때문에 생긴다. 또한, 도 1c에 나타낸 것처럼, 제2 돌기(15)도 생긴다. 제2 돌기(15)는, 차단벽(3)의 둘째 단의 높이 7의 양을 갖는 높이와, 차단벽(3)의 첫째 단의 높이 6과의 차이로 인해, 제1 실리콘 기판(1)측의 열산화량이 불균일해지기 때문에 생긴다. 또한, 버즈 비크(13)는, 도 1c에 도시한 부분이외에도, 열산화량에 불균일성이 있는 장소에서 생긴다. 본 실시예는, 차단벽(3)의 벽면형상을 계단 모양으로 형성하여, 버즈 비크에 의해 생신 돌기(14, 15)의 양과 위치를 제어하고, 제2 실리콘 기판(18)과의 접합을 양호하게 행하는 것이다.
여기에서, 도 7a, 도 7b, 도 8a 및 도 8b를 참조하여 버즈 비크에 의해 생긴 돌기의 양과 위치에 대해서 서술한다. 도 7a의 가로축은, 차단벽(3)이 도 4b에 나타낸 구성을 갖는 제2 절연층(10)을 1050도의 웨트 산화를 사용하여 형성한 경우의 열산화막의 두께다. 세로축은, 버즈 비크에 의해 생긴 돌기(14)의 높이다. 도 7a에 나타낸 것처럼, 버즈 비크에 의해 생긴 돌기(14)의 높이는, 제2 절연층(10)의 두께에 비례해서 증대한다. 이것은, 제2 절연층(10)의 두께에 의해, 버즈 비크의 양이 증가하고 있기 때문이다. 버즈 비크에 의해 생긴 돌기(14)는, 제2 절연층(10)이 특정 두께를 갖게 될 때까지 도 7a와 같이 증대하고, 그 특정 두께를 초과하면, 제2 절연층(10)의 두께에 비례해서 감소한다(도면에 나타내지 않는다). 버즈 비크에 의해 생긴 돌기(14)의 감소가 시작되는 절연층의 두께는, 열산화막을 형성할 때의 온도에 의존한다. 열산화막의 형성 온도가 낮아지면, 감소가 시작되는 제2 절연층의 두께는 두꺼워지는 경향이 있다. 또한, 증감의 기울기도 열산화막을 형성할 때의 온도에 의존한다. 열산화막의 형성 온도가 낮아지면, 증감의 기울기는 완만해지는 경향이 있고, 버즈 비크에 의해 생긴 돌기(14)의 크기는, 높이와 폭 함께 커지는 경향이 있다. 예를 들면, 1050도에서의 웨트 산화의 경우, 제2 절연층(10)의 두께 1μm부근일 때, 버즈 비크에 의해 생긴 돌기의 높이는 피크가 된다. 상기의 버즈 비크에 의해 생긴 돌기의 크기 등은, 열산화막을 형성하는데 사용된 기술(드라이 산화, 웨트 산화)의 차이와, 제1 실리콘 기판(1)의 결정방위에 의존하기도 한다.
도 7b의 가로축은, 도 7a의 가로축과 같고, 세로축은, 버즈 비크에 의해 생긴 돌기(14)의 폭 16(도 3 참조)이다. 도 7b의 버즈 비크에 의해 생긴 돌기(14)의 폭은, 도 7a의 버즈 비크에 의해 생긴 돌기(14)의 높이와 마찬가지로, 제2 절연층(10)의 두께에 비례해서 증대해간다. 또한, 제2 절연층(10)이 특정 두께를 초과하면, 제2 절연층(10)의 두께에 비례해서 감소한다. 그 밖의 점도, 상기 돌기(14)의 높이의 경우와 같다.
도 8a의 가로축은, 본 실시예의 차단벽(3)의 둘째 단의 높이 7이며, 세로축은 제2 절연층(10)을 1050도의 웨트 산화를 사용하여 형성할 때에 생긴 제2 돌기(15)의 높이다. 도 8a에 나타낸 것처럼, 차단벽(3)의 둘째 단의 높이 7이 증가하는 것에 따라서, 돌기(15)의 높이도 증가한다. 버즈 비크에 의해 생긴 제2 돌기(15)의 높이와 열산화량의 관계는, 도 7a의 설명과 동등하다. 도 8b의 가로축은, 차단벽(3)의 둘째 단의 높이 7이며, 가로축은 제2 절연층(10)을 1050도의 웨트 산화를 사용하여 형성했을 때에 생긴 제2 돌기(15)의 폭 17(도 3 참조)이다. 도 8b에 나타낸 것처럼, 차단벽(3)의 둘째 단의 높이 7이 증가하는 것에 따라서, 돌기(15)의 폭은 증가한다. 버즈 비크에 의해 생긴 돌기(15)의 폭과 열산화량의 관계는, 도 7b의 설명과 동등하다.
도 7a, 도 7b, 도 8a 및 도 8b의 설명에서 서술한 것처럼, 버즈 비크에 의해 생긴 돌기의 높이 14, 15와 폭은, 제2 절연층의 두께에 따라, 미리 차단벽(3)에 소정방식으로 형성되는 단차를 결정하여서 제어될 수 있다. 예를 들면, 열산화온도가 1050도의 웨트 산화일 경우에 관하여 설명한다. 제2 돌기(15)의 높이를 3nm으로 하고 싶은 경우, 도 8a에 의하면, 차단벽(3)의 둘째 단의 높이 7을 66nm로 형성할 수 있다. 제2 실리콘 기판(18)과의 접합을 고려하면, 제2 돌기(15)의 높이는 낮을수록, 더 바람직하다. 후술하는 용융 접합을 사용하여 접합하는 경우에는, 표면 거칠기가 Rms <5nm이 바람직하다. 예를 들면, 제2 돌기(15)의 높이를 0.5nm로 하고 싶은 경우, 차단벽(3)의 둘째 단의 높이 7은 11nm로 할 필요가 있다. 그러나, 도 7a로부터, 제2 절연층(10)을 200nm형성하는 경우에는, 제1 돌기(14)가 12nm이므로, 차단벽(3)의 첫째 단의 돌기(14)가, 접합 계면에 도달하게 된다. 차단벽(3)의 첫째 단의 돌기(14)가 접합 계면에 도달하면, 제2 실리콘 기판(18)의 표면 실리콘층(21)(후술)과 접촉해서 접합된다. 이에 따라, 후술하는 도 1d~도 1g의 공정을 행한 후, 차단벽(3)의 접합 계면이외의 부분에서 단결정 실리콘 진동막(23)과의 접합부가 형성됨에 따라서, 단결정 실리콘 진동막(23)의 진동 특성이 변화될 것이다. 이 때문에, 차단벽(3)의 둘째 단의 높이 7은, 제2 절연층(10)의 원하는 두께를 형성했을 때에, 제1 돌기(14)를 접합 계면에 도달시키지 않는 높이이상으로 해서, 제2 돌기(15)를 접합 불량을 생기게 하지 않는 높이로 하는 것이 바람직하다. 제2 절연층(10)을 200nm이라고 하면, 차단벽(3)의 둘째 단의 높이 7은, 12nm이상 110nm이하라고 하는 것이 바람직하다. 제2 절연층(10)을 400nm이라고 하면, 차단벽(3)의 둘째 단의 높이 7은, 27nm이상 110nm이하라고 하는 것이 바람직하다.
또한, 버즈 비크에 의해 생긴 돌기(14)의 폭과 제2 절연층(10)의 두께의 관계로부터, 차단벽(3)의 첫째 단과 둘째 단 사이의 폭 8은, 제2 절연층(10)의 원하는 두께로 생긴 돌기(14)의 폭 16(도 3 참조)을 포함하는 폭일 수 있다. 제2 절연층(10)을 200nm이라고 하면, 1μm이상으로 하는 것이 바람직하다. 제2 절연층(10)을 400nm이라고 하면, 2μm이상으로 하는 것이 바람직하다. 전형적으로는, 정전용량형 트랜스듀서의 엘리먼트는, 후술하는 틈(24)이 진공이기 때문에, 대기압하에서 단결정 실리콘 진동막(23)이 틈 저면(33)의 방향으로 오목해진 상태가 된다. 이 상태에서 구동할 때, 단결정 실리콘 진동막(23)은 한층 더 틈 저면(33)측으로 볼록해진다. 차단벽(3)의 첫째 단과 둘째 단 사이의 폭 8을, 셀 직경 28(도 3 참조)에 대하여 지나치게 크게 하면, 단결정 실리콘 진동막(23)과 제1 돌기(14)가 접촉하기도 한다. 차단벽(3)의 둘째 단의 높이의 크기에도 따르지만, 차단벽의 첫째 단과 둘째 단 사이의 폭 8이 지나치게 크면, 단결정 실리콘 진동막(23)의 진동 특성을 바꿀 가능성이 있으므로, 상기 폭이 최소 필요한 폭인 것이 바람직하다. 버즈 비크에 의해 생긴 돌기의 폭 16은, 제2 절연층(10)의 두께에 비례하고, 상기 특정 두께에서 상기 피크에 도달하고 나서, 감소해가므로, 차단벽의 첫째 단과 둘째 단 사이의 폭 8은, 피크에서의 폭 16보다 작게 할 수 있다. 1050도의 웨트 산화로 형성하는 경우에는, 상기 폭 8은 10μm이하가 바람직하다.
도 7a, 도 7b, 도 8a 및 도 8b에서는, 차단벽(3)이 2단 계단형인 예를 설명했지만, 전술한 것처럼, 차단벽(3)이 2단이상을 포함하여도 된다. 단차가 보다 작으면, 제2 실리콘 기판(18)과의 접합 계면에 생긴 돌기의 높이와 폭은 보다 작아지고, 상기 접합이 만족스러워진다. 도 5b에 나타낸 것처럼, 경사면 형상을 제공하여서 열산화막의 형성량의 변화의 차이를 완만하게 한다면, 단차를 작게 한 것과 같은 효과를 얻을 수 있다. 차단벽(3)의 경사면의 곡률반경이 크면 클수록 더 바람직한데, 그 이유는 열산화막의 형성량의 변화의 차이를 보다 완만하게 할 수 있기 때문이다. 이 때, 도 7a, 도 7b, 도 8a 및 도 8b와 마찬가지로, 제2 절연층(10)을 형성해서 제2 실리콘 기판(18)을 접합한 후에, 단결정 실리콘 진동막(23)과 경사면이 접촉하지 않는 것이 바람직하다. 또한, 도 5g에 나타낸 상태에서 전압을 인가할 때에도 단결정 실리콘 진동막(23)과 경사면이 접촉하지 않는 것이 바람직하다.
다음에, 도 1d에 나타낸 것처럼, 제2 실리콘 기판(18)을 제1 실리콘 기판(1)의 차단벽(3)이 형성되어 있는 측에 접합한다. 제2 실리콘 기판(18)과 제1 실리콘 기판(1)상의 차단벽(3)은, 용융 접합에 의해 접합된다. 용융 접합은, 연마한 실리콘 기판이나 그 위에 SiO2막을 형성한 기판을 적층하고 열처리함으로써, 분자간 힘에 의해 행해진다. 대기중에 표면을 적층하면, Si-OH의 OH기들이 수소 결합을 형성한다. 이 상태에서 수 백도로 가열하면, OH기들로부터 H2O분자가 잘라내져 산소와 결합한다. 한층 더, 1000도이상에서는, 산소가 실리콘 웨이퍼중에 확산해서 Si원자간에 결합이 생긴다. 도 1d에서는, 제2 실리콘 기판(18)으로서 SOI기판을 사용하고 있다. SOI기판은, 실리콘 기판(19)(핸들층)과 표면 실리콘층(21)(활성층)의 사이에 산화 실리콘층(20)(BOX층)을 삽입한 구조의 기판이다.
다음에, 도 1e에 나타낸 것처럼, 제2 실리콘 기판(18)을 박화하고, 단결정 실리콘 진동막(23)을 형성한다. 단결정 실리콘 진동막의 두께가 수μm이하가 바람직하므로, 제2 실리콘 기판(18)은 에칭, 그라인딩, 또는 CMP(Chemical Mechanical Polishing)를 행하여서 박화된다. 그것은 백그라인딩 및 CMP에 의해, 2μm정도까지 박화될 수 있다. 도 1e에 나타낸 것처럼, 제2 실리콘 기판으로서 SOI기판을 사용하는 경우, SOI기판의 박화는, 핸들층(19) 및 BOX층(20)을 제거하는 것에 의해 행해진다. 상기 핸들층(19)은, 그라인딩, CMP 또는 에칭으로 제거될 수 있다. 상기 BOX층(20)은, 산화막의 에칭(드라이에칭이나 불산등의 웨트 에칭)에 의해 제거될 수 있다. 불산과 같은 웨트 에칭은, 실리콘이 에칭되는 것을 방지할 수 있으므로, 에칭에 의해 생긴 단결정 실리콘 진동막(23)의 두께 변동을 저감할 수 있기 때문에, 보다 바람직하다. SOI기판의 활성층(21)이 두께 변동이 작기 때문에, 단결정 실리콘 진동막(23)의 두께 변동을 저감할 수 있고, 진동막(23)의 용수철 정수 변동을 저감할 수 있고, 정전용량형 트랜스듀서의 특성 변동을 저감할 수 있다.
다음에, 정전용량형 트랜스듀서를 구동하면서 전압을 인가하고 신호를 추출하기 위해서 필요한 전극을 형성한다. 이 전극은, 단결정 실리콘 진동막(23)과 제1 실리콘 기판(1)과의 사이에 전압을 인가할 수 있으면 되고, 그 형성 위치와 구조는 특별히 한정되지 않는다. 단결정 실리콘 진동막(23)을 공통 전극으로서 사용하고, 제1 실리콘 기판(1)을 분할하고, 분할된 실리콘 기판(1)을 신호 추출 전극으로서 사용해도 된다. 또한, 제1 실리콘 기판(1)을 공통 전극으로서 사용하고, 단결정 실리콘 진동막(23)을 신호 추출 전극으로서 사용해도 된다.
도 1f 및 도 1g에 도시된 예는, 단결정 실리콘 진동막(23)을 신호 추출 전극으로서 사용하고, 제1 실리콘 기판(1)을 공통 전극으로서 사용하는 구성을 가지고, 신호 추출 전극의 배선과 전극 패드를 진동막(23)측에 형성하는 구성의 일례다. 도 1f에서, 제1 실리콘 기판(1)의 도통을 보장하기 위해서, 컨택트홀(25)을 형성한다. 도 1g에서, 전극(27), 배선 및 전극 패드(26)를 형성한다. 이것들의 공정은, 후술하는 예시 1에서 상세하게 설명된다.
다음에, 도 1g에 나타낸 것처럼, 셀을 가지는 정전용량형 트랜스듀서의 엘리먼트(101)와 나머지 부분과를 전기적으로 분리하기 위해서, 각 전기적 분리의 경계선(103)의 부분에서, 단결정 실리콘 진동막(23)을 제거한다. 단결정 실리콘 진동막(23)은, 드라이에칭, 웨트 에칭 등에 의해 제거될 수 있다. 이에 따라, 정전용량형 트랜스듀서의 엘리먼트(101)는, 셀(102)을 갖지 않는 부분과 전기적으로 분리된다. 각각의 제1 전극 패드(26)와 도 2에 나타낸 제2 전극 패드(104)와의 사이에 전압을 인가하는 것으로, 정전용량형 트랜스듀서의 엘리먼트(101)에 전압을 인가하여서, 정전용량형 트랜스듀서의 엘리먼트(101)를 구동할 수 있다.
본 실시예의 정전용량형 트랜스듀서의 제조 방법은, 제2 절연층(10)을 형성하기 전에 계단형의 차단벽(3)을 형성함으로써, 제2 절연층(10)을 형성했을 때에 생긴 버즈 비크(13)에 기인한 접합 계면의 돌기의 발생을 제어할 수 있다. 차단벽(3)은, 제1 실리콘 기판(1)측의 폭 4가 그 반대측의 폭 5보다도 큰 것을 특징으로 한다. 이에 따라, 제2 실리콘 기판을 접합하기 전에 돌기를 제거하는 공정이 불필요해지고, 틈 저면의 절연층의 평탄성의 변동을 저감할 수 있다. 이에 따라, 정전용량형 트랜스듀서의 엘리먼트와 셀의 절연파괴 강도의 변동을 저감하고, 엘리먼트의 균일성을 높여, 장치의 신뢰성을 향상할 수 있다.
다음에, 앞에서 언급한 비교 예를 설명한다. 이 비교 예의 제조 방법을, 도 2, 도 4a, 도 4b, 도 4c, 도 4d, 도 4e, 도 4f, 도 4g, 도 4h 및 도 4i를 참조하여 설명한다. 도 4a~도 4i는, 차단벽(3)의 제1 실리콘 기판(1)측의 폭 4와 다른측의 폭 5와 동일한 경우의 비교 예의 제조 방법이다. 도 4i는, 도 4d의 일부 확대도다. 비교 예의 도 4a에 나타낸 것처럼, 제1 실리콘 기판(1) 위에 제1 절연층(2)을 형성한다. 본 비교 예에서는, 웨트 산화에 의해 형성한다. 산화 온도는 1050도다. 제1 실리콘 기판(1)의 저항률은 0.01Ωcm이다. 제1 절연층(2)은, 열산화에 의해 형성한 산화 실리콘이며, 그 두께는 220nm이다. 열산화에 의해 형성하는 산화 실리콘은, 표면 거칠기가 대단히 작아서, 제1 실리콘 기판 위에 산화 실리콘을 형성하는 경우에도, 제1 실리콘 기판의 표면 거칠기의 증가를 방지할 수 있고, 여기서 표면 거칠기는, Rms=0.2nm이하다. 특히 용융 접합을 사용하여 접합하는 경우, 이 표면 거칠기가 클 경우, 예를 들면, Rms=5nm이상일 경우, 상기 접합이 어려워지고, 접합 불량이 생기기도 한다. 열산화에 의해 형성된 산화 실리콘의 경우, 표면 거칠기를 증대시키지 않으므로, 접합 불량이 발생하기 어려워서, 제조 수율을 향상할 수 있다.
다음에, 도 4b에 나타낸 것처럼, 차단벽(3)을 형성한다. 차단벽(3)은, 웨트 에칭이나 드라이 에칭에 의해 형성될 수 있다. 차단벽(3)의 높이는 제1 절연층(2)의 두께와 같은 220nm이다. 그 폭 4, 5는 11μm이다. 차단벽(3)의 배치 간격 9는, 39μm이며, 셀(102)이 4행 4열로 배치되도록 형성되어 있다. 다음에, 도 4c에 나타낸 것처럼, 제2 절연층(10)을 형성한다. 본 비교 예에서는, 제2 절연층을 웨트 산화로 형성한다. 산화 온도는 1050도다. 상기 절연층(10)은, 열산화에 의해 형성한 산화 실리콘이며, 그 두께(12)는 틈(24)의 저면(33)에 있어서 200nm이다. 제2 절연층(10)을 형성하면, 차단벽(3)의 끝에 버즈 비크(13)가 생긴다. 이 현상으로 인해, 제2 실리콘 기판(18)을 접합하는 계면에, 버즈 비크(13)에 의해 밀어 올려진 돌기(14)가 생긴다. 상기 돌기(14)의 높이는 12nm, 폭은 1μm이다. 도 4c와 같이 돌기(14)가 있는 상태에서, 도 4e에 나타낸 것처럼, 제2 실리콘 기판(18)과 용융 접합을 행하면 접합 불량이 생겨서, 다음 공정을 행할 수 없기 때문에, 도 4d에 나타낸 공정을 행한다.
도 4d의 공정에서는, 제2 실리콘 기판(18)을 접합하는 계면에 보인 돌기(14)를 제거한다. 상기 돌기(14)의 제거는, 드라이 에칭이나 웨트 에칭에 의해 제거될 수 있다. 본 비교 예에서는, 드라이 에칭에 의해 제거한다. 돌기(14)를 제거할 때, 포토마스크의 얼라인먼트 변위를 고려하고, 차단벽(3)의 각 배치 간격 9의 39μm에 대하여 39μm±3μm의 영역을 도넛 모양으로 제거한다. 제거량은 50nm이며, 제거 후에 셀 직경 28이 형성된다. 도 4i는 제거후의 구조의 확대도를 나타낸다. 도넛 모양으로 제거함으로써, 제거 후의 돌기(14)는 제거전의 위치로부터 50nm만큼 제1 실리콘 기판(1)측으로 낮추어진 위치에 있다. 상기 제거된 부분의 돌기의 크기와 폭은, 제거전의 돌기(14)의 크기 및 폭과 같다. 제거전의 차단벽(3)의 배치 간격 9의 39μm에 대하여, 제거 후는 상기 제거된 부분의 폭의 3μm분이 양단으로 넓어지기 때문에, 제2 실리콘 기판(18)을 접합하는 계면의 셀 직경 28은 약 45μm이 된다. 이 때문에, 제2 실리콘 기판(18)을 접합하는 계면은 평탄해진다. 또한, 포토마스크의 얼라인먼트 변위를 고려하기 때문에, 틈 저면의 제2 절연층(10)의 일부도 제거되어서, 폭 29의 고리 형상의 오목부(34)가 생긴다.
다음에, 도 4e에 나타낸 것처럼, 제2 실리콘 기판(18)을 용융 접합한다. 도 4e에서는, 제2 실리콘 기판(18)으로서 SOI기판을 사용한다. 다음에, 도 4f에 나타낸 것처럼, 제2 실리콘 기판(18)을 박화하고, 단결정 실리콘 진동막(23)을 형성한다. 틈(24)은, 정전용량형 트랜스듀서의 커패시터를 구성한다. 다음에, 도 4g에 나타낸 것처럼, 진동막(23)이 형성되어 있는 측으로부터 제1 실리콘 기판(1)의 도통을 보장하기 위해서, 컨택트홀(25)을 형성한다. 우선, 컨택트홀을 형성하는 부분의 진동막의 일부는, 드라이에칭, 웨트 에칭 등에 의해 제거된다. 다음에, 절연층을 드라이 에칭, 웨트 에칭 등에 의해 제거한다. 이에 따라, 제1 실리콘 기판(1)이 노출하고, 컨택트홀(25)을 형성할 수 있다. 본 비교 예에서는, 컨택트홀을 형성하는 진동막의 일부를, 드라이 에칭에 의해 제거하고, 절연층을 웨트 에칭에 의해 제거한다. 이에 따라, 제1 실리콘 기판(1)이 노출하여, 컨택트홀을 형성할 수 있다.
다음에, 도 4h 및 도 2에 나타낸 것처럼, 각각의 정전용량형 트랜스듀서의 엘리먼트(101)에 전압을 인가하기 위해서 필요한, 전극(27)과 제1 전극 패드(26)를 설치한다. 우선, 제1 실리콘 기판(1)과 단결정 실리콘 진동막(23)의 도전 특성을 향상하기 위해서, 도전성이 양호한 금속막을 제1 실리콘 기판(1)과 단결정 실리콘 진동막(23) 위에 형성한다. 상기 금속막은 Al, Cr, Ti, Au, Pt, Cu등의 금속을 사용하여도 된다. 전극(27)이 되는 금속막은 원하는 두께를 갖고, 진동막의 진동을 방해하지 않은 정도의 두께를 갖는 것이 바람직하다. 또한, 전극(27)과 제2 전극 패드(104)를 연결시키는 부분은, 원하는 배선 저항을 나타내는 두께를 갖는 것이 바람직하다. 제1 전극 패드(26)와 제2 전극 패드(104)가 되는 금속막은, 반드시 도통될 수 있는 정도의 두께를 갖는 것이 바람직하다. 이것들의 금속막의 두께는, 일단의 성막과 에칭으로 형성되어서 같은 두께로서 형성되어도 되거나, 다른 두께를 갖도록 여러 번의 성막과 에칭으로 형성되어도 된다. 금속막의 성막 후, 전극(27), 제1 전극 패드(26) 및 제2 전극 패드(104)를 패터닝 해서 형성한다. 전극 패드와 배선을 설치하는 위치는, 원하는 위치에 설치하면 좋다. 본 비교 예에서는, Al을 200nm로 성막하고, 전극(27), 배선, 제1 전극 패드(26) 및 제2 전극 패드(104)를 패터닝 해서 형성한다. 다음에, Al을 설치한 장소이외의 부분에 단결정 실리콘 진동막(23)을 드라이 에칭에 의해 제거한다. 이에 따라, 정전용량형 트랜스듀서의 엘리먼트(101)는, 셀을 갖지 않는 주위로부터, 전기적 분리의 경계선(103)에서 전기적으로 분리된다. 각각의 제1 전극 패드(26)와 제2 전극 패드(104)의 사이에 전압을 인가함으로써, 정전용량형 트랜스듀서의 엘리먼트(101)에 전압을 인가할 수 있다.
도 4i를 참조하여, 본 비교 예에서 제작한 정전용량형 트랜스듀서 어레이의 셀(102)의 절연파괴 전압을 설명한다. 도 4d에서, 돌기(14)를 제거한 것으로, 틈 저면의 제2 절연층(10)의 두께가 달라지고, 틈 저면의 평탄성이 더 나빠진다. 본 비교 예의 경우, 틈 저면의 제2 절연층(10)의 두께 12의 200nm에 대하여, 돌기를 제거해서 생긴 오목부(34)의 하부의 제2 절연층(10)의 두께는, 150nm이하가 된다. 절연파괴 전압의 변동은, 160V~120V가 되고, 여기서 변동은 25%가 된다. 오목부(34)의 하부의 제2 절연층(10)의 두께가 한층 더 얇아진 경우에는, 절연파괴 전압의 변동은 보다 커진다. 본 발명은, 제1 기판의 측의 폭이 그 반대측의 폭보다도 커지도록 차단벽을 형성하여서 도 4d의 공정과 같은 공정을 불필요하게 함으로써 절연파괴 전압의 변동을 억제한다.
이하, 본 발명의 보다 구체적인 예시들을 설명한다.
(예시1) (계단형의 차단벽을 설치했을 경우의 예시)
예시 1의 정전용량형 트랜스듀서의 제조 방법을 도 1a~도 1g, 도 2 및 도 3을 참조하여 설명한다. 본 예시는, 상기 실시예에 거의 대응한다.
본 예시에서도, 도 1a에 나타낸 것처럼, 제1 실리콘 기판(1) 위에 제1 절연층(2)을 형성한다. 그것의 형성은, 비교 예의 도 4a와 같이 행해질 수 있다. 다음에, 도 1b에 나타낸 것처럼, 차단벽(3)을 형성한다. 차단벽(3)은, 웨트 에칭이나 드라이 에칭에 의해 형성될 수 있다. 차단벽(3)의 제1 실리콘 기판(1)측의 폭 4는 17μm이며, 차단벽(3)의 첫째 단의 높이 6은 175nm이다. 타측의 폭 5는 5μm이며, 차단벽(3)의 둘째 단의 높이 7은 45nm이다. 또한, 차단벽(3)의 첫째 단과 둘째 단간의 폭 8은, 3μm이다. 차단벽(3)의 배치 간격 9는 33μm이며, 셀이 4행 4열로 배치되도록 형성된다.
다음에, 도 1c 및 도 3에 나타낸 것처럼, 제2 절연층(10)을 형성한다. 본 예시에서도 제2 절연층(10)을 웨트 산화로 형성한다. 산화 온도는 1050도다. 제2 절연층(10)은, 열산화에 의해 형성된 산화 실리콘이며, 그 두께 12는 틈(24)의 저면(33)에서 200nm이다. 제2 절연층(10)을 형성하면, 차단벽(3)의 끝에 상기 버즈 비크(13)가 생긴다. 이 현상으로 인해, 제2 실리콘 기판(18)을 접합하는 계면에, 버즈 비크(13)에 의해 밀어 올려진 제1 돌기(14)와 제2 돌기(15)가 생긴다. 제1 돌기(14)의 높이는 10nm이고, 폭 16은 1μm이다. 또한, 제2 돌기(15)의 높이는 2nm이고, 폭 17은 1μm이다.
다음에, 도 1d에 나타낸 것처럼, 제2 실리콘 기판(18)을 용융 접합한다. 도 1d에서는, 제2 실리콘 기판(18)으로서 상기와 같은 SOI기판을 사용하고 있다. 도 1c의 공정에서 생긴 제2 돌기(15)의 높이가 2nm이어서, 표면 거칠기Rms가 Rms <5nm이기 때문에, 비교 예의 도 4d의 공정을 실시하지 않아도 용융 접합을 행할 수 있다. 다음에, 도 1e에 나타낸 것처럼, 제2 실리콘 기판(18)을 박화하여, 단결정 실리콘 진동막(23)을 형성한다. 그 단결정 실리콘 진동막의 형성은, 비교 예의 도 4f와 같이 할 수 있다.
다음에, 도 1f에 나타낸 것처럼, 진동막(23)이 형성되어 있는 측으로부터 제1 실리콘 기판(1)의 도통을 보장하기 위해서, 컨택트홀(25)을 형성한다. 그 컨택트홀의 형성은, 비교 예의 도 4g와 같이 할 수 있다. 다음에, 도 1g 및 도 2에 나타낸 것처럼, 각각의 정전용량형 트랜스듀서의 엘리먼트(101)에 전압을 인가하기 위해서 필요한, 전극(27)과 제1 전극 패드(26)를 설치한다. 이 전극과 제1 전극 패드의 형성은, 비교 예의 도 4h와 같이 할 수 있다.
도 3을 참조하여, 본 예시에서 제작한 정전용량형 트랜스듀서 어레이의 셀의 절연파괴 전압을 설명한다. 비교 예와 비교하면, 도 4d의 공정을 실시하지 않기 때문에, 틈 저면(33)의 제2 절연층(10)의 두께 12가 거의 균등해서, 틈 저면(33)의 평탄성이 향상된다. 본 예시의 경우, 틈 저면(33)의 제2 절연층(10)의 두께 12는, 200nm에서 거의 균일하다. 절연파괴 전압은, 160V가 된다.
상술한 것처럼, 차단벽(3)의 제1 실리콘 기판(1)측의 폭 4를, 다른 쪽의 폭 5보다도 크게 함으로써, 제2 절연층(10)을 형성한 후에 생긴 접합 계면의 돌기를 저감할 수 있다. 또한, 접합 계면의 돌기를 제거하지 않고 제2 실리콘 기판(18)과 접합할 수 있고, 엘리먼트(101)를 제작할 수 있기 때문에, 틈 저면의 절연층(10)의 평탄성을 향상할 수 있다. 이로 인해, 정전용량형 트랜스듀서의 엘리먼트내의 셀간 및 엘리먼트간의 절연파괴 강도의 변동을 저감하고, 상기 장치의 균일성을 높이고, 신뢰성을 향상할 수 있다.
(예시2) (경사형의 차단벽을 설치했을 경우의 예시)
예시 2의 정전용량형 트랜스듀서의 제조 방법을 도 5a~도 5g, 도 2 및 도 6을 참조하여 설명한다. 본 예시의 제조 방법은, 예시 1과 거의 같다. 도 5a~도 5g는, 본 예시의 제조 방법을 설명하기 위한 단면도이며, 도 2는, 본 예시의 정전용량형 트랜스듀서의 평면도다. 도 2의 1G-1G 단면도가, 도 5g이다. 도 6은 도 5c의 일부 확대도다. 예시 2에서는, 경사형의 차단벽(3)을 형성한다.
본 예시에서도, 도 5a에 나타낸 것처럼, 제1 실리콘 기판(1) 위에 절연층(2)을 형성한다. 그 절연층의 형성은, 예시 1의 도 1a와 같이 할 수 있다. 다음에, 도 5b에 나타낸 것처럼, 차단벽(3)을 형성한다. 차단벽(3)은, 웨트 에칭이나 드라이 에칭에 의해 형성될 수 있다. 본 예시의 경우, 그라이데이션(gradation) 마스크를 사용해서 노광을 행하고, 드라이 에칭을 행함으로써, 도 5b에 나타나 있는 바와 같은 차단벽(3)을 형성할 수 있다. 차단벽(3)의 제1 실리콘 기판(1)측의 폭 4는 17μm이며, 다른 쪽의 폭 5는 5μm이다. 차단벽(3)의 높이는 220nm이다. 차단벽(3)의 배치 간격 9는 38μm이며, 셀이 4행 4열이 배치되도록 형성된다.
다음에, 도 5c에 나타낸 것처럼, 제2 절연층(10)을 형성한다. 본 예시에서도 그 제2 절연층을 웨트 산화로 형성한다. 산화 온도는 1050도다. 제2 절연층(10)은, 열산화에 의해 형성된 산화 실리콘이며, 그 두께 12는 틈(24)의 저면에서 200nm이다. 제2 절연층(10)을 형성하면, 차단벽(3)의 끝에 버즈 비크(13)가 생긴다. 본 예시의 경우, 차단벽(3)의 벽면을 완만하게 경사진 면으로서 형성하므로, 국소적인 돌기(14)는 생기지 않는다. 버즈 비크(13)에 의해 밀어 올려진 제1 절연층(2)은, 차단벽(3)의 경사면이 밀어 올려지는 것으로 인해, 도 6에 나타나 있는 바와 같은 형상이 된다. 제2 실리콘 기판(18)과의 접합 계면의 표면 거칠기Rms는 1nm가 되고, 버즈 비크에서 약간 밀어 올려진 부분의 폭 30은 1μm가 되고, 비교 예의 도 4d의 공정을 실시하지 않아도 용융 접합을 행할 수 있다.
다음에, 도 5d에 나타낸 것처럼, 제2 실리콘 기판(18)을 용융 접합한다. 도 5d에서도, 제2 실리콘 기판(18)으로서 SOI기판을 사용하고 있다. 다음에, 도 5e에 나타낸 것처럼, 제2 실리콘 기판(18)을 박화하고, 단결정 실리콘 진동막(23)을 형성한다. 그 단결정 실리콘 진동막의 형성은, 예시 1의 도 1e와 같이 할 수 있다. 다음에, 도 5f에 나타낸 것처럼, 진동막(23)이 형성되어 있는 측으로부터 제1 실리콘 기판(1)의 도통을 보장하기 위해서, 컨택트홀(25)을 형성한다. 이 컨택트홀의 형성은, 예시 1의 도 1f와 같이 할 수 있다. 다음에, 도 5g 및 도 2에 나타낸 것처럼, 각각의 정전용량형 트랜스듀서의 엘리먼트(101)에 전압을 인가하기 위해서 필요한, 전극(27)과 제1 전극 패드(26)를 설치한다. 이 전극과 제1 전극 패드의 형성은, 예시 1의 도 1g와 같이 할 수 있다.
도 6을 참조하여, 본 예시에서 제작한 정전용량형 트랜스듀서 어레이의 셀(102)의 절연파괴 전압을 설명한다. 비교 예와 비교하면, 도 4d의 공정을 실시하지 않기 때문에, 틈 저면(33)의 제2 절연층(10)의 두께 12가 거의 균등해서, 틈 저면의 평탄성이 향상하고 있다. 본 예시의 경우, 틈 저면의 제2 절연층의 두께 12는, 200nm에서 거의 균등하다. 절연파괴 전압은, 160V가 된다. 본 예시에서도, 예시 1과 같은 효과를 달성할 수 있다.
본 발명을 예시적 실시예들을 참조하여 기재하였지만, 본 발명은 상기 개시된 예시적 실시예들에 한정되지 않는다는 것을 알 것이다. 아래의 청구항의 범위는, 모든 변형, 동등한 구조 및 기능을 포함하도록 아주 넓게 해석해야 한다.

Claims (7)

  1. 제1 기판 위에 제1 절연층을 형성하고, 상기 제1 절연층의 일부를 상기 제1 기판까지 제거해서 차단벽(barrier wall)을 형성하는 공정;
    상기 제1 절연층의 일부가 제거된 후 상기 제1 기판의 영역 위에 제2 절연층을 형성하는 공정;
    제2 기판을 상기 차단벽 위에 접합해서 틈(gap)을 형성하는 공정; 및
    상기 제2 기판으로부터, 상기 틈을 거쳐서 상기 제2 절연층과 대향하는 진동막을 형성하는 공정을 포함하고,
    상기 차단벽을 형성하는 공정에서는, 상기 제1 기판에 수직한 방향에 있어서 상기 차단벽의 틈측의 높이가 중앙부의 높이보다도 낮아지도록 상기 차단벽을 형성하는, 전기기계 변환장치의 제조 방법.
  2. 제 1 항에 있어서,
    상기 제1 기판은 실리콘 기판인, 전기기계 변환장치의 제조 방법.
  3. 제 1 항 또는 제 2 항에 있어서,
    상기 제2 기판은 실리콘 기판인, 전기기계 변환장치의 제조 방법.
  4. 제 1 항 또는 제 2 항에 있어서,
    상기 제2 절연층은 산화막인, 전기기계 변환장치의 제조 방법.
  5. 제 1 항 또는 제 2 항에 있어서,
    상기 진동막은 상기 제2 기판을 박화해서 형성하는, 전기기계 변환장치의 제조 방법.
  6. 제 1 항 또는 제 2 항에 있어서,
    상기 차단벽의 벽면은, 적어도 1단계를 포함하는 계단형, 또는 경사형인, 전기기계 변환장치의 제조 방법.
  7. 제 1 항 또는 제 2 항에 있어서,
    상기 차단벽을 형성하는 공정에서는, 상기 제2 절연층을 형성하는 공정 후에 상기 차단벽의 틈측의 높이가 중앙부의 높이보다 높아지지 않도록, 상기 차단벽을 형성하는, 전기기계 변환장치의 제조 방법.
KR1020120099744A 2011-09-20 2012-09-10 전기기계 변환장치의 제조 방법 KR101473709B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011204970A JP5896665B2 (ja) 2011-09-20 2011-09-20 電気機械変換装置の製造方法
JPJP-P-2011-204970 2011-09-20

Publications (2)

Publication Number Publication Date
KR20130031206A true KR20130031206A (ko) 2013-03-28
KR101473709B1 KR101473709B1 (ko) 2014-12-17

Family

ID=47022442

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120099744A KR101473709B1 (ko) 2011-09-20 2012-09-10 전기기계 변환장치의 제조 방법

Country Status (5)

Country Link
US (1) US8518733B2 (ko)
EP (1) EP2572804A3 (ko)
JP (1) JP5896665B2 (ko)
KR (1) KR101473709B1 (ko)
CN (1) CN103011054B (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220098075A (ko) 2021-01-02 2022-07-11 김동호 참여용 골인보드

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5511260B2 (ja) * 2009-08-19 2014-06-04 キヤノン株式会社 容量型電気機械変換装置、及びその感度調整方法
JP5479390B2 (ja) * 2011-03-07 2014-04-23 信越半導体株式会社 シリコンウェーハの製造方法
JP6381195B2 (ja) 2013-10-22 2018-08-29 キヤノン株式会社 静電容量型トランスデューサ及びその作製方法
US10581344B2 (en) * 2015-01-16 2020-03-03 Chambre De Commerce Et D'industrie De Region Paris Ile De France Miniature kinetic energy harvester for generating electrical energy from mechanical vibrations
CN105036058B (zh) * 2015-05-27 2016-10-05 华南理工大学 集成化电容式微加工超声换能器及其制备方法
JP6606034B2 (ja) * 2016-08-24 2019-11-13 株式会社日立製作所 容量検出型超音波トランスデューサおよびそれを備えた超音波撮像装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0462875A (ja) * 1990-06-25 1992-02-27 Seiko Instr Inc 半導体装置
AU5215099A (en) * 1998-07-07 2000-01-24 Goodyear Tire And Rubber Company, The Method of fabricating silicon capacitive sensor
US6958255B2 (en) 2002-08-08 2005-10-25 The Board Of Trustees Of The Leland Stanford Junior University Micromachined ultrasonic transducers and method of fabrication
WO2005120130A1 (ja) 2004-06-03 2005-12-15 Olympus Corporation 静電容量型超音波振動子とその製造方法、静電容量型超音波プローブ
US7037746B1 (en) * 2004-12-27 2006-05-02 General Electric Company Capacitive micromachined ultrasound transducer fabricated with epitaxial silicon membrane
CN101238754A (zh) * 2005-10-18 2008-08-06 株式会社日立制作所 超声波换能器、超声波探头以及超声波摄像装置
TWI268183B (en) * 2005-10-28 2006-12-11 Ind Tech Res Inst Capacitive ultrasonic transducer and method of fabricating the same
US7745248B2 (en) * 2007-10-18 2010-06-29 The Board Of Trustees Of The Leland Stanford Junior University Fabrication of capacitive micromachined ultrasonic transducers by local oxidation
KR100977826B1 (ko) 2007-11-27 2010-08-27 한국전자통신연구원 멤스 마이크로폰 및 그 제조 방법
JP2010004199A (ja) * 2008-06-19 2010-01-07 Hitachi Ltd 超音波トランスデューサおよびその製造方法
JP5350092B2 (ja) * 2008-06-24 2013-11-27 キヤノン株式会社 機械電気変換素子及び機械電気変換装置の製造方法
JP5594986B2 (ja) 2008-06-24 2014-09-24 キヤノン株式会社 機械電気変換素子及び機械電気変換装置の製造方法
US20100173437A1 (en) * 2008-10-21 2010-07-08 Wygant Ira O Method of fabricating CMUTs that generate low-frequency and high-intensity ultrasound
KR101150186B1 (ko) 2009-12-04 2012-05-25 주식회사 비에스이 멤스 마이크로폰 및 그 제조방법
JP5550363B2 (ja) * 2010-01-26 2014-07-16 キヤノン株式会社 静電容量型電気機械変換装置
JP2013518530A (ja) * 2010-01-29 2013-05-20 リサーチ・トライアングル・インスティチュート 圧電型超音波変換子を形成するための方法、および関連する装置
JP5677016B2 (ja) * 2010-10-15 2015-02-25 キヤノン株式会社 電気機械変換装置及びその作製方法
JP5921079B2 (ja) * 2011-04-06 2016-05-24 キヤノン株式会社 電気機械変換装置及びその作製方法
JP5812660B2 (ja) 2011-04-19 2015-11-17 キヤノン株式会社 電気機械変換装置及びその製造方法
JP5751026B2 (ja) * 2011-05-31 2015-07-22 セイコーエプソン株式会社 超音波トランスデューサー、生体センサー、及び超音波トランスデューサーの製造方法
KR101761819B1 (ko) * 2011-08-24 2017-07-26 삼성전자주식회사 초음파 변환기 및 그 제조 방법
JP2013051459A (ja) * 2011-08-30 2013-03-14 Canon Inc 電気機械変換装置及びその製造方法
JP5834657B2 (ja) * 2011-09-12 2015-12-24 セイコーエプソン株式会社 超音波プローブおよび超音波画像診断装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220098075A (ko) 2021-01-02 2022-07-11 김동호 참여용 골인보드

Also Published As

Publication number Publication date
EP2572804A2 (en) 2013-03-27
JP5896665B2 (ja) 2016-03-30
EP2572804A3 (en) 2017-12-27
CN103011054B (zh) 2015-10-14
US8518733B2 (en) 2013-08-27
CN103011054A (zh) 2013-04-03
US20130071964A1 (en) 2013-03-21
JP2013070112A (ja) 2013-04-18
KR101473709B1 (ko) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5677016B2 (ja) 電気機械変換装置及びその作製方法
JP5702966B2 (ja) 電気機械変換装置及びその作製方法
KR20130031206A (ko) 전기기계 변환장치의 제조 방법
US8875583B2 (en) Electromechanical transducer and method of manufacturing the same
JP5875243B2 (ja) 電気機械変換装置及びその作製方法
US8371018B2 (en) Electromechanical transducer and manufacturing method therefor
JP5408937B2 (ja) 電気機械変換素子及びその製造方法
JP6478902B2 (ja) 貫通配線基板の製造方法、及び電子デバイスの製造方法
KR20120114167A (ko) 전기기계 변환장치 및 그 제조방법
JP5791294B2 (ja) 静電容量型電気機械変換装置
JP5812625B2 (ja) 静電容量型電気機械変換装置の製造方法
JP2017112187A (ja) 貫通配線を有する基板に素子を設けたデバイス及びその製造方法
US20150235899A1 (en) Method of forming through wiring
JP2015115425A (ja) 貫通電極を備える構造体の製造方法
KR20110029809A (ko) 초음파 트랜스듀서 및 그 제조 방법
JP6309034B2 (ja) 電気機械変換装置及びその作製方法
JP6184534B2 (ja) 電気機械変換装置及びその作製方法
JP2011259186A (ja) 静電容量型電気機械変換装置及びその製造方法

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171124

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20181126

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20191202

Year of fee payment: 6