KR20120121033A - 고체산을 이용한 물 분해 수소 제조 방법 - Google Patents
고체산을 이용한 물 분해 수소 제조 방법 Download PDFInfo
- Publication number
- KR20120121033A KR20120121033A KR1020110038756A KR20110038756A KR20120121033A KR 20120121033 A KR20120121033 A KR 20120121033A KR 1020110038756 A KR1020110038756 A KR 1020110038756A KR 20110038756 A KR20110038756 A KR 20110038756A KR 20120121033 A KR20120121033 A KR 20120121033A
- Authority
- KR
- South Korea
- Prior art keywords
- solid acid
- water
- metal
- reactor
- hydrogen
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 149
- 239000011973 solid acid Substances 0.000 title claims abstract description 125
- 239000001257 hydrogen Substances 0.000 title claims abstract description 102
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 102
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 90
- 239000000463 material Substances 0.000 title claims abstract description 10
- 238000000034 method Methods 0.000 title claims description 35
- 229910052751 metal Inorganic materials 0.000 claims abstract description 69
- 239000002184 metal Substances 0.000 claims abstract description 69
- 239000003792 electrolyte Substances 0.000 claims abstract description 43
- 239000000203 mixture Substances 0.000 claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 claims abstract description 34
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 26
- 229910052742 iron Inorganic materials 0.000 claims abstract description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims abstract description 8
- 239000011701 zinc Substances 0.000 claims abstract description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910017052 cobalt Inorganic materials 0.000 claims abstract description 4
- 239000010941 cobalt Substances 0.000 claims abstract description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 3
- 239000000956 alloy Substances 0.000 claims abstract description 3
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 3
- 239000011651 chromium Substances 0.000 claims abstract description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims abstract description 3
- 239000000843 powder Substances 0.000 claims description 44
- 239000002245 particle Substances 0.000 claims description 15
- 230000008016 vaporization Effects 0.000 claims description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 12
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 12
- 238000009834 vaporization Methods 0.000 claims description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 claims description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 8
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical compound [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 8
- KWYUFKZDYYNOTN-UHFFFAOYSA-M potassium hydroxide Substances [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims description 8
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 claims description 8
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 239000011575 calcium Substances 0.000 claims description 6
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 claims description 6
- 150000002431 hydrogen Chemical class 0.000 claims description 6
- 239000011148 porous material Substances 0.000 claims description 6
- 239000011734 sodium Substances 0.000 claims description 6
- 239000011780 sodium chloride Substances 0.000 claims description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 5
- 239000002923 metal particle Substances 0.000 claims description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 4
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 claims description 4
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 claims description 4
- 239000011777 magnesium Substances 0.000 claims description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 claims description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 claims description 4
- 235000019341 magnesium sulphate Nutrition 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000004317 sodium nitrate Substances 0.000 claims description 4
- 235000010344 sodium nitrate Nutrition 0.000 claims description 4
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 claims description 3
- 239000000440 bentonite Substances 0.000 claims description 3
- 229910000278 bentonite Inorganic materials 0.000 claims description 3
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 claims description 3
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 claims description 3
- 229910052938 sodium sulfate Inorganic materials 0.000 claims description 3
- 235000011152 sodium sulphate Nutrition 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- 229910017119 AlPO Inorganic materials 0.000 claims description 2
- 229910016036 BaF 2 Inorganic materials 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 2
- 235000019738 Limestone Nutrition 0.000 claims description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 claims description 2
- 241000080590 Niso Species 0.000 claims description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims description 2
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 2
- ILRRQNADMUWWFW-UHFFFAOYSA-K aluminium phosphate Chemical compound O1[Al]2OP1(=O)O2 ILRRQNADMUWWFW-UHFFFAOYSA-K 0.000 claims description 2
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 claims description 2
- QCUOBSQYDGUHHT-UHFFFAOYSA-L cadmium sulfate Chemical compound [Cd+2].[O-]S([O-])(=O)=O QCUOBSQYDGUHHT-UHFFFAOYSA-L 0.000 claims description 2
- 229910000331 cadmium sulfate Inorganic materials 0.000 claims description 2
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 claims description 2
- 229910001942 caesium oxide Inorganic materials 0.000 claims description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 2
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 2
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 2
- 229910000151 chromium(III) phosphate Inorganic materials 0.000 claims description 2
- IKZBVTPSNGOVRJ-UHFFFAOYSA-K chromium(iii) phosphate Chemical compound [Cr+3].[O-]P([O-])([O-])=O IKZBVTPSNGOVRJ-UHFFFAOYSA-K 0.000 claims description 2
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 claims description 2
- 229910000365 copper sulfate Inorganic materials 0.000 claims description 2
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 claims description 2
- GQDHEYWVLBJKBA-UHFFFAOYSA-H copper(ii) phosphate Chemical compound [Cu+2].[Cu+2].[Cu+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GQDHEYWVLBJKBA-UHFFFAOYSA-H 0.000 claims description 2
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 claims description 2
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 claims description 2
- GNTDGMZSJNCJKK-UHFFFAOYSA-N divanadium pentaoxide Chemical compound O=[V](=O)O[V](=O)=O GNTDGMZSJNCJKK-UHFFFAOYSA-N 0.000 claims description 2
- 239000010438 granite Substances 0.000 claims description 2
- 229910000398 iron phosphate Inorganic materials 0.000 claims description 2
- 229910000358 iron sulfate Inorganic materials 0.000 claims description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims description 2
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 claims description 2
- WBJZTOZJJYAKHQ-UHFFFAOYSA-K iron(3+) phosphate Chemical compound [Fe+3].[O-]P([O-])([O-])=O WBJZTOZJJYAKHQ-UHFFFAOYSA-K 0.000 claims description 2
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052622 kaolinite Inorganic materials 0.000 claims description 2
- 239000006028 limestone Substances 0.000 claims description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 claims description 2
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 claims description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 2
- 239000000347 magnesium hydroxide Substances 0.000 claims description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 2
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 claims description 2
- SQQMAOCOWKFBNP-UHFFFAOYSA-L manganese(II) sulfate Chemical compound [Mn+2].[O-]S([O-])(=O)=O SQQMAOCOWKFBNP-UHFFFAOYSA-L 0.000 claims description 2
- 239000012528 membrane Substances 0.000 claims description 2
- 229910052901 montmorillonite Inorganic materials 0.000 claims description 2
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 claims description 2
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 2
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 2
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 claims description 2
- ONDPHDOFVYQSGI-UHFFFAOYSA-N zinc nitrate Chemical compound [Zn+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ONDPHDOFVYQSGI-UHFFFAOYSA-N 0.000 claims description 2
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 claims description 2
- 229910000165 zinc phosphate Inorganic materials 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 3
- OYLGJCQECKOTOL-UHFFFAOYSA-L barium fluoride Chemical compound [F-].[F-].[Ba+2] OYLGJCQECKOTOL-UHFFFAOYSA-L 0.000 claims 1
- 229910001632 barium fluoride Inorganic materials 0.000 claims 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 claims 1
- 229910000397 disodium phosphate Inorganic materials 0.000 claims 1
- 235000019800 disodium phosphate Nutrition 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 claims 1
- 238000000197 pyrolysis Methods 0.000 abstract description 7
- 238000010438 heat treatment Methods 0.000 abstract description 2
- 238000009835 boiling Methods 0.000 abstract 2
- 150000002739 metals Chemical class 0.000 abstract 2
- 238000006243 chemical reaction Methods 0.000 description 73
- 238000000354 decomposition reaction Methods 0.000 description 58
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 38
- 239000007789 gas Substances 0.000 description 32
- 229910052786 argon Inorganic materials 0.000 description 19
- 238000004817 gas chromatography Methods 0.000 description 13
- 239000012159 carrier gas Substances 0.000 description 12
- 239000007788 liquid Substances 0.000 description 12
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 8
- 230000007423 decrease Effects 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 7
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 238000005070 sampling Methods 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 239000011787 zinc oxide Substances 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- -1 kapulite Inorganic materials 0.000 description 4
- 230000035484 reaction time Effects 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 230000001186 cumulative effect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000002803 fossil fuel Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 3
- 229910052939 potassium sulfate Inorganic materials 0.000 description 3
- 235000011151 potassium sulphates Nutrition 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 3
- 238000010792 warming Methods 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 239000007848 Bronsted acid Substances 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 239000007784 solid electrolyte Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 239000002841 Lewis acid Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229960000892 attapulgite Drugs 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000007517 lewis acids Chemical class 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910000403 monosodium phosphate Inorganic materials 0.000 description 1
- 235000019799 monosodium phosphate Nutrition 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910052625 palygorskite Inorganic materials 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000001120 potassium sulphate Substances 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/16—Clays or other mineral silicates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J6/00—Heat treatments such as Calcining; Fusing ; Pyrolysis
- B01J6/008—Pyrolysis reactions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/36—Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 물을 열분해하여 수소를 제조하는 방법에 있어서, (a) 철 70%이상을 함유하는 내열 및 내압 재질로 구성되는 반응기 내부에 고체산, 또는 고체산과 금속 및 전해질 중에서 선택되는 하나 이상과의 혼합물을 구비하는 단계; (b) 상기 반응기의 온도를 물의 기화점 이하로 유지하면서 물 또는 수증기를 주입하여 고체산에 물을 흡착시키는 단계; (c) 500 K 이상 1500 K 이하의 온도와 0.5 기압 이상 100 기압 이하의 압력에서 물을 분해하여 수소를 생산하는 단계; 및 (d) 반응기 내부온도를 물의 기화점 이하로 낮추는 단계를 포함하는 수소 제조 방법을 제공한다. 본 발명에 의하면, 물 분해에 의한 수소 생산에 있어서 고체산에 흡착되는 물의 양을 원하는 대로 조절할 수 있게 함으로서 낮은 반응 온도와 압력에서도 물을 효율적으로 분해하여 수소의 생산량을 증가시킬 수 있다. 따라서, 물의 열분해방식에 의한 수소생산의 경제성을 향상시킬 수 있으며, 그에 따라, 물의 열분해에 의한 수소생산을 상업화할 수 있다.
Description
본 발명은 고체산을 이용한 물 분해에 의한 수소의 제조에 관한 것이다.
석유, 석탄 등 화석연료를 지속적으로 사용해 왔던 인류는, 화석연료의 연소 후 물질인 이산화탄소 등의 온난화 기체를 대량 생성시킴으로써 지구 온난화 현상을 초래하였고, 그 결과 전 지구적 차원에서 환경 파괴가 지속되고 있으며, 궁극적으로는 인류의 멸망까지도 우려해야 하는 단계에 이르렀다. 이와 같은 지구와 인류의 재앙을 차단하기 위해서는, 화석연료의 사용을 지양하여 이산화탄소 등 지구 온난화 기체 생성을 억제시키는 노력이 필요하다고 할 수 있다. 따라서 최근에는 원자력에너지, 태양에너지, 그리고 물을 원료로 하는 수소에너지의 활용 방법에 관한 연구가 증대되어 가고 있는 실정이다. 그러나 원자력에너지의 원료는 소멸성이기 때문에 언젠가는 원료의 고갈이 우려된다는 약점을 갖는다. 이에 비해 무한정으로 공급되는 태양에너지와 물의 분해에 의해 지속적 공급이 가능한 수소에너지는 인류의 미래 에너지로서의 가치가 높다고 볼 수 있다. 특히 현재의 기술 수준으로 고려할 때 자동차 등 구동 장치의 구동을 위해서는 수소에너지가 유일한 해답이라고 할 수 있다.
물을 원료로 하여 수소를 제조하는 종래의 방법으로는 전기에너지를 이용하는 전기분해 방식과 열에너지를 이용하는 열분해 방식이 있다.
전기분해 방식은 고급에너지인 전기를 사용하여야 하며, 물 분해 효율이 낮다. 이에 비하여 열분해 방식은 일차연료 또는 태양열을 사용하는 방법이 가능하며 이 방법에는 1단계 분해 방식인 직접 분해 방법과 금속산화물을 일차 열로 분해하여 금속과 산소로 분리한 후 금속과 물을 반응시켜 수소를 제조하는 2단계 간접 분해 방법이 있다.
그러나, 직접 분해 방법의 경우에는 반응온도가 최소 2500K 이상이어야 하고, 그리고 간접 분해 방법의 경우에도 금속산화물 분해온도가 최소 1500K 이상이 되어야 한다. 따라서 열분해 방식은 상기 고온의 반응 온도에 따른 반응 시스템의 재질 문제와 열효율이 낮아지는 문제 등이 있으며, 그로 인해, 상업적 활용이 이루어지지 않고 있다.
종래의 고압 연속 반응 방법은 물이 고체산에 흡착되는 과정과 분해되는 과정이 동일한 고온의 반응온도에서 수행되기 때문에 높은 반응압력을 필요로 하였을 뿐 아니라 물의 흡착량을 제어할 수도 없었다. 또한, 반응 시간이 경과할수록 수소의 생산량이 감소하는 등의 문제점이 있어 왔다.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 고체산에 물을 흡착시키는 방법에 있어서, 반응기 내부 온도를 물의 기화온도 이하로 낮추고 물 또는 수증기를 주입하여 반응기 내부의 고체산에 물을 액체 상태로 원하는 양만큼 흡착시킴으로서, 물 분해에 의한 수소 생산의 효율을 향상시킬 수 있는 물 분해에 의한 수소 제조방법을 제공하는 데 있다. 또한 이를 통해 물의 열분해에 의한 수소 생산이 상업적으로 가능하도록 하는데 그 목적이 있다.
상기 목적을 달성하기 위하여, 본 발명은 물을 열분해하여 수소를 제조하는 방법에 있어서, (a) 철 70%이상을 함유하는 내열 및 내압 재질로 구성되는 반응기 내부에 고체산, 또는 고체산과 금속 및 전해질 중에서 선택되는 하나 이상과의 혼합물을 구비하는 단계; (b) 상기 반응기의 온도를 물의 기화점 이하로 유지하면서 물 또는 수증기를 주입하여 고체산에 물을 흡착시키는 단계; (c) 500 K 이상 1500 K 이하의 온도와 0.5 기압 이상 100 기압 이하의 압력에서 물을 분해하여 수소를 생산하는 단계; 및 (d) 반응기 내부온도를 물의 기화점 이하로 낮추는 단계를 포함하는 수소 제조 방법을 제공한다.
본 발명에 의하면, 물 분해에 의한 수소 생산에 있어서 고체산에 흡착되는 물의 양을 원하는 대로 조절할 수 있게 함으로서 낮은 반응 온도와 압력에서도 물을 효율적으로 분해하여 수소의 생산량을 증가시킬 수 있다. 따라서, 물의 열분해방식에 의한 수소생산의 경제성을 향상시킬 수 있으며, 그에 따라, 물의 열분해에 의한 수소생산을 상업화할 수 있다.
도 1은 본 발명의 실험에서 사용된 물 분해 반응의 실험 장치를 나타내는 개략도이다.
도 2는 도 1에 도시된 반응기의 상세 단면도이다.
도 2는 도 1에 도시된 반응기의 상세 단면도이다.
이하 본 발명을 상세히 설명한다.
본 발명의 일 실시예는 물을 열분해하여 수소를 제조하는 방법에 있어서, (a) 철 70%이상을 함유하는 내열 및 내압 재질로 구성되는 반응기 내부에 고체산, 또는 고체산과 금속 및 전해질 중에서 선택되는 하나 이상과의 혼합물을 구비하는 단계; (b) 상기 반응기 내부의 온도를 물의 기화점 이하로 유지하면서 물 또는 수증기를 주입하여 고체산에 물을 흡착시키는 단계; (c) 500 K 이상 1500 K 이하의 온도와 0.5 기압 이상 100 기압 이하의 압력에서 10분 ~ 10시간, 구체적으로는 30분 ~ 5시간의 시간 동안 물을 분해하여 수소를 생산하는 단계; 및 (d) 반응기 내부온도를 물의 기화점 이하로 낮추는 단계를 포함한다.
본 발명의 일 실시예에서, 상기 (b) 내지 (d) 단계를 반복 실시함으로써 물 분해 수소 생산의 효율성이 향상된다.
본 발명의 일 실시예에서, 상기 (b) 단계에서 반응기 내부의 압력은 0.5~2기압일 수 있다. 또한, (b) 단계에서 반응기 내부의 온도는 물의 기화점 이하, 구체적으로 273 ~ 373 K의 온도일 수 있다. 273 K미만에서는 물이 상태가 고체로 변하므로 흡착이 안되고, 373 K가 초과하면 수증기 상태이므로 흡착을 시키기 위해 높은 압력이 필요하므로, 흡착량의 제어가 어려워서 경제성이 좋지 않다.
상기 (b) 단계는 낮은 온도와 낮은 압력에서 물을 액체상태로 흡착량을 제어하면서 고체산에 흡착시킬 수 있어서 경제성이 우수한 장점이 있다. 기체를 흡착시키려면 압력을 올려야 하지만, 액체는 고체산 표면에 접촉시키기만 하면 상압에서도 많은 양이 쉽게 흡착되기 때문이다.
하기 빈응식 1은 고체산을 이용한 물의 분해 반응을 개략적으로 나타낸 것이다. 반응식 1을 참조하면, 고체산의 루이스 산점(Lewis acid site)에는 물이 배위결합으로 흡착되어 브뢴스테드 산점(Bronsted acid site)을 형성시키고, 상기 브뢴스테드산점은 상기 고체산의 산소와 수소결합을 하게 됨으로서, 물은 고체산과 배위결합 및 수소결합의 2중결합의 형태로 흡착된다. 상기 2중결합에 의해 고체산에 흡착된 물을 가열하면 두 개의 결합을 통하여 전자가 교환되면서 상기 고체산에 흡착된 물이 전기분해 되어 수소와 히드록시 라디칼 등으로 분해된다.
[반응식 1]
상기와 같은 물 분해 반응에 있어, 물을 액체의 형태로 고체산에 흡착시키는 방법에 의해 물 분해효율을 극대화시킬 수 있다.
본 발명의 일 실시예에서, 상기 고체산은 현무암, 화강암, 석회암, 사암, 카올리나이트(kaolinite), 아타풀가이트(attapulgite), 벤토나이트(bentonite), 몬모릴로나이트(montmorillonite), 산화아연(ZnO), 산화알루미늄(Al2O3), 산화티타늄(TiO2), 산화세슘(CeO2), 산화바나듐(V2O5), 산화규소(SiO2), 산화크롬(Cr2O3), 황산칼슘(CaSO4), 황산망간(MnSO4), 황산니켈(NiSO4), 황산구리(CuSO4), 황산코발트(CoSO4), 황산카드뮴(CdSO4), 황산마그네슘(MgSO4), 황산철Ⅱ(FeSO4), 황산알루미늄(Al2(SO4)3), 질산칼슘(Ca(NO3)2), 질산아연(Zn(NO3)2), 질산철Ⅲ(Fe(NO3)3), 인산알루미늄(AlPO4), 인산철Ⅲ(FePO4), 인산크롬(CrPO4), 인산구리(Cu3(PO4)2), 인산아연(Zn3(PO4)4), 인산마그네슘(Mg3(PO4)2), 염화알루미늄(AlCl3), 염화티타늄(TiCl4), 염화칼슘(CaCl2), 불화칼슘(CaF2), 불화바륨(BaF2), 탄산칼슘(CaCO3) 및 탄산마그네슘(MgCO3)으로 이루어진 군에서 선택되는 어느 하나 또는 2 이상의 혼합물인 것일 수 있다.
상기 고체산은 금속과 혼합되어 사용될 수 있으며, 이 경우, 상기 금속에 의해 1500 K 이하의 낮은 반응온도에서 물 분해 효율이 향상될 수 있다. 이는 고체산의 표면 전자가 물의 수소 이온으로 이동하는 과정에서 상기 금속에 의해 전자이동이 보다 활성화되기 때문이다.
본 발명의 일 실시예에서, 상기 금속은 알루미늄, 아연, 철, 코발트, 망간, 크롬 및 니켈로 이루어진 군에서 선택되는 어느 하나, 2 이상의 혼합물 또는 2 이상의 합금인 것일 수 있다.
상기 고체산 및 금속의 혼합물을 사용하는 경우, 상기 고체산 및 금속 각각은 분말 형태로 사용될 수 있으며, 그 입자의 크기가 20 내지 500 메쉬인 것이 바람직하다. 고체산 분말과 금속 분말은 입자의 크기가 작을수록 표면적이 넓어지므로, 입자의 크기가 작아질수록 반응효율이 높아진다. 그러나 입자의 크기가 500메쉬 이하인 경우에는 캐리어 기체의 유속에 의해 반응기 외부로 유실될 수 있고, 20메쉬보다 커지면 반응효율이 크게 저하될 수 있다. 그러므로 반응성과 공정 유지성을 감안하여, 상기 고체산 분말 및 금속분말의 크기는 20메쉬 내지 500메쉬인 것이 바람직하다.
본 발명의 일 실시예에서, 상기 고체산 및 금속의 혼합물은 상기 고체산 분말의 공극에 금속 입자를 침착시킨 형태로 사용될 수 있다. 이 경우 금속 입자의 크기가 작을수록 반응 효율이 높아지기 때문에 직경 10㎛ 이하의 금속입자를 고체산 분말의 공극 내부에 침착시켜 사용하는 것이 바람직하다.
본 발명의 일 실시예에서, 상기 고체산 및 금속의 혼합물은 상기 고체산 분말 표면에 상기 금속을 코팅한 형태로 사용되거나, 상기 금속 분말에 고체산 분말을 코팅한 형태로 사용될 수 있다. 코팅된 금속막 및 고체산막의 두께는 10㎚ 초과 10㎛ 이하로 형성되는 것이 반응 효율면에서 바람직하다.
본 발명의 일 실시예에서, 상기 고체산 및 금속의 혼합물에서, 고체산 분말을 60중량% 이상 포함하고, 금속 분말을 40중량% 이하로 포함하는 것이 바람직하다. 금속 분말을 40중량% 초과하여 포함하는 경우에는 금속 분말과 물과의 반응이 주도적으로 일어나기 때문에 고체산에 의한 물 분해 효과가 현저히 감소한다. 따라서, 더욱 바람직하게는, 금속 분말의 함량을 20중량% 이하로 유지하는 경우 가장 좋은 효율을 얻을 수 있다.
본 발명의 일 실시예에서, 상기 고체산과 금속의 혼합물은 전해질과 혼합되어 사용될 수 있으며, 이 경우, 상기 전해질에 의해 물 분해 효율이 향상될 수 있다. 이는 고체산의 표면 전자가 물의 수소 이온으로 이동하는 과정에서 상기 전해질에 의해 전자이동이 보다 효율화되기 때문이다.
본 발명의 일 실시예에서, 상기 전해질은 염화나트륨(NaCl), 염화카리(KCl), 질산나트륨(NaNO3), 질산카리(KNO3), 황산나트륨(Na2SO4), 황산카리(K2SO4), 탄산리튬(Li2CO3), 탄산나트륨(Na2CO3), 탄산카리(K2CO3), 인산2수소나트륨(NaH2PO4), 인산1수소나트륨(Na2HPO4), 수산화나트륨,(NaOH), 수산화카리(KOH), 염화칼슘(CaCl2), 염화마그네슘(MgCl2), 질산칼슘(Ca(NO3)2), 질산마그네슘(Mg(NO3)2), 황산칼슘(CaSO4), 황산마그네슘(MgSO4), 수산화칼슘(Ca(OH)2) 및 수산화마그네슘(Mg(OH)2)으로 이루어진 군에서 선택되는 어느 하나 또는 2 이상의 혼합물인 것일 수 있다.
본 발명의 일 실시예에서, 상기 고체산, 금속 및 전해질의 혼합물을 사용하는 경우, 상기 고체산, 금속 및 전해질 각각은 분말 형태로 사용될 수 있으며, 그 입자의 크기가 20 내지 500 메쉬인 것이 바람직하다. 고체산 분말, 금속 분말 및 전해질 분말은 입자의 크기가 작을수록 표면적이 넓어지므로, 입자의 크기가 작아질수록 반응효율이 높아진다. 그러나 입자의 크기가 500메쉬 이하인 경우에는 캐리어 기체의 유속에 의해 반응기 외부로 유실될 수 있고, 20메쉬 보다 커지면 반응효율이 크게 저하될 수 있다. 그러므로 반응성과 공정 유지성을 감안하여, 상기 고체산 분말 및 금속분말의 크기는 20메쉬 내지 500메쉬인 것이 바람직하다.
본 발명의 일 실시예에서, 상기 고체산, 금속 및 전해질 혼합물은 상기 고체산 및 금속 분말의 공극에 전해질 입자를 침착시킨 형태로 사용될 수 있다. 이 경우 전해질 입자의 크기가 작을수록 반응 효율이 높아지기 때문에 직경 10㎛ 이하의 전해질 입자를 고체산 및 금속 분말의 공극 내부에 침착시켜 사용하는 것이 바람직하다.
본 발명의 일 실시예에서, 상기 고체산, 금속 및 전해질 혼합물은 상기 고체산 및 금속 분말 표면에 상기 전해질을 코팅한 형태로 사용되거나, 상기 금속 및 전해질 분말에 고체산 분말을 코팅한 형태로 사용될 수 있다. 코팅된 전해질막의 두께는 10㎚ 초과 10㎛ 이하로 형성되는 것이 반응 효율면에서 바람직하다.
상기 고체산, 금속 및 전해질 혼합물에서, 고체산 분말과 금속 분말 혼합물을 70중량% 이상 포함하고, 전해질 분말을 30중량% 이하로 포함하는 것이 바람직하다. 전해질 분말을 30중량% 초과하여 포함하는 경우에는 전해질이 오히려 전자의 이동을 저해하게 되어 고체산에 의한 물 분해 효과가 현저히 감소한다. 따라서, 더욱 바람직하게는, 전해질 분말의 함량을 15중량% 이하로 유지하는 경우 가장 좋은 효율을 얻을 수 있다.
본 발명에 따른 물 분해 반응에서 반응온도는 500K 이상 1500K 이하로 유지되고, 반응기압은 0.5 기압 이상 100 기압 이하로 유지되는 것이 반응효율 및 경제성 면에서 바람직하다.
물 분해 반응은 373K 이상의 반응온도에서는 언제나 가능하나 500K 미만의 경우에는 물 분해 효율이 낮아진다. 또한 반응온도가 높을수록 물 분해 효율이 증대되지만, 1500K를 초과하는 경우에는 효율의 증가폭이 크게 감소된다. 따라서, 500K 이상 1500K 이하의 온도를 유지하는 것이 바람직하다.
고체산에 의한 물 분해 반응에서, 기체 상태의 물은 기화온도 이상의 온도에서는 상압 조건으로 고체산에 흡착시키기 매우 어려우며, 따라서 반응 압력을 높여야만 압력에 비례하여 소량이나마 고체산에 흡착된다. 그러나, 액체 상태의 물은 상압에서 단순히 고체산 표면에 접촉하는 과정으로 많은 양이 고체산에 흡착된다.
상기 (b) 단계의 방법으로 물을 흡착한 고체산은 상기 (c) 단계에서 반응기 내부의 반응 압력이 높아질수록 보다 많은 양의 수소의 생산이 가능하다. 그러나 반응 압력이 높아짐에 따라 물 분해 반응 속도가 점진적으로 감소하여, 100기압이 초과되는 경우 단위 시간당 물 분해 효율이 크게 감소하였다. 또한 반응 압력이 낮을수록 물 분해 반응속도가 증가한다는 이점이 있지만 수소의 생산량이 감소하고, 특히 0.5 기압 미만으로 유지시키는 경우 추가적 비용이 증가하여 물 분해 수소 생산의 경제성을 크게 저하시켰다. 따라서, 물 분해 반응의 압력은 0.5 기압 이상 100 기압 이하를 유지하는 것이 바람직하다.
한편, 본 발명에 따른 물 분해에 의한 수소 제조방법에서는 내열 및 내압재질로 이루어진 반응기를 이용한다. 물 분해 반응에서 반응기 온도가 500 ~ 1500K로 유지되고, 압력이 100기압 이하로 유지되므로 상기한 온도와 압력 범위 내에서 반응이 안정적으로 진행되도록, 상기 반응기를 내열 및 내압재질로 이루어진 것을 사용한다. 상기 내열 및 내압재질은 철을 70% 이상 함유한 것으로 SUS(Stainless Steel) 강, 탄소 강, 또는 이들의 혼합물들을 예로 들 수 있다.
본 발명에 따른 물 분해에 의한 수소 제조방법에서는, 반응기 내부에서 발생하는 수소, 산소, 수증기를 반응기 밖으로 원활하게 이동시키기 위하여, 캐리어 가스를 반응기로 이동 시킨다. 상기 캐리어 가스로는 수소, 질소, 아르곤, 이산화탄소, 수증기 등이 사용될 수 있다.
이하, 본 발명의 실시예를 참조하여 본 발명을 상세히 설명한다. 이는 본 발명을 보다 구체적으로 설명하기 위해 예시적으로 제시한 것일 뿐, 본 발명의 범위가 이들에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가지는 자에 있어서 자명할 것이다.
[실험 장치]
도 1은 본 발명의 실험에서 사용된 물 분해 반응의 실험 장치를 나타내는 개략도이고, 도 2는 도 1에 도시된 반응기(10)의 단면도이다.
도 1을 참조하면, SUS 강 등 내압재질로 이루어진 반응기(10)에 고체산 또는 고체산과 금속 및 전해질의 혼합물을 장착한다. 한편, 상기 반응기(10) 내부를 500K 이상으로 유지하기 위해 열선(사선으로 표시된 영역) 등의 가열부를 구비하고, 반응기(10) 내의 온도를 측정하기 위하여 온도 측정기(11)를 상기 반응기(10)와 연결한다. 또한, 반응기(10)의 온도를 원하는 온도로 조절하기 위한 온도 조절기(16)를 상기 반응기(10)와 연결한다.
본 발명의 실험에 사용된 실험 장치에는 캐리어 기체(Carrier Gas) 및 물을 각각 공급하는 기체 공급용기(1) 및 저장용기(2)가 구비된다. 상기 저장용기(2)에는 유량계(3)가 연결된다. 상기 물은 저장용기(2)로부터 액체 유량기(4)를 거쳐서 혼합 증발기(6)로 유입된다. 상기 캐리어 기체는 상기 기체 공급기(1)로부터 기체 유량기(5)를 거쳐서 혼합 증발기(6)로 유입된다. 상기 액체 유량기(4) 및 상기 기체 유량기(5)에는 액체 유량 조절기(7) 및 기체 유량 조절기(8)가 각각 연결되며, 상기 액체 유량 조절기(7) 및 기체 유량 조절기(8)에서 물과 캐리어 기체의 투입량을 각각 선택한다.
상기 혼합 증발기(6)에서 물과 캐리어 기체를 혼합 증발시키고, 기화된 수증기와 캐리어 기체는 혼합 증발기(6)로부터 온도조절구역(9)으로 유입된다. 상기 온도 조절구역(9)으로 유입된 수증기와 캐리어 기체는 세 방향 밸브(14)를 통하여 시료 채취통(15)으로 바로 유입되거나, 세 방향 밸브(14)를 통하여 반응기(10)로 유입된다.
상기 반응기(10)에 유입된 수증기는 액화되어 물의 형태로 고체산에 흡착되고 반응기의 승온 과정에서 분해하여 수소 및 히드록시 라디칼 등을 생성한다. 수소를 비롯한 생성물은 시료 채취통(15)으로 유입되고, 상기 시료 채취통(15)으로 유입된 생성물은 세 방향 밸브(14)를 거쳐서 기체크로마토그래피(17:HP5890)로 유입된다. 이후 상기 기체크로마토그래피를 이용하여 생성물을 분석한다.
한편, 반응기(10) 내부의 압력은 반응기(10)와 연결된 압력 조절기(13)에 의해 조절되며, 압력계(12)를 통하여 반응기(10) 내부의 압력을 확인할 수 있다.
상기 온도 조절기(16)는 시료 채취통(15) 및 세 방향 밸브(14)의 사이, 세 방향 밸브(14) 및 기체크로마토그래피(17)의 사이에도 연결된다.
도 2를 참조하면, 고체산 또는 고체산과 금속 및 전해질의 혼합물은 상기 반응기(10) 내부의 망 선반(24)에 장착된다. 상기 온도조절구역(9)으로부터의 수증기와 캐리어 기체는 상기 반응기(10)의 기체 투입구(21)를 통하여 반응기(10) 내부로 유입된다. 상기 유입된 수증기는 액화되어 물의 형태로 고체산에 흡착되고 반응기의 승온 과정에서 분해하여 수소가 발생한다. 반응기(10) 내부의 캐리어 기체, 반응하지 않고 남은 수증기, 수소 등의 생성물은 기체 배출구(22)를 통하여 시료 채취 통(15)으로 배출된다.
상기 반응기(10) 내부에 구비된 내부 온도 측정판(25)은 상기 온도 측정기(11)와 연결된다. 또한, 상기 반응기(10)의 내부를 밀폐시키기 위한 반응기 조임부(23)가 상기 반응기(10)에 구비되어 있다.
[실험예 1: 고체산의 종류에 따른 반응 특성 조사]
도 1의 실험 장치를 이용하여 고체산의 종류에 따른 물 분해 반응 특성을 조사하였다.
표 1에 표시한 고체산을 평균 100메쉬 정도의 크기가 되도록 분쇄한 후 60g을 취하여 도 1의 반응기(10)에 넣고, 물을 기화시키는 혼합 증발기(6)와 온도조절구역(9)의 온도를 423K로 유지하면서, 반응기(10)의 온도를 323K로 유지시켰다. 반응 시스템은 상압(1기압)으로 유지시키고, 아르곤을 50㎖/분으로 3시간 주입하면서 반응기 내부의 공기를 축출한 후, 아르곤 주입량을 2㎖/분으로 낮추고, 물을 10g/시간의 속도로 3시간 동안 혼합 증발기(6)를 통하여 반응기(10)에 주입하면 수증기가 응축되어 물의 형태로 고체산에 흡착된다. 이후, 반응기에 열을 가하여 반응기 온도를 30분 동안 1000K로 올리면서 물 분해 수소 생성 반응을 개시하고 반응개시 5시간까지 반응기(10)로부터 방출된 기체를 분석한다. 상기 방출 기체 중 수소 생성물의 부피 함량을 가스크로마토그래피(17)를 이용하여 측정하고, 그 결과를 표 1에 나타내었다. 표 1에서 시간은 반응기 온도가 1000K에 다다른 이후 경과된 시간을 의미한다.
실시예 | 화합물명 | 수소 농도 (PPM) | |||||
0시간 | 1시간 | 2시간 | 3시간 | 4시간 | 5시간 | ||
1 | 벤토나이트 | 9200 | 7500 | 5100 | 3500 | 2200 | 1500 |
2 | 알루미나 | 18000 | 190000 | 40000 | 24000 | 16000 | 12000 |
3 | 실리카 | 12000 | 140000 | 21000 | 15000 | 12000 | 8000 |
4 | 산화아연 | 200000 | 30000 | 8000 | 6000 | 5000 | 4000 |
5 | 산화티타늄 | 320000 | 27000 | 6500 | 4600 | 3000 | 2100 |
표 1에서 알 수 있는 것처럼, 본 실험에 사용된 고체산의 종류에 따라 수소 발생량의 차이는 있으나, 모든 고체산은 물을 분해하여 상당량의 수소를 발생시킨다.
[비교실험예 1: 본 발명의 방법과 고압 연속 반응 방법의 수소 생산량 비교]
알루미나 고체산(실시예 2)을 이용하여 물 분해 수소 생산 방법에 따른 수소 생산량을 비교하였다.
알루미나 고체산을 평균 100메쉬 정도 되도록 분쇄한 후 60g을 취하여 도 1의 물 분해 반응기(10)에 넣고, 실험예 1의 방법에 따라 3시간 동안 물 30g을 고체산에 흡착시키고, 반응기 온도를 1000K로 승온하여 유지시키며 5시간 동안 물 분해에 의한 수소 생산 반응을 지속시킨 후, 4시간 동안 반응기 온도를 323K로 낮추어, 다시 물 흡착. 물 분해에 의한 수소 생산 반응, 반응기 온도 낮추기를 12시간 간격으로 되풀이시키며 반응개시 후 120시간까지의 반응기(10)로부터 방출된 기체 중 수소 생성물의 함량을 가스크로마토그래피(17)를 이용하여 측정하고 누적 수소 발생량을 표 2에 나타내었다.
또한, 알루미나 고체산을 평균 100메쉬 정도 되도록 분쇄한 후 60g을 취하여 도 1의 물 분해 반응기(10)에 넣고, 고압 연속 반응 방법에 의하여 실험하였다(비교예 1). 구체적으로 혼합 증발기(6)의 온도와 온도조절구역(9)의 온도를 573K로 유지하고, 물 분해 반응기(10)의 온도를 1000K로 유지시켰다. 반응 시스템에 아르곤을 50㎖/분으로 주입하고, 압력 조절기(13)를 조정하여 반응 시스템 내부 압력이 5기압이 되도록 한 후, 상기 아르곤의 주입량을 2㎖/분으로 낮추었다. 이후, 물을 1g/시간의 속도로 혼합 증발기(6)에 주입하면서 물 분해에 의한 수소 생성 반응을 개시하였다. 반응개시 후 120시간까지의 반응기(10)로부터 방출된 기체 중 수소 생성물의 함량을 가스크로마토그래피(17)를 이용하여 측정하고 누적 수소 발생량을 표 2에 나타내었다.
비교 실험 | 누적 수소 발생량 (㎖) | ||||
24시간 | 48시간 | 72시간 | 96시간 | 120시간 | |
실시예 2 | 74.16 | 148.32 | 222.48 | 296.64 | 370.80 |
비교예 1 | 15.84 | 43.06 | 62.79 | 77.19 | 88.13 |
표 2에서 알 수 있는 바와 같이, 본 발명의 물 분해에 의한 수소 생산 방법으로 생산된 수소의 양과 고압 연속 반응 방법에 의한 수소 생산량의 차이는 반응시간이 길어질수록 급격히 증가하였다.
[실험예 2: 반응 온도에 따른 물 분해 반응 특성]
실리카 고체산을 이용하여 반응온도 변화에 대한 반응 특성을 조사하였다. 실리카 고체산을 평균 100메쉬 정도의 크기가 되도록 분쇄한 후 60g을 취하여 도 1의 반응기(10)에 넣고, 물을 기화시키는 혼합 증발기(6)와 온도조절구역(9)의 온도를 423K로 유지하면서, 반응기(10)의 온도를 323K로 유지시켰다. 반응 시스템은 상압으로 유지시키고, 아르곤을 50㎖/분으로 3시간 주입하면서 반응기 내부의 공기를 축출한 후, 아르곤 주입량을 2㎖/분으로 낮추고, 물을 10g/시간의 속도로 3시간 동안 혼합 증발기(6)를 통하여 반응기(10)에 주입하면 수증기가 응축되어 물의 형태로 고체산에 흡착된다. 이후, 반응기에 열을 가하여 반응기 온도를 30분 600K 내지 1000K가 되도록 100K씩 반응온도를 변화시키면서 물 분해 수소 생성 반응을 진행하고 실험온도 도달 이후 5시간까지 반응기(10)로부터 방출된 기체를 분석하였다. 상기 방출 기체 중 수소 생성물의 부피 함량을 가스크로마토그래피(17)를 이용하여 측정하고, 그 결과를 표 3에 나타내었다. 표 3에서 시간은 반응기 온도가 목표 온도에 다다른 이후 경과된 시간을 의미한다.
실시예 | 반응온도 (K) | 수소 농도 (PPM) | |||||
0시간 | 1시간 | 2시간 | 3시간 | 4시간 | 5시간 | ||
1 | 600 | 150 | 1800 | 250 | 170 | 160 | 110 |
2 | 700 | 1600 | 12000 | 2100 | 1800 | 1600 | 1100 |
3 | 800 | 6200 | 51000 | 7800 | 6800 | 5500 | 4100 |
4 | 900 | 9500 | 105000 | 13000 | 9700 | 8200 | 6300 |
5 | 1000 | 12000 | 140000 | 21000 | 15000 | 12000 | 8000 |
표 3에서 볼 수 있는 바와 같이, 본 실험에서 설정된 반응기(10) 내부의 온도 구간에서는 반응 온도가 높을수록 수소의 발생량이 증가하였다.
[실험예 3: 반응 압력에 따른 물 분해 반응 특성]
산화티타늄 고체산을 이용하여 반응 압력 변화에 대한 물 분해 반응 특성을 조사하였다. 산화티타늄 고체산을 평균 100메쉬 정도의 크기가 되도록 분쇄한 후 60g을 취하여 도 1의 반응기(10)에 넣고, 물을 기화시키는 혼합 증발기(6)와 온도조절구역(9)의 온도를 423K로 유지하면서, 반응기(10)의 온도를 323K로 유지시켰다. 반응 시스템은 상압으로 유지시키고, 아르곤을 50㎖/분으로 3시간 주입하면서 반응기 내부의 공기를 축출한 후, 아르곤 주입량을 2㎖/분으로 낮추고, 물을 10g/시간의 속도로 3시간 동안 혼합 증발기(6)를 통하여 반응기(10)에 주입하면 수증기가 응축되어 물의 형태로 고체산에 흡착된다. 이후, 아르곤 주입량을 다시 50㎖/분으로 높이고 압력조절기(13)를 조정하여 상기 반응기 내부 압력이 1 내지 9 기압이 되도록 2 기압씩 반응 압력을 변화시키면서 반응 압력이 목표로 하는 실험 압력에 도달하면 상기 아르곤 주입량을 2㎖/분으로 낮춘다. 이후 반응기에 열을 가하여 반응기 온도를 30분 동안 1000K로 올린 후 유지시키고, 압력조절기(13)를 조정하여 상기 반응기 내부 압력을 실험 압력으로 유지시킨다. 반응기 온도가 1000K가 된 이후 5시간까지 반응기(10)로부터 방출된 기체를 분석한다. 상기 방출 기체 중 수소 생성물의 부피 함량을 가스크로마토그래피(17)를 이용하여 측정하고, 그 결과를 표 4에 나타내었다. 표 4에서 시간은 반응기 온도가 1000K에 다다른 이후 경과된 시간을 의미한다.
실시예 | 반응압력 (기압) | 수소 농도 (PPM) | |||||
0시간 | 1시간 | 2시간 | 3시간 | 4시간 | 5시간 | ||
1 | 1 | 320000 | 27000 | 6500 | 4600 | 3000 | 2100 |
2 | 3 | 52000 | 180000 | 37000 | 11000 | 7200 | 4500 |
3 | 5 | 11000 | 140000 | 52000 | 18000 | 11000 | 7600 |
4 | 7 | 5100 | 45000 | 94000 | 42000 | 28000 | 18000 |
5 | 9 | 2300 | 11000 | 45000 | 68000 | 35000 | 27000 |
표 4에서 알 수 있는 바와 같이, 반응 압력이 높을수록 최고 수소농도에 도달하는 반응시간이 늦어졌으나, 최고 수소농도를 보인 이후에는 반응시간이 경과함에 따라 수소농도가 감소하였다. 또한, 수소농도의 감소폭은 압력이 높아질수록 줄어드는 것을 알 수 있다.
[실험예 4: 금속 추가에 따른 반응 특성]
고체산에 다양한 금속 분말들을 혼합하여 반응 특성을 조사하였다. 150메쉬의 산화아연 고체산 60g을 취하고 100메쉬의 금속 분말 5중량%를 혼합한 후 도 1의 반응기(10)에 넣고, 물을 기화시키는 혼합 증발기(6)와 온도조절구역(9)의 온도를 423K로 유지하면서, 반응기(10)의 온도를 323K로 유지시켰다. 반응 시스템은 상압으로 유지시키고, 아르곤을 50㎖/분으로 3시간 주입하면서 반응기 내부의 공기를 축출한 후, 아르곤 주입량을 2㎖/분으로 낮추고, 물을 10g/시간의 속도로 3시간 동안 혼합 증발기(6)를 통하여 반응기(10)에 주입하면 수증기가 응축되어 물의 형태로 고체산에 흡착된다. 반응기에 열을 가하여 반응기 온도를 30분 동안 1000K로 올리면서 물 분해 수소 생성 반응을 개시하고 반응개시 5시간까지 반응기(10)로부터 방출된 기체를 분석한다. 상기 방출 기체 중 수소 생성물의 부피 함량을 가스크로마토그래피(17)를 이용하여 측정하고, 그 결과를 표 5에 나타내었다. 표 5에서 시간은 반응기 온도가 1000K에 다다른 이후 경과된 시간을 의미한다.
실시예 | 금속명 | 수소 농도 (PPM) | |||||
0시간 | 1시간 | 2시간 | 3시간 | 4시간 | 5시간 | ||
1 | 알루미늄 | 220000 | 42000 | 11000 | 9000 | 7500 | 4900 |
2 | 아연 | 240000 | 45000 | 13000 | 9500 | 7700 | 5300 |
3 | 철 | 310000 | 54000 | 15000 | 10000 | 8100 | 6500 |
4 | 코발트 | 270000 | 49000 | 12000 | 9000 | 7200 | 5900 |
5 | 니켈 | 290000 | 48000 | 13000 | 9200 | 7600 | 6300 |
6 | 망간 | 230000 | 46000 | 9000 | 7500 | 6200 | 5000 |
표 5에서 나타난 바와 같이, 반응기(10) 내부에 산화아연 고체산 및 금속 분말의 혼합물을 장착하여 물 분해 반응을 진행시킨 경우, 고체산만을 사용하여 물 분해 반응을 진행시킨 경우보다 수소 발생량이 증가함을 알 수 있다.
[실험예 5: 금속 첨가량에 따른 물 분해 반응 특성]
100메쉬의 알루미나 고체산 50g을 취하고 100메쉬의 철 분말 5중량% 내지 30중량%을 혼합한 후 도 1의 반응기(10)에 장착하고, 물을 기화시키는 혼합 증발기(6)와 온도조절구역(9)의 온도를 423K로 유지하면서, 반응기(10)의 온도를 323K로 유지시켰다. 반응 시스템은 상압으로 유지시키고, 아르곤을 50㎖/분으로 3시간 주입하면서 반응기 내부의 공기를 축출한 후, 아르곤 주입량을 2㎖/분으로 낮추고, 물을 10g/시간의 속도로 3시간 동안 혼합 증발기(6)를 통하여 반응기(10)에 주입하면서 액화시켜 물의 형태로 고체산에 흡착시켰다. 반응기에 열을 가하여 반응기 온도를 30분 동안 1000K로 올리면서 물 분해 수소 생성 반응을 개시하고 반응개시 5시간까지 반응기(10)로부터 방출된 기체를 분석한다. 상기 방출 기체 중 수소 생성물의 부피 함량을 가스크로마토그래피(17)를 이용하여 측정하고, 그 결과를 표 6에 나타내었다. 표 6에서 시간은 반응기 온도가 1000K에 다다른 이후 경과된 시간을 의미한다.
실시예 | 금속량 (wt%) | 수소 농도 (PPM) | |||||
0시간 | 1시간 | 2시간 | 3시간 | 4시간 | 5시간 | ||
1 | 5 | 2800 | 220000 | 51000 | 34000 | 23000 | 13000 |
2 | 10 | 3200 | 240000 | 54000 | 39000 | 29000 | 16000 |
3 | 15 | 4100 | 270000 | 61000 | 43000 | 32000 | 18000 |
4 | 20 | 3000 | 230000 | 42000 | 31000 | 22000 | 14000 |
5 | 25 | 5100 | 160000 | 36000 | 26000 | 18000 | 12000 |
6 | 30 | 8700 | 120000 | 32000 | 23000 | 16000 | 11000 |
표 6에서 나탄난 것과 같이, 철 분말이 추가되는 경우 고체산을 단독으로 장착하여 실험하는 것보다는 수소 발생량이 많지만. 금속 분말 추가량이 너무 많아지는 경우 수소 발생량이 오히려 줄어드는 것을 알 수 있다.
[실험예 6: 고체산에 금속코팅을 한 경우 반응 특성]
고체산에 금속을 코팅한 혼합물을 사용한 경우의 물 분해 반응 특성을 조사하였다. 100메쉬의 알루미나 고체산에 철이 코팅된 고체산 및 금속의 혼합물 50g을 취하고 실험예 5와 동일한 조건에서 실험하여 그 결과를 표 7에 나타내었다.
실시예 | 금속막의두께 (㎚) |
수소 농도 (PPM) | |||||
0시간 | 1시간 | 2시간 | 3시간 | 4시간 | 5시간 | ||
1 | 100 | 3800 | 270000 | 61000 | 30000 | 19000 | 11000 |
2 | 500 | 4200 | 290000 | 63000 | 35000 | 25000 | 16000 |
3 | 1000 | 5100 | 320000 | 72000 | 38000 | 28000 | 17000 |
4 | 5000 | 3900 | 280000 | 53000 | 26000 | 18000 | 12000 |
[실험예 7: 고체산과 전해질 혼합물을 사용한 경우 반응 특성]
고체산에 다양한 전해질 분말들을 혼합하여 반응 특성을 조사하였다. 150메쉬의 산화아연 고체산 60g을 취하고 100메쉬의 전해질 분말 5중량%를 혼합한 후 도 1의 반응기(10)에 넣고, 물을 기화시키는 혼합 증발기(6)와 온도조절구역(9)의 온도를 423K로 유지하면서, 반응기(10)의 온도를 323K로 유지시켰다. 반응 시스템은 상압으로 유지시키고, 아르곤을 50㎖/분으로 3시간 주입하면서 반응기 내부의 공기를 축출한 후, 아르곤 주입량을 2㎖/분으로 낮추고, 물을 10g/시간의 속도로 3시간 동안 혼합 증발기(6)를 통하여 반응기(10)에 주입시키면 수증기가 응축되어 물의 형태로 고체산에 흡착된다. 이후, 반응기에 열을 가하여 반응기 온도를 30분 동안 1000K로 올리면서 물 분해 수소 생성 반응을 개시하고 반응개시 5시간까지 반응기(10)로부터 방출된 기체를 분석한다. 상기 방출 기체 중 수소 생성물의 부피 함량을 가스크로마토그래피(17)를 이용하여 측정하고, 그 결과를 표 8에 나타내었다. 표 8에서 시간은 반응기 온도가 1000K에 다다른 이후 경과된 시간을 의미한다.
실시예 | 전해질명 | 수소 농도 (PPM) | |||||
0시간 | 1시간 | 2시간 | 3시간 | 4시간 | 5시간 | ||
1 | K2SO4 | 220000 | 41000 | 10000 | 8000 | 7000 | 4300 |
2 | Li2CO3 | 230000 | 44000 | 12000 | 8500 | 7200 | 4600 |
3 | MgCl2 | 230000 | 53000 | 14000 | 9500 | 7600 | 5900 |
4 | Ca(OH)2 | 210000 | 48000 | 11000 | 8000 | 6700 | 5300 |
표 8에서 나타난 바와 같이, 반응기(10) 내부에 산화아연 고체산 및 전해질 분말의 혼합물을 장착하여 물 분해 반응을 진행시킨 경우, 고체산만을 사용하여 물 분해 반응을 진행시킨 경우보다 수소 발생량이 증가함을 알 수 있다.
[실험예 8: 전해질 첨가량에 따른 물 분해 반응 특성]
100메쉬의 알루미나 고체산 50g을 취하고 100메쉬의 황산칼륨(K2SO4) 분말을 5중량% 내지 30중량% 혼합한 후 도 1의 반응기(10)에 장착하고, 물을 기화시키는 혼합 증발기(6)와 온도조절구역(9)의 온도를 423K로 유지하면서, 반응기(10)의 온도를 323K로 유지시켰다. 반응 시스템은 상압으로 유지시키고, 아르곤을 50㎖/분으로 3시간 주입하면서 반응기 내부의 공기를 축출한 후, 아르곤 주입량을 2㎖/분으로 낮추고, 물을 10g/시간의 속도로 3시간 동안 혼합 증발기(6)를 통하여 반응기(10)에 주입하면서 액화시켜 물의 형태로 고체산에 흡착시켰다. 반응기에 열을 가하여 반응기 온도를 30분 동안 1000K로 올리면서 물 분해 수소 생성 반응을 개시하고 반응개시 5시간까지 반응기(10)로부터 방출된 기체를 분석한다. 상기 방출 기체 중 수소 생성물의 부피 함량을 가스크로마토그래피(17)를 이용하여 측정하고, 그 결과를 표 9에 나타내었다. 표 9에서 시간은 반응기 온도가 1000K에 다다른 이후 경과된 시간을 의미한다.
실시예 | 전해질량 (wt%) | 수소 농도 (PPM) | |||||
0시간 | 1시간 | 2시간 | 3시간 | 4시간 | 5시간 | ||
1 | 5 | 2600 | 200000 | 41000 | 24000 | 13000 | 8000 |
2 | 10 | 3000 | 220000 | 44000 | 29000 | 19000 | 11000 |
3 | 15 | 3900 | 250000 | 51000 | 33000 | 22000 | 13000 |
4 | 20 | 2800 | 180000 | 32000 | 21000 | 12000 | 9000 |
5 | 25 | 4500 | 140000 | 26000 | 16000 | 8000 | 6000 |
6 | 30 | 6500 | 100000 | 22000 | 13000 | 6000 | 4000 |
표 9에서 나탄난 것과 같이, 황산칼륨 분말이 추가되는 경우 고체산을 단독으로 장착하여 실험하는 것보다는 수소 발생량이 많지만. 전해질 분말 추가량이 너무 많아지는 경우 수소 발생량이 오히려 줄어드는 것을 알 수 있다.
[실험예 9: 고체산과 금속 혼합물에 전해질을 침착한 경우 반응 특성]
100메쉬의 알루미나 고체산 50g과 100메쉬의 철 10g으로 구성된 혼합물을 취하고,KOH를 3g부터 12g까지 3g씩 증가시켜 침착시켰다. 상기 고체산, 금속 및 전해질 혼합물을 도 1의 반응기(10)에 장착하고, 실험예 8과 동일한 조건에서 실험하여 그 결과를 표 10에 나타내었다. 표 10에서 시간은 반응기 온도가 1000K에 다다른 이후 경과된 시간을 의미한다.
실시예 | KOH 침착량 (g) |
수소 농도 (PPM) | |||||
0시간 | 1시간 | 2시간 | 3시간 | 4시간 | 5시간 | ||
1 | 3 | 6700 | 290000 | 81000 | 35000 | 19000 | 12000 |
2 | 6 | 7100 | 340000 | 93000 | 45000 | 28000 | 17000 |
3 | 9 | 5100 | 250000 | 62000 | 28000 | 15000 | 9000 |
4 | 12 | 3900 | 230000 | 43000 | 16000 | 8000 | 5000 |
이상으로 본 발명의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
1. 기체공급용기 2. 물 저장기
3. 유량계 4. 액체 유량기
5. 기체 유량기 6. 혼합 증발기
7. 액체 유량 조절기 8. 기체 유량 조절기
9. 온도조절구역 10. 반응기
11. 온도 측정기 12. 압력계
13. 압력 조절기 14. 세방향 밸브
15. 시료 채취통 16. 온도조절기
17. 가스크로마토그래피 21. 기체 투입구
22. 기체 배출구 23. 반응기 조임부
24. 망 선반 25. 내부 온도 측정관
3. 유량계 4. 액체 유량기
5. 기체 유량기 6. 혼합 증발기
7. 액체 유량 조절기 8. 기체 유량 조절기
9. 온도조절구역 10. 반응기
11. 온도 측정기 12. 압력계
13. 압력 조절기 14. 세방향 밸브
15. 시료 채취통 16. 온도조절기
17. 가스크로마토그래피 21. 기체 투입구
22. 기체 배출구 23. 반응기 조임부
24. 망 선반 25. 내부 온도 측정관
Claims (13)
- 물을 열분해하여 수소를 제조하는 방법에 있어서,
(a) 철 70%이상을 함유하는 내열 및 내압 재질로 구성되는 반응기 내부에 고체산, 또는 고체산과 금속 및 전해질 중에서 선택되는 하나 이상과의 혼합물을 구비하는 단계;
(b) 상기 반응기 내부의 온도를 물의 기화점 이하로 유지하면서 물 또는 수증기를 주입하여 고체산에 물을 흡착시키는 단계;
(c) 500 K 이상 1500 K 이하의 온도와 0.5 기압 이상 100 기압 이하의 압력에서 물을 분해하여 수소를 생산하는 단계; 및
(d) 반응기 내부 온도를 물의 기화점 이하로 낮추는 단계를 포함하는 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 (b) 내지 (d) 단계를 반복 실시하는 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 (b) 단계에서 반응기 내부의 온도는 273~373K인 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 고체산은 현무암, 화강암, 석회암, 사암, 카올리나이트(kaolinite), 아타풀가이트(attapulgite), 벤토나이트(bentonite), 몬모릴로나이트(montmorillonite), 산화아연(ZnO), 산화알루미늄(Al2O3), 산화티타늄(TiO2), 산화세슘(CeO2), 산화바나듐(V2O5), 산화규소(SiO2), 산화크롬(Cr2O3), 황산칼슘(CaSO4), 황산망간(MnSO4), 황산니켈(NiSO4), 황산구리(CuSO4), 황산코발트(CoSO4), 황산카드뮴(CdSO4), 황산마그네슘(MgSO4), 황산철Ⅱ(FeSO4), 황산알루미늄(Al2(SO4)3), 질산칼슘(Ca(NO3)2), 질산아연(Zn(NO3)2), 질산철Ⅲ(Fe(NO3)3), 인산알루미늄(AlPO4), 인산철Ⅲ(FePO4), 인산크롬(CrPO4), 인산구리(Cu3(PO4)2), 인산아연(Zn3(PO4)4), 인산마그네슘(Mg3(PO4)2), 염화알루미늄(AlCl3), 염화티타늄(TiCl4), 염화칼슘(CaCl2), 불화칼슘(CaF2), 불화바륨(BaF2), 탄산칼슘(CaCO3) 및 탄산마그네슘(MgCO3)으로 이루어진 군에서 선택되는 어느 하나 또는 2 이상의 혼합물인 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 금속은 알루미늄, 아연, 철, 코발트, 망간, 크롬 및 니켈로 이루어진 군에서 선택되는 어느 하나, 2 이상의 혼합물 또는 2 이상의 합금인 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 전해질은 염화나트륨(NaCl), 염화카리(KCl), 질산나트륨(NaNO3), 질산카리(KNO3), 황산나트륨(Na2SO4), 황산카리(K2SO4), 탄산리튬(Li2CO3), 탄산나트륨(Na2CO3), 탄산카리(K2CO3), 인산2수소나트륨(NaH2PO4), 인산1수소나트륨(Na2HPO4), 수산화나트륨,(NaOH), 수산화카리(KOH), 염화칼슘(CaCl2), 염화마그네슘(MgCl2), 질산칼슘(Ca(NO3)2), 질산마그네슘(Mg(NO3)2), 황산칼슘(CaSO4), 황산마그네슘(MgSO4), 수산화칼슘(Ca(OH)2) 및 수산화마그네슘(Mg(OH)2)으로 이루어진 군에서 선택되는 어느 하나 또는 2 이상의 혼합물인 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 고체산, 금속 또는 전해질은 분말의 형태이고 그 입자 크기가 20 내지 500메쉬인 것을 특징으로 하는 수소 제조 방법. - 1항에 있어서,
상기 고체산 및 금속의 혼합물은 고체산 분말의 공극에 금속 입자가 침착된 형태이고, 상기 금속 입자의 직경은 10㎛ 이하인 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 고체산 및 금속의 혼합물은 고체산 분말 표면에 금속을 코팅한 형태이고, 코팅된 금속막의 두께는 10㎛ 이하인 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 고체산 및 금속의 혼합물에서, 상기 고체산은 60중량% 이상으로 포함되고, 상기 금속은 40중량% 이하로 포함되는 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 고체산, 금속 및 전해질 혼합물은 고체산 및 금속 혼합물의 공극에 전해질 입자가 침착된 형태이고, 상기 전해질 입자의 직경은 10㎛ 이하인 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 고체산, 금속 및 전해질 혼합물은 고체산과 금속 혼합물 표면에 전해질을 코팅한 형태이고, 코팅된 전해질막의 두께는 10㎛ 이하인 것을 특징으로 하는 수소 제조 방법. - 제1항에 있어서,
상기 고체산, 금속 및 전해질 혼합물에서, 상기 고체산과 금속 혼합물은 70중량% 이상으로 포함되고, 상기 금속은 30중량% 이하로 포함되는 것을 특징으로 하는 수소 제조 방법.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110038756A KR101267976B1 (ko) | 2011-04-26 | 2011-04-26 | 고체산을 이용한 물 분해 수소 제조 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110038756A KR101267976B1 (ko) | 2011-04-26 | 2011-04-26 | 고체산을 이용한 물 분해 수소 제조 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20120121033A true KR20120121033A (ko) | 2012-11-05 |
KR101267976B1 KR101267976B1 (ko) | 2013-05-27 |
Family
ID=47507557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110038756A KR101267976B1 (ko) | 2011-04-26 | 2011-04-26 | 고체산을 이용한 물 분해 수소 제조 방법 |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101267976B1 (ko) |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002193601A (ja) | 1997-05-13 | 2002-07-10 | Ion Kanzai:Kk | 水の分解方法及びその装置 |
JP4572384B2 (ja) * | 2005-02-04 | 2010-11-04 | 独立行政法人産業技術総合研究所 | 水素発生方法 |
-
2011
- 2011-04-26 KR KR1020110038756A patent/KR101267976B1/ko not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR101267976B1 (ko) | 2013-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101291601B1 (ko) | 고체산을 이용한 물 분해 수소 제조 방법 | |
KR101730799B1 (ko) | 메탄의 이산화탄소 개질 반응에 의한 합성가스 제조용 촉매 조성물 및 이를 이용한 합성가스 제조방법 | |
US9714171B2 (en) | Graphene-nano particle composite having nano particles crystallized therein at a high density | |
Zhou et al. | Controllable hydrogen generation behavior by hydrolysis of MgH2-based materials | |
Sulaiman et al. | Enhanced hydrogen storage properties of MgH 2 co-catalyzed with K 2 NiF 6 and CNTs | |
CN102464323A (zh) | 一种高频等离子体制备高纯超细硼化锆粉体的方法 | |
Kozhitov et al. | Formation of FeNi3/C Nanocomposite from Fe and Ni Salts and Polyacrylonitrile Under IR-Heating | |
KR100983474B1 (ko) | 고체산을 이용한 물 분해에 의한 수소 제조방법 | |
Gao et al. | Experimental investigation of the catalyst-free reaction characteristics of micron aluminum powder with water at low and medium temperatures | |
Lukashev et al. | Effect of mechanical activation on the reaction of magnesium hydride with water | |
KR101267976B1 (ko) | 고체산을 이용한 물 분해 수소 제조 방법 | |
KR101529692B1 (ko) | 물과 메탄을 연속적으로 분해하여 수소를 제조하는 방법 | |
US9073758B2 (en) | Synthesis of metal borides | |
Mustafa et al. | Enhanced hydrogen storage properties of K2TiF6 doped Mg-Na-Al composite system | |
Zhao et al. | Mechanisms of partial hydrogen sorption reversibility in a 3NaBH 4/ScF 3 composite | |
KR101412015B1 (ko) | 고체산을 이용한 합성가스 제조 방법 | |
RU2686898C1 (ru) | Способ изготовления гидрида магния для химического генератора водорода | |
KR101401418B1 (ko) | 고체산 혼합물을 이용한 수소 제조 방법 | |
Lv et al. | Preparation of Cr2AlC powder and its isothermal oxidation behavior in dry air and pure steam | |
Wang et al. | Enhanced hydrogen storage properties of the 2LiBH 4–MgH 2 composite with BaTiO 3 as an additive | |
Zhu et al. | Study on reversible hydrogen sorption behaviors of 3LiBH 4/graphene and 3LiBH 4/graphene–10 wt% CeF 3 composites | |
EP4076727A1 (en) | Thermal battery | |
KR101872804B1 (ko) | 지중 천연암석을 이용한 탄화수소의 생성방법 | |
CN115992373B (zh) | 一种钛铁合金材料的制备方法 | |
Giresan et al. | Investigation on the thermodynamic analysis, preparation and characterization of LaNi5-hydrogen storage alloy by magnesiothermic reduction diffusion process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20180409 Year of fee payment: 6 |
|
LAPS | Lapse due to unpaid annual fee |