JP3657087B2 - Gold alloy wire for wedge bonding - Google Patents

Gold alloy wire for wedge bonding Download PDF

Info

Publication number
JP3657087B2
JP3657087B2 JP20690397A JP20690397A JP3657087B2 JP 3657087 B2 JP3657087 B2 JP 3657087B2 JP 20690397 A JP20690397 A JP 20690397A JP 20690397 A JP20690397 A JP 20690397A JP 3657087 B2 JP3657087 B2 JP 3657087B2
Authority
JP
Japan
Prior art keywords
gold
bonding
wire
alloy wire
purity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20690397A
Other languages
Japanese (ja)
Other versions
JPH1098063A (en
Inventor
照夫 菊池
光吉 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanaka Denshi Kogyo KK
Original Assignee
Tanaka Denshi Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanaka Denshi Kogyo KK filed Critical Tanaka Denshi Kogyo KK
Priority to JP20690397A priority Critical patent/JP3657087B2/en
Publication of JPH1098063A publication Critical patent/JPH1098063A/en
Application granted granted Critical
Publication of JP3657087B2 publication Critical patent/JP3657087B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/43Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48455Details of wedge bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/485Material
    • H01L2224/48505Material at the bonding interface
    • H01L2224/48599Principal constituent of the connecting portion of the wire connector being Gold (Au)
    • H01L2224/486Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/48617Principal constituent of the connecting portion of the wire connector being Gold (Au) with a principal constituent of the bonding area being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950 °C
    • H01L2224/48624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78301Capillary
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/78Apparatus for connecting with wire connectors
    • H01L2224/7825Means for applying energy, e.g. heating means
    • H01L2224/783Means for applying energy, e.g. heating means by means of pressure
    • H01L2224/78313Wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/8512Aligning
    • H01L2224/85148Aligning involving movement of a part of the bonding apparatus
    • H01L2224/85169Aligning involving movement of a part of the bonding apparatus being the upper part of the bonding apparatus, i.e. bonding head, e.g. capillary or wedge
    • H01L2224/8518Translational movements
    • H01L2224/85181Translational movements connecting first on the semiconductor or solid-state body, i.e. on-chip, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/00011Not relevant to the scope of the group, the symbol of which is combined with the symbol of this group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01012Magnesium [Mg]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01047Silver [Ag]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01057Lanthanum [La]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01063Europium [Eu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012044N purity grades, i.e. 99.99%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/012Semiconductor purity grades
    • H01L2924/012055N purity grades, i.e. 99.999%
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20751Diameter ranges larger or equal to 10 microns less than 20 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20752Diameter ranges larger or equal to 20 microns less than 30 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20753Diameter ranges larger or equal to 30 microns less than 40 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20754Diameter ranges larger or equal to 40 microns less than 50 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20755Diameter ranges larger or equal to 50 microns less than 60 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20756Diameter ranges larger or equal to 60 microns less than 70 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20757Diameter ranges larger or equal to 70 microns less than 80 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20758Diameter ranges larger or equal to 80 microns less than 90 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/20759Diameter ranges larger or equal to 90 microns less than 100 microns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/20Parameters
    • H01L2924/207Diameter ranges
    • H01L2924/2076Diameter ranges equal to or larger than 100 microns

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はウエッジボンディング用金合金線に係り、高温接合強度に優れ、ICチップの高密度配線用として好適な金合金線に関する。
【0002】
【従来の技術】
ICチップの電極と外部配線を接続する場合、ワイヤーを介して配線するワイヤーボンディング方法が知られている。この中でもICチップのAl電極とワイヤーを接合する方式により、超音波併用熱圧着接合及び超音波接合が主流を占めている。
【0003】
ここで超音波併用熱圧着接合は通常ネールヘッドボンディング方法により行われている。ネールヘッドボンディング方法による接合法を図1を用いて説明する。
図1(a)に示す様にワイヤー2をキャピラリー1に挿通しその先端に電気トーチ3を対向させ、ワイヤー2との間で放電させることにより、ワイヤー2の先端を加熱、溶融してボール4を形成する。
【0004】
次いで図1(b)に示すようにキャピラリー1を下降させて該ボール4をICチップ6上のAl電極5の上に押圧接合する。この時図示しないが超音波振動がキャピラリー1を通して付加されると共に、ICチップ6はヒーターブロックで加熱されるため上記ボール4は熱圧着され圧着ボール4′となる。
次いで図1(c)に示すようにキャピラリー1は所定の軌跡を描いて、外部配線8の上に移動し、下降する。この時図示しないが超音波振動がキャピラリー1を通して付加され、外部配線8はヒーターブロックで加熱されるためワイヤー2側面が熱圧着される。
【0005】
次いで図1(d)に示すようにクランパー7はワイヤー2をクランプしたまま上昇することにより、ワイヤー2が切断され配線が完了する。
一方超音波接合は通常振動を接合部へ伝えるのに最適なウエッジボンディング方法により行われている。これはウエッジ状ツールを用いる方法である。
ウエッジボンディング方式による接合法を図2を用いて説明する。
【0006】
図2(a)に示す様にワイヤー12をウエッジ11下端部に挿通し、この下方にICチップ16上のAl電極15を移動する。
次いで図2(b)に示すようにウエッジ11を下降させて常温のまま超音波振動を付加してワイヤー12をAl電極15に接合する。
次いで図2(c)に示すようにクランパー17が開放され、ウエッジ11は所定の軌跡を描いて、外部配線18の上に移動し、下降する。この時図示しないが常温のまま超音波振動がウエッジ11を通して付加され、ワイヤー12を外部配線18に接合する。
【0007】
次いで図2(d)に示すようにクランパー17はワイヤー2をクランプしたままウエッジ11が上昇することにより、ワイヤー12が切断され配線が完了する。
前記ネールヘッドボンディング方法は生産性に優れている為好ましい方法であるが、熱を用いる為ワイヤー材料として金合金線を用いて使用され、酸化し易いアルミ合金線には不適である。
【0008】
また図3(a)に示す様に圧着ボール径L1 がワイヤー外径Dの3〜4倍になることが微細な配線を行う際のネックになるという限界を有している。
次のウエッジボンディング方法は生産性は低下するものの室温で処理出来る為ワイヤー材料としてアルミ合金線を用いて使用されている。また図3(b)に示す様につぶれ幅L2 がワイヤー外径Dの1.5〜2.5倍に抑制出来るという特徴を有している。
【0009】
ここで前述のワイヤー材料として金合金線は他の材料と対比して耐蝕性に優れている為、半導体装置の耐蝕性に対する信頼性を確保する面で配線材料として最も好ましい材料である。
一方最近の半導体装置に対して高密度配線が要求されている。これの対応として金合金線とICチップ電極との接合部の配線方向と直角方向での拡がりを小さくすることが必要である。
【0010】
この為ワイヤー材料として金合金線を用いてネールヘッドボンディングを行うに当たって、圧着ボールの外径を小さくする事が試みられたがその大きさにも限度がある。
【0011】
【発明が解決しようとする課題】
前述の従来事情に鑑み従来からネールヘッドボンディング用として提案されている金合金線を用いてICチップ電極にウエッジボンディングを行ってみたところ、接合部の配線方向と直角方向での拡がりはネールヘッドボンディング方法と対比して小さくすることは出来るものの、ICチップの作動状態を考えて高温状態に晒した後の接合部での接合強度(以下高温接合強度という)が小さく半導体装置の信頼性が低下するという問題が生じてきた。
【0012】
この為本発明に於いては金合金線を用いてICチップ電極にウエッジボンディングを行うことにより、配線方向と直角方向での接合部の拡がりを小さくして高密度配線に対応するとともに高温接合強度を向上させて半導体装置の信頼性を向上させることの出来る金合金線を提供する事を目的とする。
【0013】
【課題を解決するための手段】
本発明者等が鋭意研究を重ねた結果、高純度金に所定量のCaを添加し、所定の金純度を維持する組成を有し、通常のネールヘッドボンディング用金合金線より伸び率を小さくし且つ引張り強さを大きくした金合金線とすることにより、前記組成と材料特性の相乗効果によって前述の目的を達成し得ることを知見し、本発明を完成するに至った。
【0014】
具体的には、本発明によれば、高純度金にカルシウム(Ca)を1〜100重量ppm 添加した金合金線であって、
該金合金線の金純度が99.9重量%以上であり、引張強さが33.0kg/mm2 以上、伸び率が1〜3%であることを特徴とするウエッジボンディング用金合金線が提供される。
【0015】
好ましい態様において、Mg,Y,La,Eu,Ge,Ag,Ptのうち少なくとも1種を1〜100重量部、及び/又はベリリウム(Be)を1〜20重量ppm 添加する。
【0016】
【発明の実施の形態】
本発明のウエッジボンディング用金合金線は、高純度金に所定量のCaを添加し、更に好ましい態様として所定量のMg,Y,La,Eu,Ge,Ag,Pt,Beのうち少なくとも1種を添加し、所定の金純度を維持する組成を有し、且つ、伸び率を小さくしかつ引張り強さを大きくすることを特徴とする。
(1)組成
▲1▼ 原料高純度金としては少なくとも99.99重量%以上、好ましくは99.995重量%以上、最も好ましくは99.999重量%以上に精製した高純度金が用いられる。
【0017】
▲2▼ 〔Ca〕
(a)この様な高純度金に上記所定量のCaを添加して所定量の金純度を有する組成にするとともに所定の伸び率及び引張り強さとすることにより、その相乗効果によって高温接合強度を向上させる事ができる。
(b)Ca含有量が1重量ppm 未満になると1重量ppm 以上と対比して高温接合強度は小さくなる。Ca含有量が100重量ppm を超えるとICチップに割れが生じる為、これを避けるため不十分な接合しか出来なくなり高温接合強度は小さくなる。
【0018】
この為Ca含有量は所定の金純度、伸び率及び引張り強さの条件のもとに1〜100重量ppm と定めた。好ましくは1〜50重量ppm である。
(c)この効果は、上記所定量のCaに加えて他の元素を添加しても99.9重量%以上の金純度を有する組成であり、所定の伸び率及び引張り強さを有する金合金線であればCaを添加した効果が維持される。所定量のCaを高純度金に添加し、残り実質的に不可避的不純物のみで構成してもよいことは勿論である。
【0019】
▲3▼ 〔Mg,Y,La,Eu,Ge,Ag,Pt,Be〕
(a)前述の様に所定量のCaに加えて他の元素を添加しても本発明の効果は一般に維持されるが特にMg,Y,La,Eu,Ge,Ag,Ptのうち少なくとも1種の成分を1〜100重量ppm 又はそれに加えてBeを1〜20重量ppm の範囲内で添加すると高温接合強度は更に向上する。
【0020】
(b)この場合Mg,Y,La,Eu,Ge,Ag,Pt,Beのうち少なくとも1種を所定量添加し、所定量のCaを添加しない場合、所定量の金純度を有する組成にするとともに所定の伸び率及び引張り強さを有しても高温接合強度は小さくなる。
▲4▼ 金純度
(a)所定量のCaを添加した組成とし、所定の伸び率及び引張り強さを有する金合金線としても1〜2重量%Cuが添加されると高温接合強度は小さくなる。そこで接合強度を上げようとするとICチップに割れが生じる。
【0021】
この為金合金線の金純度は99.9重量%以上と定めた。好ましくは99.97重量%以上、より好ましくは99.979重量%以上である。高純度金に高純度添加金属を合金化して得ることができる。
(2)伸び率
▲1▼ 高純度金に上記所定量のCaを添加して所定量の金純度を有する組成にするとともに所定の伸び率及び引張り強さとすることにより、その相乗効果によって高温接合強度を向上させる事ができる。
なお、本発明に於いて伸び率は、室温で、金合金線を標点距離を100mmとして引張速度10mm/分で引張試験機で引っ張り、破断した時の伸び量を測定して次式の値を伸び率とする。
【数1】

Figure 0003657087
ここで破断した時の伸び量はチャート紙の図形から測定することが好ましい。
【0022】
▲2▼ 伸び率が3%を超えると、所定量のCaを添加して所定量の金純度を有する組成であって所定の引張り強さを有しても、高温接合強度は小さくなる。
この為伸び率は1〜3%と定めた。好ましくは2〜3%である。
(3)引張り強さ
▲1▼ 高純度金に上記所定量のCaを添加して所定量の金純度を有する組成にするとともに所定の伸び率及び引張り強さとすることにより、その相乗効果によって高温接合強度を向上させる事ができる。
【0023】
▲2▼ 引張り強さが33.0kg/mm2 未満になると33.0kg/mm2 以上と対比して、高温接合強度は小さくなる。
この為引張り強さは33.0kg/mm2 以上と定めた。好ましくは33.0〜70.0kg/mm2 であり、さらに好ましくは33.0〜63.0kg/mm2 である。最も好ましくは39.1〜63.0kg/mm2 である。
(4)金合金線の製造方法
本発明になる金合金線の好ましい製造方法を説明する。高純度金に所定量の元素を添加し真空溶解炉で溶解した後インゴットに鋳造する。該当インゴットに溝ロール、伸線機を用いた冷間加工と中間アニールを施し、最終冷間加工により直径10〜100μmの細線とした後最終アニールを施すものである。
【0024】
ここで本発明になる合金組成の場合、最終アニールの温度が上昇するにつれて伸び率は1〜3%を維持したまま、引張り強さが徐々に低下する温度領域がある。また同一組成であっても最終冷間加工率の大きさによって引張り強さは変わってくる。この為最終冷間加工率と最終アニール温度を制御して伸び率と引張り強さを調整する。このようにして伸び率は1〜3%を維持し、引張り強さが33.0kg/mm2 以上、好ましくは33.0〜70.0kg/mm2 となる温度領域でアニールする事が必要である。更にアニール温度が上昇すると伸び率が4%以上となり引張り強さは更に低下してくる。従来から使用されているネールヘッドボンディング用の金合金線は伸び率が4%以上のものが使用されているが本発明になる金合金線では所定の引張り強さと1〜3%伸び率を与えるために、合金組成に対応した最終冷間加工率を調整し更に低い温度領域でアニールする。
(5)用途
本発明になるウエッジボンディング用金合金線はICチップをリードに接続する方法及びICチップを直接基板に接続するリードレスで接続する方法の何れに用いても好適である。
なお、ここでいうウエッジボンディングとは、ICチップの電極、特にAl電極と外部リードや他の電極をワイヤーで配線する際、ワイヤーと電極部の接合がファーストボンド、セカンドボンド共に、ボールを形成することなく、ウエッジ状ツールを用いてワイヤー側面を圧着して接合するボンディングであり、必要に応じてウエッジ状ツールを介して超音波を印加したり電極部を加熱する。
【0025】
【作用】
本発明になる金合金線がウエッジボンディングを行った後高温接合強度に優れている理由は明らかではないが、有効元素としてのCaが添加されていること、有害元素がその含有量を規制されていること又伸び率が小さく、引張り強さが大きいことがウエッジボンディングによる超音波接合を行う際、材料の不必要な変形を阻止することと相まって生成されるAu−Al金属間化合物が熱的に安定なものが得られているためではないかと考えられる。
【0026】
【実施例】
表1〜4に示す実施例及び比較例について説明する。
(実施例1)
純度99.999重量%の高純度金に所定量のCaを添加し真空溶解炉で溶解した後鋳造して表1に示す組成の金合金、即ち1重量ppm Ca、金純度99.9988重量%以上の組成の金インゴットを得、これに溝ロール、伸線機を用いた冷間加工と中間アニールを施し、最終線径25μmとし、最終アニールにより引張り強さが40.8kg/mm2 、伸び率2〜3%になるように仕上げた。
【0027】
この金合金線をウエッジボンディング装置(新川株式会社製 SWB−FA−US30)を用いて前述の図2に示す方法でICチップのAl電極上及び外部配線上に超音波ボンディングを行った。この時ICチップ側のボンディングはボンディング荷重を45g、ボンディング時間を30ms、ボンディングパワーを0.64wの条件で行った。
【0028】
次に試料10個を200℃に設定した高温炉で100時間保持した。次いで試料を炉から取り出し、外部配線側でワイヤーを切断し次の方法でICチップ側の高温接合強度を測定した。即ちICチップ側を治具で固定し、ワイヤーを上方に引っ張り破断荷重を測定した。10個の平均値を測定値とし、測定結果を表1に示す。
(実施例2〜71、比較例1〜11)
金及び金合金の組成、伸び率及び引張り強さを表1に示すようにしたこと以外は実施例1と同様にして細線に仕上げ、超音波ボンディングを行った後高温接合強度を測定した。
【0029】
測定結果を表1〜4に示す。
(試験結果)
(1)高純度金に1〜100重量ppm のCaのみを添加して、金純度が99.9重量%以上、伸び率2〜3%、引張強さ39.3〜41.4kg/mm2 である実施例1〜4は高温接合強度が3.0〜3.3gと優れた効果を示した。
【0030】
この中でもCa添加量が1〜50重量ppm のとき高温接合強度が3.2〜3.3gである為好ましく用いられる。
(2)高純度金に所定量のCaに加えてMg,Y,La,Eu,Ge,Ag,Pt,Beのうち少なくとも1種を所定量添加して、金純度が99.9重量%以上、伸び率1〜3%、引張強さ39.0〜41.6kg/mm2 である実施例5〜55は高温接合強度が4.2〜5.1gであり、Caのみを添加した組成よりさらに優れた効果を示した。
【0031】
(3)実施例2,11,22,26,36,42,43,45に示す組成及び伸び率を有し、引張強さが33.0〜60.3kg/mm2 である実施例56〜71は高温接合強度が3.2〜5.1gであり優れた効果を示した。
(4)実施例の中でCaに加えてMg,Y,La,Eu,Ge,Ag,Pt,Beのうち少なくとも1種を含有し、1〜3%伸び率を有し、引張強さが39.1〜63.0kg/mm2 のものが高温接合強度が4.2〜5.1gと最も優れた効果を示した。
【0032】
(5)本発明に係わるCa及びMg,Y,La,Eu,Ge,Ag,Pt,Beのいずれも含有しない比較例1は高温接合強度が0.6gと悪い事が判る。
(6)本発明の必須成分であるCaを含有せず、Mg又はYを50重量ppm 含有する比較例2〜3は高温接合強度が2.5〜2.7gと悪い事が判る。
(7)10重量ppm のCaを含有し、所定の伸び率及び引張強さを有するものの、2.0重量%Cuを含有する事により金純度が99.9重量%未満である比較例4は高温接合強度が0.5gと悪い事が判る。
【0033】
(8)200重量ppm のCaを含有する比較例5は高温接合強度が1.2gと悪い事が判る。
(9)所定量のCaまたはそれに加えて所定量のMg,Ge,Agを含有し、所定の金純度及び伸び率を有するものの引張強さが33.4kg/mm2 未満である比較例6〜8は高温接合強度が2.5〜2.8と悪い事が判る。
【0034】
(10)所定量のCaまたはそれに加えて所定量のMg,Ge,Agを含有し、所定の金純度を有するものの伸び率が3%を超える比較例9〜11は高温接合強度が2.2〜2.4gと悪い事が判る。
【0035】
【表1】
Figure 0003657087
【0036】
【表2】
Figure 0003657087
【0037】
【表3】
Figure 0003657087
【0038】
【表4】
Figure 0003657087
【0039】
【発明の効果】
本発明により所定量のCaを含有し、所定量の金純度を有し且つ所定の伸び率と引張強さを有するウエッジボンディング用金合金線によれば高温接合強度を向上させることが出来半導体装置の信頼性向上に効果的である。所定量のCaに加えてさらに所定量のMg,Y,La,Eu,Ge,Ag,Pt,Beのうち少なくとも1種を含むことにより、更に高温接合強度を向上させることが出来半導体装置の信頼性向上に更に効果的である。
【図面の簡単な説明】
【図1】ネールボンディング方法による接合法の説明。
【図2】ウエッジボンディング方法による接合法の説明。
【図3】ネールボンディング方法とウエッジボンディング方法による接合部の形状、寸法を示す。
【符号の説明】
11…ウエッジ
12…ワイヤー
12′…ボンディングワイヤー
14′…ワイヤー接合部
15…Al配線
16…ICチップ
17…クランパー
18…外部配線
D…ワイヤ径
1 …圧着ボール径
2 …つぶれ幅[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gold alloy wire for wedge bonding, and relates to a gold alloy wire excellent in high-temperature bonding strength and suitable for high-density wiring of an IC chip.
[0002]
[Prior art]
When connecting an electrode of an IC chip and external wiring, a wire bonding method of wiring through a wire is known. Among them, the thermocompression bonding with ultrasonic waves and the ultrasonic bonding dominate by the method of bonding the Al electrode of the IC chip and the wire.
[0003]
Here, the ultrasonic thermocompression bonding is usually performed by a nail head bonding method. A bonding method by the nail head bonding method will be described with reference to FIG.
As shown in FIG. 1A, the wire 2 is inserted into the capillary 1, the electric torch 3 is opposed to the tip of the capillary 2, and the wire 2 is discharged to heat and melt the tip of the wire 2. Form.
[0004]
Next, as shown in FIG. 1B, the capillary 1 is lowered and the ball 4 is pressed and bonded onto the Al electrode 5 on the IC chip 6. At this time, although not shown, ultrasonic vibration is applied through the capillary 1 and the IC chip 6 is heated by the heater block, so that the ball 4 is thermocompression-bonded to form a pressure-bonded ball 4 '.
Next, as shown in FIG. 1C, the capillary 1 moves on the external wiring 8 along a predetermined locus and descends. At this time, although not shown, ultrasonic vibration is applied through the capillary 1 and the external wiring 8 is heated by the heater block, so that the side surface of the wire 2 is thermocompression bonded.
[0005]
Next, as shown in FIG. 1 (d), the clamper 7 is raised while the wire 2 is clamped, whereby the wire 2 is cut and the wiring is completed.
On the other hand, ultrasonic bonding is usually performed by a wedge bonding method that is optimal for transmitting vibration to the bonded portion. This is a method using a wedge-shaped tool.
A bonding method using the wedge bonding method will be described with reference to FIG.
[0006]
As shown in FIG. 2A, the wire 12 is inserted into the lower end portion of the wedge 11 and the Al electrode 15 on the IC chip 16 is moved below the wire 12.
Next, as shown in FIG. 2B, the wedge 11 is lowered, and ultrasonic vibration is applied at room temperature to join the wire 12 to the Al electrode 15.
Next, as shown in FIG. 2C, the clamper 17 is opened, and the wedge 11 moves on the external wiring 18 along a predetermined locus and descends. At this time, although not shown in the figure, ultrasonic vibration is applied through the wedge 11 while maintaining the room temperature, and the wire 12 is joined to the external wiring 18.
[0007]
Next, as shown in FIG. 2 (d), the clamper 17 raises the wedge 11 while clamping the wire 2, whereby the wire 12 is cut and the wiring is completed.
The nail head bonding method is preferable because it is excellent in productivity. However, since it uses heat, it is used as a wire material using a gold alloy wire and is not suitable for an aluminum alloy wire that is easily oxidized.
[0008]
Further, as shown in FIG. 3A, there is a limit that the pressure ball diameter L 1 being 3 to 4 times the wire outer diameter D becomes a bottleneck when fine wiring is performed.
The following wedge bonding method is used by using an aluminum alloy wire as a wire material because it can be processed at room temperature although the productivity is lowered. The width L 2 crushed as shown in FIG. 3 (b) has a feature that can be reduced to 1.5 to 2.5 times the wire outer diameter D.
[0009]
Here, since the gold alloy wire is superior in corrosion resistance as compared with other materials as the above-mentioned wire material, it is the most preferable material as the wiring material in terms of ensuring the reliability with respect to the corrosion resistance of the semiconductor device.
On the other hand, high-density wiring is required for recent semiconductor devices. To cope with this, it is necessary to reduce the spread in the direction perpendicular to the wiring direction of the joint portion between the gold alloy wire and the IC chip electrode.
[0010]
For this reason, when performing nail head bonding using a gold alloy wire as a wire material, attempts have been made to reduce the outer diameter of the press-bonded ball, but the size is also limited.
[0011]
[Problems to be solved by the invention]
In view of the above-mentioned conventional circumstances, when performing wedge bonding on the IC chip electrode using a gold alloy wire that has been proposed for nail head bonding, the spread in the direction perpendicular to the wiring direction of the joint is nail head bonding. Although it can be reduced compared to the method, the bonding strength (hereinafter referred to as high temperature bonding strength) at the bonded portion after exposure to a high temperature state in consideration of the operating state of the IC chip is small and the reliability of the semiconductor device is lowered. The problem has arisen.
[0012]
For this reason, in the present invention, wedge bonding is performed on the IC chip electrode by using a gold alloy wire, thereby reducing the spread of the joint in the direction perpendicular to the wiring direction and supporting high-density wiring and high-temperature bonding strength. An object of the present invention is to provide a gold alloy wire that can improve the reliability of a semiconductor device.
[0013]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors, it has a composition that maintains a predetermined gold purity by adding a predetermined amount of Ca to high-purity gold and has a smaller elongation than a normal gold alloy wire for nail head bonding. In addition, the inventors have found that the above-mentioned object can be achieved by the synergistic effect of the composition and material characteristics by using a gold alloy wire having a high tensile strength, and the present invention has been completed.
[0014]
Specifically, according to the present invention, a gold alloy wire obtained by adding 1 to 100 ppm by weight of calcium (Ca) to high-purity gold,
A gold alloy wire for wedge bonding, wherein the gold alloy wire has a gold purity of 99.9% by weight or more, a tensile strength of 33.0 kg / mm 2 or more, and an elongation of 1 to 3%. Provided.
[0015]
In a preferred embodiment, 1 to 100 parts by weight of at least one of Mg, Y, La, Eu, Ge, Ag, and Pt and / or 1 to 20 ppm by weight of beryllium (Be) are added.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The gold alloy wire for wedge bonding of the present invention is obtained by adding a predetermined amount of Ca to high-purity gold, and as a more preferable embodiment, at least one of a predetermined amount of Mg, Y, La, Eu, Ge, Ag, Pt, and Be. Is added, and has a composition that maintains a predetermined gold purity, and is characterized in that the elongation is reduced and the tensile strength is increased.
(1) Composition {circle around (1)} High purity gold purified to at least 99.99% by weight or more, preferably 99.995% by weight or more, and most preferably 99.999% by weight or more is used.
[0017]
▲ 2 ▼ [Ca]
(A) By adding the above-mentioned predetermined amount of Ca to such high-purity gold to obtain a composition having a predetermined amount of gold purity and a predetermined elongation and tensile strength, the high-temperature bonding strength can be increased by its synergistic effect. Can be improved.
(B) When the Ca content is less than 1 ppm by weight, the high-temperature bonding strength becomes small as compared with 1 ppm by weight or more. When the Ca content exceeds 100 ppm by weight, the IC chip is cracked, and in order to avoid this, only insufficient bonding can be performed and the high-temperature bonding strength is reduced.
[0018]
For this reason, the Ca content is determined to be 1 to 100 ppm by weight under the conditions of predetermined gold purity, elongation rate and tensile strength. Preferably, it is 1 to 50 ppm by weight.
(C) This effect is a composition having a gold purity of 99.9% by weight or more even when other elements are added in addition to the predetermined amount of Ca, and having a predetermined elongation and tensile strength. If it is a wire, the effect of adding Ca is maintained. Of course, a predetermined amount of Ca may be added to high-purity gold, and the remainder may be composed of substantially inevitable impurities.
[0019]
(3) [Mg, Y, La, Eu, Ge, Ag, Pt, Be]
(A) As described above, the effect of the present invention is generally maintained even if other elements are added in addition to a predetermined amount of Ca, but at least one of Mg, Y, La, Eu, Ge, Ag, and Pt is generally maintained. When the seed component is added in the range of 1 to 100 ppm by weight or Be in the range of 1 to 20 ppm by weight, the high-temperature bonding strength is further improved.
[0020]
(B) In this case, when a predetermined amount of at least one of Mg, Y, La, Eu, Ge, Ag, Pt, and Be is added and a predetermined amount of Ca is not added, the composition has a predetermined amount of gold purity. At the same time, even if it has a predetermined elongation and tensile strength, the high-temperature bonding strength decreases.
(4) Gold purity (a) A composition in which a predetermined amount of Ca is added and a gold alloy wire having a predetermined elongation and tensile strength is added, and when 1 to 2 wt% Cu is added, the high-temperature bonding strength is reduced. . Therefore, when the bonding strength is increased, the IC chip is cracked.
[0021]
For this reason, the gold purity of the gold alloy wire is determined to be 99.9% by weight or more. Preferably it is 99.97 weight% or more, More preferably, it is 99.979 weight% or more. It can be obtained by alloying high-purity gold with a high-purity additive metal.
(2) Elongation rate (1) By adding the above-mentioned predetermined amount of Ca to high-purity gold to obtain a composition having a predetermined amount of gold purity, and at a predetermined elongation rate and tensile strength, high temperature bonding is achieved by its synergistic effect. Strength can be improved.
In the present invention, the elongation is the value of the following formula obtained by measuring the elongation when a gold alloy wire is pulled at a tensile tester at a tensile speed of 10 mm / min with a gauge distance of 100 mm and fractured at room temperature. Is the elongation.
[Expression 1]
Figure 0003657087
Here, it is preferable to measure the amount of elongation at the time of breaking from the chart paper figure.
[0022]
{Circle around (2)} When the elongation percentage exceeds 3%, even if a predetermined amount of Ca is added and the composition has a predetermined amount of gold purity and has a predetermined tensile strength, the high-temperature bonding strength decreases.
For this reason, the elongation was determined to be 1 to 3%. Preferably it is 2-3%.
(3) Tensile strength (1) The above-mentioned predetermined amount of Ca is added to high-purity gold to obtain a composition having a predetermined amount of gold purity and a predetermined elongation and tensile strength. Bonding strength can be improved.
[0023]
▲ 2 ▼ tensile strength in contrast to the less than 33.0kg / mm 2 33.0kg / mm 2 or more, the high temperature bond strength is reduced.
For this reason, the tensile strength was set to 33.0 kg / mm 2 or more. Preferably it is 33.0-70.0 kg / mm < 2 >, More preferably, it is 33.0-63.0 kg / mm < 2 >. Most preferably, it is 39.1-63.0 kg / mm < 2 >.
(4) Method for Producing Gold Alloy Wire A preferred method for producing the gold alloy wire according to the present invention will be described. A predetermined amount of element is added to high-purity gold, melted in a vacuum melting furnace, and cast into an ingot. The ingot is subjected to cold processing and intermediate annealing using a groove roll and a wire drawing machine, and is subjected to final annealing after the final cold processing is performed to form a thin wire having a diameter of 10 to 100 μm.
[0024]
Here, in the case of the alloy composition according to the present invention, there is a temperature range in which the tensile strength gradually decreases while the elongation rate is maintained at 1 to 3% as the final annealing temperature increases. Even with the same composition, the tensile strength varies depending on the final cold work rate. Therefore, the elongation rate and the tensile strength are adjusted by controlling the final cold working rate and the final annealing temperature. Thus, it is necessary to anneal in a temperature range in which the elongation is maintained at 1 to 3% and the tensile strength is 33.0 kg / mm 2 or more, preferably 33.0 to 70.0 kg / mm 2. is there. Further, when the annealing temperature rises, the elongation becomes 4% or more, and the tensile strength further decreases. Conventionally used gold alloy wires for nail head bonding have an elongation of 4% or more, but the gold alloy wire according to the present invention gives a predetermined tensile strength and 1-3% elongation. Therefore, the final cold working rate corresponding to the alloy composition is adjusted and annealing is performed in a lower temperature region.
(5) Application The gold alloy wire for wedge bonding according to the present invention is suitable for any of a method of connecting an IC chip to a lead and a method of connecting an IC chip directly to a substrate by a leadless connection.
Wedge bonding here refers to the formation of a ball with the bonding of the wire and the electrode part, both the first bond and the second bond, when wiring the electrode of the IC chip, particularly the Al electrode and the external lead or other electrode with a wire. Without bonding, the side surfaces of the wires are bonded by bonding using a wedge-shaped tool, and an ultrasonic wave is applied or the electrode portion is heated via the wedge-shaped tool as necessary.
[0025]
[Action]
The reason why the gold alloy wire according to the present invention is excellent in high-temperature bonding strength after performing wedge bonding is not clear, but Ca is added as an effective element, and the content of harmful elements is regulated. In addition, the fact that the elongation rate is small and the tensile strength is large is that the Au-Al intermetallic compound produced in combination with preventing unnecessary deformation of the material is thermally coupled with ultrasonic bonding by wedge bonding. This is probably because a stable product has been obtained.
[0026]
【Example】
Examples and Comparative Examples shown in Tables 1 to 4 will be described.
Example 1
A predetermined amount of Ca is added to high-purity gold having a purity of 99.999% by weight, melted in a vacuum melting furnace, and then cast to be a gold alloy having the composition shown in Table 1, that is, 1 wt ppm Ca, gold purity 99.9988% by weight A gold ingot having the above composition was obtained, and this was subjected to cold working and intermediate annealing using a groove roll and a wire drawing machine to obtain a final wire diameter of 25 μm. The final annealing yielded a tensile strength of 40.8 kg / mm 2 . It finished so that it might become 2-3% of a rate.
[0027]
This gold alloy wire was subjected to ultrasonic bonding on the Al electrode of the IC chip and on the external wiring by the method shown in FIG. 2 using a wedge bonding apparatus (SWB-FA-US30 manufactured by Shinkawa Co., Ltd.). At this time, bonding on the IC chip side was performed under the conditions of a bonding load of 45 g, a bonding time of 30 ms, and a bonding power of 0.64 w.
[0028]
Next, 10 samples were held in a high temperature furnace set at 200 ° C. for 100 hours. Next, the sample was taken out of the furnace, the wire was cut on the external wiring side, and the high-temperature bonding strength on the IC chip side was measured by the following method. That is, the IC chip side was fixed with a jig, the wire was pulled upward, and the breaking load was measured. The average value of 10 pieces is taken as a measurement value, and the measurement results are shown in Table 1.
(Examples 2-71, Comparative Examples 1-11)
Except that the composition of gold and gold alloy, elongation rate and tensile strength were as shown in Table 1, the wire was finished in the same manner as in Example 1 and subjected to ultrasonic bonding, and then the high temperature bonding strength was measured.
[0029]
The measurement results are shown in Tables 1 to 4.
(Test results)
(1) Only 1-100 ppm by weight of Ca is added to high-purity gold, the gold purity is 99.9% by weight or more, the elongation is 2-3%, and the tensile strength is 39.3-41.4 kg / mm 2. Examples 1-4, which are, exhibited an excellent effect with a high-temperature bonding strength of 3.0 to 3.3 g.
[0030]
Among these, when the Ca addition amount is 1 to 50 ppm by weight, the high temperature bonding strength is 3.2 to 3.3 g, so that it is preferably used.
(2) A predetermined amount of at least one of Mg, Y, La, Eu, Ge, Ag, Pt, and Be is added to high purity gold in addition to a predetermined amount of Ca, and the gold purity is 99.9% by weight or more. Examples 5 to 55 having an elongation of 1 to 3% and a tensile strength of 39.0 to 41.6 kg / mm 2 have a high-temperature bonding strength of 4.2 to 5.1 g and a composition in which only Ca is added. Furthermore, an excellent effect was shown.
[0031]
(3) Examples 56 to 11 having compositions and elongations shown in Examples 2, 11, 22, 26, 36, 42, 43, and 45 and having a tensile strength of 33.0 to 60.3 kg / mm 2. No. 71 had a high temperature bonding strength of 3.2 to 5.1 g, and showed an excellent effect.
(4) In the examples, in addition to Ca, it contains at least one of Mg, Y, La, Eu, Ge, Ag, Pt, and Be, has an elongation of 1 to 3%, and has a tensile strength. 39.1 to 63.0 kg / mm 2 showed the most excellent effect with high-temperature bonding strength of 4.2 to 5.1 g.
[0032]
(5) It can be seen that Comparative Example 1 which does not contain any of Ca and Mg, Y, La, Eu, Ge, Ag, Pt, and Be according to the present invention has a high-temperature bonding strength of 0.6 g.
(6) It can be seen that Comparative Examples 2 to 3 which do not contain Ca, which is an essential component of the present invention and contain 50 ppm by weight of Mg or Y, have poor high-temperature bonding strength of 2.5 to 2.7 g.
(7) Comparative Example 4 containing 10 wt ppm of Ca and having a predetermined elongation and tensile strength but containing 2.0 wt% Cu has a gold purity of less than 99.9 wt%. It can be seen that the high-temperature bonding strength is poor at 0.5 g.
[0033]
(8) It can be seen that Comparative Example 5 containing 200 ppm by weight of Ca has a bad high-temperature bonding strength of 1.2 g.
(9) Comparative Examples 6 to 6 containing a predetermined amount of Ca or a predetermined amount of Mg, Ge, Ag in addition thereto, and having a predetermined gold purity and elongation, but a tensile strength of less than 33.4 kg / mm 2 8 shows that the high-temperature bonding strength is 2.5 to 2.8.
[0034]
(10) Comparative Examples 9 to 11 containing a predetermined amount of Ca or a predetermined amount of Mg, Ge, Ag in addition to the above, and having a predetermined gold purity but having an elongation of more than 3% have a high-temperature bonding strength of 2.2. It turns out to be bad with ~ 2.4g.
[0035]
[Table 1]
Figure 0003657087
[0036]
[Table 2]
Figure 0003657087
[0037]
[Table 3]
Figure 0003657087
[0038]
[Table 4]
Figure 0003657087
[0039]
【The invention's effect】
According to the present invention, a gold alloy wire for wedge bonding containing a predetermined amount of Ca, having a predetermined amount of gold purity, and having a predetermined elongation and tensile strength can improve the high-temperature bonding strength. It is effective for improving the reliability of By including at least one of a predetermined amount of Mg, Y, La, Eu, Ge, Ag, Pt, and Be in addition to the predetermined amount of Ca, the high-temperature bonding strength can be further improved and the reliability of the semiconductor device can be improved. It is more effective for improving the performance.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a bonding method using a nail bonding method.
FIG. 2 is a diagram illustrating a bonding method using a wedge bonding method.
FIG. 3 shows the shape and dimensions of a joint by a nail bonding method and a wedge bonding method.
[Explanation of symbols]
11 ... wedge 12 ... Wire 12 '... bonding wire 14' ... wire junction 15 ... Al wiring 16 ... IC chip 17 ... clamper 18 ... external wiring D ... wire diameter L 1 ... compression ball diameter L 2 ... droop width

Claims (3)

高純度金にカルシウム(Ca)を1〜100重量ppm 添加した金合金線であって、
該金合金線の金純度が99.9重量%以上であり、引張強さが33.0kg/mm2 以上、伸び率が1〜3%であることを特徴とするウエッジボンディング用金合金線。
A gold alloy wire obtained by adding 1 to 100 ppm by weight of calcium (Ca) to high purity gold,
A gold alloy wire for wedge bonding, wherein the gold alloy wire has a gold purity of 99.9% by weight or more, a tensile strength of 33.0 kg / mm 2 or more, and an elongation of 1 to 3%.
さらにMg,Y,La,Eu,Ge,Ag,Ptのうち少なくとも1種を1〜100重量ppm 添加したことを特徴とする請求項1記載のウエッジボンディング用金合金線。The gold alloy wire for wedge bonding according to claim 1, wherein at least one of Mg, Y, La, Eu, Ge, Ag, and Pt is added in an amount of 1 to 100 ppm by weight. さらにベリリウム(Be)を1〜20重量ppm 添加したことを特徴とする請求項1または請求項2記載のウエッジボンディング用金合金線。The gold alloy wire for wedge bonding according to claim 1 or 2, wherein beryllium (Be) is further added in an amount of 1 to 20 ppm by weight.
JP20690397A 1996-07-31 1997-07-31 Gold alloy wire for wedge bonding Expired - Fee Related JP3657087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20690397A JP3657087B2 (en) 1996-07-31 1997-07-31 Gold alloy wire for wedge bonding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-202274 1996-07-31
JP20227496 1996-07-31
JP20690397A JP3657087B2 (en) 1996-07-31 1997-07-31 Gold alloy wire for wedge bonding

Publications (2)

Publication Number Publication Date
JPH1098063A JPH1098063A (en) 1998-04-14
JP3657087B2 true JP3657087B2 (en) 2005-06-08

Family

ID=26513280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20690397A Expired - Fee Related JP3657087B2 (en) 1996-07-31 1997-07-31 Gold alloy wire for wedge bonding

Country Status (1)

Country Link
JP (1) JP3657087B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054164A1 (en) 2007-10-24 2009-04-30 Tanaka Denshi Kogyo K.K. Gold alloy wire for ball bonding
EP2369023A1 (en) 2007-11-06 2011-09-28 Tanaka Denshi Kogyo K.K. Bonding wire

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010073501A (en) * 2000-01-17 2001-08-01 강도원 A alloy of bonding wire for high stretch using for semiconductor packaging
JP3323185B2 (en) * 2000-06-19 2002-09-09 田中電子工業株式会社 Gold wire for connecting semiconductor elements
JP4641248B2 (en) * 2004-12-21 2011-03-02 田中電子工業株式会社 Gold alloy wire for bonding wires with excellent bondability, straightness and resin flow resistance
JP4130843B1 (en) * 2007-04-17 2008-08-06 田中電子工業株式会社 High reliability gold alloy bonding wire and semiconductor device
JP4195495B1 (en) * 2007-11-06 2008-12-10 田中電子工業株式会社 Gold alloy wire for ball bonding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009054164A1 (en) 2007-10-24 2009-04-30 Tanaka Denshi Kogyo K.K. Gold alloy wire for ball bonding
CN101601126B (en) * 2007-10-24 2012-06-20 田中电子工业株式会社 Gold alloy wire for ball bonding
EP2369023A1 (en) 2007-11-06 2011-09-28 Tanaka Denshi Kogyo K.K. Bonding wire

Also Published As

Publication number Publication date
JPH1098063A (en) 1998-04-14

Similar Documents

Publication Publication Date Title
EP0822264B1 (en) Use of a gold alloy wire for wedge bonding
EP1160344B1 (en) Gold wire for semiconductor element connection and semiconductor element connection method
JP3328135B2 (en) Gold alloy wire for bump formation and bump formation method
JP3657087B2 (en) Gold alloy wire for wedge bonding
JPS62228440A (en) Gold wire for semiconductor device bonding
JP3690902B2 (en) Gold alloy wire for wedge bonding
JP3126926B2 (en) Gold alloy fine wire for semiconductor element and semiconductor device
JPH0291944A (en) Gold alloy fine wire for gold bump
JPH02215140A (en) Fine gold alloy wire for semiconductor element and its bonding method
JP3323185B2 (en) Gold wire for connecting semiconductor elements
JP3445616B2 (en) Gold alloy wires for semiconductor devices
JP3356082B2 (en) Gold alloy wires for bonding semiconductor devices
JP3542867B2 (en) Semiconductor device
JP2000150562A (en) Bonding gold alloy fine wire for semiconductor device
JP4134261B1 (en) Gold alloy wire for ball bonding
JP3669810B2 (en) Gold alloy wire for semiconductor element bonding
JP3764629B2 (en) Semiconductor device with wire wedge-bonded
JP3586909B2 (en) Bonding wire
JP3907534B2 (en) Gold alloy wire for bonding
JPS62145756A (en) Copper wirings for bonding
JP3571793B2 (en) Gold alloy wire and gold alloy bump
JP3615901B2 (en) Gold alloy wire for semiconductor element bonding
JP3147601B2 (en) Pb alloy solder for semiconductor device assembly with excellent high temperature strength
JPH11163016A (en) Small gold ball for bump and semiconductor device
JPH0448734A (en) Aluminum alloy for bump

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050308

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080318

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090318

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100318

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110318

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees