KR20130004912A - High-purity cu bonding wire - Google Patents

High-purity cu bonding wire Download PDF

Info

Publication number
KR20130004912A
KR20130004912A KR1020127024832A KR20127024832A KR20130004912A KR 20130004912 A KR20130004912 A KR 20130004912A KR 1020127024832 A KR1020127024832 A KR 1020127024832A KR 20127024832 A KR20127024832 A KR 20127024832A KR 20130004912 A KR20130004912 A KR 20130004912A
Authority
KR
South Korea
Prior art keywords
phosphorus
purity
wire
ball
mass
Prior art date
Application number
KR1020127024832A
Other languages
Korean (ko)
Other versions
KR101280053B1 (en
Inventor
츠토무 야마시타
다께시 구와하라
쥬니치 오카자키
Original Assignee
타나카 덴시 코오교오 카부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 타나카 덴시 코오교오 카부시키가이샤 filed Critical 타나카 덴시 코오교오 카부시키가이샤
Publication of KR20130004912A publication Critical patent/KR20130004912A/en
Application granted granted Critical
Publication of KR101280053B1 publication Critical patent/KR101280053B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • H01L2224/438Post-treatment of the connector
    • H01L2224/43848Thermal treatments, e.g. annealing, controlled cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/4851Morphology of the connecting portion, e.g. grain size distribution
    • H01L2224/48511Heat affected zone [HAZ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • H01L2224/85207Thermosonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00014Technical content checked by a classifier the subject-matter covered by the group, the symbol of which is combined with the symbol of this group, being disclosed without further technical details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01014Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01028Nickel [Ni]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01032Germanium [Ge]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01041Niobium [Nb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01046Palladium [Pd]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01051Antimony [Sb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01072Hafnium [Hf]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01073Tantalum [Ta]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01074Tungsten [W]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01083Bismuth [Bi]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Wire Bonding (AREA)

Abstract

본 발명은 재결정 온도가 높고, 실온에서의 신선 다이스 가공이 용이하고, 또한 이니셜 볼 경도가 작고, IC 칩 균열이 생기지 않는 고순도 Cu 합금 볼 본딩 와이어를 얻는 것을 과제로 한다. 순도 99.9985 질량% 이상의 고순도 동(Cu)에 미량의 인(P) 0.5∼15 질량 ppm를 첨가하는 것에 의해, 순도 99.9999 질량% 이상의 고순도 동(Cu)보다도 재결정 온도가 높고, 또한 볼 본딩의 이니셜 볼 경도를 저하시켜 상기 특성을 달성한다. 또한, 순도 99.9985 질량% 이상의 고순도 동(Cu)에 미량의 인(P) 0.5∼15 질량 ppm를 첨가하고, 게다가, 그 외의 함유하는 불순물의 총량을 인(P)의 상기 함유량보다 낮게 하는 것에 의해 상기 특성을 달성한다. An object of the present invention is to obtain a high-purity Cu alloy ball bonding wire having a high recrystallization temperature, easy processing of fresh die at room temperature, small initial ball hardness, and no IC chip cracking. By adding 0.5-15 mass ppm of phosphorus (P) to high purity copper (Cu) of 99.9985 mass% or more of purity, the recrystallization temperature is higher than the high purity copper (Cu) of 99.9999 mass% or more of purity, and ball ball initial ball The hardness is lowered to achieve the above characteristics. Further, by adding a small amount of 0.5 to 15 ppm by mass of phosphorus (P) to high-purity copper (Cu) of 99.9985% by mass or more and further lowering the total amount of other impurities contained above the above content of phosphorus (P). To achieve the above characteristics.

Description

고순도 동(銅) 본딩 와이어{High-purity Cu bonding wire}High-purity Cu Bonding Wire

본 발명은 와이어 본더(wire bonder)를 이용한 볼 본딩 방법에 의해 IC 칩 전극과 리드 등의 기판을 접속한 Cu 합금 와이어에 관한 것으로, 특히 이니셜(initial) 볼(FAB)의 실온 경도가 부드러운 본딩 와이어에 관한 것이다. BACKGROUND OF THE INVENTION 1. Field of the Invention [0001] The present invention relates to a Cu alloy wire in which an IC chip electrode and a substrate such as a lead are connected by a ball bonding method using a wire bonder, and in particular, a bonding wire having a soft room temperature hardness of an initial ball FAB. It is about.

종래 IC 칩의 전극과 기판상의 리드 등을 접속하는 방법으로서 금선(金線) 대신에 고순도의 Cu 합금 와이어를 이용하는 볼 본딩 방법에 의해 배선하는 방법이 알려져 있다.As a method of connecting the electrode of an IC chip, the lead, etc. on a board | substrate conventionally, the method of wiring by the ball bonding method using a high purity Cu alloy wire instead of a gold wire is known.

볼 본딩 방법에 의해 배선하는 방법에 있어서, 릴(reel)로부터 풀린 고순도의 Cu 합금 와이어는 본딩 툴로서의 캐피럴리(capillary)에 도입되고, 그 다음에 본딩 툴의 출구측에 도출된 Cu 합금 와이어의 선단을 불활성 분위기 또는 환원성 분위기하에서 전극 토치와의 사이의 미소 방전(micro electric discharge)에 의해 용융되어 이니셜 볼(FAB)을 형성한 후, 가열된 IC 칩의 전극상에 이 용융 볼을 초음파 진동시키면서 열 압착한다. 그 후, 캐피럴리를 XYZ 방향(전후,좌우,상하 방향)으로 이동시켜서 IC 칩의 전극상에 장착된 Cu 합금 와이어를 소정의 형상으로 루프(loop)를 형성하고, 외부 배선 리드 프레임에 쐐기(wedge) 본딩 한 후, 고순도의 Cu 합금 와이어를 절단하여 와이어 본딩 하는 방법이 채택되고 있다.In a method of wiring by a ball bonding method, a high purity Cu alloy wire released from a reel is introduced into a capillary as a bonding tool, and then of the Cu alloy wire drawn to the exit side of the bonding tool. The tip is melted by micro electric discharge between the electrode torch in an inert atmosphere or a reducing atmosphere to form initial balls FAB, and then ultrasonically vibrated the molten balls on the electrodes of the heated IC chip. Thermally compress. Thereafter, the capital is moved in the XYZ direction (front, back, left, right, up and down directions) to form a loop in a predetermined shape of the Cu alloy wire mounted on the electrode of the IC chip, and a wedge ( After bonding, high purity Cu alloy wire is cut and wire bonded.

그러나 고순도 Cu 합금 와이어는 대기중에 존재하는 산소에 의해 산화하기 쉽기 때문에 전술의 이니셜 볼(FAB)을 형성할 때, 대기 중에서는 그 표면이 산화막에 덮히고, 또한 볼 내부로 확산한 산소에 의해 용융 동금속 중에 존재하는 불순물도 산화해 버린다. 이 때문에 산소가 존재하는 분위기 속에서는 고순도 Cu 합금 와이어의 용융 볼이 딱딱해지고,상기 IC 칩의 전극 상에 열 압착할 때 접합성이 나빠지는 동시에 IC 칩에 균열이 생기게 되는 것이 문제였다. IC 칩의 균열은 지금까지 고순도 Cu 합금의 산화막에 기인한다고 생각되었다. 이와 같은 산화막의 형성을 막기 위해 불활성 가스만을 이용한 완전밀폐분위기에서 하거나 불활성 가스 분위기 속에 환원효과가 있는 수소를 혼입한 가스를 이용하거나 하여 상기 이니셜 볼(FAB)을 형성하여 Cu 합금 와이어의 볼의 이니셜 볼(FAB)의 산화를 방지하여 왔다(특허문헌 1,2,3).However, since high-purity Cu alloy wires are easy to oxidize by oxygen existing in the air, when forming the initial ball (FAB) described above, the surface is covered with an oxide film in the air and melted by oxygen diffused into the ball. The impurities present in the copper metal are also oxidized. For this reason, in the atmosphere in which oxygen exists, the molten ball of the high-purity Cu alloy wire became hard, and when the thermocompression bonding was carried out on the electrode of the said IC chip, the adhesiveness worsened and the IC chip had a crack. The crack of an IC chip was considered to be due to the oxide film of a high purity Cu alloy so far. In order to prevent the formation of such an oxide film, the initial ball (FAB) is formed in a completely enclosed atmosphere using only an inert gas or a gas containing hydrogen having a reducing effect in an inert gas atmosphere to form initial balls of Cu alloy wires. Oxidation of the balls FAB has been prevented (Patent Documents 1, 2 and 3).

다른 한편, Cu 금속 와이어의 순도를 99.99 질량%에서 99.999 질량% 내지 99.9999 질량%까지 높이는 것에 의해 가능한 한 불순물 또는 산화물로 되는 원소를 줄이는 것을 목표로 하는 학술적인 연구도 이루어졌다.Cu 금속 와이어의 순도가 높아지면 정말 용융 볼을 형성할 때의 볼 형상이 진구(眞球,true sphereness)에 가까워지고, 진구가 되면 될수록 열압착에 의한 접합면에서의 변형이 진원형(眞圓形)으로 되기 때문이다.On the other hand, academic research has been conducted aiming to reduce the element of impurities or oxides as much as possible by increasing the purity of Cu metal wires from 99.99% by mass to 99.999% by mass to 99.9999% by mass. The higher the value, the closer the true sphereness of the ball shape to the formation of the molten ball becomes, and the more spherical the shape becomes, the more deformed at the joint surface due to the thermocompression bonding becomes the round shape. to be.

그러나 Cu 금속 와이어의 순도가 고순도가 되면 될수록 재결정 온도가 낮아지고, Cu 금속 와이어 자체가 부드럽게 된다.그 때문에 미리 가공 경화시켰어도 시효 연화해 버리고, 부드러워진 고순도의 Cu 금속 와이어의 취급은 극히 곤란해진다. 특히, 본딩 와이어용의 Cu 금속 와이어는 신선가공(wire drawing)에 의하여 대량 생산되기 때문에 Cu 금속 와이어의 순도를 높게 해 가면 신선가공중에 Cu 금속 와이어와 신선 다이스와의 마찰열에 의해 고순도의 Cu 금속 와이어 자체가 연화하여 와이어가 절단되어 버린다.또한, 시간과 노력을 들인다면, 이와 같은 고순도의 Cu 금속 와이어도 시험제작할 수 있지만, 이와 같은 고순도의 Cu 금속 와이어를 이용하여 상기 IC 칩의 전극상에 초음파 병용 열 압착하여도 IC 칩의 전극상에 접합된 Cu 금속 와이어로부터 소정의 루프를 형성하려고 하면 99.999 질량%정도 이상의 고순도 Cu 금속 와이어는 붕괴해 버린다.However, the higher the purity of the Cu metal wire, the lower the recrystallization temperature, and the Cu metal wire itself becomes softer. Therefore, even if it is pre-hardened beforehand, the aging softens and the handling of the soft, high-purity Cu metal wire becomes extremely difficult. . In particular, since Cu metal wires for bonding wires are mass-produced by wire drawing, if the purity of Cu metal wires is increased, the Cu metal wires of high purity are produced by the frictional heat between Cu metal wires and the dies during the drawing process. The wire itself is softened and the wire is cut. Moreover, if time and effort are taken, such a high purity Cu metal wire can also be manufactured and tested, but using such a high purity Cu metal wire, ultrasonic waves are applied on the electrode of the IC chip. The high purity Cu metal wire of about 99.999% by mass or more collapses when attempting to form a predetermined loop from the Cu metal wire joined on the electrode of the IC chip even by combined thermal compression.

이들의 대책으로서 고순도의 Cu 금속 와이어에 다양한 미량 원소를 첨가한 고순도의 Cu 금속 와이어가 몇 개인가 보고되어 있다(특허문헌 1,2,3). 그러나 볼 본딩의 분위기 중에서 산소가 존재하면 고순도의 Cu 금속 와이어라도 이니셜 볼(FAB)이 진구상(true sphere shape)이 되지 않거나 이니셜 볼(FAB)이 지나치게 단단해져 반도체의 IC 칩에 균열이 생기거나 하였다.이 때문에 접합강도가 높은 만족할 만한 이니셜 볼(FAB)에 의한 열 압착을 행할 수 없고,또는 만족할 만한 루프형상을 그릴 수 없고,지금까지 고순도의 Cu 금속 와이어의 경우에 실용적으로 견딜만한 것으로는 되지 않았다. As these countermeasures, several high-purity Cu metal wires which added various trace elements to high-purity Cu metal wires are reported (patent documents 1, 2, 3). However, if oxygen is present in the atmosphere of ball bonding, even with a high purity Cu metal wire, the initial ball (FAB) does not become a true sphere shape or the initial ball (FAB) is too hard, causing cracks in the IC chip of the semiconductor. For this reason, it is not possible to perform thermal compression by satisfactory initial ball (FAB) with high bonding strength, or to draw satisfactory loop shape, and it has not been practically tolerable in the case of high purity Cu metal wire. Did.

특허문헌 1 : 특개 2003-133364호 공보Patent Document 1: Japanese Patent Application Laid-Open No. 2003-133364 특허문헌 2 : 특개 2008-085320호 공보Patent Document 2: Japanese Patent Application Laid-Open No. 2008-085320 특허문헌 3 : 특공평 05-20493호 공보Patent Document 3: Publication No. 05-20493

이 때문에 고순도의 Cu 합금으로 된 볼 본딩용 Cu 금속 와이어이면서 실온에서의 신선 다이스 가공을 용이하게 할 수 있고, 또한, 이니셜 볼(FAB)에 의해 IC 칩에 균열이 발생하지 않는 본딩 와이어가 요구되고 있다.For this reason, although it is a Cu metal wire for ball bonding which consists of a high-purity Cu alloy, the bonding die which can facilitate the drawing of the die | dye at room temperature, and the crack does not generate | occur | produce an IC chip by initial ball (FAB) is calculated | required. have.

본 발명은 상기의 사정을 감안하여 이루어진 것으로, 그 목적으로 하는 것은 재결정 온도가 높고 신선가공할 수 있는 고순도의 Cu 합금으로 된 Cu 금속 와이어이면서 Cu 합금 와이어의 이니셜 볼(FAB) 내지 용융 볼의 실온 경도가 미량 첨가하지 않는 고순도 Cu 금속으로 이루어진 Cu 금속 와이어의 것보다도 낮은 본딩 와이어를 제공하는 것에 있다.The present invention has been made in view of the above circumstances, and an object thereof is a Cu metal wire made of a high-purity Cu alloy capable of high recrystallization temperature and fresh processing, and the initial ball (FAB) of the Cu alloy wire to the room temperature of the molten ball. It is to provide a bonding wire lower than that of the Cu metal wire which consists of a high purity Cu metal which a hardness does not add a trace amount.

구체적으로는 인(P)을 고순도의 Cu 금속에 미량 첨가하는 것에 의해 재결정 온도를 높게 한 고순도 Cu 합금 와이어이다. 인(P)을 미량첨가하면 고순도의 Cu 금속의 재결정 온도는 급격하게 상승한다. 이 때문에 인(P)이 미량이라도 Cu 합금 와이어는 실온하에서 다이스 신선에 의한 신선가공이 가능해진다.게다가, Cu 금속의 순도와 인(P)의 첨가량을 적당하게 하면 인(P)을 첨가한 Cu 합금 와이어의 이니셜 볼(FAB)의 실온경도가 인(P)을 첨가하지 않는 Cu 금속 와이어의 것보다도 낮아지는 영역이 있다. 본 발명의 목적은 이와 같은 고순도의 Cu 합금 와이어를 제공하는 것에 있다. Specifically, a high purity Cu alloy wire having a high recrystallization temperature by adding a small amount of phosphorus (P) to a high purity Cu metal. When trace amounts of phosphorus (P) are added, the recrystallization temperature of high purity Cu metal rises rapidly. For this reason, even if trace amount of phosphorus (P) is small, Cu alloy wire can be wire-processed by die drawing at room temperature. In addition, if the purity of Cu metal and the addition amount of phosphorus (P) are appropriate, Cu added with phosphorus (P) is added. There exists an area | region where the room temperature hardness of the initial ball FAB of an alloy wire becomes lower than the thing of Cu metal wire which does not add phosphorus (P). An object of the present invention is to provide such a high purity Cu alloy wire.

본 발명자들은 이니셜 볼(FAB) 내지 용융 볼의 실온 경도가 IC 칩 균열의 원인인 것으로부터 이니셜 볼(FAB) 내지 용융 볼의 실온 경도를 낮게 하는 첨가원소를 탐색하였다. 그 결과, 소정량의 인(P)이 고순도 Cu 금속 이니셜 볼(FAB) 내지 용융 볼의 실온 경도를 낮게 하는 것이 밝혀졌다. 고순도 Cu 금속에 미치는 인(P)의 첨가효과는 Cu가 고순도가 되면 될수록 더욱더 두드러지지만 Cu 금속 중에 포함된 불순물 원소에 의해서도 좌우된다.본 발명자들은 99,999 질량% 정도의 고순도 Cu 금속 와이어에 인(P)을 미량 첨가한 Cu 합금 와이어는 재결정 온도가 상승함에도 불구하고, 인(P)을 첨가하지 않은 고순도의 Cu 금속 와이어보다도 이니셜 볼(FAB) 내지 용융 볼의 실온 경도가 저하하는 것을 발견하였다.The present inventors searched for additional elements that lower the room temperature hardness of the initial ball (FAB) to the molten ball because the room temperature hardness of the initial ball (FAB) to the molten ball is the cause of IC chip cracking. As a result, it was found that a predetermined amount of phosphorus (P) lowers the room temperature hardness of the high purity Cu metal initial ball (FAB) to the molten ball. The effect of phosphorus (P) on the high purity Cu metal becomes more pronounced as Cu becomes higher purity, but also depends on the impurity element contained in the Cu metal. The Cu alloy wire containing a small amount of) was found to lower the room temperature hardness of the initial ball (FAB) to the molten ball than the high-purity Cu metal wire to which phosphorus (P) was not added although the recrystallization temperature was increased.

지금까지도 99.999 질량% 이상의 고순도 Cu 금속 와이어에 몇 개인가의 원소를 미량 첨가하면 Cu 합금 와이어의 재결정 온도가 상승하고,Cu 합금 와이어 자체의 실온 경도가 증가하는 것은 알려져 있다.즉, 고순도 Cu 합금 와이어의 실온 경도가 증가한다고 하는 식견은 미량 첨가 원소의 첨가량과 동시에 증가하여 가는 것이라고 생각되고 있다. 사실, 인(P)의 경우도 99.999 질량% 이상의 고순도 Cu 금속 와이어에 0 질량 ppm으로부터 20 질량 ppm, 50 질량 ppm, 100 질량 ppm, 200 질량 ppm 및 400 질량 ppm과 첨가량을 증가하는 것에 따라 고순도 Cu 금속 와이어의 결정립이 미세화하여 가고, 일견한다면 재결정 온도가 상승함과 동시에 재료강도 그 자체가 올라가고 실온 경도도 증가하고 있는 것처럼 보인다. 이 때문에 학술적으로는 인(P)을 10 질량 ppm 정도 첨가한 Cu 합금 와이어의 실온 경도는 인(P)을 첨가하지 않은 고순도 Cu 금속 와이어의 것과 큰 차이가 없고, 이 정도의 경도의 상위(相違)는 실험에 의한 오차 범위 내의 것이라고 정리되고 있다. Until now, it has been known that adding a small amount of a few elements to a high-purity Cu metal wire of 99.999 mass% or more increases the recrystallization temperature of the Cu alloy wire and increases the room temperature hardness of the Cu alloy wire itself. The knowledge that room temperature hardness increases is thought to increase with the addition amount of a trace amount addition element. In fact, even in the case of phosphorus (P), high-purity Cu is increased by increasing 20 mass ppm, 50 mass ppm, 100 mass ppm, 200 mass ppm and 400 mass ppm and addition amount from 0 mass ppm to high purity Cu metal wire of 99.999 mass% or more. As the grain size of the metal wire becomes finer and, at first glance, the recrystallization temperature rises, the material strength itself increases, and the room temperature hardness also seems to increase. For this reason, the room temperature hardness of Cu alloy wire which added about 10 mass ppm of phosphorus (P) does not differ largely from that of the high-purity Cu metal wire which did not add phosphorus (P), and the difference of the hardness of this grade is similar. ) Is summarized as being within the error range by experiment.

이러한 사정에 대하여 전술의 특허문헌 1에 따르면, 인(P) 함유량 40∼400 질량 ppm의 범위에서 용융 볼 형성시의 산화물의 형성을 방지하고, 볼의 경도를 절감하고 칩 균열을 방지한다고 하는 것이고,특허문헌 2에 기재된 것은 Mg 및 P의 적어도 1종을 총계로 10∼700 질량 ppm, 산소를 6∼20 질량 ppm의 범위에서 함유한 본딩 와이어이고, Mg 및 인(P)의 첨가는 상기 범위 내라면 칩 손상은 회피할 수 있다고 하는 것이지만, 그 작용은 경도를 향상하는 원소로 하고 있다.또한, 특허문헌 3에 기재된 것은 Ti, Hf, V, Nb, Ta, Ni, Pd, Pt, Au, Cd, B, Al, In, Si, Ge, P, Sb, Bi, Se, 및 Te 로부터 선택된 1종 또는 2종 이상의 원소를 0.001∼2중량% 함유하고, 잔부가 실질적으로 Cu인 본딩 와이어가 기재되어 있지만 이들의 성분원소는 경도를 향상한다고 생각된다.In view of this situation, according to Patent Document 1 described above, in the range of 40 to 400 mass ppm of phosphorus (P), the formation of oxides during the formation of molten balls is prevented, the hardness of the balls is reduced, and chip cracking is prevented. The patent document 2 is a bonding wire containing at least one of Mg and P in the range of 10 to 700 mass ppm and oxygen in the range of 6 to 20 mass ppm in total, and the addition of Mg and phosphorus (P) is in the above range. The chip damage can be avoided if it is inside, but its action is made of an element which improves the hardness. Further, Patent Document 3 describes Ti, Hf, V, Nb, Ta, Ni, Pd, Pt, Au, A bonding wire containing 0.001 to 2% by weight of one or two or more elements selected from Cd, B, Al, In, Si, Ge, P, Sb, Bi, Se, and Te, with the balance substantially Cu Although these components are considered to improve hardness.

그런데 본 발명자들의 연구에 의하면, 20 질량 ppm 이하의 범위에서 인(P)의 함유량을 세밀하게 나누어서 고순도 Cu에 첨가하다가 고순도의 Cu 합금 와이어의 재결정 온도가 상승하고 있음에도 불구하고, Cu 합금 와이어의 이니셜 볼(FAB) 내지 용융 볼 형성 후의 실온 경도가 인(P)을 포함하지 않는 고순도 Cu 금속 와이어의 실온 경도보다도 낮아지는 영역이 있는 것을 알았다.그런데 이들 범위 및 20 질량 ppm을 초과하여 인(P)을 고순도 Cu에 첨가하여 정확하게 조사해서 보다가 Cu 합금 와이어의 재결정 온도는 인(P)의 증가와 동시에 상승하지만, Cu 합금 와이어의 이니셜 볼(FAB) 내지 용융 볼 형성 후의 실온 경도는 인(P)의 증가와 동시에 상승하는 것은 아니고, 인(P)을 함유한 Cu 합금 와이어라도 고순도 Cu 금속 와이어의 실온 경도보다 낮아지는 영역이 있는 것을 알았다. 이와 같은 영역은 고순도 Cu 금속 와이어에 포함된 금속원소가 적어지면 더욱더 현저하게 나타났다. 또한, Cu에 미치는 인(P)의 경도 저감 효과는 Cu 중에 Ag, Ca, Fe, Mn, Mg, Ni, Al, Pb 및 Si가 존재하고 있어도 그다지 영향을 받지 않는 것이 밝혀졌다(도 1).However, according to the researches of the present inventors, although the content of phosphorus (P) is finely divided and added to high-purity Cu in the range of 20 mass ppm or less, even though the recrystallization temperature of the high-purity Cu alloy wire is rising, the initials of the Cu alloy wire are It was found that there was an area where the room temperature hardness after the formation of the balls (FAB) to the molten ball was lower than the room temperature hardness of the high-purity Cu metal wire containing no phosphorus (P). Is added to high-purity Cu and accurately irradiated, and the recrystallization temperature of Cu alloy wire rises simultaneously with the increase of phosphorus (P), but the room temperature hardness after the initial ball (FAB) to melting ball formation of Cu alloy wire is phosphorus (P). It does not rise simultaneously with the increase of Cu alloy wire containing phosphorus (P), but there is an area lower than the room temperature hardness of the high-purity Cu metal wire All right. This area was more marked when the metal elements included in the high-purity Cu metal wire were less. In addition, it was found that the effect of reducing the hardness of phosphorus (P) on Cu is not affected even if Ag, Ca, Fe, Mn, Mg, Ni, Al, Pb and Si are present in Cu (FIG. 1).

도 1은 이들의 관계를 나타내는 데이터를 그래프 화 한 것이고, 용융 볼 형성 후의 인(P) 함유량에 대한 경도를 종축에 취한 것으로, 인(P) 함유량이 200 질량 ppm 부근에서 인(P) 함유량의 증가에 따라 경도가 향상하는 것은 일반적으로 알려진 현상이지만 여기에서 인(P) 함유량이 150 ppm 부근보다 낮은 영역에서 경도가 높아지고, 일단 100 mN 까지 상승하고 나서 급격하게 경도가 저하하는 영역이 있는 것을 보여준다. Fig. 1 is a graph of data showing these relationships, and the hardness of the phosphorus (P) content after melting ball formation is taken along the vertical axis, and the phosphorus (P) content is about 200 mass ppm. It is generally known that the hardness increases with increase, but here, there is an area where the hardness increases in the region where the phosphorus (P) content is lower than around 150 ppm, and the hardness decreases rapidly after rising to 100 mN. .

도면 중에서 확대한 영역은 그래서 인(P) 함유량이 거의 0.5∼15 질량 ppm 부근의 사이로 그 경도는 인(P) 함유량이 0의 고순도 Cu 금속과 동등 이하로 되는 것이다.The enlarged region in the figure is therefore approximately 0.5 to 15 ppm by mass of phosphorus (P) content, and the hardness thereof is equal to or less than the high purity Cu metal having a phosphorus (P) content of zero.

인(P)의 고순도 Cu 합금에 대한 실온 경도의 저감 효과는 다음과 같은 현상에 근거하여 있는 것이라고 생각된다.즉, 본딩 와이어로서의 Cu 합금 와이어가 불꽃 방전에 의하여 용융하면 대기 중에서 산소를 용융 Cu 중에 취입하지만 Cu 합금 와이어 표면의 산화물의 막(membrane)은 인(P)에 의하여 일부 분단되어 증발되는 것이라고 생각된다. 그렇다면 99.998 질량% 정도 이상의 고순도 Cu 합금 와이어의 경우는 인(P)을 제외한 금속원소가 10 질량 ppm 정도밖에 없기 때문에 산소와 결부된 불순물 원소의 절대량이 적어지고,경질의 산화막이 형성되지 않기 때문에 고순도 Cu 합금 와이어의 실온 경도가 낮아지는 것과 사리가 맞는다.The effect of reducing the room temperature hardness of the phosphorus (P) on the high-purity Cu alloy is considered to be based on the following phenomenon. That is, when the Cu alloy wire as the bonding wire melts by spark discharge, oxygen is dissolved in the molten Cu in the atmosphere. Although blown, it is thought that the membrane of the oxide on the surface of the Cu alloy wire is partly evaporated by phosphorus (P). In the case of high-purity Cu alloy wires of about 99.998 mass% or more, since only 10 mass ppm of metal elements except phosphorus (P) are contained, the absolute amount of impurity elements associated with oxygen is reduced, and since a hard oxide film is not formed, high purity is obtained. This is in line with the lower room temperature hardness of Cu alloy wires.

즉, IC 칩의 전극 상에 Cu 합금 와이어를 초음파 병용으로 열 압착할 때 Cu 합금 와이어의 이니셜 볼(FAB)의 실온 경도가 낮으면 Cu 합금 와이어가 주는 IC 칩의 칩 손상을 경감하는 것이 가능하다. In other words, when the Cu alloy wire is thermocompression-bonded on the electrode of the IC chip by ultrasonic use, if the room temperature hardness of the initial ball (FAB) of the Cu alloy wire is low, the chip damage of the IC chip given by the Cu alloy wire can be reduced. .

게다가 상기한 것처럼 이들 와이어 본딩에서 요구되는 조건과 함께 동일한 조건하에서 신선가공(wire drawing)에서 중요한 Cu 합금 와이어의 재결정 온도가 상승하고,Cu 합금 와이어 자체의 시효 연화가 완화되어 신선가공에서 요구되는 강도가 유지되는 것이다. Furthermore, as mentioned above, the recrystallization temperature of Cu alloy wires, which is important in wire drawing, increases under the same conditions as those required for these wire bondings, and the aging softening of the Cu alloy wires itself is alleviated, so that the strength required for drawing Will be maintained.

이와 같은 식견으로부터 본 발명자들은 본 발명을 완성하기에 이른 것이다.From the above findings, the present inventors have completed the present invention.

구체적으로는 본 발명에 의하면, Specifically, according to the present invention,

(1) 인(P)과 동(Cu)으로 된 Cu 합금의 본딩 와이어에 있어서, 인(P)을 첨가한 Cu 합금 와이어의 이니셜 볼(FAB)의 실온 경도가 인(P)을 첨가하지 않는 Cu 금속 와이어의 것보다도 낮은 것을 특징으로 하는 고순도 볼 본딩용 Cu 합금 와이어가 제공된다.(1) In the bonding wire of Cu alloy made of phosphorus (P) and copper (Cu), the room temperature hardness of the initial ball (FAB) of the Cu alloy wire to which phosphorus (P) is added does not add phosphorus (P). Provided is a Cu alloy wire for high purity ball bonding, which is lower than that of a Cu metal wire.

또한, 본 발명에 의하면, Further, according to the present invention,

(2) 인(P)과 동(Cu)으로 된 Cu 합금의 본딩 와이어에 있어서, 인(P)을 첨가한 Cu 합금 와이어의 이니셜 볼(FAB)의 실온 경도가 인(P)을 첨가하지 않은 Cu 금속 와이어의 것보다도 낮고, 또한, 동(Cu) 중의 인(P) 이외의 금속원소의 총량이 인(P)의 함유량 이하인 것을 특징으로 하는 고순도 볼 본딩용 Cu 합금 와이어가 제공된다.(2) In the bonding wire of Cu alloy of phosphorus (P) and copper (Cu), the room temperature hardness of the initial ball (FAB) of the Cu alloy wire to which phosphorus (P) is added does not add phosphorus (P). A Cu alloy wire for high purity ball bonding, which is lower than that of a Cu metal wire and whose total amount of metal elements other than phosphorus (P) in copper (C) is equal to or less than the content of phosphorus (P).

또한, 본 발명에 의하면, Further, according to the present invention,

(3) 인(P)과 동(Cu)으로 된 Cu 합금의 본딩 와이어에 있어서, 인(P)을 0.5∼15 질량 ppm 및 잔부가 순도 99.9985 질량% 이상의 동(Cu)으로 된 Cu 합금 와이어이고, 게다가, 해당 Cu 합금 와이어의 이니셜 볼(FAB)의 실온 경도가 인(P)을 첨가하지 않은 순도 99.9985 질량% 이상의 Cu 금속 와이어의 것보다도 낮은 것을 특징으로 하는 고순도 볼 본딩용 Cu 합금 와이어가 제공된다.인(P)이 0.5∼10 질량 ppm 및 잔부가 순도 99.9985 질량% 이상의 동(Cu)으로 된 Cu 합금 와이어라면 이니셜 볼(FAB)의 실온 경도가 저하되기 때문에 더욱 바람직하다.(3) A bonding wire of Cu alloy made of phosphorus (P) and copper (Cu), wherein 0.5 to 15 ppm by mass of phosphorus (P) and the remainder are Cu alloy wires of copper (Cu) having a purity of 99.9985% by mass or more. In addition, the Cu alloy wire for high purity ball bonding is characterized in that the room temperature hardness of the initial ball FAB of the Cu alloy wire is lower than that of the Cu metal wire having a purity of 99.9985% by mass or more without the addition of phosphorus (P). The Cu alloy wire having phosphorus (P) of 0.5 to 10 mass ppm and the balance of copper having a purity of 99.9985 mass% or more is more preferable because the room temperature hardness of the initial ball (FAB) is lowered.

또한, 본 발명에 의하면, Further, according to the present invention,

(4) 인(P)과 동(Cu)으로 된 Cu 합금의 본딩 와이어에 있어서, 인(P)이 0.5∼15 질량 ppm 및 잔부가 순도 99.9985 질량% 이상의 동(Cu)으로 된 고순도 Cu 합금 와이어이고, 게다가, 동(Cu) 중의 인(P) 이외의 금속원소의 총량이 인(P)의 함유량 이하에서 해당 Cu 합금 와이어의 이니셜 볼(FAB)의 실온 경도가 인(P)을 첨가하지 않은 순도 99.9985 질량% 이상의 Cu 금속 와이어의 것보다도 낮은 것을 특징으로 하는 볼 본딩용 Cu 합금 와이어가 제공된다.(4) A bonding wire of Cu alloy of phosphorus (P) and copper (Cu), wherein the high purity Cu alloy wire of phosphorus (P) of 0.5 to 15 ppm by mass and the balance of purity of 99.9985% by mass or more of copper (Cu) In addition, the room temperature hardness of the initial ball (FAB) of the Cu alloy wire does not add phosphorus (P) when the total amount of metal elements other than phosphorus (P) in copper (Cu) is below the content of phosphorus (P). A Cu alloy wire for ball bonding is provided, which is lower than that of a Cu metal wire having a purity of 99.9985% by mass or more.

본 발명의 볼 본딩용 Cu 합금 와이어는 미량의 인(P)의 탈 산소 작용에 의해 동(Cu)의 이니셜 볼(FAB)의 표면에 경질의 산화막이 형성되지 않기 때문에 Si 칩의 칩 손상을 경감할 수 있는 효과가 있다. 또한 마찬가지로 리드에 제2 본딩 할 때도 인(P)의 탈 산소 작용에 의해 풀(pull) 강도 측정에 있어서 본딩 와이어의 파단 하중이 향상한다. 이 경우, 본딩 강도 시험 장치를 이용하여 풀(pull) 강도를 측정하면 제2 본드의 압착부에서의 파단 비율보다도 루프가 형성된 와이어 부분에서의 파단 비율 쪽이 더 커져 이들 특성이 향상된 것을 알 수 있다. The Cu alloy wire for ball bonding of the present invention reduces the chip damage of the Si chip because a hard oxide film is not formed on the surface of copper initial balls FAB by the deoxygenation of a small amount of phosphorus (P). It can work. Similarly, in the second bonding to the lead, the breaking load of the bonding wire is improved in the pull strength measurement due to the deoxygenation of phosphorus (P). In this case, when the pull strength is measured using the bonding strength test apparatus, it is found that the breakage ratio at the wire portion where the loop is formed is larger than the breakage ratio at the crimp portion of the second bond, so that these characteristics are improved. .

본 발명의 볼 본딩용 Cu 합금 와이어에 있어서, 순도 99.999 질량% 이상의 동(Cu)에 포함된 금속원소는 Ag, Ca, Fe, Mn, Mg, Ni, Al, Pb 및 Si인 것이 바람직하다. 이들 금속원소가 인(P)과 공존하여도 일정량 이하라면 동(Cu)의 이니셜 볼(FAB)의 실온 경도를 높게 하는 것은 없기 때문이다. 또한, 동(Cu)에 이들 금속원소가 함유되어 있으면 지금까지 알려져 있는 대로 어느 금속원소도 동(Cu)의 재결정 온도를 높게 하는 효과는 있다.In the Cu alloy wire for ball bonding of the present invention, the metal elements contained in copper (Cu) having a purity of 99.999% by mass or more are preferably Ag, Ca, Fe, Mn, Mg, Ni, Al, Pb, and Si. This is because, even if these metal elements coexist with phosphorus (P), there is no increase in room temperature hardness of copper initial balls FAB. Moreover, if these metal elements are contained in copper (Cu), as is known so far, any metal element has the effect of raising the recrystallization temperature of copper (Cu).

본 발명의 볼 본딩용 Cu 합금 와이어에 있어서, 순도 99.999 질량% 이상의 동(Cu)에 포함된 금속원소는 인(P)을 제외하고 10 질량 ppm 미만인 것이 보다 바람직하다. 동(Cu)의 이니셜 볼(FAB)의 실온 경도를 낮게 하는 인(P)의 탈 산소 작용을 보다 좋게 발휘시키기 때문이다.In the Cu alloy wire for ball bonding of the present invention, the metal element contained in copper (Cu) having a purity of 99.999 mass% or more is more preferably less than 10 mass ppm except phosphorus (P). It is because the deoxygenation effect of phosphorus (P) which lowers the room temperature hardness of the initial ball (FAB) of copper (Cu) is exhibited more.

도 1은 본 발명의 고순도 Cu 합금 본딩 와이어의 인(P) 함유량과 경도를 나타내는 파단강도와의 관계를 나타낸다.1 shows the relationship between the breakdown strength showing the phosphorus (P) content and the hardness of the high-purity Cu alloy bonding wire of the present invention.

본 발명의 본딩 와이어는 다음과 같이 하여 구체적으로 제조하여 시효 연화 작용의 확인, 재결정 온도의 확인, 용융 볼의 실온 경도, 및 칩 균열 개수의 확인은 다음과 같이 하여 구체적으로 실시하였다.The bonding wire of this invention was concretely manufactured as follows, and the confirmation of the aging softening effect, the recrystallization temperature, the room temperature hardness of a molten ball, and the number of chip cracks were performed concretely as follows.

실시예Example 1 One

[볼 본딩 용 Cu 와이어의 제조방법][Manufacturing method of Cu wire for ball bonding]

본 발명의 볼 본딩용 Cu 합금 와이어의 제조방법을 설명한다. 99.9999 질량% 이상의 고순도 동(Cu) 금속(Cu의 지금(地金)「A」로 한다.) 및 99.999 질량% 이상의 고순도 동(Cu) 금속(Cu의 지금(地金)「B」로 한다.)을 원료로 하여 인(P)을 소정량 첨가하였다. 표 1에 나타나는 Cu 합금 와이어 조성의 것을 준비한다. 이러한 조성의 것을 고순도 금 와이어의 제조방법의 경우와 똑같이 하여 본딩 와이어로 가공한다. 먼저, 소정량의 원료를 진공 용해로에서 용해한 후 주괴(ingot)으로 주조한다. 이 주괴에 홈 롤 압연(Caliber-rolling)을 한 후,어닐링 처리,녹 방지 처리 등을 하여 직경 25㎛의 고순도 Cu 합금 와이어를 제작하였다.The manufacturing method of Cu alloy wire for ball bonding of this invention is demonstrated. It is set as 99.9999 mass% or more high-purity copper metal (it is Cu now "A"), and 99.999 mass% or more high purity copper metal (Cu it is "B"). ) And a predetermined amount of phosphorus (P) was added as a raw material. The thing of the Cu alloy wire composition shown in Table 1 is prepared. This composition is processed into a bonding wire in the same manner as in the manufacturing method of the high purity gold wire. First, a predetermined amount of raw material is dissolved in a vacuum melting furnace and then cast into an ingot. After the groove roll-rolling (Caliber-rolling) to this ingot, annealing treatment, antirust treatment, etc., the high purity Cu alloy wire of 25 micrometers in diameter was produced.

[시효 연화 작용의 확인][Confirmation of Aging Softening]

99.9999 질량% 이상의 고순도 Cu 및 이 고순도 Cu에 인(P)을 소정량 첨가하였다. 표 1에 나타나는 고순도 Cu 와이어(φ 200㎛)의 시효 연화 작용을 확인하였다. 그 결과를 표 2에 나타낸다. Predetermined amount of phosphorus (P) was added to 99.9999 mass% or more of high purity Cu and this high purity Cu. The aging softening effect | action of the high purity Cu wire (phi 200micrometer) shown in Table 1 was confirmed. The results are shown in Table 2.

Figure pct00001
Figure pct00001

Figure pct00002
Figure pct00002

표 1에 나타내는 고순도 Cu 합금 와이어를 이용하여 볼 본딩 방법에 의한 초음파 병용 열 압착 시험을 행하였다. 볼 본딩 방법은 IC 칩의 전극,특히 Al 금속 또는 Al 합금으로 된 Al 전극과 외부 리드를 본딩 와이어로 배선할 때, 제1 본딩에서는 용융한 동(Cu)의 이니셜 볼(FAB)과 200℃ 정도에서 가열한 Al 전극과의 접합으로 되고, 제2 본딩에서는 용융 볼을 형성하는 것 없이 와이어 측면을 초음파 압착해 200℃ 정도에서 가열한 은(Ag) 도금 리드 프레임에 접합하는 방법이다. 이때, IC 칩 측의 볼 본딩은 95% 질소+5% 수소 분위기 속에서 볼 본딩 하중을 0.2N, 볼 본딩 시간을 10 밀리 초(msec), 볼 본딩 파워(power)를 0.30 와트(watts)의 조건으로 행하였다. 또한, 외부 배선 측의 제2 본딩은 하중을 0.3N, 볼 본딩 시간을 10 밀리 초, 볼 본딩 파워를 0.40 와트의 조건으로 행하였다. Using the high purity Cu alloy wire shown in Table 1, the ultrasonic combined use thermocompression test by the ball bonding method was done. In the ball bonding method, when wiring an electrode of an IC chip, especially an Al electrode made of Al metal or Al alloy and an external lead with a bonding wire, in the first bonding, the initial ball (FAB) of molten copper (Cu) is about 200 ° C. It is a method of joining to an Al electrode heated at, and bonding to a silver (Ag) plated lead frame which is ultrasonically crimped to the side of the wire and heated at about 200 ° C. without forming molten balls in the second bonding. At this time, the ball bonding on the IC chip side is 0.2 N ball bonding load in the atmosphere of 95% nitrogen + 5% hydrogen, 10 milliseconds (msec) ball bonding time, 0.30 watts (ball bonding power) It was done. Moreover, the 2nd bonding by the external wiring side was made on the conditions of 0.3N of load, 10 milliseconds of ball bonding time, and 0.40 watts of ball bonding power.

[3만 회 시험][30,000 tests]

이 고순도 Cu 합금 와이어를 볼 본딩 장치(주식회사 신카와 제품의 상품명「UTC-1000」)를 이용하여 각각 200℃ 정도로 가열한 IC 칩의 Al 전극 상 및 200℃ 정도로 가열한 은(Ag) 도금 리드 프레임의 외부 배선 상에 초음파 병용 볼 본딩을 연속해서 3만 회 실시했다. 이때, IC 칩 측의 볼 본딩은 95% 질소+5% 수소의 분위기 속에서 볼 본딩 하중을 0.2N, 볼 본딩 시간을 10밀리 초, 볼 본딩 파워를 0.30 와트의 조건으로 행하였다. 또한, 외부 배선 측의 제2 본딩은 하중을 0.3N, 볼 본딩 시간을 10밀리 초, 볼 본딩 파워를 0.40 와트의 조건으로 행하였다.The silver (Ag) plated lead frame heated on the Al electrode of the IC chip heated to about 200 ° C and about 200 ° C using a ball bonding device (trade name "UTC-1000" manufactured by Shinkawa Co., Ltd.), respectively. 30,000 times of ultrasonic bonding ball bondings were performed continuously on the external wiring of this. At this time, the ball bonding on the IC chip side was performed under the conditions of a ball bonding load of 0.2 N, a ball bonding time of 10 milliseconds, and a ball bonding power of 0.30 watts in an atmosphere of 95% nitrogen + 5% hydrogen. Moreover, the 2nd bonding by the external wiring side was made on the conditions of 0.3N of load, 10 milliseconds of ball bonding time, and 0.40 watts of ball bonding power.

이 시험에서 제1 본딩의 Al 막 벗겨짐을 기인으로 하는 부압착(不壓着)의 회수를 헤아렸다. 그 측정 결과를 표 3의 우측란에 나타낸다.In this test, the number of negative compressions caused by peeling of the Al film of the first bonding was counted. The measurement results are shown in the right column of Table 3.

[와이어의 재결정 온도 및 이니셜 볼(FAB)의 실온 경도][Recrystallization temperature of wire and room temperature hardness of initial ball (FAB)]

와이어의 재결정 온도는 신선가공 후의 상태에서 재료가 완전하게 연화하는 온도를 조사하고, 그 온도를 재결정 온도로서 표 2에 기록하였다. The recrystallization temperature of the wire was investigated at the temperature at which the material completely softened in the state after the fresh working, and the temperature was recorded in Table 2 as the recrystallization temperature.

제1 본딩으로 용융 응고된 Cu 합금 와이어의 이니셜 볼(FAB) 내지 용융 볼의 실온 경도에 관한 평가는 3만 회 본딩 한 시료로부터 임의로 10개의 볼 본딩된 자료를 선택하고, 주식회사 아카시 제작소 제품의 마이크로 비커즈(Micro Vickers) 경도계(형식「DMH-1」)로 측정하여 그 평균치를 산출하였다. 측정결과를 표 3에 나타낸다.Evaluation on the room temperature hardness of the initial ball (FAB) to the molten ball of the Cu alloy wire melted and solidified by the first bonding was selected from 100,000 ball-bonded materials arbitrarily from 30,000-bonded samples, and manufactured by Akashi Co., Ltd. It measured with the Micro Vickers hardness tester (model "DMH-1"), and computed the average value. The measurement results are shown in Table 3.

Figure pct00003
Figure pct00003

표 2의 재결정 온도에서, 실시례 No. 1∼9의 인(P)을 소정량 첨가한 Cu 합금 와이어는 비교례 10의 인(P)을 전혀 첨가하지 않은 고순도 Cu 와이어 및 비교 례 11의 인(P)을 아주 적게 첨가한 고순도 Cu 와이어와 비교하여 재결정 온도가 높은 것이 밝혀졌다. At the recrystallization temperature of Table 2, Example No. The Cu alloy wire to which a predetermined amount of phosphorus (P) of 1-9 was added is a high purity Cu wire which does not add the phosphorus (P) of the comparative example 10, and a high purity Cu wire which adds very little phosphorus (P) of the comparative example 11 It was found that the recrystallization temperature was high in comparison with.

다른 한편, 실시례 No.6,7의 인(P)을 소정량 첨가한 99.999 질량% 정도의 고순도 Cu 합금 와이어는 이니셜 볼의 실온 경도가 비교례 10의 인(P)을 전혀 첨가하지 않은 고순도 Cu 금속 와이어 및 비교례 15의 인(P)을 다량으로 첨가한 Cu 합금 와이어보다도 낮고, 표 2의 알루미늄 막 벗겨짐의 개수도 적은(3만 회 시험치(試驗値)는 제로(0))것이 밝혀졌다. On the other hand, about 99.999 mass% of high purity Cu alloy wire which added the predetermined amount of phosphorus (P) of Example No. 6, 7, the high-purity in which the room temperature hardness of the initial ball did not add the phosphorus (P) of the comparative example 10 at all. It is lower than Cu metal wire and Cu alloy wire which added a large amount of phosphorus (P) of comparative example 15, and the number of peelings of aluminum film of Table 2 is also small (30,000 test values are zero). Turned out.

이상과 같이 본 발명의 본딩 와이어는 재결정 온도가 높음에도 불구하고, 이니셜 볼(FAB)의 실온 경도가 낮고, 모두 3만 회의 본딩 회수(回數)에 있어서 알루미늄 막 벗겨짐 불량이 대폭적으로 저감되었다.As described above, although the bonding wire of the present invention had a high recrystallization temperature, the room temperature hardness of the initial ball FAB was low, and the aluminum film peeling defect was greatly reduced in all 30,000 times of bonding.

따라서 본 발명의 본딩 와이어는 재결정 온도가 높고, 시효 연화 작용이 작기 때문에 와이어 신선가공 특성을 유지하고, 또한, 볼 본딩에 있어서는 이니셜 볼의 실온 경도가 낮기 때문에 칩 균열을 효과적으로 방지한다. Therefore, since the bonding wire of the present invention has a high recrystallization temperature and a small aging softening effect, the wire drawing property is maintained, and in the ball bonding, since the initial room temperature hardness of the initial ball is low, chip cracking is effectively prevented.

본 발명에 따른 본딩 와이어에 의하면, 인(P)을 소정량 첨가한 본 발명의 Cu 합금 와이어는 이니셜 볼(FAB)에 의한 칩 균열 방지에 우수하고, 게다가 지금까지의 본딩 와이어와 마찬가지로 신선가공할 수 있고,반도체 장치의 신뢰성 향상에 우수한 효과를 발휘한다.According to the bonding wire according to the present invention, the Cu alloy wire of the present invention to which a predetermined amount of phosphorus (P) is added is excellent in preventing chip cracking by the initial ball (FAB), and furthermore, as with the conventional bonding wire, Can exert an excellent effect on improving the reliability of semiconductor devices.

Claims (3)

인(P)의 함유량이 0.5∼15 질량 ppm, 및 잔부가 순도 99.9985 질량% 이상의 동(Cu)으로 된 Cu 합금 와이어이고, Cu 합금 와이어의 이니셜 볼(FAB)의 실온 경도를 인(P)을 첨가하지 않은 순도 99.9999 질량% 이상의 Cu 금속 와이어의 것보다도 저하시킨 것을 특징으로 하는 볼 본딩용 Cu 합금 와이어. Phosphorus (P) is a Cu alloy wire having a content of 0.5 to 15 ppm by mass and a balance of copper having a purity of 99.9985% by mass or more, and the room temperature hardness of the initial ball (FAB) of the Cu alloy wire is represented by phosphorus (P). The Cu alloy wire for ball bonding characterized by lowering than that of the Cu metal wire of 99.9999 mass% or more of purity which is not added. 인(P)이 0.5∼15 질량 ppm, 및 잔부가 순도 99.9985 질량% 이상의 동(Cu)으로 된 Cu 합금 와이어이고, 동(Cu) 중의 인(P) 이외의 금속원소의 총량이 인(P)의 함유량 이하이고, Cu 합금 와이어의 이니셜 볼(FAB)의 실온 경도를 인(P)을 첨가하지 않은 순도 99.9999 질량% 이상의 Cu 금속 와이어의 것보다도 저하시킨 것을 특징으로 하는 고순도 볼 본딩용 Cu 합금 와이어. Phosphorus (P) is a Cu alloy wire of 0.5 to 15 mass ppm and the balance is copper (Cu) with a purity of 99.9985 mass% or more, and the total amount of metal elements other than phosphorus (P) in copper (P) is phosphorus (P) The Cu alloy wire for high purity ball bonding, which is below the content of Cu and lowered the room temperature hardness of the initial ball (FAB) of the Cu alloy wire than that of the Cu metal wire having a purity of 99.9999 mass% or more without adding phosphorus (P). . 청구항 2에 있어서, 동(Cu) 중의 인(P) 이외의 금속원소는 Pt, Au, Ag, Pd, Ca, Fe, Mn, Mg, Ni, Al, Pb 및 Si 중의 어느 1종 또는 2종 이상인 것을 특징으로 하는 고순도 볼 본딩용 Cu 합금 와이어. The metal element other than phosphorus (P) in copper (Cu) is any one or two or more of Pt, Au, Ag, Pd, Ca, Fe, Mn, Mg, Ni, Al, Pb, and Si. Cu alloy wire for high purity ball bonding, characterized in that.
KR1020127024832A 2010-03-25 2010-03-25 High-purity Cu bonding wire KR101280053B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/055281 WO2011118009A1 (en) 2010-03-25 2010-03-25 HIGH-PURITY Cu BONDING WIRE

Publications (2)

Publication Number Publication Date
KR20130004912A true KR20130004912A (en) 2013-01-14
KR101280053B1 KR101280053B1 (en) 2013-06-28

Family

ID=44672600

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127024832A KR101280053B1 (en) 2010-03-25 2010-03-25 High-purity Cu bonding wire

Country Status (4)

Country Link
KR (1) KR101280053B1 (en)
MY (1) MY166908A (en)
SG (1) SG184233A1 (en)
WO (1) WO2011118009A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688080B1 (en) * 2015-09-09 2016-12-20 앰코 테크놀로지 코리아 주식회사 Semiconductor package

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5998758B2 (en) * 2012-08-31 2016-09-28 三菱マテリアル株式会社 Rough drawn copper wire and winding, and method for producing rough drawn copper wire
JP5680773B1 (en) * 2014-01-29 2015-03-04 千住金属工業株式会社 Cu core ball, solder joint, foam solder and solder paste
CN106029260B (en) 2014-02-04 2018-05-18 千住金属工业株式会社 Cu balls, Cu cores ball, soldered fitting, soldering paste and shaping solder
JP6361194B2 (en) 2014-03-14 2018-07-25 三菱マテリアル株式会社 Copper ingot, copper wire, and method for producing copper ingot
WO2016189752A1 (en) 2015-05-26 2016-12-01 日鉄住金マイクロメタル株式会社 Bonding wire for semiconductor device
CN109763015A (en) * 2019-03-25 2019-05-17 杭州辰卓科技有限公司 A kind of damp type high thermal conductivity silver of resistance to brittle failure bonding line material used for electronic packaging

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01291435A (en) * 1988-05-18 1989-11-24 Mitsubishi Metal Corp Extrafine copper alloy wire for semiconductor device and semiconductor device
JPH01290231A (en) * 1988-05-18 1989-11-22 Mitsubishi Metal Corp Semiconductor device and copper allow extremely fine wire therefor
JP2004064033A (en) 2001-10-23 2004-02-26 Sumitomo Electric Wintec Inc Bonding wire
KR101019811B1 (en) * 2005-01-05 2011-03-04 신닛테츠 마테리알즈 가부시키가이샤 Bonding wire for semiconductor device
KR100702662B1 (en) 2005-02-18 2007-04-02 엠케이전자 주식회사 Copper bonding wire for semiconductor packaging
JP4349641B1 (en) 2009-03-23 2009-10-21 田中電子工業株式会社 Coated copper wire for ball bonding

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688080B1 (en) * 2015-09-09 2016-12-20 앰코 테크놀로지 코리아 주식회사 Semiconductor package

Also Published As

Publication number Publication date
MY166908A (en) 2018-07-24
WO2011118009A1 (en) 2011-09-29
KR101280053B1 (en) 2013-06-28
CN102859672A (en) 2013-01-02
SG184233A1 (en) 2012-10-30

Similar Documents

Publication Publication Date Title
KR101280053B1 (en) High-purity Cu bonding wire
JP4482605B1 (en) High purity Cu bonding wire
TWI490996B (en) Bonding wire
JP5165810B1 (en) Silver gold palladium alloy bump wire
JP3382918B2 (en) Gold wire for connecting semiconductor elements
JP3328135B2 (en) Gold alloy wire for bump formation and bump formation method
JP4726206B2 (en) Gold alloy wire for bonding wire with high initial bondability, high bond reliability, high roundness of crimped ball, high straightness, high resin flow resistance and low specific resistance
TWI714562B (en) Copper alloy bonding wire
CN110284023B (en) Copper alloy bonding wire and preparation method and application thereof
US5989364A (en) Gold-alloy bonding wire
JPH10326803A (en) Gold and silver alloy thin wire for semiconductor element
WO2006134824A1 (en) Gold alloy wire for use as bonding wire exhibiting high initial bonding capability, high bonding reliability, high circularity of press bonded ball, high straight advancing property and high resin flow resistance
JPH0555580B2 (en)
JP3323185B2 (en) Gold wire for connecting semiconductor elements
JPH1098063A (en) Gold alloy wire for wedge bonding
JP6898705B2 (en) Copper alloy thin wire for ball bonding
JP4641248B2 (en) Gold alloy wire for bonding wires with excellent bondability, straightness and resin flow resistance
JP4134261B1 (en) Gold alloy wire for ball bonding
JPH0464121B2 (en)
JPH1098062A (en) Gold alloy wire for wedge bonding
JP3907534B2 (en) Gold alloy wire for bonding
JP3586909B2 (en) Bonding wire
CN102859672B (en) High-purity copper welding lead
KR20220150940A (en) Gold-coated bonding wire and its manufacturing method, semiconductor wire bonding structure, and semiconductor device
JPH07335684A (en) Bonding wire

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160527

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20170601

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180529

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190530

Year of fee payment: 7