JPH1098063A - Gold alloy wire for wedge bonding - Google Patents

Gold alloy wire for wedge bonding

Info

Publication number
JPH1098063A
JPH1098063A JP9206903A JP20690397A JPH1098063A JP H1098063 A JPH1098063 A JP H1098063A JP 9206903 A JP9206903 A JP 9206903A JP 20690397 A JP20690397 A JP 20690397A JP H1098063 A JPH1098063 A JP H1098063A
Authority
JP
Japan
Prior art keywords
gold
purity
bonding
tensile strength
alloy wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9206903A
Other languages
Japanese (ja)
Other versions
JP3657087B2 (en
Inventor
Teruo Kikuchi
照夫 菊池
Kokichi Ishii
光吉 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP20690397A priority Critical patent/JP3657087B2/en
Publication of JPH1098063A publication Critical patent/JPH1098063A/en
Application granted granted Critical
Publication of JP3657087B2 publication Critical patent/JP3657087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78313Wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20756Diameter ranges larger or equal to 60 microns less than 70 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20757Diameter ranges larger or equal to 70 microns less than 80 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20758Diameter ranges larger or equal to 80 microns less than 90 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20759Diameter ranges larger or equal to 90 microns less than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/2076Diameter ranges equal to or larger than 100 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To make a gold alloy wire correspond to a high-density wiring and also to raise the high-temperature bonding strength of the gold alloy wire by a method, wherein the purity and tensile strength of the gold of the gold alloy wire are respectively set at a specified or higher and the extensibility of the gold is set in a specified range. SOLUTION: A specified amount of Ca is added to high-purity gold and, moreover, at least one kind of an element out of Mg, Y, La, Eu, Ge, Ag, Pt and Be is preferably added to the high-purity gold, the extensibility of the gold is made small and the tensile strength of the gold is made large. As raw high-purity gold, high-purity gold refined at least 99.99wt.% or higher, at preferably 99.995wt.% or higher and at most preferably 99.999wt.% or higher is used. The content of the Ca is set at 1 to 100 wt.ppm under the conditions of a specified gold purity extensibility and a specified gold purity tensile strength. The content of the Ca is preferably 1 to 50 wt.ppm. The extensibility is set at 1 to 3%. The extensibility is preferably 2 to 3%. The tensile strength is set in 33.0kg/mm<2> or higher. The tensile strength is preferably 33.0 to 70.0kg/mm<2> or higher and is most preferably 39.1 to 63.0kg/mm<2> .

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はウエッジボンディン
グ用金合金線に係り、高温接合強度に優れ、ICチップ
の高密度配線用として好適な金合金線に関する。
The present invention relates to a gold alloy wire for wedge bonding, and more particularly to a gold alloy wire having excellent high-temperature bonding strength and suitable for high-density wiring of IC chips.

【0002】[0002]

【従来の技術】ICチップの電極と外部配線を接続する
場合、ワイヤーを介して配線するワイヤーボンディング
方法が知られている。この中でもICチップのAl電極
とワイヤーを接合する方式により、超音波併用熱圧着接
合及び超音波接合が主流を占めている。
2. Description of the Related Art When an electrode of an IC chip is connected to an external wiring, a wire bonding method of wiring via a wire is known. Among these, thermocompression bonding using ultrasonic waves and ultrasonic bonding occupy the mainstream due to the method of bonding the Al electrode of the IC chip and the wire.

【0003】ここで超音波併用熱圧着接合は通常ネール
ヘッドボンディング方法により行われている。ネールヘ
ッドボンディング方法による接合法を図1を用いて説明
する。図1(a)に示す様にワイヤー2をキャピラリー
1に挿通しその先端に電気トーチ3を対向させ、ワイヤ
ー2との間で放電させることにより、ワイヤー2の先端
を加熱、溶融してボール4を形成する。
Here, thermocompression bonding using ultrasonic waves is usually performed by a nail head bonding method. The bonding method by the nail head bonding method will be described with reference to FIG. As shown in FIG. 1 (a), a wire 2 is inserted into a capillary 1 and an electric torch 3 is opposed to the tip of the capillary 2 to discharge the wire 2 with the wire. To form

【0004】次いで図1(b)に示すようにキャピラリ
ー1を下降させて該ボール4をICチップ6上のAl電
極5の上に押圧接合する。この時図示しないが超音波振
動がキャピラリー1を通して付加されると共に、ICチ
ップ6はヒーターブロックで加熱されるため上記ボール
4は熱圧着され圧着ボール4′となる。次いで図1
(c)に示すようにキャピラリー1は所定の軌跡を描い
て、外部配線8の上に移動し、下降する。この時図示し
ないが超音波振動がキャピラリー1を通して付加され、
外部配線8はヒーターブロックで加熱されるためワイヤ
ー2側面が熱圧着される。
Then, as shown in FIG. 1B, the capillary 1 is lowered, and the ball 4 is pressed and joined onto the Al electrode 5 on the IC chip 6. At this time, although not shown, ultrasonic vibration is applied through the capillary 1 and the IC chip 6 is heated by the heater block, so that the ball 4 is thermocompression-bonded to form a compression ball 4 '. Then Figure 1
As shown in (c), the capillary 1 moves on the external wiring 8 along a predetermined trajectory and descends. At this time, although not shown, an ultrasonic vibration is applied through the capillary 1,
Since the external wiring 8 is heated by the heater block, the side surface of the wire 2 is thermocompression-bonded.

【0005】次いで図1(d)に示すようにクランパー
7はワイヤー2をクランプしたまま上昇することによ
り、ワイヤー2が切断され配線が完了する。一方超音波
接合は通常振動を接合部へ伝えるのに最適なウエッジボ
ンディング方法により行われている。これはウエッジ状
ツールを用いる方法である。ウエッジボンディング方式
による接合法を図2を用いて説明する。
Next, as shown in FIG. 1D, the clamper 7 rises while clamping the wire 2, thereby cutting the wire 2 and completing the wiring. On the other hand, ultrasonic bonding is usually performed by a wedge bonding method which is most suitable for transmitting vibration to a bonded portion. This is a method using a wedge-shaped tool. The joining method by the wedge bonding method will be described with reference to FIG.

【0006】図2(a)に示す様にワイヤー12をウエ
ッジ11下端部に挿通し、この下方にICチップ16上
のAl電極15を移動する。次いで図2(b)に示すよ
うにウエッジ11を下降させて常温のまま超音波振動を
付加してワイヤー12をAl電極15に接合する。次い
で図2(c)に示すようにクランパー17が開放され、
ウエッジ11は所定の軌跡を描いて、外部配線18の上
に移動し、下降する。この時図示しないが常温のまま超
音波振動がウエッジ11を通して付加され、ワイヤー1
2を外部配線18に接合する。
As shown in FIG. 2A, the wire 12 is inserted into the lower end of the wedge 11, and the Al electrode 15 on the IC chip 16 is moved below this. Next, as shown in FIG. 2B, the wedge 11 is lowered and ultrasonic vibration is applied at room temperature to join the wire 12 to the Al electrode 15. Next, the clamper 17 is opened as shown in FIG.
The wedge 11 draws a predetermined locus, moves on the external wiring 18, and descends. At this time, although not shown, ultrasonic vibration is applied through the wedge 11 at room temperature, and the wire 1
2 is connected to the external wiring 18.

【0007】次いで図2(d)に示すようにクランパー
17はワイヤー2をクランプしたままウエッジ11が上
昇することにより、ワイヤー12が切断され配線が完了
する。前記ネールヘッドボンディング方法は生産性に優
れている為好ましい方法であるが、熱を用いる為ワイヤ
ー材料として金合金線を用いて使用され、酸化し易いア
ルミ合金線には不適である。
Then, as shown in FIG. 2D, the clamper 17 raises the wedge 11 while clamping the wire 2, thereby cutting the wire 12 and completing the wiring. The nail head bonding method is a preferable method because it is excellent in productivity. However, since it uses heat, a gold alloy wire is used as a wire material and is not suitable for an aluminum alloy wire that is easily oxidized.

【0008】また図3(a)に示す様に圧着ボール径L
1 がワイヤー外径Dの3〜4倍になることが微細な配線
を行う際のネックになるという限界を有している。次の
ウエッジボンディング方法は生産性は低下するものの室
温で処理出来る為ワイヤー材料としてアルミ合金線を用
いて使用されている。また図3(b)に示す様につぶれ
幅L2 がワイヤー外径Dの1.5〜2.5倍に抑制出来
るという特徴を有している。
Further, as shown in FIG.
There is a limit in that 1 to 3 to 4 times the wire outer diameter D becomes a bottleneck in fine wiring. The following wedge bonding method is used with an aluminum alloy wire as a wire material because it can be processed at room temperature although productivity is reduced. The width L 2 crushed as shown in FIG. 3 (b) has a feature that can be reduced to 1.5 to 2.5 times the wire outer diameter D.

【0009】ここで前述のワイヤー材料として金合金線
は他の材料と対比して耐蝕性に優れている為、半導体装
置の耐蝕性に対する信頼性を確保する面で配線材料とし
て最も好ましい材料である。一方最近の半導体装置に対
して高密度配線が要求されている。これの対応として金
合金線とICチップ電極との接合部の配線方向と直角方
向での拡がりを小さくすることが必要である。
Here, as the above-mentioned wire material, the gold alloy wire is more excellent in corrosion resistance than other materials, and is therefore the most preferable material as the wiring material in terms of ensuring the reliability with respect to the corrosion resistance of the semiconductor device. . On the other hand, high-density wiring is required for recent semiconductor devices. To cope with this, it is necessary to reduce the spread of the joint between the gold alloy wire and the IC chip electrode in the direction perpendicular to the wiring direction.

【0010】この為ワイヤー材料として金合金線を用い
てネールヘッドボンディングを行うに当たって、圧着ボ
ールの外径を小さくする事が試みられたがその大きさに
も限度がある。
For this reason, in performing nail head bonding using a gold alloy wire as a wire material, attempts have been made to reduce the outer diameter of the pressure-bonded ball, but the size is limited.

【0011】[0011]

【発明が解決しようとする課題】前述の従来事情に鑑み
従来からネールヘッドボンディング用として提案されて
いる金合金線を用いてICチップ電極にウエッジボンデ
ィングを行ってみたところ、接合部の配線方向と直角方
向での拡がりはネールヘッドボンディング方法と対比し
て小さくすることは出来るものの、ICチップの作動状
態を考えて高温状態に晒した後の接合部での接合強度
(以下高温接合強度という)が小さく半導体装置の信頼
性が低下するという問題が生じてきた。
In view of the above-mentioned conventional circumstances, wedge bonding was performed on an IC chip electrode using a gold alloy wire conventionally proposed for nail head bonding. Although the spread in the perpendicular direction can be reduced as compared with the nail head bonding method, the bonding strength at the bonding portion after exposure to a high temperature state (hereinafter referred to as high temperature bonding strength) in consideration of the operating state of the IC chip is low. There has been a problem that the reliability of the semiconductor device is reduced.

【0012】この為本発明に於いては金合金線を用いて
ICチップ電極にウエッジボンディングを行うことによ
り、配線方向と直角方向での接合部の拡がりを小さくし
て高密度配線に対応するとともに高温接合強度を向上さ
せて半導体装置の信頼性を向上させることの出来る金合
金線を提供する事を目的とする。
For this reason, in the present invention, by performing wedge bonding on the IC chip electrode using a gold alloy wire, the spread of the bonding portion in the direction perpendicular to the wiring direction is reduced, thereby enabling high-density wiring. It is an object of the present invention to provide a gold alloy wire capable of improving the high-temperature bonding strength and improving the reliability of a semiconductor device.

【0013】[0013]

【課題を解決するための手段】本発明者等が鋭意研究を
重ねた結果、高純度金に所定量のCaを添加し、所定の
金純度を維持する組成を有し、通常のネールヘッドボン
ディング用金合金線より伸び率を小さくし且つ引張り強
さを大きくした金合金線とすることにより、前記組成と
材料特性の相乗効果によって前述の目的を達成し得るこ
とを知見し、本発明を完成するに至った。
As a result of intensive studies conducted by the present inventors, a predetermined amount of Ca is added to high-purity gold, the composition has a composition for maintaining the predetermined gold purity, and ordinary nail head bonding is performed. It has been found that the above-mentioned object can be achieved by the synergistic effect of the composition and the material properties by using a gold alloy wire having a smaller elongation rate and a larger tensile strength than a gold alloy wire for use, and completed the present invention. I came to.

【0014】具体的には、本発明によれば、高純度金に
カルシウム(Ca)を1〜100重量ppm 添加した金合
金線であって、該金合金線の金純度が99.9重量%以
上であり、引張強さが33.0kg/mm 2 以上、伸び率が
1〜3%であることを特徴とするウエッジボンディング
用金合金線が提供される。
Specifically, according to the present invention, high purity gold
Gold alloy containing 1 to 100 ppm by weight of calcium (Ca)
A gold wire having a gold purity of 99.9% by weight or less;
Above, with a tensile strength of 33.0 kg / mm Two As mentioned above,
Wedge bonding characterized by being 1 to 3%
A gold alloy wire is provided.

【0015】好ましい態様において、Mg,Y,La,
Eu,Ge,Ag,Ptのうち少なくとも1種を1〜1
00重量部、及び/又はベリリウム(Be)を1〜20
重量ppm 添加する。
In a preferred embodiment, Mg, Y, La,
At least one of Eu, Ge, Ag, and Pt is 1 to 1
00 parts by weight and / or beryllium (Be)
Add ppm by weight.

【0016】[0016]

【発明の実施の形態】本発明のウエッジボンディング用
金合金線は、高純度金に所定量のCaを添加し、更に好
ましい態様として所定量のMg,Y,La,Eu,G
e,Ag,Pt,Beのうち少なくとも1種を添加し、
所定の金純度を維持する組成を有し、且つ、伸び率を小
さくしかつ引張り強さを大きくすることを特徴とする。 (1)組成 原料高純度金としては少なくとも99.99重量%
以上、好ましくは99.995重量%以上、最も好まし
くは99.999重量%以上に精製した高純度金が用い
られる。
BEST MODE FOR CARRYING OUT THE INVENTION The gold alloy wire for wedge bonding of the present invention is obtained by adding a predetermined amount of Ca to high-purity gold, and more preferably a predetermined amount of Mg, Y, La, Eu, G.
e, Ag, Pt, Be added at least one of the following,
It is characterized by having a composition for maintaining a predetermined gold purity, reducing elongation, and increasing tensile strength. (1) Composition At least 99.99% by weight of raw material high purity gold
As described above, high purity gold purified to preferably 99.995% by weight or more, most preferably 99.999% by weight or more is used.

【0017】 〔Ca〕 (a)この様な高純度金に上記所定量のCaを添加して
所定量の金純度を有する組成にするとともに所定の伸び
率及び引張り強さとすることにより、その相乗効果によ
って高温接合強度を向上させる事ができる。 (b)Ca含有量が1重量ppm 未満になると1重量ppm
以上と対比して高温接合強度は小さくなる。Ca含有量
が100重量ppm を超えるとICチップに割れが生じる
為、これを避けるため不十分な接合しか出来なくなり高
温接合強度は小さくなる。
[Ca] (a) The above-mentioned predetermined amount of Ca is added to such high-purity gold to obtain a composition having a predetermined amount of gold purity and a predetermined elongation and tensile strength, thereby obtaining a synergistic effect. The effect can improve the high-temperature bonding strength. (B) If the Ca content is less than 1 ppm by weight, 1 ppm by weight
In comparison with the above, the high-temperature bonding strength decreases. If the Ca content exceeds 100 ppm by weight, cracks occur in the IC chip. To avoid this, only insufficient bonding can be performed and the high-temperature bonding strength decreases.

【0018】この為Ca含有量は所定の金純度、伸び率
及び引張り強さの条件のもとに1〜100重量ppm と定
めた。好ましくは1〜50重量ppm である。 (c)この効果は、上記所定量のCaに加えて他の元素
を添加しても99.9重量%以上の金純度を有する組成
であり、所定の伸び率及び引張り強さを有する金合金線
であればCaを添加した効果が維持される。所定量のC
aを高純度金に添加し、残り実質的に不可避的不純物の
みで構成してもよいことは勿論である。
For this reason, the Ca content is determined to be 1 to 100 ppm by weight under predetermined conditions of gold purity, elongation and tensile strength. Preferably it is 1 to 50 ppm by weight. (C) This effect is due to a composition having a gold purity of 99.9% by weight or more even if other elements are added in addition to the above-mentioned predetermined amount of Ca, and a gold alloy having a predetermined elongation and tensile strength. If it is a line, the effect of adding Ca is maintained. Predetermined amount of C
It is a matter of course that a may be added to high-purity gold and the remaining may be substantially composed only of unavoidable impurities.

【0019】 〔Mg,Y,La,Eu,Ge,A
g,Pt,Be〕 (a)前述の様に所定量のCaに加えて他の元素を添加
しても本発明の効果は一般に維持されるが特にMg,
Y,La,Eu,Ge,Ag,Ptのうち少なくとも1
種の成分を1〜100重量ppm 又はそれに加えてBeを
1〜20重量ppmの範囲内で添加すると高温接合強度は
更に向上する。
[Mg, Y, La, Eu, Ge, A
g, Pt, Be] (a) As described above, the effect of the present invention is generally maintained even if other elements are added in addition to the predetermined amount of Ca, but particularly Mg,
At least one of Y, La, Eu, Ge, Ag, and Pt
The high temperature bonding strength is further improved by adding 1 to 100 ppm by weight of the seed components or by adding Be in the range of 1 to 20 ppm by weight.

【0020】(b)この場合Mg,Y,La,Eu,G
e,Ag,Pt,Beのうち少なくとも1種を所定量添
加し、所定量のCaを添加しない場合、所定量の金純度
を有する組成にするとともに所定の伸び率及び引張り強
さを有しても高温接合強度は小さくなる。 金純度 (a)所定量のCaを添加した組成とし、所定の伸び率
及び引張り強さを有する金合金線としても1〜2重量%
Cuが添加されると高温接合強度は小さくなる。そこで
接合強度を上げようとするとICチップに割れが生じ
る。
(B) In this case, Mg, Y, La, Eu, G
When at least one of e, Ag, Pt, and Be is added in a predetermined amount and a predetermined amount of Ca is not added, a composition having a predetermined amount of gold purity and a predetermined elongation and tensile strength are obtained. However, the high-temperature bonding strength is reduced. Gold purity (a) A composition to which a predetermined amount of Ca is added, and a gold alloy wire having a predetermined elongation and tensile strength is also 1 to 2% by weight.
When Cu is added, the high-temperature bonding strength decreases. Therefore, if an attempt is made to increase the bonding strength, the IC chip will crack.

【0021】この為金合金線の金純度は99.9重量%
以上と定めた。好ましくは99.97重量%以上、より
好ましくは99.979重量%以上である。高純度金に
高純度添加金属を合金化して得ることができる。 (2)伸び率 高純度金に上記所定量のCaを添加して所定量の金
純度を有する組成にするとともに所定の伸び率及び引張
り強さとすることにより、その相乗効果によって高温接
合強度を向上させる事ができる。なお、本発明に於いて
伸び率は、室温で、金合金線を標点距離を100mmとし
て引張速度10mm/分で引張試験機で引っ張り、破断し
た時の伸び量を測定して次式の値を伸び率とする。
For this reason, the gold purity of the gold alloy wire is 99.9% by weight.
It was decided above. It is preferably at least 99.97% by weight, more preferably at least 99.979% by weight. It can be obtained by alloying high purity metal with high purity gold. (2) Elongation rate The above-mentioned predetermined amount of Ca is added to high-purity gold to obtain a composition having a predetermined amount of gold purity and a predetermined elongation percentage and tensile strength. Can be done. In the present invention, the elongation percentage is determined by elongating the gold alloy wire at room temperature at a gauge length of 100 mm at a tensile speed of 10 mm / min with a tensile tester and measuring the amount of elongation at break. Is the elongation.

【数1】 ここで破断した時の伸び量はチャート紙の図形から測定
することが好ましい。
(Equation 1) Here, it is preferable to measure the amount of elongation at the time of breaking from the figure on the chart paper.

【0022】 伸び率が3%を超えると、所定量のC
aを添加して所定量の金純度を有する組成であって所定
の引張り強さを有しても、高温接合強度は小さくなる。
この為伸び率は1〜3%と定めた。好ましくは2〜3%
である。 (3)引張り強さ 高純度金に上記所定量のCaを添加して所定量の金
純度を有する組成にするとともに所定の伸び率及び引張
り強さとすることにより、その相乗効果によって高温接
合強度を向上させる事ができる。
When the elongation exceeds 3%, a predetermined amount of C
Even if a composition having a predetermined amount of gold purity by adding a and having a predetermined tensile strength, the high-temperature bonding strength is reduced.
For this reason, the elongation was determined to be 1 to 3%. Preferably 2-3%
It is. (3) Tensile strength By adding the above-mentioned predetermined amount of Ca to high-purity gold to obtain a composition having a predetermined amount of gold purity and a predetermined elongation and tensile strength, the synergistic effect of the combination enhances the high-temperature bonding strength. Can be improved.

【0023】 引張り強さが33.0kg/mm2 未満に
なると33.0kg/mm2 以上と対比して、高温接合強度
は小さくなる。この為引張り強さは33.0kg/mm2
上と定めた。好ましくは33.0〜70.0kg/mm2
あり、さらに好ましくは33.0〜63.0kg/mm2
ある。最も好ましくは39.1〜63.0kg/mm2 であ
る。 (4)金合金線の製造方法 本発明になる金合金線の好ましい製造方法を説明する。
高純度金に所定量の元素を添加し真空溶解炉で溶解した
後インゴットに鋳造する。該当インゴットに溝ロール、
伸線機を用いた冷間加工と中間アニールを施し、最終冷
間加工により直径10〜100μmの細線とした後最終
アニールを施すものである。
The tensile strength in contrast to the less than 33.0kg / mm 2 33.0kg / mm 2 or more, the high temperature bond strength is reduced. Therefore, the tensile strength was determined to be 33.0 kg / mm 2 or more. It is preferably 33.0 to 70.0 kg / mm 2 , and more preferably 33.0 to 63.0 kg / mm 2 . Most preferably, it is 39.1 to 63.0 kg / mm 2 . (4) Manufacturing method of gold alloy wire A preferable manufacturing method of the gold alloy wire according to the present invention will be described.
A predetermined amount of element is added to high purity gold, melted in a vacuum melting furnace, and then cast into an ingot. Groove roll on applicable ingot,
Cold working using a wire drawing machine and intermediate annealing are performed, and final annealing is performed after forming a thin wire having a diameter of 10 to 100 μm by final cold working.

【0024】ここで本発明になる合金組成の場合、最終
アニールの温度が上昇するにつれて伸び率は1〜3%を
維持したまま、引張り強さが徐々に低下する温度領域が
ある。また同一組成であっても最終冷間加工率の大きさ
によって引張り強さは変わってくる。この為最終冷間加
工率と最終アニール温度を制御して伸び率と引張り強さ
を調整する。このようにして伸び率は1〜3%を維持
し、引張り強さが33.0kg/mm2 以上、好ましくは3
3.0〜70.0kg/mm2 となる温度領域でアニールす
る事が必要である。更にアニール温度が上昇すると伸び
率が4%以上となり引張り強さは更に低下してくる。従
来から使用されているネールヘッドボンディング用の金
合金線は伸び率が4%以上のものが使用されているが本
発明になる金合金線では所定の引張り強さと1〜3%伸
び率を与えるために、合金組成に対応した最終冷間加工
率を調整し更に低い温度領域でアニールする。 (5)用途 本発明になるウエッジボンディング用金合金線はICチ
ップをリードに接続する方法及びICチップを直接基板
に接続するリードレスで接続する方法の何れに用いても
好適である。なお、ここでいうウエッジボンディングと
は、ICチップの電極、特にAl電極と外部リードや他
の電極をワイヤーで配線する際、ワイヤーと電極部の接
合がファーストボンド、セカンドボンド共に、ボールを
形成することなく、ウエッジ状ツールを用いてワイヤー
側面を圧着して接合するボンディングであり、必要に応
じてウエッジ状ツールを介して超音波を印加したり電極
部を加熱する。
Here, in the case of the alloy composition according to the present invention, there is a temperature region where the tensile strength gradually decreases while the elongation is maintained at 1 to 3% as the temperature of the final annealing increases. Further, even with the same composition, the tensile strength changes depending on the magnitude of the final cold working ratio. Therefore, the final cold working ratio and the final annealing temperature are controlled to adjust the elongation and the tensile strength. Thus, the elongation is maintained at 1 to 3%, and the tensile strength is 33.0 kg / mm 2 or more, preferably 3
It is necessary to perform annealing in a temperature range of 3.0 to 70.0 kg / mm 2 . When the annealing temperature is further increased, the elongation becomes 4% or more, and the tensile strength further decreases. A conventionally used gold alloy wire for nail head bonding has an elongation of 4% or more, but the gold alloy wire according to the present invention provides a predetermined tensile strength and 1-3% elongation. For this purpose, the final cold working ratio corresponding to the alloy composition is adjusted, and annealing is performed in a lower temperature range. (5) Applications The gold alloy wire for wedge bonding according to the present invention is suitable for use in any of a method of connecting an IC chip to a lead and a method of connecting an IC chip directly to a substrate in a leadless manner. The wedge bonding referred to here means that when the electrodes of the IC chip, particularly the Al electrodes and the external leads and other electrodes are wired by wires, the bonding between the wires and the electrode portions forms a ball together with the first bond and the second bond. Without using a wedge-shaped tool, bonding is performed by pressing and bonding the side surfaces of the wire without using a wedge-shaped tool. If necessary, ultrasonic waves are applied or the electrode section is heated through the wedge-shaped tool.

【0025】[0025]

【作用】本発明になる金合金線がウエッジボンディング
を行った後高温接合強度に優れている理由は明らかでは
ないが、有効元素としてのCaが添加されていること、
有害元素がその含有量を規制されていること又伸び率が
小さく、引張り強さが大きいことがウエッジボンディン
グによる超音波接合を行う際、材料の不必要な変形を阻
止することと相まって生成されるAu−Al金属間化合
物が熱的に安定なものが得られているためではないかと
考えられる。
Although it is not clear why the gold alloy wire according to the present invention has excellent high-temperature bonding strength after wedge bonding, it is confirmed that Ca as an effective element is added.
The fact that the content of harmful elements is regulated and the low elongation and high tensile strength are generated in conjunction with the prevention of unnecessary deformation of the material when performing ultrasonic bonding by wedge bonding. This is probably because the Au-Al intermetallic compound is thermally stable.

【0026】[0026]

【実施例】表1〜4に示す実施例及び比較例について説
明する。 (実施例1)純度99.999重量%の高純度金に所定
量のCaを添加し真空溶解炉で溶解した後鋳造して表1
に示す組成の金合金、即ち1重量ppm Ca、金純度9
9.9988重量%以上の組成の金インゴットを得、こ
れに溝ロール、伸線機を用いた冷間加工と中間アニール
を施し、最終線径25μmとし、最終アニールにより引
張り強さが40.8kg/mm2 、伸び率2〜3%になるよ
うに仕上げた。
EXAMPLES Examples and comparative examples shown in Tables 1 to 4 will be described. Example 1 A predetermined amount of Ca was added to high-purity gold having a purity of 99.999% by weight, melted in a vacuum melting furnace, and then cast.
A gold alloy having the composition shown in FIG.
A gold ingot having a composition of 9.9988% by weight or more was obtained, subjected to cold working using a groove roll and a wire drawing machine and intermediate annealing, to a final wire diameter of 25 μm, and a tensile strength of 40.8 kg by the final annealing. / Mm 2 and an elongation of 2-3%.

【0027】この金合金線をウエッジボンディング装置
(新川株式会社製 SWB−FA−US30)を用いて
前述の図2に示す方法でICチップのAl電極上及び外
部配線上に超音波ボンディングを行った。この時ICチ
ップ側のボンディングはボンディング荷重を45g、ボ
ンディング時間を30ms、ボンディングパワーを0.6
4wの条件で行った。
The gold alloy wire was subjected to ultrasonic bonding using a wedge bonding apparatus (SWB-FA-US30 manufactured by Shinkawa Corporation) on the Al electrode of the IC chip and the external wiring by the method shown in FIG. . At this time, the bonding on the IC chip side was performed with a bonding load of 45 g, a bonding time of 30 ms, and a bonding power of 0.6.
The test was performed under the condition of 4w.

【0028】次に試料10個を200℃に設定した高温
炉で100時間保持した。次いで試料を炉から取り出
し、外部配線側でワイヤーを切断し次の方法でICチッ
プ側の高温接合強度を測定した。即ちICチップ側を治
具で固定し、ワイヤーを上方に引っ張り破断荷重を測定
した。10個の平均値を測定値とし、測定結果を表1に
示す。 (実施例2〜71、比較例1〜11)金及び金合金の組
成、伸び率及び引張り強さを表1に示すようにしたこと
以外は実施例1と同様にして細線に仕上げ、超音波ボン
ディングを行った後高温接合強度を測定した。
Next, ten samples were kept in a high-temperature furnace set at 200 ° C. for 100 hours. Next, the sample was taken out of the furnace, the wire was cut on the external wiring side, and the high-temperature bonding strength on the IC chip side was measured by the following method. That is, the IC chip side was fixed with a jig, the wire was pulled upward, and the breaking load was measured. The average value of the ten measurements was taken as the measured value, and the measurement results are shown in Table 1. (Examples 2 to 71, Comparative Examples 1 to 11) A thin wire was finished in the same manner as in Example 1 except that the composition, elongation, and tensile strength of gold and a gold alloy were set as shown in Table 1. After bonding, the high-temperature bonding strength was measured.

【0029】測定結果を表1〜4に示す。 (試験結果) (1)高純度金に1〜100重量ppm のCaのみを添加
して、金純度が99.9重量%以上、伸び率2〜3%、
引張強さ39.3〜41.4kg/mm2 である実施例1〜
4は高温接合強度が3.0〜3.3gと優れた効果を示
した。
The measurement results are shown in Tables 1 to 4. (Test Results) (1) High purity gold was added with only 1 to 100 ppm by weight of Ca, gold purity was 99.9% by weight or more, elongation was 2 to 3%,
Examples 1 to 3 having a tensile strength of 39.3 to 41.4 kg / mm 2
No. 4 showed an excellent effect with a high-temperature bonding strength of 3.0 to 3.3 g.

【0030】この中でもCa添加量が1〜50重量ppm
のとき高温接合強度が3.2〜3.3gである為好まし
く用いられる。 (2)高純度金に所定量のCaに加えてMg,Y,L
a,Eu,Ge,Ag,Pt,Beのうち少なくとも1
種を所定量添加して、金純度が99.9重量%以上、伸
び率1〜3%、引張強さ39.0〜41.6kg/mm2
ある実施例5〜55は高温接合強度が4.2〜5.1g
であり、Caのみを添加した組成よりさらに優れた効果
を示した。
Among them, the amount of Ca added is 1 to 50 ppm by weight.
In this case, the high-temperature bonding strength is 3.2 to 3.3 g, so that it is preferably used. (2) In addition to a predetermined amount of Ca, Mg, Y, L
at least one of a, Eu, Ge, Ag, Pt, Be
Examples 5 to 55 having a gold purity of 99.9% by weight or more, an elongation of 1 to 3%, and a tensile strength of 39.0 to 41.6 kg / mm 2 by adding a predetermined amount of a seed have a high temperature bonding strength. 4.2-5.1 g
And exhibited an even more superior effect than the composition to which only Ca was added.

【0031】(3)実施例2,11,22,26,3
6,42,43,45に示す組成及び伸び率を有し、引
張強さが33.0〜60.3kg/mm2 である実施例56
〜71は高温接合強度が3.2〜5.1gであり優れた
効果を示した。 (4)実施例の中でCaに加えてMg,Y,La,E
u,Ge,Ag,Pt,Beのうち少なくとも1種を含
有し、1〜3%伸び率を有し、引張強さが39.1〜6
3.0kg/mm2 のものが高温接合強度が4.2〜5.1
gと最も優れた効果を示した。
(3) Embodiments 2, 11, 22, 26, 3
Example 56 having the composition and elongation shown in 6, 42, 43 and 45 and having a tensile strength of 33.0 to 60.3 kg / mm 2.
No. 71 showed an excellent effect with a high-temperature bonding strength of 3.2 to 5.1 g. (4) In Examples, in addition to Ca, Mg, Y, La, E
u, Ge, Ag, Pt, Be, containing at least one of them, having an elongation of 1 to 3%, and a tensile strength of 39.1 to 6
High-temperature bonding strength of 3.0 kg / mm 2 is 4.2 to 5.1.
g and the most excellent effect.

【0032】(5)本発明に係わるCa及びMg,Y,
La,Eu,Ge,Ag,Pt,Beのいずれも含有し
ない比較例1は高温接合強度が0.6gと悪い事が判
る。 (6)本発明の必須成分であるCaを含有せず、Mg又
はYを50重量ppm 含有する比較例2〜3は高温接合強
度が2.5〜2.7gと悪い事が判る。 (7)10重量ppm のCaを含有し、所定の伸び率及び
引張強さを有するものの、2.0重量%Cuを含有する
事により金純度が99.9重量%未満である比較例4は
高温接合強度が0.5gと悪い事が判る。
(5) Ca and Mg, Y,
Comparative Example 1, which does not contain any of La, Eu, Ge, Ag, Pt, and Be, has a poor high-temperature bonding strength of 0.6 g. (6) Comparative Examples 2-3 containing 50 ppm by weight of Mg or Y without containing Ca, which is an essential component of the present invention, have a poor high-temperature bonding strength of 2.5 to 2.7 g. (7) Comparative Example 4, which contains 10 wt ppm of Ca and has a predetermined elongation and tensile strength, but has a gold purity of less than 99.9 wt% by containing 2.0 wt% Cu, It turns out that the high-temperature bonding strength is as bad as 0.5 g.

【0033】(8)200重量ppm のCaを含有する比
較例5は高温接合強度が1.2gと悪い事が判る。 (9)所定量のCaまたはそれに加えて所定量のMg,
Ge,Agを含有し、所定の金純度及び伸び率を有する
ものの引張強さが33.4kg/mm2 未満である比較例6
〜8は高温接合強度が2.5〜2.8と悪い事が判る。
(8) It can be seen that Comparative Example 5 containing 200 ppm by weight of Ca had a poor high-temperature bonding strength of 1.2 g. (9) A predetermined amount of Ca or a predetermined amount of Mg,
Comparative Example 6 containing Ge and Ag and having predetermined gold purity and elongation but having a tensile strength of less than 33.4 kg / mm 2
No. 8 to 8 are poor in high-temperature bonding strength of 2.5 to 2.8.

【0034】(10)所定量のCaまたはそれに加えて
所定量のMg,Ge,Agを含有し、所定の金純度を有
するものの伸び率が3%を超える比較例9〜11は高温
接合強度が2.2〜2.4gと悪い事が判る。
(10) Comparative Examples 9 to 11 which contain a predetermined amount of Ca or a predetermined amount of Mg, Ge, and Ag in addition thereto and have a predetermined gold purity and an elongation of more than 3% have high-temperature bonding strengths. It turns out that it is bad with 2.2-2.4g.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】[0039]

【発明の効果】本発明により所定量のCaを含有し、所
定量の金純度を有し且つ所定の伸び率と引張強さを有す
るウエッジボンディング用金合金線によれば高温接合強
度を向上させることが出来半導体装置の信頼性向上に効
果的である。所定量のCaに加えてさらに所定量のM
g,Y,La,Eu,Ge,Ag,Pt,Beのうち少
なくとも1種を含むことにより、更に高温接合強度を向
上させることが出来半導体装置の信頼性向上に更に効果
的である。
According to the present invention, a gold alloy wire for wedge bonding which contains a predetermined amount of Ca, has a predetermined amount of gold purity, and has a predetermined elongation and tensile strength improves the high-temperature bonding strength. This is effective in improving the reliability of the semiconductor device. In addition to a predetermined amount of Ca, a predetermined amount of M
By including at least one of g, Y, La, Eu, Ge, Ag, Pt, and Be, the high-temperature bonding strength can be further improved, which is more effective in improving the reliability of the semiconductor device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ネールボンディング方法による接合法の説明。FIG. 1 illustrates a bonding method using a nail bonding method.

【図2】ウエッジボンディング方法による接合法の説
明。
FIG. 2 is an illustration of a bonding method using a wedge bonding method.

【図3】ネールボンディング方法とウエッジボンディン
グ方法による接合部の形状、寸法を示す。
FIG. 3 shows the shape and dimensions of a joint part by a nail bonding method and a wedge bonding method.

【符号の説明】[Explanation of symbols]

11…ウエッジ 12…ワイヤー 12′…ボンディングワイヤー 14′…ワイヤー接合部 15…Al配線 16…ICチップ 17…クランパー 18…外部配線 D…ワイヤ径 L1 …圧着ボール径 L2 …つぶれ幅11 ... wedge 12 ... Wire 12 '... bonding wire 14' ... wire junction 15 ... Al wiring 16 ... IC chip 17 ... clamper 18 ... external wiring D ... wire diameter L 1 ... compression ball diameter L 2 ... droop width

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高純度金にカルシウム(Ca)を1〜1
00重量ppm 添加した金合金線であって、 該金合金線の金純度が99.9重量%以上であり、引張
強さが33.0kg/mm 2 以上、伸び率が1〜3%である
ことを特徴とするウエッジボンディング用金合金線。
1. A high purity gold containing 1 to 1 calcium (Ca).
A gold alloy wire to which 00 wt ppm has been added, wherein the gold purity of the gold alloy wire is 99.9% by weight or more,
Strength is 33.0kg / mm Two As described above, the elongation is 1 to 3%.
A gold alloy wire for wedge bonding.
【請求項2】 さらにMg,Y,La,Eu,Ge,A
g,Ptのうち少なくとも1種を1〜100重量ppm 添
加したことを特徴とする請求項1記載のウエッジボンデ
ィング用金合金線。
2. Mg, Y, La, Eu, Ge, A
The gold alloy wire for wedge bonding according to claim 1, wherein 1 to 100 ppm by weight of at least one of g and Pt is added.
【請求項3】 さらにベリリウム(Be)を1〜20重
量ppm 添加したことを特徴とする請求項1または請求項
2記載のウエッジボンディング用金合金線。
3. The gold alloy wire for wedge bonding according to claim 1, further comprising 1 to 20 ppm by weight of beryllium (Be).
JP20690397A 1996-07-31 1997-07-31 Gold alloy wire for wedge bonding Expired - Fee Related JP3657087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20690397A JP3657087B2 (en) 1996-07-31 1997-07-31 Gold alloy wire for wedge bonding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP20227496 1996-07-31
JP8-202274 1996-07-31
JP20690397A JP3657087B2 (en) 1996-07-31 1997-07-31 Gold alloy wire for wedge bonding

Publications (2)

Publication Number Publication Date
JPH1098063A true JPH1098063A (en) 1998-04-14
JP3657087B2 JP3657087B2 (en) 2005-06-08

Family

ID=26513280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20690397A Expired - Fee Related JP3657087B2 (en) 1996-07-31 1997-07-31 Gold alloy wire for wedge bonding

Country Status (1)

Country Link
JP (1) JP3657087B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073501A (en) * 2000-01-17 2001-08-01 강도원 A alloy of bonding wire for high stretch using for semiconductor packaging
EP1168439A3 (en) * 2000-06-19 2002-04-10 Tanaka Denshi Kogyo Kabushiki Kaisha Gold bond wire for a semiconductor device
JP2006203164A (en) * 2004-12-21 2006-08-03 Mitsubishi Materials Corp Metal alloy wire for bonding wire having excellent bonding properties, linearity, and resin flow resistance properties
WO2008132919A1 (en) * 2007-04-17 2008-11-06 Tanaka Denshi Kogyo K.K. Highly reliable gold alloy bonding wire and semiconductor device
WO2009060698A1 (en) * 2007-11-06 2009-05-14 Tanaka Denshi Kogyo K. K. Gold alloy wire for ball bonding
KR101047827B1 (en) 2007-10-24 2011-07-08 타나카 덴시 코오교오 카부시키가이샤 Gold Alloy Wire for Ball Bonding

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4150752B1 (en) 2007-11-06 2008-09-17 田中電子工業株式会社 Bonding wire

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073501A (en) * 2000-01-17 2001-08-01 강도원 A alloy of bonding wire for high stretch using for semiconductor packaging
EP1168439A3 (en) * 2000-06-19 2002-04-10 Tanaka Denshi Kogyo Kabushiki Kaisha Gold bond wire for a semiconductor device
JP2006203164A (en) * 2004-12-21 2006-08-03 Mitsubishi Materials Corp Metal alloy wire for bonding wire having excellent bonding properties, linearity, and resin flow resistance properties
JP4641248B2 (en) * 2004-12-21 2011-03-02 田中電子工業株式会社 Gold alloy wire for bonding wires with excellent bondability, straightness and resin flow resistance
TWI391503B (en) * 2004-12-21 2013-04-01 Tanaka Electronics Ind Wire with gold alloy wire
WO2008132919A1 (en) * 2007-04-17 2008-11-06 Tanaka Denshi Kogyo K.K. Highly reliable gold alloy bonding wire and semiconductor device
KR101047827B1 (en) 2007-10-24 2011-07-08 타나카 덴시 코오교오 카부시키가이샤 Gold Alloy Wire for Ball Bonding
WO2009060698A1 (en) * 2007-11-06 2009-05-14 Tanaka Denshi Kogyo K. K. Gold alloy wire for ball bonding
KR101158547B1 (en) * 2007-11-06 2012-06-20 타나카 덴시 코오교오 카부시키가이샤 Gold alloy wire for ball bonding
EP2209136A4 (en) * 2007-11-06 2013-08-07 Tanaka Electronics Ind Gold alloy wire for ball bonding

Also Published As

Publication number Publication date
JP3657087B2 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
EP0822264B1 (en) Use of a gold alloy wire for wedge bonding
EP1160344B1 (en) Gold wire for semiconductor element connection and semiconductor element connection method
JP3328135B2 (en) Gold alloy wire for bump formation and bump formation method
JP3657087B2 (en) Gold alloy wire for wedge bonding
JP3126926B2 (en) Gold alloy fine wire for semiconductor element and semiconductor device
JP3690902B2 (en) Gold alloy wire for wedge bonding
JPH0291944A (en) Gold alloy fine wire for gold bump
JP2922388B2 (en) Gold alloy fine wire for bonding
JP3329286B2 (en) Gold alloy wires for bonding semiconductor devices
JPH02215140A (en) Fine gold alloy wire for semiconductor element and its bonding method
JP3323185B2 (en) Gold wire for connecting semiconductor elements
JP3356082B2 (en) Gold alloy wires for bonding semiconductor devices
JP2003059964A (en) Bonding wire and manufacturing method therefor
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JP4134261B1 (en) Gold alloy wire for ball bonding
JP3907534B2 (en) Gold alloy wire for bonding
JP3586909B2 (en) Bonding wire
JP3571793B2 (en) Gold alloy wire and gold alloy bump
JPH07335684A (en) Bonding wire
JPH07335685A (en) Bonding wire
JPH10242192A (en) Ball pressing method and manufacture of semiconductor device
JPH07201867A (en) Pd alloy wire for bump formation, formation of bump and semiconductor device using the pd alloy wire
JPH06287665A (en) Fine gold alloy wire for bonding
JPH11340264A (en) Method for forming wire bump and gold alloy wire there for
JPH0448734A (en) Aluminum alloy for bump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees