KR20130021227A - 윤활성 향상제 - Google Patents

윤활성 향상제 Download PDF

Info

Publication number
KR20130021227A
KR20130021227A KR1020110083620A KR20110083620A KR20130021227A KR 20130021227 A KR20130021227 A KR 20130021227A KR 1020110083620 A KR1020110083620 A KR 1020110083620A KR 20110083620 A KR20110083620 A KR 20110083620A KR 20130021227 A KR20130021227 A KR 20130021227A
Authority
KR
South Korea
Prior art keywords
fatty acid
acid methyl
formula
oil
methyl ester
Prior art date
Application number
KR1020110083620A
Other languages
English (en)
Other versions
KR101265478B1 (ko
Inventor
임영관
이정민
정충섭
김종렬
임의순
Original Assignee
한국석유관리원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국석유관리원 filed Critical 한국석유관리원
Priority to KR1020110083620A priority Critical patent/KR101265478B1/ko
Priority to US13/548,501 priority patent/US8835663B2/en
Publication of KR20130021227A publication Critical patent/KR20130021227A/ko
Application granted granted Critical
Publication of KR101265478B1 publication Critical patent/KR101265478B1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M105/00Lubricating compositions characterised by the base-material being a non-macromolecular organic compound
    • C10M105/08Lubricating compositions characterised by the base-material being a non-macromolecular organic compound containing oxygen
    • C10M105/32Esters
    • C10M105/34Esters of monocarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/03Preparation of carboxylic acid esters by reacting an ester group with a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M129/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen
    • C10M129/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing oxygen having a carbon chain of less than 30 atoms
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/026Specifically adapted fuels for internal combustion engines for diesel engines, e.g. automobiles, stationary, marine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2207/00Organic non-macromolecular hydrocarbon compounds containing hydrogen, carbon and oxygen as ingredients in lubricant compositions
    • C10M2207/04Ethers; Acetals; Ortho-esters; Ortho-carbonates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/06Oiliness; Film-strength; Anti-wear; Resistance to extreme pressure
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/64Environmental friendly compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)

Abstract

본 발명은 윤활성 및 산화방지에 의한 저장안정성을 향상시키기 위한 윤활성 향상제 조성물에 관한 것으로, 더욱 상세하게는 연료의 윤활성향상제로서 사용되고 있는 바이오디젤, 즉 기존 지방산 메틸에스테르(fatty acid methyl ester, FAME)의 이중결합(double bond, Olefin)을 디메톡시 그룹(dimethoxy group)으로 전환시킴으로서 하기 화학식 a로 표시되는 1,2-다이메톡시에틸렌 구조 단위를 적어도 하나 이상 포함하는 포화 지방산메틸에스테르 유도체를 포함하는 것을 특징으로 한다.
[화학식 a]

Description

윤활성 향상제{Components of Lubricity Improver}
본 발명은 윤활성 및 산화방지에 의한 저장안정성을 향상시키기 위한 윤활성 향상제에 관한 것으로, 더욱 상세하게는 연료의 윤활성향상제로서 사용되고 있는 바이오디젤, 즉 기존 지방산 메틸에스테르(fatty acid methyl ester, FAME)의 이중결합(double bond, Olefin)을 디메톡시 그룹(dimethoxy group)으로 전환시킴으로서 1,2-다이메톡시에틸렌 구조 단위를 적어도 하나 이상 포함하는 포화 지방산메틸에스테르 유도체를 포함하는 것을 특징으로 한다.
윤활성은 기계적 메커니즘에 의한 힘의 전달 또는 방향을 전환할 때 상대적으로 움직이는 두 면에서 필연적으로 발생되는 마찰을 감소시키는 힘을 일컫는다. 이러한 윤활성을 증가시키기 위해 기계적 메커니즘이 발생되는 대부분의 장비에는 윤활성 향상제를 사용함으로서 기계의 수명을 연장시킴으로서 생산 활동을 증가시킬 수 있다. 또한 기계뿐만 아니라 고압착화방식인 디젤엔진에서는 연료의 윤활성이 요구되므로 디젤엔진용 연료의 윤활성을 확보하기 위해 연료 내에 윤활성 향상제를 일정비율로 혼합하여 유통시키고 있다.
윤활성향상제는 크게 무기화합물계와 금속계 및 유기화합물계로 구분될 수 있으며, 유기화합물계는 고분자형태, 광유로부터 기인된 합성윤활유 등이 있으며, 최근 친환경적 윤활유 사용을 위해 식물성 윤활유에 대한 이용이 증가되어지고 있다. 식물성 윤활유 중 동식물의 유지로부터 얻어진 지방산메틸에스테르는 윤활성이 뛰어난 물질로 알려져 있다.
USP 4,609,376호는, 알칸올 연료의 윤활성 향상 첨가제로서, 1가 또는 다가 카르복실산과 다가 알코올의 에스테르(다만, 적어도 2 개의 자유 히드록시기를 갖는다)를 개시하고 있다.
EP 0635,558호 및 EP 0605,857호는, 디젤 연료의 윤활성 향상 첨가제로서, 유채씨(rapseed), 아마씨(lineseed), 콩(soya), 카놀라유(canola oil), 해바라기씨(sunflower) 기름과 같은, 식물성 기름 또는 식물성 기름의 에스테르를 개시하고 있다.
대한민국 공개특허 10-2005-0052460호는, 저온특성이 향상된 윤활성 향상 첨가제로서, 상이한 쇄 길이의 지방산의 특이적 분포 및 특이적인 양의 포화지방산 및 불포화지방산을 갖는 지방산 조성물을 개시하고 있다.
대한민국 공개특허 10-1999-0043777호는, 윤활성 향상 첨가제로서, 정제된 지방산, 지방산과 알코올 화합물을 반응시킨 에스테르 화합물, 또는 이들의 혼합물을 개시하고 있다.
그러나, 포화지방산메틸에스테르는 대부분 실온에서 고체 상태로 유지되는 반면, 올레핀(이중결합)이 포함되어져 있는 불포화지방산 메틸에스테르는 액체 상태로 유지되어져 있으며, 포화지방산메틸에스테르에 비해 불포화지방산메틸에스테르의 윤활성이 우수한 것으로 나타나고 있다. 하지만 불포화지방산메틸에스테르는 장기 저장하였을 경우 분자내 올레핀이 쉽게 산화되어 에폭시 그룹, 모노올, 디올 화합물로 전환되면서 물성변화와 산가를 증가시킨다. 결국 이러한 지방산 메틸에스테르는 저장안정성이 열악하며, 산화될 경우 불포화지방산메틸에스테르의 산가가 증가하기 때문에 금속류를 부식시킬 수 있다는 단점을 지니고 있다.
윤활성향상제의 산화에 의한 금속류의 부식은 기계적 마찰·마모를 가속화시켜 기계의 상태를 열악하게 만들 수 있다.
즉, 윤활성향상제는 연료 내에 혼합시켰을 경우 균일한 액체상태를 유지하여야 하며, 산화안정성이 우수하여 저장안정성이 좋아야 하며, 윤활성이 우수해 두 접촉면의 마찰·마모를 저감시켜야 한다.
기존 지방산메틸에스테르 형태의 윤활성향상제는 많이 보고된 바가 있지만, 지방산메틸에스테르내의 올레핀을 다른 작용기로 치환시킴으로서 윤활성 증가와 산화방지에 의한 저장안정성 증가에 대한 연구는 전무한 상태이다.
따라서 기존 지방산메틸에스테르 형태의 윤활성향상제의 단점을 보완하면서 보다 효과적인 윤활성향상을 위해 새로운 형태의 윤활성 향상제 개발이 필요하게 된 것이다.
미국특허 제4,609,376호 (1986.09.02) 유럽특허 제0635,558호 B1 (1998.11.25) 유럽특허 제0605,857호 B1 (1996.11.13) 대한민국 공개특허 제10-2005-0052460호 (2005.06.02) 대한민국 공개특허 제10-1999-0043777호 (1997.11.29)
따라서 본 발명자들은 상기와 같은 문제점을 해소하기 위하여 연료의 윤활성향상제로서 사용되고 있는 바이오디젤, 즉 기존 지방산메틸에스테르의 이중결합(double bond, Olefin)을 다이메톡시 그룹(dimethoxy group)으로 전환시킴으로서 얻어지는 1,2-다이메톡시에틸렌 구조 단위를 적어도 하나 이상 포함하는 포화 지방산메틸에스테르 유도체를 윤활성 향상제로 사용하는 경우 윤활성을 향상될 뿐만 아니라 산화안정성이 우수하여 저장안정성을 향상시키는 것을 발견하고 본 발명을 완성하였다.
따라서, 본 발명의 목적은 윤활성 및 산화방지에 의한 저장안정성을 향상시키기 위한 윤활성 향상제를 제공하는 것이다.
또한, 본 발명의 목적은 1,2-다이메톡시에틸렌 구조 단위를 적어도 하나 이상 포함하는 포화 지방산메틸에스테르 유도체를 포함하는 윤활성 향상제를 제공하는 것이다.
또한, 본 발명의 다른 목적은 기존 기계장치의 마찰·마모를 줄이기 위한 윤활유와 경유연료의 윤활성첨가제, 또한 유한한 석유자원을 대체할 수 있는 신재생 연료 중 윤활성이 나뿐 연료(DME, GTL, CTL 등)를 기존 디젤기관에 이용했을 시 마찰·마모을 줄임으로서 자동차의 안전성과 성능을 유지하며, 또한 기계 및 장치의 수명연장을 시킴으로서 생산활동을 증가시킬 수 있는 윤활성 향상제를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 동식물자원으로부터 얻은 바이오디젤을 이용한 친환경적인 윤활성 향상제를 제공하는 것이다.
본 발명은 윤활성 및 산화방지에 의한 저장안정성을 향상시키기 위한 윤활성 향상제에 관한 것으로, 더욱 상세하게는 연료의 윤활성향상제로서 사용되고 있는 바이오디젤, 즉 기존 지방산 메틸에스테르(fatty acid methyl ester, FAME)의 이중결합(double bond, Olefin)을 다이메톡시 그룹(dimethoxy group)으로 전환시킴으로서 하기 화학식 a로 표시되는 1,2-다이메톡시에틸렌 구조 단위를 적어도 하나 이상 포함하는 포화 지방산메틸에스테르 유도체를 포함하는 것을 특징으로 한다.
[화학식 a]
Figure pat00001
바이오디젤은 지방산 메틸에스테르(fatty acid methyl ester, FAME)로, 말단부분에 메틸에스테르(Methyl Ester) 작용기를 지니고 있어 두 움직이는 면에 부착력을 증가시키며, 이중결합 역시 극성작용을 띄어 부착력의 증가에 영향을 줌으로서 윤활향상효과가 뛰어난 것으로 알려져 있다. 그러나, 바이오디젤은 기존 석유디젤에 비해 분자 내 이중결합(double bond, olefin)을 지니고 있어 공기에 노출되어 장기 보관될 경우, 에폭사이드(epoxide), 알코올 화합물(monol, diol compound)로 쉽게 산화되며, 산화된 지방산 메틸에스테르는 연료적 특성이 변화되며, 높은 산가를 지니고 있어 금속을 부식시킬 수 있는 단점을 지니고 있다.
본 발명의 윤활성 향상제는 연료의 윤활성향상제로서 사용되고 있는 바이오디젤, 즉 기존 지방산메틸에스테르의 이중결합(double bond, Olefin)을 다이메톡시 그룹(dimethoxy group)으로 전환시킴으로서 얻어지는 1,2-다이메톡시에틸렌 구조 단위를 적어도 하나 이상 포함하는 포화 지방산메틸에스테르 유도체로, 윤활성을 향상시킬 뿐만 아니라 우수한 산화안정성으로 인해 저장안정성을 향상시킨다. 또한, 본 발명의 윤활성 향상제와 함께 기존 기계장치의 마찰·마모를 줄이기 위한 윤활유와 경유연료의 윤활성첨가제, 및 유한한 석유자원을 대체할 수 있는 신재생 연료 중 윤활성이 좋지 않은 연료(DME, GTL, CTL 등)를 기존 디젤기관에 이용했을 시 마찰·마모을 줄임으로서 자동차의 안전성과 성능을 유지하며, 또한 기계 및 장치의 수명연장을 시킴으로서 생산 활동을 증가시킬 수 있다. 또한, 본 발명의 윤활성 향상제는 동식물자원으로부터 얻은 바이오디젤을 이용하기 때문에 환경친화적이다.
본 발명에 따른 윤활성 향상제는 하기 화학식 1로 표시되는 메톡시화 지방산 메틸에스테르 유도체를 포함한다.
[화학식 1]
Figure pat00002
[상기 화학식 1에서, R1 및 R2는 각각 수소 또는
Figure pat00003
이고; a, e, f 및 j는 각각 1 내지 10의 정수이고, b, c, d, g, h 및 i는 각각 0 내지 5의 정수이나, 단 b+c+d 및 g+h+i는 각각 1 이상의 정수이다.]
상기 화학식 1의 메톡시화 지방산 메틸에스테르 유도체는 1) 하나 이상의 이중결합을 포함하는 하기 화학식 2의 바이오디젤을 하이드록실화시켜 화학식 3의 하이드록시화 지방산 메틸에스테르 유도체를 제조하는 단계; 및 2) 화학식 3의 하이드록시화 지방산 메틸에스테르 유도체를 염기 존재 하에서 할로메탄과 반응시켜 화학식 1의 메톡시화 지방산 메틸에스테르 유도체를 제조하는 단계로 제조된다.
[화학식 2]
Figure pat00004
[화학식 3]
Figure pat00005
[상기 화학식 2 및 3에서, R1, R2, a, b, c, d 및 e는 상기 화학식 1에서의 정의와 동일하다.]
상기 1) 단계에서 하이드록실화는 OsO4 촉매 및 4-메틸모포린 N-옥사이드 또는 t-부틸 하이드로퍼옥사이드의 존재 하에서 이루어지며, 상기 2) 단계에서 염기는 NaH, KH, KOt-Bu, NaOBu 및 NaNH2에서 선택되어진다.
또한, 상기 화학식 2의 바이오디젤은 지, 돈지, 계지, 어유, 대두유, 올리브유, 유채유, 팜유, 들기름, 참기름, 해바라기유, 포도씨유, 고추씨기름, 자트로파, 면실유 및 폐식용유로부터 선택되는 동·식물성 유지와 알코올을 반응시켜 에스테르화시킴으로써 합성될 수 있다. 상기 바이오디젤의 합성 방법은 공지의 기술로서 구체적인 내용에 대해서는 생략하도록 한다.
또한, 본 발명에 따른 윤활성 향상제는 하기 화학식 4로 표시되는 메톡시화 지방산 메틸에스테르 유도체를 포함한다.
[화학식 4]
Figure pat00006
[상기 화학식 4에서, a, b, c, d 및 e는 상기 화학식 1에서의 정의와 동일하다.]
본 발명에 따른 윤활성 향상제는 보다 구체적으로 하기에서 선택되는 메톡시화 지방산 메틸에스테르 유도체를 포함한다.
Figure pat00007
본 발명에 따른 윤활성 향상제는 휘발유, 등유, 경유 및 알칸올 연료와 같은 액체상 연료의 윤활성 향상을 위하여 사용될 수 있으며, 상기 액체상 연료와 혼합 사용시 0.000001~10중량%로 혼합되어 적은 양으로도 우수한 윤활성 향상 효과를 발휘할 수 있고, 산화방지에 의한 저장안정성이 우수하기 때문에 금속류를 부식시키지 않는다는 장점을 갖는다. 또한, 본 발명에 따른 윤활성 향상제는 윤활기유로 사용될 수도 있으며, 바람직하게는 일반적인 윤활 기유와 0.000001~99중량%로 혼합되어 사용될 수 있다.
본 발명에 따른 윤활성 향상제 조성물은 쉽게 산화되어 저장안정성이 열악한 지방산 메틸에스테르(FAME) 내 이중결합(double bond, Olefin)을 디메톡시 그룹으로 치환시킨 1,2-다이메톡시에틸렌 구조 단위를 적어도 하나 이상 포함하는 포화 지방산메틸에스테르 유도체를 포함하고 있으므로, 윤활성 향상과 저장안정성을 강화시키고, 움직이는 두면 사이의 마찰·마모를 저감시켜 차량 및 기계의 안전성 및 성능을 유지할 수 있다. 또한, 본 발명의 윤활성 향상제 조성물은 동식물자원으로부터 얻은 바이오디젤을 출발물질로 하기 때문에 친환경적이다.
이하에서는, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나, 본 발명의 범위가 하기의 실시예로 제한되는 것은 아니다.
[제조예 1] 화합물 1의 제조
Figure pat00008
화합물 1-A 의 제조
출발물질로서 이중결합을 함유하는 메틸 팔미톨리에이트(methyl palmitoleate) (10 g, 1eq), THF (tetrahydrofuran)과 물의 혼합용매(THF/H2O = 3/1의 부피비) (80 mL), OsO4 (Osmium tetraoxide, 4% in H2O) (24 mL, 0.1 eq)와 NMP (4-Methylmorpholine N-Oxide) (5.65 g, 1.5eq)을 실온에서 2시간동안 반응시켰다. 반응이 완전히 종결되면, NaHCO3 수용액 (100 mL)을 가한 뒤, 에틸아세테이트 (100 mL x 3회)를 이용하여 유기층을 추출한 뒤, 컬럼크로마토그래피를 이용하여 화합물 1-A를 분리정제 하였다(9.35 g, 수율 83 %).
1H-NMR (400 MHz, CDCl3) ; δ3.66 (s, 3H), 3.56 (bs, 2H), 3.16 (bs, 2H), 2.30 (t, 2H), 1.62 (t, 2H), 1.51 - 1.22 (m, 20H), 0.88 (t, 3H)
13C-NMR (100 MHz, CDCl3); δ 174.5, 74.9, 74.8, 34.1, 32.0, 31.4, 31.3, 29.6, 29.6, 29.3, 29.2, 26.3, 26.2, 25.0, 22.8, 14.2
화합물 1 의 제조
정제된 화합물 1-A (9 g, 1eq)을 무수 THF (100 mL)에 용해시킨 후, 0℃에서 NaH (1.71 g, 2.4eq, 60% in mineral oil)를 가한 뒤, CH3I (10.14 g, 2.4eq)를 가한 뒤, 실온에서 2시간동안 반응시켰다. 반응이 완전히 종결되면, 물 (4 mL)을 가해 잔여의 NaH를 제거한 뒤, 셀라이트(celite)를 통과시킨 후, 컬럼크로마토그래피를 이용하여 목적화합물 1을 분리정제하였다(8.95 g, 수율 91 %).
1H-NMR (400 MHz, CDCl3) ; δ3.66 (s, 3H), 3.40 (s, 6H), 3.38 (bs, 2H), 3.18 (bs, 2H), 2.30 (t, 2H), 1.62 - 1.23 (m, 18H), 0.89 (t, 3H)
13C-NMR (100 MHz, CDCl3); δ 174.3, 83.1, 82.8, 82.8, 74.6, 70.0, 34.2, 32.0, 31.9, 30.4, 29.8, 29.7, 29.5, 29.2, 28.0, 26.2, 25.1, 22.8, 14.2
[제조예 2] 화합물 2의 제조
Figure pat00009
화합물 2-A 의 제조
출발물질로서 이중결합을 함유하는 메틸 올리에이트(methyl oleate) (10 g, 1eq), THF (tetrahydrofuran)과 물의 혼합용매(THF/H2O = 3/1의 부피비) (80 mL), OsO4 (Osmium tetraoxide, 4% in H2O) (21.43 g, 0.1eq)와 NMP (4-Methylmorpholine N-Oxide) (5.12 g, 1.5eq)을 실온에서 2시간동안 반응시켰다. 반응이 완전히 종결되면, NaHCO3 수용액 (100 mL)을 가한 뒤, 에틸아세테이트 (100 mL x 3회)를 이용하여 유기층을 추출한 뒤, 컬럼크로마토그래피를 이용하여 화합물 2-A를 분리정제 하였다(9.36 g, 수율 85 %).
1H-NMR (400 MHz, CDCl3) ; δ3.68 (s, 3H), 3.60 (bs, 2H), 2.30 (t, 2H), 1.83 (t, 2H), 1.62 (t, 2H), 1.51 - 1.22 (m, 24H), 0.88 (t, 3H)
13C-NMR (100 MHz, CDCl3); δ 174.6, 74.9, 74.8, 34.2, 32.1, 31.4, 31.3, 29.9, 29.8, 29.6, 29.5, 29.4, 29.3, 29.2, 26.3, 26.2, 25.0, 22.8, 14.2
화합물 2 의 제조
화합물 2-A (9 g, 1eq)을 무수 THF (100 mL)에 용해시킨 후, 0℃에서 NaH (1.59 g, 2.4eq)를 가한 뒤, CH3I (1.59 g, 2.4eq, 60% in mineral oil)를 가한 뒤, 실온에서 2시간동안 반응시켰다. 반응이 완전히 종결되면, 물 (4 mL)을 가해 잔여의 NaH를 제거한 뒤, 셀라이트(celite)를 통과시킨 후, 컬럼크로마토그래피를 이용하여 목적화합물 2을 분리정제하였다(10.78 g, 수율 92 %).
1H-NMR (400 MHz, CDCl3) ; δ3.66 (s, 3H), 3.40 (s, 6H), 3.38 (bs, 2H), 3.17 (bs, 2H), 2.30 (q, 2H), 1.62 - 1.23 (m, 22H), 0.88 (t, 3H)
13C-NMR (100 MHz, CDCl3); δ 174.3, 83.2, 83.0, 82.8, 74.6, 70.2, 34.6, 34.3, 32.1, 30.5, 30.5, 30.1, 29.8, 29.7, 29.5, 29.2, 28.0, 26.3, 26.3, 25.2, 22.9, 14.2
[제조예 3] 화합물 3의 제조
Figure pat00010
화합물 3-A 의 제조
출발물질로서 이중결합을 함유하는 메틸 리놀리에이트(methyl linoleate) (10 g, 1eq), THF (tetrahydrofuran)과 물의 혼합용매(THF/H2O = 3/1의 부피비) (80 mL), OsO4 (Osmium tetraoxide, 4% in H2O) (43 mL, 0.2eq)와 NMP (4-Methylmorpholine N-Oxide) (10.31 g, 3eq)을 실온에서 4시간동안 반응시켰다. 반응이 완전히 종결되면, NaHCO3 수용액 (100 mL)을 가한 뒤, 에틸아세테이트 (100 mL x 3회)를 이용하여 유기층을 추출한 뒤, 컬럼크로마토그래피를 이용하여 화합물 3-A를 분리정제 하였다(9.44 g, 수율 78 %).
화합물 3 의 제조
정제된 다이올 화합물 3-A (9 g, 1eq)을 무수 THF (200 mL)에 용해시킨 후, 0℃에서 NaH (4.85 g, 4.8eq, 60% in mineral oil)를 가한 뒤, CH3I (17.20 g, 4.8eq)를 가한 뒤, 실온에서 2시간동안 반응시켰다. 반응이 완전히 종결되면, 물 (5 mL)을 가해 잔여의 NaH를 제거한 뒤, 셀라이트(celite)를 통과시킨 후, 컬럼크로마토그래피를 이용하여 목적하고자 하는 다이메톡시(dimethoxy) 화합물 3을 분리정제하였다(7.73 g, 수율 84 %).
[제조예 4] 화합물 4의 제조
Figure pat00011
화합물 4-A 의 제조
출발물질로서 이중결합을 함유하는 메틸 리놀리네이트(methyl linolenate) (10 g, 1eq), THF (tetrahydrofuran)과 물의 혼합용매(THF/H2O = 3/1의 부피비) (80 mL), OsO4 (Osmium tetraoxide, 4% in H2O) (43 mL, 3eq)와 NMP (4-Methylmorpholine N-Oxide) (15.46 g, 4.5eq)을 실온에서 2시간동안 반응시켰다. 반응이 완전히 종결되면, NaHCO3 수용액 (100 mL)을 가한 뒤, 에틸아세테이트 (100 mL x 3회)를 이용하여 유기층을 추출한 뒤, 컬럼크로마토그래피를 이용하여 화합물 4-A를 분리정제 하였다(7.94 g, 수율 64 %).
화합물 4 의 제조
정제된 다이올 화합물 4-A (7.5 g, 1eq)을 무수 THF (200 mL)에 용해시킨 후, 0℃에서 NaH (6.09 g, 7.2eq, 60% in mineral oil)를 가한 뒤, CH3I (21.61 g, 7.2eq)를 가한 뒤, 실온에서 2시간동안 반응시켰다. 반응이 완전히 종결되면, 물 (5 mL)을 가해 잔여의 NaH를 제거한 뒤, 셀라이트(celite)를 통과시킨 후, 컬럼크로마토그래피를 이용하여 목적하고자 하는 다이메톡시(dimethoxy) 화합물 4을 분리정제하였다(5.98 g, 수율 78 %).
[실시예 1] 산화안정도 측정
상기 제조예 1 내지 4에서 제조된 메톡시화 지방산 메틸에스테르 화합물 1 내지 4에 대하여 EN 14112 표준분석법에 의거해 산화안정도시험기(743 Rancimat) 장비를 활용하여 산화안정도를 측정하였다. 하기 표 1은 산화안정도시험기를 활용하여 기존 바이오디젤 구성분자(제조예 1 내지 4의 출발물질) 및 제조예 1 내지 4에서 제조된 메톡시화 지방산 메틸에스테르 화합물 1 내지 4의 산화안정도를 측정한 결과값을 보여준다.
윤활성향상제 조성물 산화안정도(h)
제조예 1 화합물 1 > 40
제조예 2 화합물 2 > 40
제조예 3 화합물 3 > 40
제조예 4 화합물 4 > 40
비교예 1 Methyl palmitoleate 14.3
비교예 2 Methyl oleate 15.1
비교예 3 Methyl linoleate 5.8
비교예 4 Methyl linolenate 0.4
상기 표 1로부터, 바이오디젤의 이중결합을 디메톡시 그룹으로 전환시켜 1,2-다이메톡시에틸렌 구조 단위를 적어도 하나 이상 포함하는 포화 지방산메틸에스테르 유도체(화합물 1 내지 4)의 산화안정성(저장안정성)이 증가함을 볼 수 있다.
[실시예 2] 윤활성 측정
상기 제조예 1 내지 4에서 제조된 메톡시화 지방산 메틸에스테르 화합물 1 내지 4을 포함하는 윤활성 향상제 조성물에 대한 윤활성을 알아보기 위하여 PCS Instruments사의 HFRR (High frequency reciprocating rig)를 사용하였으며, ISO 12156 방법에 준하여 수행하였다.
시료 2 mL를 60 ℃에서 75분동안 50 Hz의 주파수와 200 g의 하중을 이용해 금속원판(PCS Instrument사의 지름 1 cm 원판)과 시험구(PCS Instrument사의 외경 6 mm 금속구)를 왕복마찰시킴으로 시험구에 생성된 마모흔(MWSD ; mean wear scar diameter)을 현미경(MEIJI TECHNO사의 Infinity 1)을 이용하여 측정하였다. 습도에 의해 마모흔 생성정도가 다를 수 있으므로, K2CO3를 이용하여 HFRR 분석케비넷 내의 습도를 ISO 표준방법에서 정하는 30% 50%가 유지되도록 조절하였다. 마모흔은 시험구와 금속원판의 마찰로 생긴 흔적으로 그 크기가 클수록 시료의 윤활성이 떨어지는 것을 의미하며, 관찰된 마모흔으로부터 분석 시 습도와 온도인자가 고려된 보정마모흔으로 나타내었다.
하기 표 2는 HFRR장비를 이용하여 기존 바이오디젤 구성분자(제조예 1 내지 4의 출발물질) 및 제조예 1 내지 4에서 제조된 메톡시화 지방산 메틸에스테르 화합물 1 내지 4의 윤활성을 측정한 결과값을 보여준다.
윤활성향상제 조성물 바이오디젤 조성물 마모흔(㎛)
제조예 1 화합물 1 213
제조예 2 화합물 2 201
제조예 3 화합물 3 153
제조예 4 화합물 4 128
비교예 1 Methyl palmitoleate 228
비교예 2 Methyl oleate 211
비교예 3 Methyl linoleate 175
비교예 4 Methyl linolenate 143
상기 표 2로부터, 바이오디젤의 이중결합을 디메톡시 그룹으로 전환시켜 1,2-다이메톡시에틸렌 구조 단위를 적어도 하나 이상 포함하는 포화 지방산메틸에스테르 유도체(화합물 1 내지 4)의 윤활성이 증가(마모흔 감소)함을 볼 수 있다.

Claims (9)

  1. 하기 화학식 a로 표시되는 구조 단위를 적어도 하나 이상 포함하는 포화 지방산 메틸에스테르 유도체를 포함하는 윤활성 향상제.
    [화학식 a]
    Figure pat00012

  2. 제 1항에 있어서,
    하기 화학식 1로 표시되는 메톡시화 지방산 메틸에스테르 유도체를 포함하는 윤활성 향상제.
    [화학식 1]
    Figure pat00013

    [상기 화학식 1에서, R1 및 R2는 각각 수소 또는
    Figure pat00014
    이고; a, e, f 및 j는 각각 1 내지 10의 정수이고, b, c, d, g, h 및 i는 각각 0 내지 5의 정수이나, 단 b+c+d 및 g+h+i는 각각 1 이상의 정수이다.]
  3. 제 2항에 있어서,
    상기 화학식 1의 메톡시화 지방산 메틸에스테르 유도체는 하기의 단계로 제조되는 것을 특징으로 하는 윤활성 향상제:
    1) 하나 이상의 이중결합을 포함하는 하기 화학식 2의 바이오디젤을 하이드록실화시켜 화학식 3의 하이드록시화 지방산 메틸에스테르 유도체를 제조하는 단계; 및
    2) 화학식 3의 하이드록시화 지방산 메틸에스테르 유도체를 염기 존재 하에서 할로메탄과 반응시켜 화학식 1의 메톡시화 지방산 메틸에스테르 유도체를 제조하는 단계.
    [화학식 2]
    Figure pat00015

    [화학식 3]
    Figure pat00016

    [상기 화학식 2 및 3에서, R1, R2, a, b, c, d 및 e는 청구항 제2항에서의 정의와 동일하다.]
  4. 제 3항에 있어서,
    상기 1) 단계에서 하이드록실화는 OsO4 촉매 및 4-메틸모포린 N-옥사이드 또는 t-부틸 하이드로퍼옥사이드의 존재 하에서 이루어지는 것을 특징으로 하는 윤활성 향상제.
  5. 제 3항에 있어서,
    상기 2) 단계에서 염기는 NaH, KH, KOt-Bu, NaOBu 및 NaNH2에서 선택되는 것을 특징으로 하는 윤활성 향상제.
  6. 제 2항에 있어서,
    하기 화학식 4로 표시되는 메톡시화 지방산 메틸에스테르 유도체를 포함하는 것을 특징으로 하는 윤활성 향상제.
    [화학식 4]
    Figure pat00017

    [상기 화학식 4에서, a, b, c, d 및 e는 청구항 제2항에서의 정의와 동일하다.]
  7. 제 6항에 있어서,
    상기 메톡시화 지방산 메틸에스테르 유도체는 하기에서 선택되는 것을 특징으로 하는 윤활성 향상제.
    Figure pat00018

  8. 제 3항에 있어서,
    상기 화학식 2의 바이오디젤은 동·식물성 유지로부터 제조되는 것을 특징으로 하는 윤활성 향상제.
  9. 제 8항에 있어서,
    상기 동·식물성 유지는 우지, 돈지, 계지, 어유, 대두유, 올리브유, 유채유, 팜유, 들기름, 참기름, 해바라기유, 포도씨유, 고추씨기름, 자트로파, 면실유 및 폐식용유로부터 선택되는 것을 특징으로 하는 윤활성 향상제.
KR1020110083620A 2011-08-22 2011-08-22 윤활성 향상제 KR101265478B1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020110083620A KR101265478B1 (ko) 2011-08-22 2011-08-22 윤활성 향상제
US13/548,501 US8835663B2 (en) 2011-08-22 2012-07-13 Lubricity improver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110083620A KR101265478B1 (ko) 2011-08-22 2011-08-22 윤활성 향상제

Publications (2)

Publication Number Publication Date
KR20130021227A true KR20130021227A (ko) 2013-03-05
KR101265478B1 KR101265478B1 (ko) 2013-05-21

Family

ID=47744615

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110083620A KR101265478B1 (ko) 2011-08-22 2011-08-22 윤활성 향상제

Country Status (2)

Country Link
US (1) US8835663B2 (ko)
KR (1) KR101265478B1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3218451B1 (en) * 2014-11-14 2020-01-01 Volvo Truck Corporation Cartridge for mixing dme fuel with additives
CN111349521B (zh) * 2018-12-21 2022-11-11 中国石油化工股份有限公司 一种改性植物油脂肪酸甲酯及其合成方法和应用
CN111349522B (zh) * 2018-12-21 2022-11-11 中国石油化工股份有限公司 一种改性植物油脂肪酸甲酯的制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3976623A (en) 1972-11-15 1976-08-24 Dynamit Nobel Aktiengesellschaft Copolymers of 1,2-dimethoxy-ethylene and β-lactones or cyclic six-membered ring carbonates
JPS5215587A (en) 1975-07-29 1977-02-05 Lion Corp Process for polymerizing liquid olefin polymers
US4609376A (en) 1985-03-29 1986-09-02 Exxon Research And Engineering Co. Anti-wear additives in alkanol fuels
DE4300207A1 (de) 1993-01-07 1994-07-14 Basf Ag Mineralische schwefelarme Dieselkraftstoffe
JPH06298692A (ja) 1993-04-20 1994-10-25 Mitsui Petrochem Ind Ltd エーテルおよびその用途
IT1270954B (it) 1993-07-21 1997-05-26 Euron Spa Composizione di gasolio
KR100254815B1 (ko) 1997-11-29 2000-05-01 정몽규 내마모성 향상형 디젤 엔진용 연료유
FR2772784B1 (fr) 1997-12-24 2004-09-10 Elf Antar France Additif d'onctuosite pour carburant
FI122428B2 (fi) 2002-08-05 2021-01-29 Arizona Chemical Rasvahappokoostumus ja sen käyttö

Also Published As

Publication number Publication date
KR101265478B1 (ko) 2013-05-21
US8835663B2 (en) 2014-09-16
US20130053590A1 (en) 2013-02-28

Similar Documents

Publication Publication Date Title
EP0781265B1 (en) Process for preparing a synthetic ester from a vegetable oil
US8188019B2 (en) Biolubricant esters from the alcohols of unsaturated fatty acids
AU2010270827B2 (en) Synthesis of biolubricant esters from unsaturated fatty acid derivatives
EP3013925B1 (en) Lubricating compositions containing isoprene based components
JP2016153491A (ja) 高粘度及び低粘度エストリド基油及び潤滑剤
Cermak et al. Synthesis and physical properties of new estolide esters
JP6963186B2 (ja) 動力伝達用潤滑油基油
MX2013014747A (es) Aceite de turbina que comprende un componente ester.
Ji et al. Synthesis of levulinic acid-based polyol ester and its influence on tribological behavior as a potential lubricant
MX2013014751A (es) Proceso para la preparacion de aceite de turbina que comprende un componente ester.
KR20110104714A (ko) 연료유용 윤활첨가제로 유용한 2-치환된 하프-숙신산 알킬 에스테르계 유도체
KR101265478B1 (ko) 윤활성 향상제
CA2766407C (en) Multi-grade engine oil formulations comprising a bio-derived ester component
Marques et al. Potential bio-based lubricants synthesized from highly unsaturated soybean fatty acids: physicochemical properties and thermal degradation
JP2012201833A (ja) エステル合成油
Sarker et al. Green synthesis of trimethylolpropane triisostearate and triisooleate for usage as bio-lubricants
Babi et al. Preparation and properties of bio-lubricants of neopentylglycol esters from various acids
Yelchuri et al. Metathesized castor oil acylated derivatives: lubricants base stocks with low pour points and superior anti-wear properties
KR20240045662A (ko) 낮은 견인 계수를 갖는 에스테르계 화합물, 이를 포함하는 윤활기유, 및 이를 포함하는 윤활제 조성물
CN103060029A (zh) 一种含烷基乙二醇乙酸多元醇酯的柴油添加剂组合物及应用
CN115403472B (zh) 一种合成高碳数脂肪酸三元醇酯及其制备方法和改性矿物油
CN115605562B (zh) 交内酯组合物和制备交内酯的方法
CN113831241A (zh) 一种混合异戊酸新戊基多元醇酯制备方法
CN114426899A (zh) 柴油发动机润滑油组合物及其制备方法
Cermak 12 Estolides: Biobased

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160427

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170413

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180509

Year of fee payment: 6