KR20120106379A - 배터리 충전 장치 - Google Patents

배터리 충전 장치 Download PDF

Info

Publication number
KR20120106379A
KR20120106379A KR1020110024454A KR20110024454A KR20120106379A KR 20120106379 A KR20120106379 A KR 20120106379A KR 1020110024454 A KR1020110024454 A KR 1020110024454A KR 20110024454 A KR20110024454 A KR 20110024454A KR 20120106379 A KR20120106379 A KR 20120106379A
Authority
KR
South Korea
Prior art keywords
voltage
battery
high voltage
auxiliary
charging
Prior art date
Application number
KR1020110024454A
Other languages
English (en)
Other versions
KR101229441B1 (ko
Inventor
오성민
문태경
문형태
황선민
Original Assignee
주식회사 만도
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 만도 filed Critical 주식회사 만도
Priority to KR1020110024454A priority Critical patent/KR101229441B1/ko
Priority to DE102012004992A priority patent/DE102012004992A1/de
Priority to CN201210073128.1A priority patent/CN102694409B/zh
Priority to US13/423,974 priority patent/US9300148B2/en
Publication of KR20120106379A publication Critical patent/KR20120106379A/ko
Application granted granted Critical
Publication of KR101229441B1 publication Critical patent/KR101229441B1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33561Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having more than one ouput with independent control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/12Buck converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/92Hybrid vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/008Plural converter units for generating at two or more independent and non-parallel outputs, e.g. systems with plural point of load switching regulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

공용의 트랜스포머를 이용하여 AC 전원을 고전압 배터리 및 보조 전압 배터리를 충전하기 위한 제1 전압 및 제2 전압으로 분리하여 변환하는 하이브리드 전력 변환부; 상기 하이브리드 전력 변환부에 의해 변환된 상기 제1 전압을 강압하여 고전압 배터리를 충전하는 고전압 충전부; 상기 하이브리드 전력 변환부에 의해 변환된 상기 제2 전압 또는 상기 고전압 배터리의 전압을 강압하여 보조 배터리를 충전시키는 보조 전압 충전부; 및 상기 보조 전압 충전부에 상기 AC 전원에 의한 상기 제2 전압 또는 상기 고전압 배터리의 전압이 선택적으로 입력되도록 상기 AC 전원과 상기 보조 전압 충전부의 전기적 접속을 스위칭하고, 상기 고전압 배터리와 상기 보조 전압 충전부의 전기적 접속을 스위칭하는 스위칭부를 포함하며, 상기 스위칭부의 스위칭 동작에 의해 제1 모드에서는 상기 AC 전원에 의한 고전압 배터리 충전과 상기 보조 배터리 충전이 이루어지며, 제2 모드에서는 상기 AC 전원에 의한 고전압 배터리 충전이 정지되고, 상기 고전압 배터리의 전압에 의한 상기 보조 배터리 충전이 이루어지는 배터리 충전 장치가 제공된다.

Description

배터리 충전 장치{APPARATUS FOR CHARGING BATTERY}
본 발명은 배터리 충전 장치에 관한 것으로, 차량 탑재형 완속 충전부(OBC: On Board Charger)에서 전력 변환 구조를 공용으로 사용함으로써 AC 전원에 의한 고전압 배터리 충전시에 AC 전원에 의해 보조 배터리를 함께 충전시킬 수 있는 배터리 충전 장치에 관한 것이다.
최근 환경 파괴로 인한 지구 온난화와 고유가 등의 문제로 자동차 업계에서는 전기 자동차의 개발을 급속히 진행하고 있다. 현재 전세계 메이저급 자동차 제작사들은 주요 개발 차량으로 전기 자동차를 만들기 위해 연구개발 중이다.
전기 자동차는 배기가스가 전혀 없으며, 소음이 아주 작은 장점이 있다. 전기 자동차는 1873년 가솔린 자동차보다 먼저 제작되었으나, 배터리의 무거운 중량, 충전에 걸리는 시간 등의 문제 때문에 실용화되지 못하다가 공해문제가 최근 심각해지면서 다시 개발되고 있다. 하지만, 재충전 가능한 배터리의 사용횟수 제한으로 인하여 배터리 자체 만으로는 장거리 주행이 확보되지 않는 문제점이 있다.
따라서, 현재 시장에서는 화석연료와 배터리 같이 두 가지 동력원을 사용하는 하이브리드(Hybrid) 자동차가 북미지역을 중심으로 활발히 판매 사용되고 있다. 일본 도요타 자동차의 프리우스는 대표적인 하이브리드 자동차의 일종이다. 프리우스는 휘발유를 사용하는 엔진과 차량의 브레이킹 시에 회수되는 운동에너지를 전기에너지로 사용할 수 있는 알터네이터(Alternator) 및 모터(Motor)를 갖는다.
한편, 전기 자동차의 경우 재충전 가능한 배터리(즉, 2차 전지의 성능 개선)와 기존의 전지특성과는 다른 특성을 가진 연료전지 등을 사용하는 방안이 마련되고 있다. 이에, 전기 자동차 내부의 배터리 충전과 잦은 교체주기에 따른 기존의 문제점이 점차 해결되어 가고 있다.
일반 도로 주행용 전기 자동차가 아닌 일부 소형 전기 자동차의 경우에는 이미 상용화되어 활발히 사용되고 있다. 예를 들어, 골프장의 골프 카트, 경기장의 선수 및 장비 이동용 차량, 실내 운전 차량, 실내 청소 차량 등에서 활발히 사용되고 있으며, 곧 일반 상용 및 승용차에서도 전기자동차의 보급이 급속히 이루어질 것이라는 사실이 예견된다.
전기 자동차 및 하이브리드 자동차는 차량에 실려 있는 고전압 배터리를 충전하여 동력원으로 사용한다. 자동차에는 구동력을 위한 고전압 배터리와, 전자제어유닛의 동작을 위한 보조 배터리가 탑재되어 있다.
도 1에 도시된 바와 같이 종래의 배터리 충전 장치(1)는 AC 전원(11), 차량 탑재형 완속 충전부(OBC: On Board Charger)(12), 보조 배터리(13), 고전압 배터리(14), 저전압 변환기(LDC: Low Voltage DC-DC Converter)(15)를 포함한다.
고전압 배터리(14)를 충전하기 위하여, 차량 탑재형 완속 충전부(12)는 상용 AC 전원(11)을 고전압으로 변환하는 고전압 충전부(121)를 필요로 한다.
그러나, 종래의 배터리 충전 장치(1)는 고전압 배터리(14)만을 충전하게 되어, 충전 중 이그니션(IGN) 전원을 사용하는 전자제어유닛이 동작하면 보조 배터리(13)를 소모하게 된다.
따라서, 배터리 충전 장치(1)는 보조 배터리(13)의 전압이 떨어지면 저전압 변환기(15)를 동작시켜 보조 배터리(13)를 충전시켜야 하거나, 보조 배터리(13)의 충전이 필요한지 여부를 파악할 수 없어, 원활한 보조 배터리(13)의 전압 관리가 어려운 실정이다.
또한 저전압 변환기(15)는 고전압 배터리(14)에서 고전압을 저전압으로 변환시키는 변환과정을 통하여 보조 배터리(13)에 보조 전압을 충전시키므로, 고전압 배터리(14)의 고전압을 소모하게 되어, 고전압 배터리(14)의 충방전 횟수를 늘리게 하여 결국 고전압 배터리(14)의 수명을 단축시킬 수 있다.
본 발명의 목적은, 차량 탑재형 완속 충전부(OBC: On Board Charger)에서 전력 변환 구조를 공용으로 사용함으로써 하나의 AC 전원으로 고전압 배터리와 보조 배터리를 함께 충전시킬 수 있는 배터리 충전 장치를 제공함에 있다.
본 발명의 일실시예에 따르면, 공용의 트랜스포머를 이용하여 AC 전원을 고전압 배터리 및 보조 전압 배터리를 충전하기 위한 제1 전압 및 제2 전압으로 분리하여 변환하는 하이브리드 전력 변환부; 상기 하이브리드 전력 변환부에 의해 변환된 상기 제1 전압을 강압하여 고전압 배터리를 충전하는 고전압 충전부; 상기 하이브리드 전력 변환부에 의해 변환된 상기 제2 전압 또는 상기 고전압 배터리의 전압을 강압하여 보조 배터리를 충전시키는 보조 전압 충전부; 및 상기 보조 전압 충전부에 상기 AC 전원에 의한 상기 제2 전압 또는 상기 고전압 배터리의 전압이 선택적으로 입력되도록 상기 AC 전원과 상기 보조 전압 충전부의 전기적 접속을 스위칭하고, 상기 고전압 배터리와 상기 보조 전압 충전부의 전기적 접속을 스위칭하는 스위칭부를 포함하며, 상기 스위칭부의 스위칭 동작에 의해 제1 모드에서는 상기 AC 전원에 의한 고전압 배터리 충전과 상기 보조 배터리 충전이 이루어지며, 제2 모드에서는 상기 AC 전원에 의한 고전압 배터리 충전이 정지되고, 상기 고전압 배터리의 전압에 의한 상기 보조 배터리 충전이 이루어지는 배터리 충전 장치가 제공된다.
상기 하이브리드 전력 변환부, 상기 고전압 충전부, 상기 보조 전압 충전부 및 상기 스위칭부는 차량 탑재형 완속 충전부(OBC: On Board Charger)에 탑재될 수 있다.
상기 트랜스포머는 제1차 권선과, 상기 제1 전압 및 상기 제2 전압으로의 전력 변환을 위한 각각의 권선비를 가지는 각각의 제2 차 권선을 포함할 수 있다.
상기 스위칭부는 상기 제2 모드에서 상기 고전압 배터리의 전압을 상기 트랜스포머의 제1차 권선의 입력단에 전달하여 상기 보조 전압 충전부에서 상기 고전압 배터리의 전압에 의한 상기 보조 배터리 충전이 이루어지도록 스위칭을 수행할 수 있다.
상기 스위칭부는 상기 제2 모드에서 상기 고전압 배터리의 전압을 상기 트랜스포머의 제2차 권선에 전달하여 상기 보조 전압 충전부에서 상기 고전압 배터리의 전압에 의한 상기 보조 배터리 충전이 이루어지도록 스위칭을 수행할 수 있다.
상기 스위칭부는 상기 AC 전원의 공급 또는 차단을 스위칭하기 위한 제1 스위칭부 및 상기 고전압 배터리의 전압이 상기 보조 전압 충전부에 전달되는 것을 스위칭하기 위한 제2 스위칭부를 포함하되, 상기 제1 모드에서 상기 제1 스위칭부는 온상태로 스위칭되고, 상기 제2 스위칭부는 오프상태로 스위칭되며, 상기 제2 모드에서 상기 제1 스위칭부는 오프 상태로 스위칭되고, 상기 제2 스위칭부는 온상태로 스위칭될 수 있다.
상기 트랜스포머는 제1 차 권선과, 상기 제1 전압 및 상기 제2 전압으로의 전력 변환을 위한 각각의 권선비를 가지는 각각의 제2 차 권선을 포함하고, 상기 제2 스위칭부는 상기 고전압 배터리의 전압을 상기 트랜스포머의 제1차 권선의 입력단에 전달하도록 설치될 수 있다.
상기 제2 스위칭부는 상기 고전압 배터리의 양단과 상기 트랜스포머의 제1차 권선의 입력 양단 사이에 각각 설치될 수 있다.
상기 트랜스포머는 제1 차 권선과, 상기 제1 전압 및 상기 제2 전압으로의 전력 변환을 위한 각각의 권선비를 가지는 각각의 제2 차 권선을 포함하고, 상기 제2 스위칭부는 상기 고전압 배터리의 전압을 상기 트랜스포머의 제2 차 권선중에서 상기 고전압 충전부쪽에 연결된 제2 차 권선에 전달하도록 설치될 수 있다.
상기 제2 스위칭부는 상기 고전압 배터리의 양극 단자와 상기 트랜스포머의 제2 차 권선중에서 상기 고전압 충전부쪽에 연결된 제2 차 권선의 사이에 순방향으로 연결된 다이오드를 포함할 수 있다.
상기 배터리 충전 장치는 상기 AC 전원을 정류하여 직류로 변환하는 정류부; 및 상기 변환된 직류의 역률을 보정하여 상기 하이브리드 전력 변환부에 전달하는 PFC(Power Factor Correction) 회로부를 더 포함할 수 있다.
상기 고전압 충전부 및 상기 보조 전압 충전부는 인터리브로 구현된 벅(buck) 컨버터를 포함할 수 있다.
본 발명에 의하면, 차량 탑재형 완속 충전부(OBC: On Board Charger)에 트랜스포머의 서로 다른 권선비를 통해 전력을 분리 전달할 수 있는 전력 변환 구조를 공용으로 사용함으로써 AC 전원에 의한 고전압 배터리의 충전시에 AC 전원으로 보조 배터리를 함께 충전시킬 수 있다.
또한 본 발명의 실시예에 따르면 보조 배터리의 충전을 위해 별도의 저전압 변환기를 구비할 필요가 없이 AC 전원에 의한 고전압 배터리 충전 동작중에 보조 배터리에 대한 충전을 함께 수행함으로써 충전 시간을 단축시킬 수 있고 전력 전달 효율을 증대시킬 수 있으며, 이에 따라 고전압 배터리의 수명 단축을 해소할 수 있는 효과도 있다.
아울러, 본 발명에 의하면 PFC 회로의 출력 전압과, 하이브리드 전력 변환부에 의해 변환된 제1 전압을 고압으로 함으로써 전류량을 줄일 수 있고, PFC 회로와 고전압 충전부 및 보조 전압 충전부에 벅 컨버터를 인터리브로 구현함으로써 수동소자의 크기를 줄이면서도 열분산을 극대화할 수 있다.
도 1은 종래의 배터리 충전 장치를 설명하기 위한 블록도이다.
도 2는 본 발명의 일 실시예에 따른 배터리 충전 장치를 설명하기 위한 블록도이다.
도 3은 본 발명의 일실시예에 따른 배터리 충전 장치의 구체적인 회로도이다.
도 4는 본 발명의 일실시예에 따른 배터리 충전 장치의 구체적인 회로도이다.
도 5는 본 발명의 다른 실시예에 따른 배터리 충전 장치의 구체적인 회로도이다.
도 6은 본 발명의 다른 실시예에 따른 배터리 충전 장치의 구체적인 회로도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명한다.
도 2는 본 발명의 일 실시예에 따른 배터리 충전 장치를 설명하기 위한 블록도이다.
도 2를 참조하면 본 발명의 실시예에 따른 배터리 충전 장치(2)는 전기 자동차(EV ; Electric Vehicle)나 플러그인 하이브리드 자동차(PHEV: Plug-in Hybrid Electric Vehicle) 등에 설치되어, AC 전원(21)을 고전압으로 변환하여 고전압 배터리(24)에 충전시키고, AC 전원(21)(110V/220V)을 보조 전압으로 변환하여 보조 배터리(23)에 충전시킬 수 있다. 이와 같이 충전된 고전압 배터리(24)는 전기 자동차나 플러그인 하이브리드 자동차의 동력원으로 사용되며, 보조 배터리(23)는 차량에 설치된 각종 전자제어유닛, 예를 들면 제동 장치의 전자제어유닛, 현가 장치의 전자제어유닛, 조향 장치의 전자 제어 유닛 등의 구동을 위해 사용될 수 있다.
배터리 충전 장치(2)는 AC 전원(21), 차량 탑재형 완속 충전부(OBC: On Board Charger)(22), 보조 배터리(23) 및 고전압 배터리(24) 등을 포함한다.
한편, 배터리 충전 장치(2)의 구성들이 일체로 이루어질 수 있다. 따라서 배터리 충전 장치(2)는 전기 에너지로 구동되는 전기 자동차나 플러그인 하이브리드 자동차에 장착이 용이하다.
차량 탑재형 완속 충전부(22)는 하이브리드 전력 변환부(221), 고전압 충전부(222), 보조 전압 충전부(223), 및 스위칭부(224)를 포함하여 구성될 수 있다.
하이브리드 전력 변환부(221), 고전압 충전부(222), 보조 전압 충전부(223) 및 스위칭부(224)는 차량 탑재형 완속 충전부(22)에 탑재될 수 있다.
하이브리드 전력 변환부(221)는 공용의 트랜스포머를 구비하며, 차량 내에 설치된 배터리 관리 시스템(BMS: Battery Management System)으로부터 수신된 충전 지령에 따라 트랜스포머를 이용하여 AC 전원을 고전압 배터리 및 보조 전압 배터리를 충전하기 위한 제1 전압 및 제2 전압으로 분리하여 변환한다. 여기에서, 공용의 트랜스포머는 고전압 충전부(222) 및 보조 전압 충전부(223)를 위한 제1 전압 및 제2 전압으로의 전력 변환을 위해 공용으로 사용된다. 트랜스포머는 고전압 충전부(222) 및 보조 전압 충전부(223)의 전력 변환에 상응하는 각각의 권선비를 가지는 각각의 제2차 권선을 가진다.
고전압 충전부(222)는 차량 내에 설치된 배터리 관리 시스템(BMS: Battery Management System)으로부터 수신된 충전 지령에 따라 하이브리드 전력 변환부(221)에 의해 변환된 제1 전압을 강압하여 고전압 배터리(24)를 충전시키도록 한다.
보조 전압 충전부(223)는 AC 전원(21)에 의한 하이브리드 전력 변환부(221)의 제2 전압을 강압하여 보조 배터리(23)를 충전시키도록 한다.
스위칭부(224)는 보조 전압 충전부(223)에 AC 전원(21)에 의한 제2 전압 또는 고전압 배터리(24)의 전압이 선택적으로 입력되도록 AC 전원(21)과 보조 전압 충전부(223)의 전기적 접속을 스위칭하고, 고전압 배터리(24)와 보조 전압 충전부(223)의 전기적 접속을 스위칭한다.
스위칭부(224)는 제1 모드 및 제2 모드를 위한 스위칭을 수행할 수 있다. 여기에서, 제1 모드는 AC 전원이 공급되어 AC 전원에 의해 고전압 배터리를 충전함과 아울러, 보조적으로 보조 전압 배터리를 충전하는 AC 전원 충전 모드이고, 제2 모드는 AC 전원이 공급되지 않는 AC 전원 비충전 모드로서, 다만, 보조 전압 배터리를 충전할 필요가 있는 경우 고전압 배터리의 전압에 의해 보조 전압 배터리의 충전을 수행하는 모드이다.
스위칭부(224)의 스위칭 동작에 의해 제1 모드에서는 AC 전원(21)에 의한 고전압 배터리 충전과 보조 배터리 충전이 이루어진다. 스위칭부(224)의 스위칭 동작에 의해 제2 모드에서는 AC 전원에 의한 고전압 배터리 충전이 정지되고, 고전압 배터리(24)의 전압에 의한 보조 배터리 충전이 이루어질 수 있다.
스위칭부(224)는 AC 전원(21)의 공급 또는 차단을 스위칭하기 위한 제1 스위칭부 및 고전압 배터리(24)의 전압을 스위칭하기 위한 제2 스위칭부를 포함할 수 있다. 제1 모드에서 제1 스위칭부는 온상태로 스위칭되고, 제2 스위칭부는 오프상태로 스위칭된다. 한편, 제2 모드에서 제1 스위칭부는 오프 상태로 스위칭되고, 제2 스위칭부는 온상태로 스위칭될 수 있다.
AC 전원(21)에 의해 고전압 배터리(24)와 보조 배터리(23)를 충전시키는 동작을 설명하면 다음과 같다.
차량 탑재형 완속 충전부(22)는 배터리 관리 시스템(미도시)으로부터 고전압 배터리(24) 및 보조 배터리(23)의 충전지령을 수신한다. 이에 따라, 스위칭부(224)는 AC 전원이 하이브리드 전력 변환부(221)에 입력될 수 있도록 스위칭 동작을 스위칭한다. 다음 차량 탑재형 완속 충전부(22)는 하이브리드 전력 변환부(221)를 통해 AC 전원(21)을 제1 전압으로 변환하고 변환된 제1 전압을 고전압 충전부(222)로 출력한다. 고전압 충전부(222)는 제1 전압을 강압하여 고전압 배터리(24)를 충전시킨다. 한편, 차량 탑재형 완속 충전부(22)는 하이브리드 전력 변환부(221)를 통해 AC 전원(21)을 제2 전압으로 변환하고 변환된 제2 전압을 보조 전압 충전부(223)로 출력한다. 보조 전압 충전부(223)는 제2 전압을 강압하여 저전압 배터리(23)를 충전시킨다.
한편, 고전압 배터리(24)에 의해 보조 배터리(23)를 충전하는 동작을 설명하면 다음과 같다.
차량 탑재형 완속 충전부(22)는 배터리 관리 시스템(미도시)으로부터 보조 배터리(23)의 충전지령을 수신한다. 이에 따라, 스위칭부(224)는 AC 전원이 고전압 충전부(222)와 보조 전압 충전부(223)에 입력되는 것을 차단하고, 고전압 배터리(2)의 전력이 보조 전압 충전부(223)에 입력되도록 스위칭 동작을 수행한다.
이에 따라, 차량 탑재형 완속 충전부(22)는 트랜스포머의 제2 차 권선을 통하여 고전압 배터리(24)의 전력을 보조 전압 충전부(223)에 제공한다. 이에 따라, 보조 전압 충전부(223)는 고전압 배터리(24)의 전력을 강압하여 보조 배터리(23)를 충전시킨다.
도 3 및 도 4는 본 발명의 일실시예에 따른 배터리 충전 장치의 구체적인 회로도이다.
도 3 및 도 4를 참조하면, AC 전원(21)을 정류하여 직류로 변환하는 정류부(225), 역률을 보정하는 PFC(Power Factor Correction) 회로(226), 하이브리드 전력 변환부(221), 고전압 충전부(222), 보조 전압 충전부(223), 및 스위칭부(224)를 포함하여 구성될 수 있다. 이외에도 정류부(225)의 앞단에 EMI 필터를 구비할 수도 있으며, 이외에도 전류제어 및 전압 제어를 위한 회로들을 포함할 수 있다.
정류부(225)는 AC 전원을 정류하여 직류를 출력한다.
PFC 회로(226)는 정류부(225)를 통해 정류된 직류의 역률을 보정하여 하이브리드 전력 변환부(221)에 제공한다. PFC 회로(226)는 인터리브 부스트 컨버터(interleave boost converter)를 이용할 수 있다. 인터리브 부스트 컨버터는 승압형 컨버터로서, 입력단과 출력단의 접지가 같은 회로이다. 인터리브 부스트 컨버터는 스위치가 온 되어있는 동안은 입력전원이 인덕터 양단에 연결되어 전류의 충전이 이루어지고, 스위치가 오프되면 충전된 전류가 부하 측 필터로 전달된다. 인터리브 부스트 컨버터는 부하 측의 필터 입장에서 볼 때, 전류가 주기적으로 흘러 들어오다 끊어지기를 반복하며, 출력단의 전류는 항상 입력단의 전류보다 작다. 회로 동작의 원리상 손실성분이 없기 때문에 입력 전류*입력전압=출력전류*출력전압의 관계에서부터 출력전압이 입력전압보다 항상 높게 나타나며, (스위치 온 시간/스위칭 주기)를 시비율 D 라고 정의하면 Vo=Vi/(1-D)가 된다. PFC 회로(226)의 출력 전압은 예컨대, DC 380V일 수 있다. 한편, 도면에서, PFC 회로(226)는 인터리브 부스트 컨버터를 구성함에 있어 병렬 구조를 채용함으로써 하나의 회로가 손상되더라도 나머지 하나의 회로에 의해 동작할 수 있도록 하여 회로의 신뢰성이 보장되도록 하였다.
하이브리드 전력 변환부(221)는 공용의 트랜스포머를 구비하며, 공용의 트랜스포머를 이용하여 AC 전원을 고전압 배터리(2) 및 보조 전압 배터리를 충전하기 위한 제1 전압 및 제2 전압으로 분리하여 변환한다. 여기에서, 제1 전압은 예컨대, DC 500V일 수 있으며, 제2 전압은 100V일 수 있다. 여기에서, 공용의 트랜스포머는 고전압 충전부(222) 및 보조 전압 충전부(223)를 위한 제1 전압 및 제2 전압으로의 전력 변환을 위해 공용으로 사용된다. 트랜스포머는 고전압 충전부(222) 및 보조 전압 충전부(223)의 전력 변환에 상응하는 각각의 권선비를 가지는 각각의 제2차 권선을 가진다.
고전압 충전부(222) 및 보조 전압 충전부(223)는 강압형 컨버터를 이용할 수 있다. 예컨대, 인터리브로 구현된 벅(buck) 컨버터를 이용할 수 있다. 벅 컨버터는 입력단과 출력단이 같은 접지를 공유하는 회로에 쓰인다. 일정한 주기로 스위칭하는(온/오프를 반복하는) 스위칭 소자(222a)를 이용하여, 스위칭 소자(222a)가 온 되어있는 동안 입력전원이 회로에 연결되고 오프되어 있는 동안은 끊어진다. 이와 같이 주기적으로 연결되었다 끊어졌다 하는 펄스모양의 전압을 LC 필터를 통해 평활(평균)하여 직류전압을 출력한다.
벅 컨버터는 기본적으로 직류전압을 주기적으로 잘라내어(chopping) 만들어진 펄스전압을 평균하여 출력전압을 형성하는 원리가 적용될 수 있다. 이와 같은 방식의 컨버터를 전압원(voltage-fed) 컨버터라고 하며, 출력전압은 입력전압보다 항상 작다. 한 주기 내에서 스위치가 온 되어있는 시간이 길수록 펄스전압의 폭이 넓어지고, 스위치가 온 되어있는 시간이 짧을수록 펄스전압의 폭이 좁아지게 된다. (스위치 온 시간/스위칭 주기)를 시비율 D 라고 정의하면, 출력전압 Vo=D*Vi 가 된다.
고전압 충전부(222)는 하이브리드 전력 변환부(221)에 의해 변환된 제1 전압(500V)를 예컨대, 200 - 450V의 전압으로 강압하여 고전압 배터리(24)를 충전시킨다. 한편, 보조 전압 충전부(223)는 하이브리드 전력 변환부(221)에 의해 변환된 제2 전압(100V)를 예컨대, 12 - 14V의 전압으로 강압하여 보조 전압 배터리(23)를 충전시킨다.
이와 같이, PFC 회로(226)의 출력 전압을 380V로 하고, 하이브리드 전력 변환부(221)에 의해 변환된 제1 전압을 500V의 고압으로 함으로써 전류량을 줄일 수 있고, PFC 회로(226)와 고전압 충전부(222) 및 보조 전압 충전부(223)에 벅 컨버터를 인터리브로 구현함으로써 수동소자의 크기를 줄이면서도 열분산을 극대화할 수 있다.
정류부(225)의 입력단에 AC 전원(21)의 공급 또는 차단을 스위칭하기 위한 제1 스위칭부(224a)가 설치될 수 있다. 제1 스위칭부(224a)는 보조 전압 충전부(223)에 AC 전원(21)에 의한 제2 전압 또는 고전압 배터리(24)의 전압이 선택적으로 입력되도록 AC 전원(21)과 보조 전압 충전부(223)의 전기적 접속을 스위칭할 수 있다.
한편, 고전압 배터리(24)와 보조 전압 충전부(223)의 전기적 접속을 스위칭하기 위한 제2 스위칭부(224b)가 설치될 수 있다. 제2 스위칭부(224b)는 고전압 배터리(24)의 양단과 하이브리드 전력 변환부(221)에 구비된 트랜스포머의 제1차 권선의 양단 사이에 각각 설치된다.
제1 스위칭부(224a) 및 제2 스위칭부(224b)는 제1 모드 및 제2 모드를 위한 스위칭을 수행할 수 있다. 제1 스위칭부(224a) 및 제2 스위칭부(224b)의 스위칭 동작에 의해 제1 모드에서는 AC 전원(21)에 의한 고전압 배터리 충전과 보조 배터리 충전이 이루어진다. 제1 스위칭부(224a) 및 제2 스위칭부(224b)의 스위칭 동작에 의해 제2 모드에서는 AC 전원에 의한 고전압 배터리 충전이 정지되고, 고전압 배터리(24)의 전압에 의한 보조 배터리 충전이 이루어질 수 있다.
이때, 제1 모드에서 제1 스위칭부(224a)는 온상태로 스위칭되고, 제2 스위칭부(224b)는 오프상태로 스위칭된다. 한편, 제2 모드에서 제1 스위칭부(224a)는 오프 상태로 스위칭되고, 제2 스위칭부(224b)는 온상태로 스위칭될 수 있다.
이와 같이 구성된 구조에서 AC 전원(21)에 의해 고전압 배터리(24)와 보조 배터리(23)를 충전시키는 제1 모드의 동작을 도 3을 참조하여 설명하면 다음과 같다.
차량 탑재형 완속 충전부(22)는 배터리 관리 시스템(미도시)으로부터 고전압 배터리(24) 및 보조 배터리(23)의 충전지령을 수신한다. 이에 따라, 도 3에 도시된 바와 같이 제1 스위칭부(224a) 및 제2 스위칭부(224b)는 AC 전원이 하이브리드 전력 변환부(221)에 입력될 수 있도록 스위칭 동작을 수행한다.
제1 모드에서 제1 스위칭부(224a)는 온상태로 스위칭되고, 제2 스위칭부(224b)는 오프상태로 스위칭된다. 이에 따라, AC 전원(21)은 정류부(225) 및 PFC 회로(226)를 통해 하이브리드 전력 변환부(221)에 입력된다. 하이브리드 전력 변환부(221)는 AC 전원(21)을 제1 전압으로 변환하고 변환된 제1 전압을 고전압 충전부(222)로 출력한다. 고전압 충전부(222)는 제1 전압을 강압하여 고전압 배터리(24)를 충전시킨다. 한편, 하이브리드 전력 변환부(221)는 AC 전원(21)을 제2 전압으로 변환하고 변환된 제2 전압을 보조 전압 충전부(223)로 출력한다. 보조 전압 충전부(223)는 제2 전압을 강압하여 저전압 배터리(23)를 충전시킨다.
한편, 도 4를 참조하여 고전압 배터리(24)에 의해 보조 배터리(23)를 충전하는 제2 모드의 동작을 설명하면 다음과 같다.
차량 탑재형 완속 충전부(22)는 배터리 관리 시스템(미도시)으로부터 보조 배터리(23)의 충전지령을 수신한다. 이에 따라, 도 4에 도시된 바와 같이 제1 스위칭부(224a) 및 제2 스위칭부(224b)는 AC 전원이 하이브리드 전력 변환부(221), 고전압 충전부(222), 보조 전압 충전부(223)에 입력되는 것을 차단하고, 고전압 배터리(2)의 전력이 보조 전압 충전부(223)에 입력되도록 스위칭 동작을 수행한다.
제2 모드에서 제1 스위칭부(224a)는 오프 상태로 스위칭되고, 제2 스위칭부(224b)는 온 상태로 스위칭된다. 이에 따라, 제1 스위칭부(224a)의 오프 동작에 의해, 정류부(225), PFC 회로(226), 및 하이브리드 전력 변환부(221)에 대한 AC 전원(21)의 공급이 차단된다. 따라서, 하이브리드 전력 변환부(221)는 AC 전원(21)에 의한 제1 전압 또는 제2 전압으로의 전력 변환을 수행할 수 없다. 따라서, 더 이상 제1 전압을 고전압 충전부(222)로 출력할 수 없으며, 고전압 충전부(222)는 제1 전압을 강압하여 고전압 배터리(24)를 충전시키는 동작을 수행할 수 없다. 한편, 하이브리드 전력 변환부(221)는 AC 전원(21)에 의한 제2 전압을 보조 전압 충전부(223)로 출력할 수 도 없다.
그렇지만, 제2 스위칭부(224b)가 온상태로 스위칭되어 있음에 따라, 고전압 배터리(24)의 전압은 제2 스위칭부(224b)를 통해 하이브리드 전력 변환부(221)의 입력단에 전달된다. 하이브리드 전력 변환부(221)의 입력단에 전달된 고전압 배터리(24)의 전압은 하이브리드 전력 변환부(221)에 구비된 트랜스포머의 제2 차 권선에 유기된다. 이때, 트랜스포머의 제2 차 권선은 고전압 충전부(222)에 연결되는 제2 차 권선과, 보조 전압 충전부(223)에 연결되는 제2 차 권선으로 구분될 수 있다. 한편, 제2 모드에서는 고전압 충전부(222)의 스위칭 소자(222a)는 오프 상태를 유지하도록 설정된다. 이에 따라, 고전압 배터리(24)의 전압은 트랜스포머의 제2 차 권선중에서 고전압 충전부(222)쪽에 연결된 제2 차 권선에는 유기되지 않고, 보조 충전부(223)쪽에 연결된 제2 차 권선에만 유기된다. 보조 전압 충전부(223)는 제2차 권선에 유기된 고전압 배터리(24)의 전압을 강압하여 저전압 배터리(23)를 충전시킨다.
도 5 및 도 6은 본 발명의 다른 실시예에 따른 배터리 충전 장치의 구체적인 회로도이다.
도 5 및 도 6을 참조하면, AC 전원(21)을 정류하여 직류로 변환하는 정류부(225), 역률을 보정하는 PFC(Power Factor Correction) 회로(226), 하이브리드 전력 변환부(221), 고전압 충전부(222), 보조 전압 충전부(223), 및 스위칭부(224)를 포함하여 구성될 수 있다. 이외에도 정류부(225)의 앞단에 EMI 필터를 구비할 수도 있으며, 이외에도 전류제어 및 전압 제어를 위한 회로들을 포함할 수 있다.
정류부(225)는 AC 전원을 정류하여 직류를 출력한다. PFC 회로(226)는 정류부(225)를 통해 정류된 직류의 역률을 보정하여 하이브리드 전력 변환부(221)에 제공한다. PFC 회로(226)는 인터리브 부스트 컨버터(interleave boost converter)를 이용할 수 있다. 인터리브 부스트 컨버터는 승압형 컨버터로서, 입력단과 출력단의 접지가 같은 회로이다. 인터리브 부스트 컨버터는 스위치가 온 되어있는 동안은 입력전원이 인덕터 양단에 연결되어 전류의 충전이 이루어지고, 스위치가 오프되면 충전된 전류가 부하 측 필터로 전달된다. 인터리브 부스트 컨버터는 부하 측의 필터 입장에서 볼 때, 전류가 주기적으로 흘러 들어오다 끊어지기를 반복하며, 출력단의 전류는 항상 입력단의 전류보다 작다. 회로 동작의 원리상 손실성분이 없기 때문에 입력 전류*입력전압=출력전류*출력전압의 관계에서부터 출력전압이 입력전압보다 항상 높게 나타나며, (스위치 온 시간/스위칭 주기)를 시비율 D 라고 정의하면 Vo=Vi/(1-D)가 된다. PFC 회로(226)의 출력 전압은 예컨대, DC 380V일 수 있다.
하이브리드 전력 변환부(221)는 공용의 트랜스포머를 구비하며, 공용의 트랜스포머를 이용하여 AC 전원을 고전압 배터리(2) 및 보조 전압 배터리를 충전하기 위한 제1 전압 및 제2 전압으로 분리하여 변환한다. 여기에서, 제1 전압은 예컨대, DC 500V일 수 있으며, 제2 전압은 200 - 450V일 수 있다. 여기에서, 공용의 트랜스포머는 고전압 충전부(222) 및 보조 전압 충전부(223)를 위한 제1 전압 및 제2 전압으로의 전력 변환을 위해 공용으로 사용된다. 트랜스포머는 고전압 충전부(222) 및 보조 전압 충전부(223)의 전력 변환에 상응하는 각각의 권선비를 가지는 각각의 제2차 권선을 가진다.
고전압 충전부(222) 및 보조 전압 충전부(223)는 강압형 컨버터를 이용할 수 있다. 예컨대, 벅(buck) 컨버터를 이용할 수 있다. 벅 컨버터는 입력단과 출력단이 같은 접지를 공유하는 회로에 쓰인다. 일정한 주기로 스위칭하는(온/오프를 반복하는) 스위칭 소자(222a)를 이용하여, 스위칭 소자(222a)가 온 되어있는 동안 입력전원이 회로에 연결되고 오프되어 있는 동안은 끊어진다. 이와 같이 주기적으로 연결되었다 끊어졌다 하는 펄스모양의 전압을 LC 필터를 통해 평활(평균)하여 직류전압을 출력한다.
벅 컨버터는 기본적으로 직류전압을 주기적으로 잘라내어(chopping) 만들어진 펄스전압을 평균하여 출력전압을 형성하는 원리가 적용될 수 있다. 이와 같은 방식의 컨버터를 전압원(voltage-fed) 컨버터라고 하며, 출력전압은 입력전압보다 항상 작다. 한 주기 내에서 스위치가 온 되어있는 시간이 길수록 펄스전압의 폭이 넓어지고, 스위치가 온 되어있는 시간이 짧을수록 펄스전압의 폭이 좁아지게 된다. (스위치 온 시간/스위칭 주기)를 시비율 D 라고 정의하면, 출력전압 Vo=D*Vi 가 된다.
고전압 충전부(222)는 하이브리드 전력 변환부(221)에 의해 변환된 제1 전압(500V)을 예컨대, 200 - 450V의 전압으로 강압하여 고전압 배터리(24)를 충전시킨다. 한편, 보조 전압 충전부(223)는 하이브리드 전력 변환부(221)에 의해 변환된 제2 전압(100)을 예컨대, 12 - 14V의 전압으로 강압하여 보조 전압 배터리(23)를 충전시킨다.
정류부(225)의 입력단에 AC 전원(21)의 공급 또는 차단을 스위칭하기 위한 제1 스위칭부(224a)가 설치될 수 있다. 제1 스위칭부(224a)는 보조 전압 충전부(223)에 AC 전원(21)에 의한 제2 전압 또는 고전압 배터리(24)의 전압이 선택적으로 입력되도록 AC 전원(21)과 보조 전압 충전부(223)의 전기적 접속을 스위칭할 수 있다.
한편, 고전압 배터리(24)와 보조 전압 충전부(223)의 전기적 접속을 스위칭하기 위한 제2 스위칭부(224c)가 설치될 수 있다. 제2 스위칭부(224c)는 고전압 배터리(24)의 양극 단자와 트랜스포머의 제2 차 권선사이에 순방향으로 연결된 다이오드를 포함할 수 있다.
제1 스위칭부(224a) 및 제2 스위칭부(224c)는 제1 모드 및 제2 모드를 위한 스위칭을 수행할 수 있다. 제1 스위칭부(224a) 및 제2 스위칭부(224c)의 스위칭 동작에 의해 제1 모드에서는 AC 전원(21)에 의한 고전압 배터리 충전과 보조 배터리 충전이 이루어진다. 제1 스위칭부(224a) 및 제2 스위칭부(224c)의 스위칭 동작에 의해 제2 모드에서는 AC 전원에 의한 고전압 배터리 충전이 정지되고, 고전압 배터리(24)의 전압에 의한 보조 배터리 충전이 이루어질 수 있다.
이때, 제1 모드에서 제1 스위칭부(224a)는 온상태로 스위칭되고, 제2 스위칭부(224c)는 개방 상태를 유지한다. 한편, 제2 모드에서 제1 스위칭부(224a)는 오프 상태로 스위칭되고, 제2 스위칭부(224b)는 도통 상태를 유지한다.
이와 같이 구성된 구조에서 AC 전원(21)에 의해 고전압 배터리(24)와 보조 배터리(23)를 충전시키는 제1 모드의 동작을 도 5를 참조하여 설명하면 다음과 같다.
차량 탑재형 완속 충전부(22)는 배터리 관리 시스템(미도시)으로부터 고전압 배터리(24) 및 보조 배터리(23)의 충전지령을 수신한다. 이에 따라, 도 5에 도시된 바와 같이 제1 스위칭부(224a) 및 제2 스위칭부(224b)는 AC 전원이 하이브리드 전력 변환부(221)에 입력될 수 있도록 스위칭 동작을 수행한다.
제1 모드에서 제1 스위칭부(224a)는 온상태로 스위칭되고, 제2 스위칭부(224b)는 개방 상태를 유지하게 된다. 이에 따라, AC 전원(21)은 정류부(225) 및 PFC 회로(226)를 통해 하이브리드 전력 변환부(221)에 입력된다. 하이브리드 전력 변환부(221)는 AC 전원(21)을 제1 전압으로 변환하고 변환된 제1 전압을 고전압 충전부(222)로 출력한다. 고전압 충전부(222)는 제1 전압을 강압하여 고전압 배터리(24)를 충전시킨다. 한편, 하이브리드 전력 변환부(221)는 AC 전원(21)을 제2 전압으로 변환하고 변환된 제2 전압을 보조 전압 충전부(223)로 출력한다. 보조 전압 충전부(223)는 제2 전압을 강압하여 저전압 배터리(23)를 충전시킨다.
한편, 도 6을 참조하여 고전압 배터리(24)에 의해 보조 배터리(23)를 충전하는 제2 모드의 동작을 설명하면 다음과 같다.
차량 탑재형 완속 충전부(22)는 배터리 관리 시스템(미도시)으로부터 보조 배터리(23)의 충전지령을 수신한다. 이에 따라, 도 6에 도시된 바와 같이 제1 스위칭부(224a) 및 제2 스위칭부(224b)는 AC 전원이 하이브리드 전력 변환부(221), 고전압 충전부(222), 보조 전압 충전부(223)에 입력되는 것을 차단하고, 고전압 배터리(2)의 전력이 보조 전압 충전부(223)에 입력되도록 스위칭 동작을 수행한다.
제2 모드에서 제1 스위칭부(224a)는 오프 상태로 스위칭되고, 제2 스위칭부(224b)는 도통 상태로 스위칭된다. 이에 따라, 제1 스위칭부(224a)의 오프 동작에 의해, 정류부(225), PFC 회로(226), 및 하이브리드 전력 변환부(221)에 대한 AC 전원(21)의 공급이 차단된다. 따라서, 하이브리드 전력 변환부(221)는 AC 전원(21)에 의한 제1 전압 또는 제2 전압으로의 전력 변환을 수행할 수 없다. 따라서, 더 이상 제1 전압을 고전압 충전부(222)로 출력할 수 없으며, 고전압 충전부(222)는 제1 전압을 강압하여 고전압 배터리(24)를 충전시키는 동작을 수행할 수 없다. 한편, 하이브리드 전력 변환부(221)는 AC 전원(21)에 의한 제2 전압을 보조 전압 충전부(223)로 출력할 수 도 없다.
그렇지만, 제2 스위칭부(224b)가 도통 상태로 스위칭되어 있음에 따라, 고전압 배터리(24)의 전압은 제2 스위칭부(224b)를 통해 하이브리드 전력 변환부(221)의 제2 차 권선에 전달된다. 트랜스포머의 제2 차 권선은 고전압 충전부(222)에 연결되는 제2 차 권선과, 보조 전압 충전부(223)에 연결되는 제2 차 권선으로 구분될 수 있다. 이때, 제2 차 권선중에서 고전압 충전부(222)쪽의 제2 차 권선에 전달된다. 고전압 충전부(222)의 제2 차 권선에 전달된 고전압 배터리(24)의 전압은 보조 전압 충전부(223) 쪽의 제2 차 권선에 유기된다.
한편, 제2 모드에서는 고전압 충전부(222)의 스위칭 소자(222a)는 오프 상태를 유지하도록 설정된다. 이에 따라, 고전압 배터리(24)의 전압은 트랜스포머의 제2 차 권선중에서 고전압 충전부(222)쪽으로는 흐르지 않고, 보조 충전부(223)쪽에 연결된 제2 차 권선에 유기된다. 보조 전압 충전부(223)는 제2차 권선에 유기된 고전압 배터리(24)의 전압을 강압하여 저전압 배터리(23)를 충전시킨다.
이상의 본 발명은 상기에 기술된 실시예들에 의해 한정되지 않고, 당업자들에 의해 다양한 변형 및 변경을 가져올 수 있으며, 이는 첨부된 청구항에서 정의되는 본 발명의 취지와 범위에 포함된다.
2 : 배터리 충전 장치 21 : AC 전원
22 : 차량 탑재형 완속 충전부 221 : 하이브리드 전력 변환부
222 : 고전압 충전부 223 : 보조 전압 충전부
224 : 스위칭부 225 : 정류부
226 : PFC 회로 23 : 보조 배터리
24 : 고전압 배터리

Claims (12)

  1. 공용의 트랜스포머를 이용하여 AC 전원을 고전압 배터리 및 보조 전압 배터리를 충전하기 위한 제1 전압 및 제2 전압으로 분리하여 변환하는 하이브리드 전력 변환부;
    상기 하이브리드 전력 변환부에 의해 변환된 상기 제1 전압을 강압하여 고전압 배터리를 충전하는 고전압 충전부;
    상기 하이브리드 전력 변환부에 의해 변환된 상기 제2 전압 또는 상기 고전압 배터리의 전압을 강압하여 보조 배터리를 충전시키는 보조 전압 충전부; 및
    상기 보조 전압 충전부에 상기 AC 전원에 의한 상기 제2 전압 또는 상기 고전압 배터리의 전압이 선택적으로 입력되도록 상기 AC 전원과 상기 보조 전압 충전부의 전기적 접속을 스위칭하고, 상기 고전압 배터리와 상기 보조 전압 충전부의 전기적 접속을 스위칭하는 스위칭부를 포함하며,
    상기 스위칭부의 스위칭 동작에 의해 제1 모드에서는 상기 AC 전원에 의한 고전압 배터리 충전과 상기 보조 배터리 충전이 이루어지며, 제2 모드에서는 상기 AC 전원에 의한 고전압 배터리 충전이 정지되고, 상기 고전압 배터리의 전압에 의한 상기 보조 배터리 충전이 이루어지는 것을 특징으로 하는 배터리 충전 장치.
  2. 청구항 1에 있어서,
    상기 하이브리드 전력 변환부, 상기 고전압 충전부, 상기 보조 전압 충전부 및 상기 스위칭부는 차량 탑재형 완속 충전부(OBC: On Board Charger)에 탑재되는 것을 특징으로 하는 배터리 충전 장치.
  3. 청구항 1에 있어서,
    상기 트랜스포머는 제1차 권선과, 상기 제1 전압 및 상기 제2 전압으로의 전력 변환을 위한 각각의 권선비를 가지는 각각의 제2 차 권선을 포함하는 것을 특징으로 하는 배터리 충전 장치.
  4. 청구항 1에 있어서,
    상기 스위칭부는 상기 제2 모드에서 상기 고전압 배터리의 전압을 상기 트랜스포머의 제1차 권선의 입력단에 전달하여 상기 보조 전압 충전부에서 상기 고전압 배터리의 전압에 의한 상기 보조 배터리 충전이 이루어지도록 스위칭을 수행하는 것을 특징으로 하는 배터리 충전 장치.
  5. 청구항 1에 있어서,
    상기 스위칭부는 상기 제2 모드에서 상기 고전압 배터리의 전압을 상기 트랜스포머의 제2차 권선에 전달하여 상기 보조 전압 충전부에서 상기 고전압 배터리의 전압에 의한 상기 보조 배터리 충전이 이루어지도록 스위칭을 수행하는 것을 특징으로 하는 배터리 충전 장치.
  6. 청구항 1에 있어서,
    상기 스위칭부는 상기 AC 전원의 공급 또는 차단을 스위칭하기 위한 제1 스위칭부 및 상기 고전압 배터리의 전압이 상기 보조 전압 충전부에 전달되는 것을 스위칭하기 위한 제2 스위칭부를 포함하되,
    상기 제1 모드에서 상기 제1 스위칭부는 온상태로 스위칭되고, 상기 제2 스위칭부는 오프상태로 스위칭되며,
    상기 제2 모드에서 상기 제1 스위칭부는 오프 상태로 스위칭되고, 상기 제2 스위칭부는 온상태로 스위칭되는 것을 특징으로 하는 배터리 충전 장치.
  7. 청구항 6에 있어서,
    상기 트랜스포머는 제1 차 권선과, 상기 제1 전압 및 상기 제2 전압으로의 전력 변환을 위한 각각의 권선비를 가지는 각각의 제2 차 권선을 포함하고,
    상기 제2 스위칭부는 상기 고전압 배터리의 전압을 상기 트랜스포머의 제1차 권선의 입력단에 전달하도록 설치되는 것을 특징으로 하는 배터리 충전 장치.
  8. 청구항 7에 있어서,
    상기 제2 스위칭부는 상기 고전압 배터리의 양단과 상기 트랜스포머의 제1차 권선의 입력 양단 사이에 각각 설치되는 것을 특징으로 하는 배터리 충전 장치.
  9. 청구항 6에 있어서,
    상기 트랜스포머는 제1 차 권선과, 상기 제1 전압 및 상기 제2 전압으로의 전력 변환을 위한 각각의 권선비를 가지는 각각의 제2 차 권선을 포함하고,
    상기 제2 스위칭부는 상기 고전압 배터리의 전압을 상기 트랜스포머의 제2 차 권선중에서 상기 고전압 충전부쪽에 연결된 제2 차 권선에 전달하도록 설치되는 것을 특징으로 하는 배터리 충전 장치.
  10. 청구항 9에서 있어서,
    상기 제2 스위칭부는 상기 고전압 배터리의 양극 단자와 상기 트랜스포머의 제2 차 권선중에서 상기 고전압 충전부쪽에 연결된 제2 차 권선의 사이에 순방향으로 연결된 다이오드를 포함하는 것을 특징으로 하는 배터리 충전 장치.
  11. 청구항 1에 있어서,
    상기 AC 전원을 정류하여 직류로 변환하는 정류부; 및
    상기 변환된 직류의 역률을 보정하여 상기 하이브리드 전력 변환부에 전달하는 PFC(Power Factor Correction) 회로부를 더 포함하는 배터리 충전 장치.
  12. 청구항 1에 있어서,
    상기 고전압 충전부 및 상기 보조 전압 충전부는 인터리브로 구현된 벅(buck) 컨버터를 포함하는 것을 특징으로 하는 배터리 충전 장치.
KR1020110024454A 2011-03-18 2011-03-18 배터리 충전 장치 KR101229441B1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020110024454A KR101229441B1 (ko) 2011-03-18 2011-03-18 배터리 충전 장치
DE102012004992A DE102012004992A1 (de) 2011-03-18 2012-03-13 Batterieladevorrichtung
CN201210073128.1A CN102694409B (zh) 2011-03-18 2012-03-19 电池充电装置
US13/423,974 US9300148B2 (en) 2011-03-18 2012-03-19 Apparatus for charging both main battery and auxiliary battery using the same primary winding and two different secondary windings of single transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020110024454A KR101229441B1 (ko) 2011-03-18 2011-03-18 배터리 충전 장치

Publications (2)

Publication Number Publication Date
KR20120106379A true KR20120106379A (ko) 2012-09-26
KR101229441B1 KR101229441B1 (ko) 2013-02-06

Family

ID=46756985

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020110024454A KR101229441B1 (ko) 2011-03-18 2011-03-18 배터리 충전 장치

Country Status (4)

Country Link
US (1) US9300148B2 (ko)
KR (1) KR101229441B1 (ko)
CN (1) CN102694409B (ko)
DE (1) DE102012004992A1 (ko)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489226B1 (ko) * 2012-12-21 2015-02-06 주식회사 만도 전기 자동차용 통합형 완속 충전기, 충전기능을 갖는 전기 자동차, 완속 충전기를 포함하는 전기 자동차용 충전기의 제어 시스템 및 제어 방법
KR20160038348A (ko) * 2014-09-30 2016-04-07 현대모비스 주식회사 저전압 dc-dc 컨버터 일체형 충전 장치
US9321359B2 (en) 2013-03-07 2016-04-26 Hyundai Motor Company Power supply system and method for charging battery of vehicle
KR20160118472A (ko) 2015-04-02 2016-10-12 현대자동차주식회사 Phev의 충전 시스템 및 그 제어방법
KR20170049918A (ko) * 2015-10-29 2017-05-11 삼성전기주식회사 유무선 전력 공급 장치
KR20180136028A (ko) * 2017-06-13 2018-12-24 현대자동차주식회사 차량용 배터리 충전 제어 시스템 및 방법
KR20200099383A (ko) * 2019-02-14 2020-08-24 주식회사 에코파워팩 차량용 주행 충전 장치 및 그를 이용한 전원 공급 시스템
US10793020B2 (en) 2017-11-22 2020-10-06 Hyundai Motor Company Fuel cell vehicle system and method of controlling the same

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5183778B2 (ja) * 2011-07-15 2013-04-17 三菱電機株式会社 車両充電システム
KR101263463B1 (ko) * 2011-09-02 2013-05-10 주식회사 만도 배터리 충전 장치
FR2987953B1 (fr) * 2012-03-09 2017-04-28 Intelligent Electronic Systems Dispositif de charge comprenant un convertisseur ac-dc isole
FR2993728A1 (fr) * 2012-07-20 2014-01-24 Ies Synergy Convertisseur reversible
JP5830449B2 (ja) * 2012-08-30 2015-12-09 日立オートモティブシステムズ株式会社 電動車駆動システム
CN103904712A (zh) * 2012-12-27 2014-07-02 联想(北京)有限公司 电子设备和供电方法
KR101438610B1 (ko) * 2012-12-28 2014-09-15 현대자동차 주식회사 충전기 및 그 구동 방법
JP5536279B1 (ja) * 2012-12-28 2014-07-02 株式会社日立製作所 蓄電装置
JP2014176170A (ja) * 2013-03-07 2014-09-22 Toshiba Corp 受電装置および充電システム
DE102013225493A1 (de) * 2013-08-12 2015-02-12 Hyundai Motor Company Umwandlervorrichtung und -verfahren eines Elektrofahrzeugs
ITMO20130315A1 (it) * 2013-11-14 2015-05-15 Meta System Spa Apparecchiatura per la ricarica di batterie di veicoli elettrici o simili
CN103746419B (zh) * 2013-12-30 2017-01-11 联合汽车电子有限公司 车载充电器电路
CN103872728A (zh) * 2014-03-03 2014-06-18 同济大学 一种多功能一体化电动汽车车载充电机
US9673658B2 (en) * 2014-03-06 2017-06-06 Samsung Electro-Mechanics Co., Ltd. Non-contact capacitive coupling type power charging apparatus and non-contact capacitive coupling type battery apparatus
CN104410126B (zh) * 2014-11-25 2017-07-11 金华职业技术学院 电动汽车车载充电机及车载dc/dc一体化集成系统
CN104578253B (zh) * 2014-12-05 2017-02-22 北京理工大学 一种具有高频三角变技术的电动汽车电机驱动dc/dc变换装置
CN104393659A (zh) * 2014-12-19 2015-03-04 南车株洲电力机车有限公司 一种充电装置和充电控制方法
US9610845B2 (en) * 2014-12-30 2017-04-04 GM Global Technology Operations LLC Powertrain for a vehicle
US10098278B2 (en) 2015-02-20 2018-10-16 Black & Decker Inc. Mower
FR3036864B1 (fr) * 2015-05-29 2017-06-02 Peugeot Citroen Automobiles Sa Dispositif electrique multifonction
CN104972912B (zh) * 2015-06-12 2017-05-10 奇瑞汽车股份有限公司 车载电源系统
DE102015214165A1 (de) * 2015-07-27 2017-02-02 Continental Automotive Gmbh Schaltregler zum Erzeugen einer Mehrzahl von Gleichspannungen
JP6551089B2 (ja) * 2015-09-11 2019-07-31 株式会社オートネットワーク技術研究所 車載用電源装置
ITUB20153932A1 (it) * 2015-09-28 2017-03-28 Meta System Spa Apparecchiatura per la ricarica di batterie di veicoli elettrici o simili
KR20170086298A (ko) * 2016-01-18 2017-07-26 현대자동차주식회사 전기차량의 충전제어 시스템
CN105762902B (zh) * 2016-03-25 2018-08-14 嘉善中正新能源科技有限公司 一种可实现dc/dc转换功能的车载充电机电路
CN107294145A (zh) * 2016-03-30 2017-10-24 通用电气公司 充电装置、系统和方法
US20170282747A1 (en) * 2016-04-05 2017-10-05 Ford Global Technologies, Llc Charging system for vehicle battery
US10547191B2 (en) * 2016-06-15 2020-01-28 Schneider Electric It Corporation Power management unit for intelligent traffic system applications
US10243376B2 (en) * 2016-06-15 2019-03-26 Schneider Electric It Corporation Stack DC power supply battery charger
TWM534932U (zh) * 2016-09-26 2017-01-01 群光電能科技股份有限公司 電源供應裝置
KR102406659B1 (ko) * 2017-03-07 2022-06-08 현대자동차주식회사 차량 및 차량 충전 장치
FR3064126B1 (fr) * 2017-03-15 2020-11-20 Valeo Siemens Eautomotive France Sas Systeme electrique pour vehicule automobile a moteur electrique ou hybride
CN107089166A (zh) * 2017-05-19 2017-08-25 北京新能源汽车股份有限公司 电动汽车的充电方法及系统
JP6554151B2 (ja) * 2017-08-31 2019-07-31 本田技研工業株式会社 車両の電源システム
JP6545230B2 (ja) * 2017-08-31 2019-07-17 本田技研工業株式会社 車両の電源システム
WO2019060665A1 (en) * 2017-09-22 2019-03-28 Urban Electric Power Inc. SYSTEM FOR CHARGING CELLS ASSEMBLED IN A BATTERY
US10946756B2 (en) * 2017-11-14 2021-03-16 Ford Global Technologies, Llc Bidirectional integrated charger for a vehicle battery
DE102017130474A1 (de) * 2017-12-19 2019-06-19 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Transformatorvorrichtung für eine Ladestation für das elektrische Laden von Fahrzeugen mit wenigstens zwei Ladepunkten
US11001163B2 (en) 2018-01-12 2021-05-11 Ford Global Technologies, Llc Electrified vehicle with splittable battery and associated method
JP6802826B2 (ja) * 2018-09-13 2020-12-23 矢崎総業株式会社 車両電源装置
FR3096936B1 (fr) * 2019-06-04 2021-05-21 Psa Automobiles Sa Dispositif electrique multifonction ameliore pour vehicule automobile electrique ou hybride
CN114175444A (zh) * 2019-07-15 2022-03-11 伊顿智能动力有限公司 具有高效逆变器的移动应用的电源分配和电路保护
KR20210018598A (ko) 2019-08-06 2021-02-18 현대자동차주식회사 차량용 전력 변환 시스템 및 그 제어 방법
CN110884373B (zh) * 2019-11-24 2021-05-07 浙江大学 以模式开关重构开绕组永磁电机的电动汽车集成充电系统
CN111641247B (zh) * 2020-05-15 2022-03-08 华为数字能源技术有限公司 一种车载充电机的充电电路、车载充电机及充电控制方法
CN111682615A (zh) * 2020-06-18 2020-09-18 格力博(江苏)股份有限公司 充电控制电路、充电装置及充电系统
CN114337289A (zh) * 2020-11-30 2022-04-12 华为数字能源技术有限公司 一种转换电路、转换器和电子设备
DE102022204166A1 (de) 2021-08-17 2023-02-23 Robert Bosch Gesellschaft mit beschränkter Haftung Ladesystem, Batteriesystem und Verfahren zum Betreiben des Batteriesystems
US11784574B2 (en) * 2021-11-30 2023-10-10 Ford Global Technologies, Llc Automotive power converter
CN114336746A (zh) * 2021-12-28 2022-04-12 联合汽车电子有限公司 汽车能量管理系统

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3305754A (en) * 1963-06-04 1967-02-21 Frederick Res Corp Charging apparatus for multicell batteries
US3886426A (en) * 1973-03-16 1975-05-27 Eagle Picher Ind Inc Battery switching circuit
US3900784A (en) * 1974-07-10 1975-08-19 Eltra Corp Converter for battery charger
US4084124A (en) * 1976-11-24 1978-04-11 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and apparatus for conditioning of nickel-cadmium batteries
US4331911A (en) * 1978-05-22 1982-05-25 Park Robert H Method of equalizing the voltages of the individual cells of storage batteries
US4670703A (en) * 1985-05-06 1987-06-02 General Electric Company Battery charger with three different charging rates
US5003244A (en) * 1989-05-09 1991-03-26 Digital Equipment Corporation Battery charger for charging a plurality of batteries
US5006782A (en) * 1989-06-15 1991-04-09 International Rectifier Corporation Cascaded buck converter circuit with reduced power loss
AT396312B (de) * 1991-05-24 1993-08-25 Energiespeicher & Antriebssyst Verfahren zum laden einer mehrzahl von batterien
JPH0865904A (ja) * 1994-06-06 1996-03-08 Nippondenso Co Ltd 電気自動車用充電装置
DE4427077C1 (de) * 1994-07-30 1996-03-21 Fraunhofer Ges Forschung Vorrichtung zum Ladungsaustausch zwischen einer Vielzahl von in Reine geschalteten Energiespeichern oder -wandlern
JP3491714B2 (ja) * 1995-06-14 2004-01-26 本田技研工業株式会社 電動車の電池過放電防止装置
US6204630B1 (en) * 2000-02-04 2001-03-20 Ellen James Lightweight, compact, on-board, electric vehicle battery charger
US6087802A (en) * 1995-08-24 2000-07-11 James; Ellen Lightweight, compact, on-board electric vehicle battery charger
US5659237A (en) * 1995-09-28 1997-08-19 Wisconsin Alumni Research Foundation Battery charging using a transformer with a single primary winding and plural secondary windings
AU716214B2 (en) * 1996-05-03 2000-02-24 Auckland Uniservices Limited Inductively powered battery charger
US5666041A (en) * 1996-08-27 1997-09-09 The University Of Toledo Battery equalization circuit with ramp converter
US5982143A (en) * 1996-08-27 1999-11-09 The University Of Toledo Battery equalization circuit with ramp converter and selective outputs
US5869950A (en) * 1997-10-30 1999-02-09 Lockheed Martin Corp. Method for equalizing the voltage of traction battery modules of a hybrid electric vehicle
JP3707650B2 (ja) 1997-12-09 2005-10-19 株式会社デンソー 電気自動車用電源装置
EP1020973A3 (en) * 1999-01-18 2001-05-02 Hitachi, Ltd. A charge and discharge system for electric power storage equipment
JP4258692B2 (ja) * 2000-02-10 2009-04-30 株式会社デンソー 自動車用電源装置
JP3381708B2 (ja) * 2000-05-02 2003-03-04 トヨタ自動車株式会社 車両、電源系制御装置、電源系を制御する方法および車両の始動時制御方法
JP3625789B2 (ja) * 2001-08-10 2005-03-02 本田技研工業株式会社 車両の電源装置
US7301308B2 (en) * 2001-11-02 2007-11-27 Aker Wade Power Technologies, Llc Fast charger for high capacity batteries
JP2003153597A (ja) * 2001-11-14 2003-05-23 Toyota Motor Corp 電源装置
US6586909B1 (en) * 2001-12-21 2003-07-01 Ron Trepka Parallel battery charging device
US6956353B1 (en) * 2002-10-11 2005-10-18 Orrin Edward Klitzner Universal battery charger for cellular telephones and other battery operated devices
US7245108B2 (en) * 2002-11-25 2007-07-17 Tiax Llc System and method for balancing state of charge among series-connected electrical energy storage units
JP2007508795A (ja) * 2003-10-08 2007-04-05 エナージイ アンド エンジン テクノロジイ コーポレーション バッテリ電力を管理するための方法およびシステム
JP4254658B2 (ja) * 2004-08-23 2009-04-15 株式会社デンソー 車載電源システム
JP2006280110A (ja) * 2005-03-29 2006-10-12 Mitsubishi Fuso Truck & Bus Corp ハイブリッド電気自動車用バッテリ充電システム
JP2006304393A (ja) * 2005-04-15 2006-11-02 Toyota Motor Corp 電源装置およびその制御方法並びに車両
US7746670B2 (en) * 2006-10-04 2010-06-29 Denso Corporation Dual-transformer type of DC-to-DC converter
US7535201B2 (en) * 2006-10-05 2009-05-19 Densei-Lambda Kabushiki Kaisha Uninterruptible power supply system
JP4263736B2 (ja) * 2006-10-31 2009-05-13 Tdk株式会社 スイッチング電源装置
JP4400632B2 (ja) * 2007-02-20 2010-01-20 Tdk株式会社 スイッチング電源装置
JP4770798B2 (ja) * 2007-06-15 2011-09-14 株式会社豊田自動織機 電源装置
JP5036416B2 (ja) * 2007-06-15 2012-09-26 トヨタ自動車株式会社 電源システムおよびそれを備えた車両、ならびに充放電制御方法
US7889524B2 (en) * 2007-10-19 2011-02-15 Illinois Institute Of Technology Integrated bi-directional converter for plug-in hybrid electric vehicles
WO2009097864A1 (en) * 2008-02-10 2009-08-13 Ramy Kamal Masood Power control
JP4438887B1 (ja) * 2008-09-26 2010-03-24 トヨタ自動車株式会社 電動車両及び電動車両の充電制御方法
JP5621193B2 (ja) * 2009-01-15 2014-11-05 日産自動車株式会社 電力変換装置
CN101499673B (zh) * 2009-02-27 2011-07-27 天津清源电动车辆有限责任公司 一种用于电动汽车的具有补偿充电的多功能一体化充电机
KR20100101994A (ko) * 2009-03-10 2010-09-20 엘에스산전 주식회사 전기자동차용 충전시스템
EP2444269B1 (en) * 2009-06-10 2016-11-30 Toyota Jidosha Kabushiki Kaisha Electric vehicle and method for controlling electric vehicle
US8307930B2 (en) * 2009-07-20 2012-11-13 International Truck Intellectual Property Company, Llc Scalable, hybrid energy storage for plug-in vehicles
KR101498078B1 (ko) 2009-09-02 2015-03-03 엘지전자 주식회사 이동 단말기 및 디지털 액자 및 그 제어 방법
US8907622B2 (en) * 2009-09-25 2014-12-09 Toyota Jidosha Kabushiki Kaisha Vehicle charging system and electrically powered vehicle provided with the same
US8692507B2 (en) * 2010-07-28 2014-04-08 Jack Yajie Chen Multiple stage heterogeneous high power battery system for hybrid and electric vehicle
JP5577986B2 (ja) * 2010-09-22 2014-08-27 株式会社豊田自動織機 電源装置および車載用電源装置
US8534400B2 (en) * 2011-02-14 2013-09-17 Ford Global Technologies, Llc Electric vehicle and method of control for active auxiliary battery depletion
JP5187406B2 (ja) * 2011-03-31 2013-04-24 株式会社豊田自動織機 補機バッテリ充電装置
JP5156112B2 (ja) * 2011-07-28 2013-03-06 三菱重工業株式会社 電池システム

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101489226B1 (ko) * 2012-12-21 2015-02-06 주식회사 만도 전기 자동차용 통합형 완속 충전기, 충전기능을 갖는 전기 자동차, 완속 충전기를 포함하는 전기 자동차용 충전기의 제어 시스템 및 제어 방법
US9321359B2 (en) 2013-03-07 2016-04-26 Hyundai Motor Company Power supply system and method for charging battery of vehicle
KR20160038348A (ko) * 2014-09-30 2016-04-07 현대모비스 주식회사 저전압 dc-dc 컨버터 일체형 충전 장치
KR20160118472A (ko) 2015-04-02 2016-10-12 현대자동차주식회사 Phev의 충전 시스템 및 그 제어방법
KR20170049918A (ko) * 2015-10-29 2017-05-11 삼성전기주식회사 유무선 전력 공급 장치
KR20180136028A (ko) * 2017-06-13 2018-12-24 현대자동차주식회사 차량용 배터리 충전 제어 시스템 및 방법
CN109080466A (zh) * 2017-06-13 2018-12-25 现代自动车株式会社 控制车辆电池充电的系统和方法
US10793020B2 (en) 2017-11-22 2020-10-06 Hyundai Motor Company Fuel cell vehicle system and method of controlling the same
KR20200099383A (ko) * 2019-02-14 2020-08-24 주식회사 에코파워팩 차량용 주행 충전 장치 및 그를 이용한 전원 공급 시스템

Also Published As

Publication number Publication date
KR101229441B1 (ko) 2013-02-06
US20120235626A1 (en) 2012-09-20
CN102694409B (zh) 2015-07-22
DE102012004992A1 (de) 2012-09-20
CN102694409A (zh) 2012-09-26
US9300148B2 (en) 2016-03-29

Similar Documents

Publication Publication Date Title
KR101229441B1 (ko) 배터리 충전 장치
KR101263463B1 (ko) 배터리 충전 장치
US8829722B2 (en) Apparatus and method for rapidly charging an electric vehicle
US8378623B2 (en) Apparatus and method for charging an electric vehicle
KR20190010786A (ko) 전기 자동차
US9520741B2 (en) System for charging electrical storage device and method of making same
CN101357593A (zh) 使用双端逆变器系统用整流器对能源充电
CN102386666A (zh) 用于对插电式混合动力车再充电的系统及控制方法
KR102174516B1 (ko) 전기자동차용 배터리 통합 충전 제어 장치
CN113043869A (zh) 车辆用电池系统以及其的操作方法
KR20140132567A (ko) 하이브리드전기자동차 고전압 배터리 충전장치
KR102008751B1 (ko) 차량용 전력 제어 장치
KR102063921B1 (ko) 차량용 전력 제어 장치
KR101316125B1 (ko) 차량의 배터리 충전 장치
KR102286833B1 (ko) Phev의 충전 시스템 및 그 제어방법
KR20140084820A (ko) 전기 자동차 충전 장치 및 이를 구동하는 방법
KR102532323B1 (ko) 차량용 전력변환 시스템
KR102008753B1 (ko) 차량용 전력 제어 장치
KR20190029868A (ko) 차량용 전력 제어 장치
KR102008746B1 (ko) 차량용 전력 제어 장치
KR102008749B1 (ko) 차량용 전력 제어 장치
KR102008752B1 (ko) 차량용 전력 제어 장치
KR102008747B1 (ko) 차량용 전력 제어 장치
KR20190029866A (ko) 차량용 전력 제어 장치
DE De's Theoretical Models of Advanced and Next-Generation Battery Electric Vehicle Power-Train System: A Theoretical Approach for Self-Charging Battery Electric Vehicle (for Four Wheelers) with the Extended Range (Nearly Unlimited), after a Single Charge

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151222

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20161222

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20171222

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20181226

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20191219

Year of fee payment: 8