KR20110135281A - 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법. - Google Patents

광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법. Download PDF

Info

Publication number
KR20110135281A
KR20110135281A KR1020100055093A KR20100055093A KR20110135281A KR 20110135281 A KR20110135281 A KR 20110135281A KR 1020100055093 A KR1020100055093 A KR 1020100055093A KR 20100055093 A KR20100055093 A KR 20100055093A KR 20110135281 A KR20110135281 A KR 20110135281A
Authority
KR
South Korea
Prior art keywords
semiconductor wafer
equipment
dicing
optical signal
unit
Prior art date
Application number
KR1020100055093A
Other languages
English (en)
Other versions
KR101450073B1 (ko
Inventor
김동규
황선하
Original Assignee
에스티에스반도체통신 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스티에스반도체통신 주식회사 filed Critical 에스티에스반도체통신 주식회사
Priority to KR1020100055093A priority Critical patent/KR101450073B1/ko
Publication of KR20110135281A publication Critical patent/KR20110135281A/ko
Application granted granted Critical
Publication of KR101450073B1 publication Critical patent/KR101450073B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67092Apparatus for mechanical treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • H01L21/67173Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers in-line arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법에 관해 개시한다. 이를 위해 본 발명은, 반도체 웨이퍼가 투입되는 로딩부와, 상기 반도체 웨이퍼에 대한 전기적 검사를 광신호 및 무선 전원을 통하여 수행하는 검사부와, 상기 검사가 완료된 반도체 웨이퍼에서 개별 반도체 칩을 분리하는 다이싱부와, 상기 검사부에서 다이싱부로 상기 반도체 웨이퍼를 이동하는 이송부와, 상기 다이싱이 완료된 반도체 웨이퍼를 장비 밖으로 내보내는 언로딩부를 구비하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법을 제공한다. 따라서, 전기적 검사와 다이싱을 하나의 장비에서 무접점식으로 진행하여 제조 효율을 개선할 수 있다.

Description

광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법.{In-line apparatus having an automatic test equipment using a light signal and dicing equipment and operation method thereof}
본 발명은 새로운 기능을 갖는 반도체 소자의 제조장비 및 그 운용방법에 관한 것으로, 더욱 상세하게는 광신호 및 무선 전원을 이용하는 자동검사장비와 다이싱 장비가 결합된 인라인 장비 및 그 운용방법에 관한 것이다.
최근들어 반도체 소자는 소형화, 집적화 및 다기능화에 초점을 두고 눈부시게 발전하고 있다. 특히 반도체 소자는 단위 반도체 소자를 하나의 실리콘 기판에 수백에서 수천 개를 집적회로 제조공정을 통해 만든 것이다. 이러한 반도체 소자는 웨이퍼 상태에서 반도체 패키지로 가공되기 전에 이. 디. 에스 검사(EDS test: Electrical Die Sorting test)라는 전기적 검사를 통해 양품 및 불량으로 선별된다.
도1은 종래 기술에 의한 반도체 웨이퍼의 평면도이다.
도 1을 참조하면, 종래 기술에 의한 반도체 웨이퍼(200)는, 실리콘 혹은 화합물 반도체 웨이퍼(200)에 복수개의 반도체 칩(202)들의 스크라이브 라인(204)에 의해 분리된 구조로 형성되어 있다. 상기 스크라이브 라인(204)은 단위 반도체 칩(203)들을 다이싱(dicing) 공정으로 분리할 때, 소우 블레이드(saw blade)가 지나가는 통로가 된다. 그리고 반도체 웨이퍼(200)의 일측면은 일직선으로 설계된 플랫 존(flat zone, 206)이 형성되어 있다. 상기 플랫 존(206)은 반도체 웨이퍼(200)의 기준점을 지정할 때 사용되며, 이 영역에는 반도체 웨이퍼(200)의 고유번호가 인쇄된다.
종래 기술에 의한 반도체 웨이퍼(200)는, 이. 디. 에스 검사(EDS test)를 통해 이루어지며, 테스터인 자동검사장비(ATE: Automatic Test Equipment)와 프로브 스테이션(Prober station)을 사용하여 전기적 검사가 이루어진다. 이때, 자동검사장비(ATE)는 반도체 소자의 전기적 검사에 필요한 직류/교류 전원공급, 신호 패턴의 공급, 전기적 신호의 측정 등을 내부에 포함된 계측기, 전원 공급 장치 및 컴퓨터를 이용하여 수행한다. 그리고 프로브 스테이션은 웨이퍼의 로딩 및 언로딩(unloading)과 반도체 웨이퍼에 포함된 반도체 칩과 자동검사장비를 서로 전기적으로 연결시키는 역할을 담당한다. 상기 반도체 웨이퍼와 자동검사장비를 연결시키는 방식은 프로브 시스템 내부에 포함된 프로브 카드(prober card)의 탐침을 이용하여 반도체 웨이퍼의 접촉단자와 테스터의 접촉단자를 서로 연결한다.
상기 이. 디. 에스(EDS)검사가 완료된 후, 반도체 웨이퍼는 별도의 제조공정인 다이싱 공정으로 이송된다. 상기 다이싱 공정은 반도체 웨이퍼를 고정시킬 수 있는 확장테이프가 탑재된 마운팅 링(mounting ring)에 반도체 웨이퍼를 고정시킨 후, 반도체 웨이퍼에서 개별 반도체 칩을 분리하는 공정인 다이싱 공정(Dicing process)을 진행하게 된다.
본 발명이 이루고자 하는 기술적 과제는 광신호 및 무선 전원을 반도체 웨이퍼에 인가하여 반도체 칩에 대한 전기적 검사를 진행하고 동일 장비 내에서 다이싱 공정을 진행할 수 있는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비를 제공하는데 있다.
본 발명이 이루고자 하는 다른 기술적 과제는 상기 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 운용방법을 제공하는데 있다.
상기 기술적 과제를 달성하기 위해 본 발명에 의한 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비는, 반도체 웨이퍼가 투입되는 로딩부와, 상기 반도체 웨이퍼에 대한 전기적 검사를 광신호 및 무선 전원을 통하여 수행하는 검사부와, 상기 검사가 완료된 반도체 웨이퍼에서 개별 반도체 칩을 분리하는 다이싱부와, 상기 검사부에서 다이싱부로 상기 반도체 웨이퍼를 이동하는 이송부와, 상기 다이싱이 완료된 반도체 웨이퍼를 장비 밖으로 내보내는 언로딩부를 구비하는 것을 특징으로 한다.
본 발명의 바람직한 실시예에 의하면, 상기 반도체 웨이퍼는, 내부에 광신호 송수신부 및 무선전원 발생부를 포함하는 것이 적합하고, 상기 광신호 송수신부 및 무선 전원 발생부는, 반도체 칩이 형성되지 않는 여분의 공간에 형성되는 것이 적합하고, 상기 여분의 공간은, 반도체 칩들을 구분하는 스크라이브 라인 및 반도체 칩들이 형성되지 않는 공간이 될 수 있다.
이때, 상기 반도체 웨이퍼의 광 송수신부는, 반도체 칩이 형성되지 않는 여분의 영역 혹은 반도체 칩의 집적회로가 형성되는 활성영역 중에 어느 하나의 영역에 형성되는 것이 적합하다.
또한 본 발명의 바람직한 실시예에 의하면, 상기 검사부는, 광신호를 발생시켜 상기 반도체 웨이퍼로 송신하고, 다시 광신호를 수신할 수 있는 무선 신호 송수신부 및 무선 전원을 발생시켜 상기 반도체 웨이퍼의 무선전원 발생부로 전원을 공급하는 무선전원 송신부를 구비하는 것이 적합하다.
바람직하게는, 상기 검사부 및 반도체 웨이퍼의 광신호 송수신부는, 포토 다이오드 혹은 발광 다이오드를 포함할 수 있다.
상기 다른 기술적 과제를 달성하기 위한 본 발명에 의한 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 운용방법은, 광신호 송수신부 및 무선 전원 발생부를 갖는 반도체 웨이퍼를 로딩부로 투입하는 단계와, 검사부에서 상기 반도체 웨이퍼로 무선 전원을 송신하여 반도체 칩에 전원을 인가하는 단계와, 검사부에서 상기 반도체 웨이퍼의 광신호 송수신부로 입력 신호를 송신하여 반도체 칩에 입력신호를 인가하는 단계와, 검사부에서 상기 반도체 웨이퍼의 광신호를 검출하는 단계와, 검출된 광신호를 전기신호로 변환하여 정상 출력 신호와 비교하여 합격/불합격을 판정하는 단계와, 반도체 웨이퍼에 대한 다이싱을 동일 장비에서 진행하는 단계와, 다이싱이 완료된 반도체 웨이퍼를 언로딩부로 이송하는 단계를 구비하는 것을 특징으로 한다.
본 발명의 바람직한 실시예에 의하면, 상기 검사부는, 상기 반도체 웨이퍼에 대한 전기적 검사를 무접점식으로 진행하는 것이 적합하다.
도1은 종래 기술에 의한 반도체 웨이퍼의 평면도이다.
도 2는 본 발명의 바람직한 실시예에 의한 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 블록도이다.
도 3은 본 발명의 바람직한 실시예에 의한 반도체 웨이퍼의 평면도이다.
도 4는 도 3의 A 영역의 확대도로서 반도체 웨이퍼에 설계된 광신호 송수신부를 설명하기 위한 평면도이다.
도 5는 도 4의 광신호 송수신부의 동작원리를 설명하기 위한 블록도이다.
도 6은 도 3의 B 영역의 확대도로서 반도체 웨이퍼에 설계된 무선 전원 발생부를 설명하기 위한 평면도이다.
도 7은 반도체 웨이퍼에 설계된 무선 전원 발생부의 동작원리를 설명하기 위한 블록도이다.
도 8은 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 검사부에 설치된 무선전원 송신부의 동작원리를 설명하기 위한 블록도이다.
도 9는 본 발명의 바람직한 실시예에 의한 반도체 웨이퍼가 로딩부로 투입되는 형태를 설명하기 위한 평면도이다.
도 10은 본 발명의 바람직한 실시예에 의한 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 운용방법을 설명하기 위한 플로 차트(flow-chart)이다.
도 11은 검사부의 테스터를 이용하여 반도체 웨이퍼에 포함된 단위 반도체 칩을 전기적으로 검사하는 것을 설명하기 위한 블록도이다.
도 12는 하나 이상의 반도체 웨이퍼를 적층하여 검사부를 통해 검사하는 방식을 설명하기 위한 단면도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 그러나, 아래의 상세한 설명에서 개시되는 실시예는 본 발명을 한정하려는 의미가 아니라, 본 발명이 속한 기술분야에서 통상의 지식을 가진 자에게, 본 발명의 개시가 실시 가능한 형태로 완전해지도록 발명의 범주를 알려주기 위해 제공되는 것이다.
도 2는 본 발명의 바람직한 실시예에 의한 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 블록도이다.
도 2를 참조하면, 본 발명의 바람직한 실시예에 의한 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비(1000)는, 반도체 웨이퍼가 투입되는 로딩부(400)와, 상기 반도체 웨이퍼에 대한 전기적 검사를 광신호 및 무선 전원을 통하여 수행하는 검사부(100)와, 상기 검사가 완료된 반도체 웨이퍼에서 개별 반도체 칩을 분리하는 다이싱부(600)와, 상기 검사부(100)에서 다이싱부(600)로 상기 반도체 웨이퍼를 이동하는 이송부(500)와, 상기 다이싱이 완료된 반도체 웨이퍼를 장비 밖으로 내보내는 언로딩부(700)를 구비할 수 있다.
이때, 상기 반도체 웨이퍼는 도 9에 도시된 바와 같이 마운팅 링(mounting ring, 800)에 탑재된 상태로 상기 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비(1000)의 로딩부(400)로 투입될 수 있다. 또한 상기 이송부(500)는 검사부(100)에서 무선 신호 및 무선 전원을 사용하여 전기적 검사가 완료된 반도체 웨이퍼를 컨베이어(conveyer), 혹은 로봇 암(robot arm)과 같은 이송 수단을 통하여 다이싱부(600)로 단순히 이동하는 기능을 수행한다.
한편, 상기 본 발명에 의한 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비(1000)는 상기 다이싱부(600)를 통상적으로 사용하는 다이싱 장비의 구조와 큰 차이가 없기 때문에 본 발명에서는 광신호 및 무선 전원을 이용하여 반도체 웨이퍼를 전기적으로 검사하는 검사부(100)와 새로운 기능을 포함하는 반도체 웨이퍼를 중심으로 설명한다.
도 3은 본 발명의 바람직한 실시예에 의한 반도체 웨이퍼의 평면도이다.
도 3을 참조하면, 본 발명에 의한 광신호 송수신부 및 무선 전원 발생부를 갖는 반도체 웨이퍼(300)는, 반도체 웨이퍼와, 상기 반도체 웨이퍼에 형성되고 스크라이브 라인(304)에 의해 분리된 복수개의 반도체 칩(302)들을 포함한다. 상기 반도체 칩(302)은 메모리 소자, 로직 소자, 아날로그 소자, 전력소자 및 저항과 커패시터와 같은 개별소자가 될 수 있다. 또한 상기 반도체 웨이퍼(300)는, 실리콘 기판 혹은 화합물 반도체 기판으로, 화합물 반도체 기판인 경우, 갈륨-비소(GeAs) 반도체 기판과 같이 3-5족 화합물 반도체 기판인 것이 적합하다.
또한, 본 발명에 의한 광신호 송수신부 및 무선 전원발생부를 갖는 반도체 웨이퍼(300)는, 상기 복수개의 반도체 칩(302)들의 입출력 신호 단자와 연결되고 스크라이브 라인(304) 상에 형성된 광신호 수광부(도4의 5b)와, 상기 복수개의 반도체 칩(302)들의 입출력 신호 단자와 연결되고 스크라이브 라인(304) 상에 형성된 광신호 발광부(도4의 5a)로 이루어진 광신호 송수신부(도6의 5)를 포함한다.
그리고 본 발명에 의한 반도체 웨이퍼(300)는, 상기 반도체 웨이퍼 상에서 여분의 공간에 형성되고 복수개의 반도체 칩(302)들의 전원 단자(도6의 316)와 연결된 무선 전원 발생부(32)를 구비한다. 도면에서 참조부호 306은 플랫 존(flat zone)을 가리키며, 필요시 생략할 수도 있다. 또한 도면에서 참조부호 A는 광신호 송수신부를 설명하기 위한 부분이며, B는 무선 전원발생부를 설명하기 위한 부분으로 추후 도면을 통해 상세히 설명한다.
여기서 무선 전원발생부(32)가 형성되는 상기 여분의 공간은, 스크라이브 라인(304) 혹은 반도체 칩(302)이 형성되지 않은 웨이퍼의 나머지 공간이 될 수 있다.
도 4는 도 3의 A 영역의 확대도로서 반도체 웨이퍼에 설계된 광신호 송수신부를 설명하기 위한 평면도이다.
도 4를 참조하면, 일반적으로 반도체 칩(302)의 가장자리는 반도체 칩(302)의 전기적 기능을 외부로 확장하기 위한 본드패드(312)가 설치된다. 이러한 본드 패드(312)는 외부와의 연결을 위하여 보호막이 제거된 형태이다. 또한 반도체 칩(302)과 반도체 칩(302)의 경계에는 다이싱 공정에 사용되는 스크라이브 라인(304)이 형성되어 있다. 도면에서 참조부호 310은 반도체 칩(302)의 집적회로들이 형성되는 반도체 칩의 활성영역을 가리킨다.
이때 본 발명의 바람직한 실시예에 의한 광신호 수광부(5b) 및 광신호 발광부(5a)는 상기 스크라이브 라인(304) 영역에 각각 형성되어 있다. 상기 광신호 수광부(5b)는 포토 다이오드를 포함할 수 있으며, 배선 라인(314)에 통해 상기 반도체 칩(302)의 입출력 단자용 본드패드(312)와 연결된다. 또한 광신호 발광부(5a)는 발광 다이오드를 포함할 수 있으며, 배선 라인(314)에 의해 상기 반도체 칩(302)의 입출력 단자용 본드패드(312)와 서로 연결된다. 또한 본 발명에 의한 반도체 웨이퍼는, 상기 스크라이브 라인(304)에 추가로 설치된 복수개의 관통홀(315)을 더 포함할 수 있다. 상기 관통홀(315)은 광신호가 통과할 수 있는 공간으로 광신호 수광부(5b) 및 발광부(5a)가 함께 동작되는 점을 고려하여 2의 배수로 형성되는 것이 적합하다.
도면에서는 광신호 발광부(5a), 광신호 수광부(5b) 및 관통홀(315)의 위치를 스크라이브 라인(304)에 한정하여 설명하였다. 하지만 상기 광신호 발광부5a), 광신호 수광부(5b) 및 관통홀(315)을 포함하는 광신호 송수신부는 스크라이브 라인(302)이 아닌, 집적회로가 형성되는 활성영역(310)에서 본드패드(312)와 인접한 영역에 설치할 수도 있다.
도 5는 도 4의 광신호 송수신부의 동작원리를 설명하기 위한 블록도이다.
도 5를 참조하면, 반도체 웨이퍼(300)의 스크라이브 라인에 형성된 광신호 송수신부(5)는 제2 수광부(5b), 제2 발광부(5a), 광신호 회로부(5c) 및 광신호 제어부(5d)를 포함한다. 따라서 상기 광신호 송수신부(5)는, 반도체 웨이퍼(300)에 형성되며, 검사부(100)와 반도체 칩(302)의 본드패드(312) 사이에서 광신호를 전기신호로 변환하거나 혹은 반대로 전기신호를 광신호로 변환하여 송수신할 수 있도록 되어 있다.
상기 검사부(100)의 제1 발광부(Ha)에서 광신호를 송신하면, 반도체 웨이퍼(300) 광신호 송수신부(5)의 제2 수광부(5b)가 이를 수신하며, 수신된 광신호를 전기신호로 변환하여 반도체 칩(302)의 본드패드(312)로 보낸다. 상기 제2 수광부(5b)는, 포토 다이오드(Photo diode)일 수 있고, 수광하는 광의 파장은 적외선, 가시광선, 또는 자외선일 수 있다. 도면에서 실선은 검사부(100)에서 광신호를 수신하여 반도체 칩(302)의 본드패드(312)로 송신하는 경로를 가리킨다.
상세히 설명하면, 검사부(100)의 제1 발광부(Ha)에서 광신호를 전송하면, 반도체 웨이퍼(300)에 있는 광송수신부(5)의 제2 수광부(5b)에서 예를 들어 포토 다이오드에 의하여 전기적 신호로 변환되고, 상기 전기적 신호는 광신호 회로부(5c)로 전송된다. 광신호 회로부(5c)는 광신호 제어부(5d)에 의하여 제어되어, 수신된 상기 전기적 신호를 반도체 칩(300)의 내부에서 가용한 형태의 신호, 예를 들어 전기신호로 변환할 수 있다. 이러한 전기신호는 직류 혹은 교류 형태인 것이 적합하다.
또한, 광신호 회로부(5c)는 검사부(100)로부터 광신호로 전송되어 수신된 광신호들 중에서 실제 가용한 광신호를 필터링하는 필터(미도시)를 포함할 수 있다. 광신호 회로부(5c)는 검사부(100)와 반도체 웨이퍼(300)의 사이에서 주고받을 수 있는 광신호에 대하여 미리 정의된 광파장 대역과 프로토콜에 대한 정보를 가지고 있거나, 이러한 정보를 광신호 제어부(5d)로부터 받을 수 있다. 광신호 회로부(5c)에서 변환된 광신호들 중에 일부는 광신호 제어부(5d)에 의하여 제어되어 반도체 칩(302)의 본드패드(312)에 전송될 수 있다.
한편, 또한 도면에서 점선은 반도체 칩(302)의 본드패드(312)에서 전기신호를 수신하여 이를 광신호로 변환하여 검사부(100)로 송신하는 경로를 가리킨다.
상세히 설명하면 반도체 칩(302)의 본드패드(312)에서 전기신호를 송신하면, 반도체 웨이퍼(300)의 광신호 송수신부(5)에 있는 제2 발광부(5a)는 이를 광신호로 변환하여 검사부의 제1 수광부(Ha)로 광신호를 송신한다. 상기 제2 발광부(5a)는, 발광 다이오드(Light emitting diode, LED), 레이저 다이오드(Laser diode, LD)일 수 있고, 발광하는 광의 파장은 적외선, 가시광선, 또는 자외선일 수 있다.
제2 발광부(5a)는 예를 들어, "1"을 광신호 방사, "0"을 광신호 소거로 표현하는 점멸 방식(On-Off Keying: OOK)으로 데이터를 전송할 수 있다. 전송할 데이터가 디지털 데이터인 경우, 0 또는 1의 값을 갖는다. 상기 데이터 값이 0인 경우에는, 제2 발광부(5a)에 전류가 흐르지 않게 하고 상기 데이터 값이 1인 경우에는 제2 발광부(5a)에 전류가 흐르게 함으로써, 제2 발광부(5a)가 광신호를 온/오프 방식으로 출력할 수 있게 할 수 있다. 또는 이와 반대로 동작할 수 있다.
사익 제2 발광부(5a)는 다수의 비트를 전송하도록, 다수의 아날로그 출력을 가질 수 있으며, 이는 전류의 강도 또는 파장을 변화시켜 구현할 수 있다. 예를 들어, 4비트의 데이터를 전송하기 위해, 제2 발광부(5a)는 16개의 아날로그 값들의 전류가 제2 발광부(5a)에 흐르도록 16개의 다른 전류들을 출력할 수 있다.
또한, 제2 발광부(5a)는 다수의 구별될 수 있는 파장들을 갖는 발광원들로 구성될 수 있다. 예를 들어, 제2 발광부(5a)는 다른 파장의 광원들, 예를 들어 적외선 LED, 적색 LED, 녹색 LED 및 청색 LED들로 이루어져 하나의 광 경로를 통해 다수의 광신호들을 출력할 수 있다. 이러한 경우에는, 검사부의 제1 수광부(Hb)는 해당 파장의 광을 수신하기 위해 동일한 개수의 수광 소자들로 이루어질 수 있다. 또한, 상기 검사부 제1 수광부(Hb)는 원하는 파장의 광만을 통과시키는 광 필터가 배치될 수 있다. 상술한 특징들은, 검사부 제1 발광부(Ha) 및 검사부의 제1 발광부(Ha)에서 방출한 광을 수광하는 수광요소(5b)에도 동일하게 적용될 수 있다.
또한, 본 발명에 포함되는, 광신호를 이용한 데이터 송수신은 다른 다양한 방법으로 구현될 수 있다. 상술한 점멸 방식 외에도, n개의 이진 신호군을 2n개의 광 펄스 위치 시간으로 표현하는 펄스 위치 변조 방식(Pulse Position Modulation: PSM), n개의 이진 신호군을 2n개의 광 펄스 위치 시간 간격으로 표현하는 펄스 간격 변조 방식(Pulse Interval Modulation: PIM), PIM의 인식 펄스를 두 가지로 한 DHPIM(Dual Head PIM), 특정된 주파수의 정현파에 위상 변조(PSK), 진폭 변조(ASK) 등 일반적인 디지털 통신 방식으로 변조한 후 아날로그 광원의 세기로 재 변조하는 부반송파 변조 방식(Sub-Carrier Modulation: SCM) 등으로 광신호를 구현할 수 있다.
도 6은 도 3의 B 영역의 확대도로서 반도체 웨이퍼에 설계된 무선 전원 발생부를 설명하기 위한 평면도이다.
도 6을 참조하면, 반도체 웨이퍼에 형성된 개개의 반도체 칩(302)은 가장자리를 따라 본드패드(312)가 형성되어 있다. 상기 본드 패드는 입출력 신호 단자의 역할, 혹은 전력신호 및 접지(Ground) 신호의 역할을 수행하기도 한다.
본 발명의 바람직한 실시예에 의한 반도체 웨이퍼(300)는 여분의 공간, 예컨대 반도체 칩(302)들이 형성되지 않은 반도체 웨이퍼(300)의 나머지 공간에 설계된 무선전원 발생부(32)를 포함한다. 상기 무선전원 발생부(32)의 동작원리에 대해서는 추후 도7 및 도 8을 참조하여 상세히 설명하기로 한다.
본 발명의 바람직한 실시예에 의한 반도체 웨이퍼(300)는, 무선전원 발생부(32)에 연결된 배선 라인(318)이 하나 혹은 복수개의 반도체 칩(302)의 전원단자(316)와 연결된다. 상기 무선전원 발생부(32)에 연결된 배선 라인(318)은 주로 스크라이브 라인(304)에 배치된다. 이때, 상기 무선 전원발생부(32)의 크기를 작게 집적화할 수 있으면, 상기 무선전원 발생부(32)는 스크라이브 라인(304) 영역에 배치할 수도 있다. 한편, 도면에서는 무선전원 발생부(32)가 2개의 반도체 칩의 전원단자용 본드패드(316)와 연결되었으나, 연결되는 개수는 당업자의 설계방식으로 따라 여려 형태로 변형이 가능하다.
도 7은 반도체 웨이퍼에 설계된 무선 전원 발생부(32)의 동작원리를 설명하기 위한 블록도이고, 도 8은 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 검사부에 설치된 무선전원 송신부(34)의 동작원리를 설명하기 위한 블록도이다.
무선 전원 발생부 및 공급부는 라디오 주파수(Radio frequency, RF)파 또는 초음파를 이용하는 방사형(radiative) 방식, 자기 유도(magnetic induction)를 이용하는 유도 커플링(inductive coupling) 방식, 또는 자기장 공진을 이용하는 비방사형(non-radiative) 방식을 통해, 반도체 웨이퍼에 필요한 전원을 수신 받을 수 있고 또한 송신할 수 있다.
상기 방사형 방식은 모노폴(monopole)이나 PIFA(planar inverted-F antenna) 등의 안테나를 이용하여, 무선으로 전력 에너지를 수신 및 송신할 수 있다. 상기 방사형 방식은, 시간에 따라 변화하는 전계나 자계가 서로 영향을 주면서 방사가 일어나며, 같은 주파수의 안테나가 있을 경우 입사파의 극(polarization) 특성에 맞게 전력을 수신 및 송신할 수 있다. 상기 유도 커플링 방식은 코일을 복수회 권취하여 일측 방향으로 강한 자계를 발생시키고, 유사한 범위의 주파수 내에서 공진하는 코일을 근접시켜 커플링을 발생시킴으로써, 무선으로 전력 에너지를 수신 및 송신할 수 있다. 상기 비방사형 방식은, 근거리 전자장을 통해 같은 주파수로 공진하는 두 매체들 사이에서 전자파를 이동시키는 감쇄파 결합(evanescent wave coupling)을 이용함으로써, 무선으로 전력 에너지를 수신 및 송신할 수 있다.
도 7을 참조하면, 반도체 웨이퍼의 여분의 공간에 형성된 무선 전원 발생부(32)는 전원 수신단(32a), 전원 변환부(32b), 전원 저장/제공부(32c), 전원 검출부(32d), 및 전원 제어부(32e)를 포함할 수 있다.
전력 수신단(32a)은 외부 전원 신호를 무선으로 수신하여, 전원 변환부(32b)로 전송한다. 예를 들어, 전원 수신단(32a)이 무선으로 상기 외부 전력을 수신하는 경우에는, 전원 수신단(32a)은 안테나, 코일, 또는 공진기 등을 포함할 수 있고, 상기 외부 전력 신호는 교류 신호일 수 있다. 이 경우에, 상기 외부 전력 신호는 상술한 방사형 방식, 유도 커플링 방식, 또는 비방사형 방식에 의하여 수신될 수 있다. 필요한 경우, 전원 수신단(32a)은 상기 외부 전력 신호를 고주파 교류 전류로 변환하도록 구성될 수 있다.
전원 변환부(32b)는 전원 수신단(32a)으로부터 수신된 전력 신호, 예를 들어 교류 신호를 직류 신호로 변환할 수 있다. 구체적으로, 전원 변환부(32b)는 전압제한회로(미도시) 및 정류회로(미도시)를 포함할 수 있다. 상기 전압제한회로는 상기 교류 신호가 과도하게 공급되는 것을 방지하는 기능을 할 수 있다. 상기 정류회로는 상기 교류 신호를 직류 전류로 정류할 수 있다. 전원 수신단(32a)으로부터 직류 신호가 전달되는 경우에는, 전원 변환부(32b)는 생략되거나 또는 상기 직류 신호를 소정의 전압으로 변환시키는 기능을 할 수 있다. 이어서, 전원 변환부(32b)에 의해 변환된 상기 직류 신호는 전원 저장/제공부(32c)로 전달될 수 있다.
전원 저장/제공부(32c)는 커패시터와 같은 전력 저장 소자를 포함할 수 있고, 전원 변환부(32b)로 전송된 상기 직류 신호를 저장할 수 있다. 전원 저장/제공부(32c)는 선택적인 구성 요소로서 생략될 수 있고, 이러한 경우에는 전원 변환부(32b)로부터 직접적으로 다른 소자들에 전력을 제공할 수 있다.
전원 검출부(32d)는 전원 변환부(32d)로부터 전원 저장/제공부(32c)로 공급되는 전력 값, 예를 들어 전압 값 및 전류값을 지속적으로 측정하고, 상기 전압 값 및 상기 전류 값에 관한 정보를 전원 제어부(32e)에 전달한다. 예를 들어, 전원 검출부(32d)는 상기 전압 값 및 상기 전류값을 직접 측정할 수 있는 저항소자를 포함하는 회로일 수 있다.
전원 제어부(32e)는 전원 수신부(32)의 전반적인 동작을 제어할 수 있다. 전원 제어부(32e)는 전원 변환부(32b)에 의해 전달된 상기 직류 전류에 의해 동작될 수 있다. 전원 제어부(32e)는 전원 검출부(32d)로부터 전송된 상기 전압 값 및 전류값을 수신하여, 이에 따라 전원 변환부(32b)의 구동을 제어할 수 있다. 예를 들어, 전원 제어부(32e)는, 전원 검출부(32d)에서 측정되어 전송된 상기 전압 값 및 상기 전류값을 소정의 기준 전압 값 및 기준 전류 값과 비교함으로써, 전원 변환부(32b)와 전원 저장/제공부(32c)의 과전압 또는 과전류가 발생하지 않도록 전원 변환부의 구동을 제어할 수 있다.
도 8을 참조하면, 검사부에 설치되는 무선전력 공급부(34)는, 전력 변환부(34a), 고주파 전력 구동부(34b), 전력 송신단(34c), 전력 검출부(34d), 및 전력 제어부(34e)를 포함할 수 있다.
전력 변환부(34a)는 유선으로 전달된 교류 전력 신호를 수신할 수 있다. 이에 따라, 전력 변환부(34a)는 수신한 교류 전력을 직류 전류로 변환하거나, 수신한 직류 전력을 원하는 직류 전압 또는 전류로 변환할 수 있다. 이어서, 전력 변환부(34a)는 고주파 전력 구동부(34b) 및 전력 제어부(34e)에 동작 전원을 제공할 수 있다. 상술한 전원 변환부(32b)와 유사하게, 전력 변환부(34a)는 전압제한회로(미도시) 및 정류회로(미도시)를 포함할 수 있다. 또한, 전력 변환부(34a)는 선택적이며 경우에 따라서는 생략될 수 있다.
상기 고주파 전력 구동부(34b)는 수신한 동작 전원에 따라 구동되어, 교류 전력, 예를 들어 고주파 전력을 발생할 수 있다. 예를 들어, 고주파 전력 구동부(34b)는 고속의 스위칭 동작을 통해 상기 고주파 교류 전류를 생성하는 SMPS(switching mode power supply)를 포함할 수 있다. 이어서, 고주파 전력 구동부(34b)에서 생성된 고주파 전력은 전력 송신단(34c)을 통하여 무선으로 외부로 제공될 수 있다.
상기 전력 검출부(34d)는 고주파 전력 구동부(34b)로부터 전력 송신단(34c)으로 공급되는 전력 값, 예를 들어 전압 값 및 전류값을 지속적으로 측정하고, 상기 전압 값 및 상기 전류 값에 관한 정보를 전력 제어부(34e)에 전달한다. 예를 들어, 전력 검출부(34d)는 상기 전압 값 및 상기 전류값을 직접 측정할 수 있는 저항소자를 포함하는 회로일 수 있다.
상기 전력 제어부(34e)는 무선전원 공급부(34)의 전반적인 동작을 제어할 수 있다. 전력 제어부(34e)는 전력 변환부(34a)에 의해 전달된 상기 직류 전류에 의해 동작될 수 있다. 상술한 전원 제어부(32e)와 유사하게, 전력 제어부(34e)는 전력 검출부(34d)로부터 전송된 상기 전압 값 및 전류값을 수신하여, 이에 따라 전력 변환부(34a)의 구동을 제어할 수 있다. 또한, 전력 제어부(34e)는 고주파 전력 구동부(34b)를 제어하여, 생성되는 고주파 전력의 펄스의 폭(width), 진폭(amplitude), 주파수(frequency), 및 펄스의 개수(number) 등을 변조할 수 있다. 위와 같은 펄스 폭 변조(PWM, pulse width modulation), 펄스 진폭 변조(PAM, pulse amplitude modulation), 펄스 주파수 변조(PFM, pulse frequency modulation), 펄스 개수 변조(PNM, pulse number modulation) 등을 통해, 전력 제어부는 고주파 교류전류의 전력을 조절할 수 있다.
전력 송신단(34c)은 고주파 전력 구동부(34b)로부터 고주파 교류 전류를 인가받고, 외부 소자 등에 전력을 무선으로 전달하도록 구성될 수 있다. 상기 무선 전력 전달 방식이 상술한 방사형 방식의 경우에는, 라디오 주파수를 이용하며, 또는 초음파를 이용하는 경우에는, 전력 송신단(34c)은 모노폴(monopole)이나 PIFA(planar inverted-F antenna) 등의 안테나를 포함할 수 있다. 상기 안테나는 고주파 전류에 따라 전자기파를 발생시키고, 상기 발생한 전력을 수신 받을 외부 소자 등의 수신 안테나는 상기 전자기파를 수신함으로써, 상기 전자기파로부터 고주파 전력을 발생시킬 수 있다.
상기 무선 전력 전달 방식이 상술한 유도 커플링 방식의 경우에는, 즉, 무선 전원공급부(34)가 자기 유도를 이용하는 경우에는, 전력 송신단(34c)은 코일을 포함할 수 있다. 전자기 유도 원리에 따라, 전력 송신단(34c)에 고주파 전류가 인가되면 상기 코일은 자기장을 발생시키고, 상기 발생한 전력을 수신 받을 외부 소자 등의 수신 코일은 상기 자기장으로부터 고주파 전류를 발생시킨다.
상기 무선 전력 전달 방식이 상술한 비방사형 방식의 경우에는, 즉, 무선 전원 공급부(34)가 자기장 공진을 이용하는 경우에는, 전력 송신단(34c)은 감쇄파(evanescent wave)를 발생시키는 공진기(resonator)를 포함할 수 있다. 상기 감쇄파는 근거리에서 강판 필드를 만들어내고 거리가 멀어질수록 지수 함수적으로 세기가 감소한다. 전력 송신단(34c)의 상기 공진기는 상기 발생한 전력을 수신 받을 외부 소자 등의 수신 공진기와 같은 주파수로 공진할 수 있고, 이 경우 두 공진기들 사이에 일종의 에너지 터널인 근거리 전자장이 형성될 수 있다. 전력 송신단(34c)에 고주파 전류가 인가되면 상기 공진기는 감쇄파를 발생시키고, 상기 감쇄파는 상기 근거리 전자장을 통해 전력을 무선으로 전달할 수 있다.
도 9는 본 발명의 바람직한 실시예에 의한 반도체 웨이퍼가 로딩부로 투입되는 형태를 설명하기 위한 평면도이다.
도 9를 참조하면, 반도체 웨이퍼(300)는 확장 테이프(expanding tape, 810)가 부착된 마운팅 링(mounting ring, 800)에 탑재되어 본 발명에 의한 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비로 투입된다. 따라서 마운팅 링(800)에 탑재된 상태로 검사부에서 전기적 검사가 수행되고, 다이싱부에서 반도체 웨이퍼로부터 단위 반도체 칩을 분리하는 다이싱 공정을 진행하게 된다.
하지만, 이러한 실시예는, 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비로 투입될 때는 마운팅 링에 부착되지 않은 반도체 웨이퍼 상태로 투입될 수 있다. 그 후, 전기적 검사를 검사부에서 진행한 후, 이송부에서 반도체 웨이퍼를 확장 테이프(810)가 부착된 마운팅 링(800)에 부착하고, 다이싱부로 이송하여 다이싱을 진행하는 형태로 변형이 가능하다. 도면에서 참조부호 306은 플랫 존(flat zone)을 가리키며, 반도체 웨이퍼의 구경(diameter)이 큰 경우에는 형성되지 않을 수도 있다.
도 10은 본 발명의 바람직한 실시예에 의한 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 운용방법을 설명하기 위한 플로 차트(flow-chart)이다.
도 10을 참조하면, 먼저 본 발명의 바람직한 실시예에 따른 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 로딩부로 상기 도 3에 도시된 반도체 웨이퍼를 투입(S100)한다. 이때, 상기 반도체 웨이퍼는 도 9에 도시된 바와 같이 확장 테이프가 붙여진 마운팅 링에 탑재되어 투입될 수 있다.
계속해서 상기 반도체 웨이퍼는 6 내지 도 8에서 설명된 바와 같이 검사부에서 무선 전원을 수신 받아 반도체 웨이퍼에 있는 개별 반도체 칩으로 구동 전원을 인가(S110)한다. 그리고 다시 상기 검사부에서 상기 반도체 웨이퍼로 광신호를 송신하고, 상기 반도체 웨이퍼는 상술한 도 4 및 도 5에서 설명된 방식으로 내부에 형성된 개별 반도체 칩에 입력 신호를 인가(S120)한다. 이에 따라, 피검사 반도체 칩에 구동 전원이 무선으로 인가되고, 입력 신호가 광신호를 통해 인가됨에 따라, 반도체 칩을 정상적인 동작 상태(S130)가 된다. 그리고, 각각의 반도체 칩의 고유 기능에 따라 적합한 출력 신호를 입출력 단자로 내보낸다. 이때, 상기 반도체 웨이퍼에 설치된 광신호 발광부(도5의 5a)는 전기적 신호를 광신호로 변환하여 출력 신호를 외부로 내보낸다.
그 후, 검사부에서 반도체 웨이퍼의 광신호를 검출하여 이를 다시 전기적 신호로 변환(S140)한다. 계속해서 검사부에서 상기 변환된 전기 신호를 정상 출력 신호와 비교하여 피검사 반도체 칩에 대한 합격/불합격을 판정(S150)하여 반도체 웨이퍼에 대한 전기적 검사를 완료한다. 전기적 검사가 완료된 반도체 웨이퍼는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 내부의 다이싱부로 이송(S160)된다.
이어서, 상기 다이싱부에서 일반적으로 반도체 웨이퍼의 정렬(align)에 사용되는 이미지 인식 시스템인 비전 시스템 대신, 광신호를 이용하여 상기 반도체 웨이퍼에 대한 정렬을 수행한다. 그 후, 통상적인 다이싱 방식에 따라 상기 반도체 웨이퍼를 소우 블레이드(saw blade)로 절단하여 개별 반도체 칩을 분리(S170)시킨다. 마지막으로 다이싱 공정이 완료된 반도체 웨이퍼를 상기 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 내부에 설치된 언로딩부로 이송(S180)한다. 상기 언로딩부를 통해 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비에서 처리가 완료된 반도체 칩들은, 통상적인 방법에 따라 반도체 칩을 인쇄회로기판 혹은 리드프레임에 탑재하는 다이 접착 공정, 반도체 칩과 인쇄회로기판 혹은 리드프레임을 서로 연결하는 와이어 본딩 공정 등을 수행하게 된다.
도 11은 검사부의 테스터를 이용하여 반도체 웨이퍼에 포함된 단위 반도체 칩을 전기적으로 검사하는 것을 설명하기 위한 블록도이다.
도 11을 참조하면, 상기 도 10의 플로 차트에서 설명된 광신호 송수신 및 무선전원 송수신을 통해 검사부에서 반도체 칩에 대한 전기적 검사가 실행되는 과정을 다시 한번 설명한다. 이때, 검사부(100)는 기존의 프로브 카드의 탐침을 통한 접촉식 테스터가 아니라, 광신호를 전기적 신호로 변환하고 또 반대로 전기적 신호를 광신호로 변환할 수 있는 기능이 있는 것이 적합하다. 또한 검사부(100)는, 무선 전원을 상술한 도 5내지 도 7과 같이 반도체 칩에 인가할 수 있는 기능이 있는 것이 적합하다. 이와 함께 반도체 웨이퍼(300) 역시 광신호 송수신 기능을 수행하는 구조가 내부에 설계된 것이 적합하며, 동시에 무선으로 전원을 수신하여 각각의 반도체 칩으로 전원을 인가할 수 있는 무선전원 발생부(32)가 설치된 것이 적합하다.
상세히 설명하면, 검사부(100)에서 무선전원 공급부, 예컨대 무선 전원 송신부(34)에서 반도체 웨이퍼(300)에 있는 무선전원 발생부(32)로 무선으로 전원을 송신한다. 이때 반도체 웨이퍼(300)에서는 내부 금속 배선(318)을 통해 유선으로 전원을 각 반도체 칩(302)의 전원단자용 본드패드(316)로 인가한다(도면의 화살표 ①).
이어서 검사부(100)에서 전기적 신호를 광신호로 변환하여 제1 발광부(Ha)를 통해 반도체 웨이퍼(300)에 있는 제2 수광부(5b)로 광을 조사(도면의 화살표 ②)한다. 이에 따라 반도체 웨이퍼(300)에서는 광신호를 전기적 신호로 변환하여 반도체 칩(302)에 있는 본드패드(312)로 입력신호를 전달한다. 이때, 반도체 웨이퍼(300)에 형성된 개별 반도체 칩(302)들은 전원이 인가되고 입력신호가 인가됨에 따라 그 고유 기능에 따라 적절한 출력신호를 출력신호 단자용 본드패드(312)를 통해 내보낸다. 이때 출력신호 단자용 본드패드(312)는 전기적 신호를 광신호로 변환하여 제2 발광부에서 광신호의 형태로 외부로 출력한다. 계속해서 검사부(100)는 내부에 설치된 제1 수광부(Hb)를 통해 반도체 웨이퍼(300)의 제2 발광부(5a)에서 광신호를 수신(도면의 화살표 ③)한다.
이어서 검사부(100)는 상기 수신된 광신호를 전기적 신호로 변환하여 정상적인 기댓값과 서로 비교하여 피검사소자(DUT: Device Under Test)에 대한 기능의 합격/불합격 여부를 판정한다.
도 12는 하나 이상의 반도체 웨이퍼를 적층하여 검사부를 통해 검사하는 방식을 설명하기 위한 단면도이다.
도 12를 참조하면, 종래 기술에서는 하나의 반도체 웨이퍼에 대해서만 전기적 검사가 가능하였다. 하지만 검사부(도 11의 100)에서 송신하는 무선 전원이 적층된 반도체 웨이퍼로 동시에 전원을 공급하면, 도 4에서 설명된 관통홀(도3의 315)을 이용하여 복수개의 반도체 웨이퍼(300A, 300B)를 동시에 검사하는 것이 가능하다. 도면에서 반도체 웨이퍼(300A, 300B)는, 내부에 형성된 반도체 칩들의 입출력 신호 단자와 연결된 적어도 하나 이상의 광신호 수광부 및 발광부를 갖고, 상기 반도체 칩들의 전원단자와 연결된 무선 전원 발생부를 포함하는 것이 적합하다.
이를 상세히 설명하면, 도면과 같이 광신호 송수신부, 무선 전원발생부 및 관통홀을 갖는 반도체 웨이퍼(300A, 300B)를 준비한다. 상기 반도체 웨이퍼(300A, 300B)를 하나 이상 적층한다. 이때 상부 반도체 웨이퍼(300A)는 내부에 관통홀을 포함하는 것이 적합하다.
계속해서 검사부에서 상기 반도체 웨이퍼(300A, 300B)의 무선 전원발생부로 전원을 공급하여 상기 반도체 웨이퍼(300A, 300B)의 정해진 반도체 칩에 전원을 공급한다. 그리고, 상기 검사부(tester)에서 상기 상부 반도체 웨이퍼(300A)의 광신호 수광부(5b)로 광을 조사(도면의 화살표 ①)하여 상기 상부 반도체 웨이퍼의 정해진 반도체 칩에 광 입력 신호를 공급한다. 계속해서 상기 테스터(tester)에서 상기 상부 반도체 웨이퍼(300A)의 관통홀(305)을 통해 상기 하부 반도체 웨이퍼(300B)의 광신호 수광부(5b')로 광을 조사(도면의 화살표 ②)하여 상기 하부 반도체 웨이퍼의 정해진 반도체 칩에 광 입력 신호를 공급한다. 그 후, 상기 테스터에서 상기 상부 반도체 웨이퍼(300A)의 광신호 발광부(5a)에 나타나는 광의 세기를 감지(도면의 화살표 ③)하여 전기신호로 변환하고, 상기 상부 반도체 웨이퍼(300A)의 관통홀(305)을 통해 상기 하부 반도체 웨이퍼(300B)의 광신호 발광부(5a')에 나타나는 광의 세기를 감지(도면의 화살표 ④)하여 전기신호로 변환한다.
마지막으로 상기 변환된 전기신호를 테스터 내부에 저장된 기댓값(expected data)과 비교하여 상기 반도체 칩의 기능에 대한 합격/불합격을 판정한다. 따라서 반도체 웨이퍼(300A)에 형성된 관통홀(305)을 통하여 2개 이상의 반도체 웨이퍼(300A, 300B)를 동시에 검사하는 것이 가능하기 때문에 검사공정의 효율을 획기적으로 높일 수 있다.
따라서 상술한 본 발명에 의하면, 첫째, 자동 검사 장비인 테스터와 다이싱 장비를 하나로 묶어 인라인 장비 방식으로 운용함으로써 반도체 패키징 공정의 생산성을 높일 수 있다. 둘째, 프로브 카드를 사용하지 않고 반도체 칩들에 대한 전기적 검사를 수행할 수 있다. 셋째, 관통홀을 이용하여 복수개의 반도체 웨이퍼를 동시에 전기적으로 검사할 수 있다. 넷째, 웨이퍼 표면에 프로브 카드에 사용된 탐침의 물리적인 충격을 가하지 않기 때문에 반도체 칩의 본드 패드에 대한 신뢰성을 높일 수 있다.
본 발명은 상기한 실시예에 한정되지 않으며, 본 발명이 속한 기술적 사상 내에서 당 분야의 통상의 지식을 가진 자에 의해 많은 변형이 가능함이 명백하다.
본 발명은, 화합물 및 실리콘을 사용한 반도체 웨이퍼의 제조 공정 및 검사 공정에 적용이 가능하다.
5: 광신호 송수신부, 32: 무선전원 공급부,
100: 테스터(ATE), 300: 반도체 웨이퍼,
302: 반도체 칩, 304: 스크라이브 라인,
306: 플랫 존, 310: 회로 활성영역,
312: 입출력 단자용 본드패드, 314: 배선 라인,
316: 전원단자용 본드패드, 318: 배선 라인,
400: 로딩부, 500: 이송부,
600: 다이싱부, 700: 언로딩부,
800: 마운팅 링, 810: 확장 테이프,

Claims (12)

  1. 반도체 웨이퍼가 투입되는 로딩부;
    상기 반도체 웨이퍼에 대한 전기적 검사를 광신호 및 무선 전원을 통하여 수행하는 검사부;
    상기 검사가 완료된 반도체 웨이퍼에서 개별 반도체 칩을 분리하는 다이싱부;
    상기 검사부에서 다이싱부로 상기 반도체 웨이퍼를 이동하는 이송부; 및
    상기 다이싱이 완료된 반도체 웨이퍼를 장비 밖으로 내보내는 언로딩부를 구비하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
  2. 제1항에 있어서,
    상기 반도체 웨이퍼는,
    내부에 광신호 송수신부 및 무선전원 발생부를 포함하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
  3. 제1항에 있어서,
    상기 검사부는,
    광신호를 발생시켜 상기 반도체 웨이퍼로 송신하고, 다시 광신호를 수신할 수 있는 무선 신호 송수신부; 및
    무선 전원을 발생시켜 상기 반도체 웨이퍼의 무선전원 발생부로 전원을 공급하는 무선전원 송신부를 구비하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
  4. 제3항에 있어서,
    상기 검사부 및 반도체 웨이퍼의 광신호 송수신부는,
    포토 다이오드를 포함하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
  5. 제3항에 있어서,
    상기 검사부 및 반도체 웨이퍼의 광신호 송수신부는,
    발광 다이오드를 포함하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
  6. 제1항에 있어서,
    상기 반도체 웨이퍼의 광신호 송수신부 및 무선 전원 발생부는,
    반도체 칩이 형성되지 않는 여분의 공간에 형성되는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
  7. 제6항에 있어서,
    상기 여분의 공간은,
    반도체 칩들을 구분하는 스크라이브 라인 및 반도체 칩들이 형성되지 않는 공간인 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
  8. 제2항에 있어서,
    상기 광신호 송수신부는,
    반도체 칩이 형성되지 않는 여분의 영역 및 반도체 칩의 집적회로가 형성되는 활성영역 중에 어느 하나의 영역에 형성되는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
  9. 제2항에 있어서,
    상기 광신호 송신부는,
    내부에 광을 통과시킬 수 있는 관통홀을 더 포함하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
  10. 광신호 송수신부 및 무선 전원 발생부를 갖는 반도체 웨이퍼를 로딩부로 투입하는 단계;
    검사부에서 상기 반도체 웨이퍼로 무선 전원을 송신하여 반도체 칩에 전원을 인가하는 단계;
    검사부에서 상기 반도체 웨이퍼의 광신호 송수신부로 입력 신호를 송신하여 반도체 칩에 입력신호를 인가하는 단계;
    검사부에서 상기 반도체 웨이퍼의 광신호를 검출하는 단계;
    검출된 광신호를 전기신호로 변환하여 정상 출력 신호와 비교하여 합격/불합격을 판정하는 단계;
    반도체 웨이퍼에 대한 다이싱을 동일 장비에서 진행하는 단계; 및
    다이싱이 완료된 반도체 웨이퍼를 언로딩부로 이송하는 단계를 구비하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 운용방법.
  11. 제10항에 있어서,
    상기 검사부는,
    상기 반도체 웨이퍼에 대한 전기적 검사를 무접점식으로 진행하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비의 운용방법.
  12. 제10항에 있어서,
    상기 검사부는,
    하나 이상의 반도체 웨이퍼를 적층하여 동시에 검사하는 것을 특징으로 하는 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비.
KR1020100055093A 2010-06-10 2010-06-10 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법. KR101450073B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100055093A KR101450073B1 (ko) 2010-06-10 2010-06-10 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100055093A KR101450073B1 (ko) 2010-06-10 2010-06-10 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법.

Publications (2)

Publication Number Publication Date
KR20110135281A true KR20110135281A (ko) 2011-12-16
KR101450073B1 KR101450073B1 (ko) 2014-10-15

Family

ID=45502289

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100055093A KR101450073B1 (ko) 2010-06-10 2010-06-10 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법.

Country Status (1)

Country Link
KR (1) KR101450073B1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230116135A (ko) 2022-01-27 2023-08-04 주식회사 에스에프이 인라인 방식 제품 테스트 및 패키징 장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100689696B1 (ko) * 2000-11-15 2007-03-08 삼성전자주식회사 반도체장치 제조시스템 및 그 운영방법
JP2006024087A (ja) * 2004-07-09 2006-01-26 Nec Corp 無線デバイス、その製造方法、その検査方法及び検査装置並びに無線装置及びその製造方法
KR101388674B1 (ko) * 2007-09-07 2014-04-25 삼성전자주식회사 고속 원 샷 웨이퍼 테스트를 위한 무선 인터페이스 프로브카드 및 이를 구비한 반도체 테스트 장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230116135A (ko) 2022-01-27 2023-08-04 주식회사 에스에프이 인라인 방식 제품 테스트 및 패키징 장치

Also Published As

Publication number Publication date
KR101450073B1 (ko) 2014-10-15

Similar Documents

Publication Publication Date Title
US10115783B2 (en) Semiconductor device, method of manufacturing the same, and signal transmitting/receiving method using the semiconductor device
CN101499472B (zh) 半导体器件、其制造方法、使用该半导体器件的信号传送/接收方法以及测试器装置
US9123571B2 (en) Semiconductor device
US6184696B1 (en) Use of converging beams for transmitting electromagnetic energy to power devices for die testing
KR101450073B1 (ko) 광을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법.
KR101461091B1 (ko) 무선 전력과 무선 광신호를 이용하는 솔더 볼 부착 장치
CN111132459B (zh) 发光二极管芯片的固接方法及固接装置
KR101392762B1 (ko) 광 신호 송수신부 및 무선 전원 발생부를 갖는 반도체 웨이퍼 및 그의 전기적 검사방법
KR101461090B1 (ko) 광 검사 기능을 가지는 비아 홀 가공용 레이저 장치 및 그 가공 방법
KR101423133B1 (ko) 무선 신호 전달 및 무선 전원 구동 기능을 갖는 반도체 패키지
KR101450072B1 (ko) 무선 전력과 무선 광신호를 이용하는 스크린 프린팅 장치
US20080094082A1 (en) Die Infrared Transceiver Bus
CN111668132A (zh) 应用于固接led的激光加热装置
KR101461092B1 (ko) 무선 전력과 무선 주파수 신호를 이용하는 솔더 볼 부착 장치
KR101492244B1 (ko) 광 신호 전달 및/또는 무선 전원 구동 기능을 갖는 웨이퍼 이면 연마 장치
KR101384341B1 (ko) 무선 전력과 무선 주파수 신호를 이용하는 스크린 프린팅 장치
KR20110135154A (ko) 무선 전원 구동 기능을 갖는 발광 다이오드 웨이퍼 및 이의 테스트 방법
KR101448444B1 (ko) 무선 신호 검사 기능을 가지는 비아 홀 가공용 레이저 장치 및 그 가공 방법
KR101407478B1 (ko) 무선 신호 전달 및/또는 무선 전원 구동 기능을 갖는 웨이퍼 이면 연마 장치
KR20110135282A (ko) 무선을 이용하는 자동검사장비와 다이싱 장비를 포함하는 인라인 장비 및 그 운용방법.
KR101407479B1 (ko) 광신호를 이용하는 싱글레이션 장비 및 싱글레이션 방법
KR20110135108A (ko) 무선 신호 송수신부 및 무선 전원 발생부를 갖는 반도체 웨이퍼 및 그의 전기적 검사방법
KR101416101B1 (ko) 주파수 신호를 이용하는 싱글레이션 장비 및 싱글레이션 방법
EP1196789B1 (en) Use of converging beams for transmitting electromagnetic energy to power devices for die testing

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190930

Year of fee payment: 6