KR20110097837A - 정체된 용융 재료를 이동화하는 방법 및 장치 - Google Patents

정체된 용융 재료를 이동화하는 방법 및 장치 Download PDF

Info

Publication number
KR20110097837A
KR20110097837A KR1020117013648A KR20117013648A KR20110097837A KR 20110097837 A KR20110097837 A KR 20110097837A KR 1020117013648 A KR1020117013648 A KR 1020117013648A KR 20117013648 A KR20117013648 A KR 20117013648A KR 20110097837 A KR20110097837 A KR 20110097837A
Authority
KR
South Korea
Prior art keywords
molten material
outlet end
inlet end
conveying pipe
pipe
Prior art date
Application number
KR1020117013648A
Other languages
English (en)
Other versions
KR101655491B1 (ko
Inventor
다비드 엠 라인만
로버트 알 토마스
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20110097837A publication Critical patent/KR20110097837A/ko
Application granted granted Critical
Publication of KR101655491B1 publication Critical patent/KR101655491B1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/092Stirring devices; Homogenisation
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/094Means for heating, cooling or insulation
    • C03B7/096Means for heating, cooling or insulation for heating
    • C03B7/098Means for heating, cooling or insulation for heating electric
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/14Transferring molten glass or gobs to glass blowing or pressing machines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Resistance Heating (AREA)

Abstract

출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법이 제공된다. 이와 같은 용융 재료를 이송시키는 방법은 이송 파이프의 출구 단부와 수용 용기의 입구 단부 사이에 갭이 있고, 상기 용융 재료가 상기 수용 용기의 상기 입구 단부를 넘쳐 흐르지 않으면서 상기 이송 파이프의 상기 출구 단부를 빠져나오고 상기 수용 용기의 상기 입구 단부를 들어가는 방식으로, 상기 이송 파이프와 상기 수용 용기를 배치시키는 단계를 포함한다. 용융 재료가 이송 파이프로 이송되고, 상기 이송 파이프로부터 수용 용기로 유동가능하게 된다. 갭에 있는 용융 재료가 그 유동이 용이하도록 가열된다.

Description

정체된 용융 재료를 이동화하는 방법 및 장치{MOBILIZING STAGNANT MOLTEN MATERIAL}
본 발명은 일반적으로 재료 시트 성형 방법 및 그 장치에 관한 것이다. 보다 상세하게는, 본 발명은 용융 재료를 시트 성형 기기로 이송하는 방법 및 그 장치에 관한 것이다.
유리 제조 분야에 있어서, 용융 유리가 최종적으로 요구되는 물품으로 성형되고 보다 낮은 온도로 냉각되기 전에, 상기 용융 유리가 하나의 용기(파이프)로부터 다른 하나의 용기로 종종 이송된다. 용융 유리의 물질 이동(mass transfer)은 온도의 변화와 상기 용융 유리의 혼합 프로파일을 야기하므로, 매우 바람직하지 못할 수 있다. 이러한 하나의 혼합 변화는 유리에 있는 공기 거품과, 고체 함유물과 같은 함유물의 트랩핑(trapping)이며, 이로써 최종 유리 제품의 생산량이 낮아질 수 있다. 고-품질의 유리 물품의 제조를 위하여, 특히 LCD 디스플레이의 유리 기판과 같은 광학 유리 소자를 제조하기 위하여, 유리 벌크(bulk)가 가능한 낮은 레벨의 함유물을 갖는 것이 매우 바람직하다.
용융 공정이 용융 재료로부터 재료 시트를 만드는데 사용된다. 일반적인 용융 공정이 Dockerty에 허여된 미국특허문헌 제3,338,696호 및 제3,682,609호에 개시되어 있다. 일반적으로 말하자면, 용융 공정은 용융 재료를 트로프(trough)로 이송하는 단계와 제어된 방식으로 상기 용융 재료를 상기 트로프의 양면 아래로 오버플로하는 단계를 포함한다. 상기 트로프의 면 아래로 유동하는 재료의 별도의 스트림이 재료 시트로 인발되는 단일 스트림의 재료로 상기 트로프의 루트에서 합쳐진다. 이러한 공정의 중요 장점은 재료 시트의 표면이 트로프의 면이나 또는 여러 성형 설비와 접촉하지 않으며, 이에 따라 새것 같다는 점이다. 이러한 공정의 다른 한 장점은 재료 시트가 매우 평평하고 일정한 두께를 갖는다는 점이다.
용융 공정은 디스플레이에 사용하기 위한 얇은 유리 시트를 만드는데 바람직한 방법이다. 그러나, 디스플레이에 사용하기 위한 유리 시트는 매우 평탄하고, 일정한 두께를 갖는 초기 표면의 한계를 넘어서는 엄격한 조건을 만족할 필요가 있다.
유리 시트에서의 가스 및/또는 고체의 함유물과 같은 결함은 전형적으로 바람직하지 않다.
따라서, 본 발명의 제 1 특징에 따라, 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법이 제공된다. 이러한 용융 재료를 이송시키는 방법은 (A) 상기 이송 파이프의 출구 단부와 상기 수용 용기의 입구 단부 사이에 갭이 있고, 상기 용융 재료가 상기 수용 용기의 상기 입구 단부를 넘쳐흐르지 않으면서 상기 이송 파이프의 상기 출구 단부를 빠져나오고 상기 수용 용기의 상기 입구 단부에 들어가는 방식으로, 상기 이송 파이프와 상기 수용 용기를 배치시키는 단계; (B) 상기 용융 재료를 상기 이송 파이프로 이송하는 단계와 상기 용융 재료가 상기 이송 파이프로부터 상기 수용 용기로 유동할 수 있게 하는 단계; 및 (C) 상기 용융 재료의 유동을 용이하게 하기 위하여 상기 갭에 있는 상기 용융 재료를 가열하는 단계를 포함한다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 용융 재료는 용융 유리를 포함한다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 이송 파이프는 다운커머 파이프이고, 수용 용기는 용융 인발 공정에서의 아이소파이프의 입구 파이프이다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 아이소파이프의 입구 파이프와 다운커머 파이프 모두는 원형이고 반드시 동심이어야 한다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 단계 (A)에 있어서, 이송 파이프의 출구 단부는 용융 재료에 침지된다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 단계 (A)에 있어서, 이송 파이프의 출구 단부는 용융 재료에 침지되지 않는다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 단계 (C)는 갭에 있는 용융 재료의 온도를 대략 20℃ 이상으로 상승시키는 단계를 포함한다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 용융 재료가 전기 전도되고, 그리고 단계 (C)는 전류를 갭에 있는 용융 재료에 통과시키는 단계를 포함한다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 용융 재료를 통과하는 전류는 상기 용융 재료의 전기분해를 반드시 야기시키지 않는다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 전류는 교류이다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 이송 파이프의 출구 단부와 수용 용기의 입구 단부는 전기 전도성을 갖고, 단계 (C)는 전기 전압을 상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이에서 가하는 단계를 포함한다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 이송 파이프의 출구 단부와 수용 용기의 입구 단부 사이에 가해진 전압은 교류 전압이다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 이송 파이프의 출구 단부와 수용 용기의 입구 단부는 반드시 동심이어야 한다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 이송 파이프의 출구 단부와 수용 용기의 입구 단부 사이의 갭은 반드시 환형이어야 한다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 이송 파이프의 출구 단부와 수용 용기의 입구 단부 모두는 플래티늄으로 이루어지거나 또는 플래티늄 합금으로 이루어진다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 단계 (C)는 단계 (B) 동안에 일정하게 실행된다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 단계 (C)는 단계 (B) 동안에 단속적으로 실행된다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 단계 (C)는 용융 재료가 이송 파이프의 출구 단부와 수용 용기의 입구 단부 사이의 갭을 채우기 시작한 직후에 바로 실행된다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 단계 (C)는, 갭에 있는 용융 재료에 트랩된 함유물의 레벨이 이송 파이프의 출구 단부를 바로 빠져나오는 용융 유리에 트랩된 함유물의 레벨과 반드시 동일하도록, 충분한 시간 간격 동안에 실행된다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 단계 (C)는 용융 재료가 이송 파이프의 출구 단부를 침지시킨 이후에 실행된다.
본 발명의 제 2 특징에 따르면, 용융 재료를 이송시키는 장치가 제공된다. 상기 용융 재료를 이송시키는 장치는 (i) 출구 단부를 구비한 이송 파이프; (ⅱ) 상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이에 갭이 있도록, 상기 이송 파이프의 출구 단부를 빠져나오는 상기 용융 재료를 수용할 수 있고 상기 이송 파이프에 대해 배치될 수 있는 입구 단부를 구비한 수용 용기; 및 (ⅲ) 상기 용융 재료가 상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이의 갭을 채운다면, 상기 갭에 있는 상기 용융 재료를 상이하게 가열할 수 있는 장치를 포함한다.
본 발명의 제 2 특징의 특정 실시예에 있어서, 이송 파이프의 출구 단부와 수용 용기의 입구 단부는 전기 전도성 재료로 이루어진다.
본 발명의 제 2 특징의 특정 실시예에 있어서, 상기 용융 재료를 상이하게 가열할 수 있는 장치는 이송 파이프의 출구 단부와 수용 용기의 입구 단부 사이의 갭을 채우는 용융 재료에 AC 전압을 가하도록 적용된 AC 파워 서플라이를 포함한다.
본 발명의 제 1 특징의 특정 실시예에 있어서, 이송 파이프의 출구 단부는 수용 용기의 입구 단부로 뻗어있다.
본 발명의 하나 이상의 실시예는 아래 기재된 바와 같은 하나 이상의 장점을 갖는다. 먼저, 용융 재료를 이송 파이프와 수용 용기 사이의 정체 영역에서 가열시킴으로써, 상기 정체 영역에서의 상기 용융 재료의 점도가 낮아진다. 이 결과, 정체 영역에 있는 용융 재료는 이동될 수 있고 이송 파이프에 의해 보다 용이하게 수용 용기로 분사되는 용융 재료에 의해 흘러나올 수 있다. 이는 결함이 있는 재료 시트가 이러한 정체 영역에서의 결함에 의해 만들어지는 주기가 보다 짧아지게 한다. 둘째로, 용융 재료에 전류를 통과시킴으로써, 상기 용융 재료는 제어되는 방식으로 실질적으로 균일하게 가열될 수 있다. 셋째로, 결함이 정체 영역에서 발견된 이후에 가열을 촉진시키고, 이어서 결함이 있는 유리를 빠르게 흘러 나오게 하도록 가열될 수 있다.
본 발명의 여러 특징과 장점은 아래 기재된 상세한 설명과 첨부된 청구범위로부터 명확하게 파악될 수 있을 것이다.
아래 첨부된 도면은 본 발명의 전형적인 실시예를 나타내기 위한 것으로서 본 발명을 한정하기 위한 것이 아님을 알 수 있을 것이며, 본 발명의 범주 내에 본 발명에 대한 여러 실시예가 있을 수 있다. 도면은 축적이 맞춰지지 않았으며, 도면에서의 여러 부분과 시점이 과장되어 도시되어 있거나 명확하게 하기 위해 간결하게 도시되어 있다.
도 1은 재료 시트를 만드는 본 발명의 일례에 따른 장치를 개략적으로 도시한 도면이다.
도 2는 도 1의 장치의 일부의 확대도이며 이송 파이프로부터의 용융 재료를 수용하도록 위치된 수용 용기를 도시한 도면이다.
도 3은 도 2의 선 3-3을 따라 취한 단면도이다.
도 4는 도 2의 이송 파이프와 수용 용기 사이의 정체 재료를 안정화시키는 한 방법 중 한 단계를 개략적으로 도시한 도면이다.
도 5는 도 2의 이송 파이프와 수용 용기 사이의 정체 재료를 안정화시키는 한 방법 중 다른 한 단계를 개략적으로 도시한 도면이다.
본 발명은 단지 예로 들자면, 유리 용융물(또는 용융 유리)과 같은 임의의 용융 재료의 이송에 적용될 수 있다. 유리하게도, 본 발명은 전기 전도성이 있고, 이에 따라 전류가 흘러 가열될 수 있는 용융 재료의 이송에 적용된다.
본 발명의 특징적인 장점이 되는 실시예에 있어서, 본 발명은 용융 유리(또는 유리 용융물)의 이송에 적용된다. 본 발명은 특히 처리시 전기 전도되는 용융 유리를 유리하게도 이송시킬 수 있다. 이러한 유리 재료는 단지 예로 들자면, 보로알루미노실리케이트(boroaluminosilicate) 유리; 소다 라임 유리, 이들의 혼합물로서 알칼리 금속 산화물 및/또는 알칼리토금속 산화물을 포함한 여러 산화물 유리, 등을 포함할 수 있다.
본 발명은 용융 재료 이송과 관련된다. 따라서, 용융 유리의 경우에, 본 발명의 용융 재료 이송 방법은, 유리가 최종 형성되는 모양으로 성형되기 전에, 이송 파이프로부터 수용 용기까지 이송되는 동안에, 플로트 공정(float process), 프레싱(pressing), 롤링(rolling), 슬롯 인발(slot draw), 용융 인발(fusion draw) 등을 포함하는 임의의 유리 제조 기술이나 모든 유리 제조 기술에 대해 사용될 수 있다. 본 발명은 용융 인발 기술의 여러 실시예로서 아래 상세하게 기재되어 있다. 그러나, 당업자라면, 본 출원을 이해한 이후에, 필요한 변경을 본 발명에 대해 행하여, 본 발명이 여러 유리 제조 기술에 적용될 수 있다는 것을 알 수 있을 것이다.
본 발명의 여러 실시예가 첨부된 도면을 참조하여 아래 상세하게 기재되어 있다. 여러 실시예를 기재함에 있어서, 여러 특정한 상세한 사항이 본 발명의 완전한 이해를 위하여 설명되어 있다. 그러나, 당업자라면 본 발명이 이들 특정한 상세한 사항만으로 한정되지 않는다는 것을 알 수 있을 것이다. 여러 실시예에 있어서, 본 발명을 명확하게 하기 위해, 잘 알려진 특징은 상세하게 기재되지 않았다. 더욱이, 유사하거나 동일한 부재번호가 유사하거나 동일한 구성요소를 지시하도록 사용되었다.
도 1은 유리-기반 재료의 시트와 같은 재료 시트 성형 장치(100)를 개략적으로 도시한 도면이다. 이러한 성형 장치(100)는 아래 기재된 바와 같은 장치의 시스템일 수 있다, 성형 장치(100)는 원재료의 뱃치(106)를 수용하기 위하여 개구(104)를 구비한 용융 용기(102)를 포함한다. 열이 용융 용기(102)에 가해지거나 상기 용융 용기에서 발생되어 뱃치(106)를 용융 재료(108)로 용융시킨다. 단지 하나의 예로든 실시예에 있어서, 용융 재료(108)는 용융 유리이다. 단지 예로든 여러 실시예에 있어서, 용융 재료(108)는 용융 유리-세라믹이거나 또는 다른 타입의 용융 유리-기반 재료일 수 있다. 일반적으로, 용융 재료는 전기 전도성을 갖는 임의의 용융 재료일 수 있다. 아래 기재된 바와 같이, 용융 유리는 용융 재료(108)의 일례로 사용될 것이다. 성형 장치(100)는 정제 용기(110)를 포함하며, 상기 정제 용기는 용융 용기(102)로부터의 용융 유리(108)를 도관(112)을 통해 수용할 수 있다. 정제 용기(110)의 내측에서, 용융 유리(108)는, 뱃치(106)가 용융 용기(102)에서 변질(decomposition)되는 동안에, 용융 유리로 유도될 수 있는 가스 함유물을 제거하도록, 처리된다. 기술상 알려진 바와 같이, 화학적 정제(fining)나 또는 감소된 압력/진공 정제에 의해, 가스 함유물이 제거될 수 있다.
성형 장치(100)는 교반 용기(114)를 포함하며, 상기 교반 용기는 정제 용기(110)로부터의 용융 유리(108)를 도관(116)을 통해 수용한다. 교반 용기(114)의 내측에서, 용융 유리(108)가 그 균일성이 향상되도록 혼합된다. 성형 장치(100)는 이송 용기(118)를 포함하며, 상기 이송 용기는 교반 용기(114)로부터의 용융 유리(108)를 도관(120)을 통해 수용할 수 있다. 교반 용기(114)의 교반기(113)가 도관(120)으로 이송된 용융 유리(108)로부터의 고체 함유물을 여과하는데 도움이 될 수 있다. 이송 용기(118)의 상부(121)는 개방되어 있어, 상기 이송 용기 내의 용융 유리(108)가 대기압에 노출된다. 이송 파이프(122)는 이송 용기(118) 아래에 연결되거나 장착된다. 이러한 위치에 있어서, 이송 용기(118)로부터의 용융 유리가 이송 파이프(122)로 유동할 수 있다. 단지 하나의 예로든 실시예에 있어서, 이송 파이프(122)는 다운커머(downcomer) 파이프이다. 이송 용기(118)는 용융 유리(108)의 균일성을 유지하는데 도움이 되도록, 상기 용융 유리(108)가 소용돌이 칠 수 있는 한편으로 다운커머 파이프(122)로 유동할 수 있게 하는, 원추형 부분이나 보울(119)을 포함한다.
성형 장치(100)는 성형 용기(126)를 포함한다. 단지 하나의 예로든 실시예에 있어서, 성형 용기(126)는 아이소파이프이고 용융 인발기의 한 구성요소일 수 있다. 단지 하나의 예로든 실시예에 있어서, 성형 용기(126)는 용융 유리(108)를 트로프(128)로 수용하기 위하여, 부재번호 130으로 지시된 바와 같은, 개구를 구비한 트로프(128)를 포함한다. 입구 파이프(124)가 개구(130)와 연결되고 용융 유리(108)를 상기 개구(130)로 이송시키는데 사용될 수 있다. 입구 파이프(124)는 수용 용기(132)를 포함하며, 상기 수용 용기는 이송 파이프(122)에 인접하고 상기 이송 파이프(122)로부터의 용융 유리(108)를 수용하도록 배치된다. 단지 하나의 예로든 실시예에 있어서, 수용 용기(132)는 라이저 파이프(riser pipe)이다. 성형 용기(126)의 트로프(128)에 수용된 용융 유리(108)는 오버플로하고 성형 용기(126)의 측면(134)(도 1에서는 단지 하나의 측면만이 도시되었음) 아래로 이동하여, 결국에는 성형 용기(126)의 루트(136)에서 단일 스트림의 용융 유리로 합쳐진다. 단일의 스트림의 용융 유리(108)가 유리 시트로 인발된다.
도 2는 이송 파이프(122)와 수용 용기(132) 사이의 공유 영역의 확대도이다. 도시된 바와 같이, 이송 파이프(122)는 수용 용기(132)와 정렬된다. 본 명세서에 사용된 바와 같이, "정렬된"이라는 표현은, 용융 재료가 일반적으로 수용 용기(132)의 면을 넘쳐 아래로 흐르지 않으면서 이송 파이프(122)를 빠져나오고 수용 용기(132)에 들어가는 방식으로, 이송 파이프(122) 및 수용 용기(132)가 배치된다는 것을, 의미한다. 단지 하나의 예로든 실시예에 있어서, 이러한 정렬은 이송 파이프(122)의 출구 단부(138)를 수용 용기(132)의 입구 단부(140)에 수용하는 단계를 포함한다. 이는 출구 단부(138)의 외경은 입구 단부(140)의 내경보다 더 작다는 것을 필요로 한다. 출구 단부(138)가 입구 단부(140)에 수용될 때, 상기 출구 단부는 상기 입구 단부(140)와 중심이 맞춰지거나 맞춰지지 않을 수 있다. 단지 하나의 예로든 실시예에 있어서, 이송 파이프(122)와 수용 용기(132)의 단면은 원형이다. 도 2에 도시된 배치에 있어서, 갭(142)은 이송 파이프(122)의 출구 단부(138)와 수용 용기(132)의 입구 단부(140) 사이에 형성된다. 갭(142)의 단면이 도 3에 개략적으로 도시되어 있다. 갭(142)의 형상은 환형일 수 있다. 도 2를 살펴보면, 갭(142)은 실링되지 않고 수용 용기(132)의 내부와 연통된다. 이 결과, 수용 용기(132)에 수용된 용융 유리(108)는 갭(142)을 통해 대기압에 노출된다.
시트 유리의 제조 동안에, 용융 유리(108)는 다양한 원인 때문에 블리스터(blister)를 운반(entrain)할 수 있다. 유리 용융, 정제 및 균질화와 같은 상류 공정 단계는 본질적으로 이송 파이프(122)로부터 수용 용기(132)까지 이송된 유리에서의 특정량의 가스 및/또는 고체 함유물을 야기할 수 있다. 더욱이, 내화 재료 및 대기압과의 접촉 때문에, 수용 용기(132)에 있는 용융 유리(108)는 블리스터로 야기된 파티클이나 또는 고체의 함유물에 의해 오염될 수 있다.
용융 유리(108)가 이송 파이프(122)로부터 수용 용기(132)로 유동하는 동안에, 어느 정도의 용융 유리(108)가 갭(142)에 들어가고 수용 용기(132)의 메인 유리 스트림(108)으로 다시 순환될 때까지 상기 갭(142)에 있다. 용융 유리(108a)가 메인 유리 스트림(108)으로 다시 순환됨에 따라, 상기 용융 유리(108a)에서의 임의의 결함이 또한 메인 유리 스트림(108)으로 다시 순환된다. 갭(142)에 있는 용융 유리(108a)가 정체된다면, 상기 기재한 바와 같은 결함이 느린 속도로, 예를 들면, 7일 내지 10일의 기간 내내 갭(142)으로부터 발생될 것이다(bleed). 이러한 느린 발생(extended bleeding) 기간 동안에, 생산된 유리 시트는 생산 손실을 초래할 수 있는 결함을 발생시킬 것이다. 정체된 유리에서의 고 농도의 결함이 허용되지 않는 고 레벨의 결함으로 만들어진 많은 양의 유리 제품에 옮겨질 수 있다. 따라서, 갭(142)에서의 정체된 용융 유리가 이동화되어, 이러한 결함 있는 유리 제품 양이 최소화되는 것이 매우 바람직하다.
도 2를 살펴보면, 이송 파이프(122)와 수용 용기(132) 사이의 갭(142)에 있는 정체된 유리를 이동화하기 위한 종래의 절차는 상기 수용 용기(132)와 관련하여 상기 이송 파이프(122)를 상승시키는 단계나 또는 상기 이송 파이프(122)와 관련하여 상기 수용 용기(132)를 하강시키는 단계를 포함하여, 상기 이송 파이프(122)의 출구 단부(143)가 상기 수용 용기(132)의 유리 라인(145) 상에 있게 한다. 이송 파이프(122)를 상승시키거나 수용 용기(132)를 하강시키는 이러한 작동에 의해, 갭(142)에 있는 용융 유리(108a)가 이동화될 수 있어, 상기 갭(142)에 위치한 상기 용융 유리(108a)가 상기 수용 용기(132)에 있는 메인 유리 스트림(108)으로 다시 보다 빠르게 순환할 수 있다. 갭(142)에 있는 용융 유리가 메인 유리 스트림(108)으로 다시 순환된 이후에, 이송 파이프(122)의 출구 단부(143)가 수용 용기(132)에 있는 용융 유리(108)에 다시 침지된다.
그러나, 상기 기재한 종래의 이동가능한 정체된 유리의 절차와 관련된 위험이 있다. 예를 들면, 지르코니아-농후 유리를 포함한 유리 시트 성형 공정에 있어서, 지르코니아-농후 유리는 갭(142)에 들어가 정체된다고 알려졌다. 긴 잔류 시간 및 유리의 온도는 지르코니아-농후 유리를 불투명하게 할 수 있고, 갭(142)으로부터 메인 유리 스트림(108)으로 서서히 이송되는 2차 지르콘 함유물을 형성한다. 정체된 유리를 갭(142) 외측으로 이동화시키는 상기 기재한 종래의 절차가 사용된다. 그러나, 수용 용기(132)에서의 유리 레벨(145)이 이송 파이프(122)의 출구 단부(143) 아래가 되도록 수용 용기(132)를 낮춘 직후에, 성형된 유리 시트에 있는 블리스터는 생산 라인이 100%의 손실을 감내할 수 있는 레벨로 단계적으로 확대된다. 수용 용기(132)가 수일 이후에 그 정상 레벨로 복구될 때, 블리스터는 블리스터의 레벨이 정상이 될 때까지 다음 7일 내내 전형적인 농도 감소 곡선(concentration decay curve)을 따를 것이다.
갭(142)에 있는 정체된 용융 유리를 이동화하기 위하여, 본 발명에서 제안한 방법이 갭(142)에 있는 용융 유리(108a)를 능동(active) 가열하는 단계를 포함한다. 도 4 및 도 5에 도시된 바와 같이, 가열 회로(150)가 갭(142)을 가로질러 연결되고, 갭(142)에 있는 용융 유리(108a)에 열을 공급하도록 작동된다. 이송 파이프(122)의 출구 단부(143)가 도 4에 도시된 바와 같이, 수용 용기(132)에 있는 유리 라인(145) 상에 위치하거나, 또는 상기 이송 파이프(122)의 상기 출구 단부(143)가 도 5에 도시된 바와 같이, 상기 수용 용기(132)에 있는 상기 유리 라인(145) 아래에 위치할 때, 가열 회로(150)는 갭(142)에 열을 공급하도록 작동될 수 있다. 용융 유리(108a)가 갭(142)에 있을 때, 상기 갭(142)에 가해진 열은 상기 용융 유리(108a)를 상기 갭(142)으로 이동화시켜서, 열이 상기 갭(142)에 가해지지 않았을 때보다 상기 용융 유리(108a)가 상기 갭(142)으로부터 메인 유리 스트림(108)으로 보다 빠르게 유동할 수 있게 한다.
용융 재료(108)가 이송 파이프(122)로부터 수용 용기(132)까지 유동하는 동안에, 예를 들면, 갭(142)에 위치한 결함이 있는 정체된 유리(또는 다른 용융 재료)가 발견될 때마다 열이 상기 갭(142)에 단속적으로 공급되거나 또는 연속적으로 공급될 수 있다. 단지 하나의 예로든 실시예에 있어서, 용융 유리(108)가 이송 파이프(122)로부터 수용 용기(132)로 유동을 개시하자마자, 열이 갭(142)에 공급되고 이후 선택적으로 공급된다. 단지 하나의 예로든 실시예에 있어서, 용융 유리(108)가 갭(142)을 채우기 시작하자마자, 열이 갭(142)에 공급된다. 단지 하나의 예로든 실시예에 있어서, 수용 용기(132)에 있는 벌크 용융 유리(108)와 반드시 동일한 손상 레벨, 예를 들면 함유물 레벨이 될 때까지, 열이 상기 갭(142)에 공급된다. 단지 하나의 예로든 실시예에 있어서, 이송 파이프(122)의 출구 단부(143)가 수용 용기(132)에 있는 용융 재료(108)에 침지된 이후에, 열이 갭(142)에 공급된다. 단지 하나의 예로든 실시예에 있어서, 갭(142)에 공급된 열은 실질적으로 갭(142)에 한정되어, 수용 용기(132)에 있는 용융 유리(108)의 총 온도가 상당히 상승하지 않는다. 단지 하나의 예로든 실시예에 있어서, 갭(142)에 균일하게 열이 분배된다.
가열 회로(150)가 다양한 방식으로 행해질 수 있다. 일 실시예에 있어서, 가열 회로(150)는 교류(AC) 파워 서플라이(152)를 포함한다. AC 파워는, 큰 전류 밀도에서 유리 용융물이 거품 및 유리에서의 여러 원치않는 블리스터를 발생시킬 수 있는 전기 분해 처리되지 않는다는, 장점을 갖는다. 다른 한편으로, 직류(DC)는 유리 용융물을 용이하게 전기분해하거나, 유리의 특정 구성요소를 감소시키거나 또는 산화시켜서, 예를 들면, 상기 유리 내의 O2 함유물과 같은 함유물 및/또는 블리스터를 초래할 수 있다. 연결부(154)가 AC 파워 서플라이(152)와 이송 파이프(122) 사이에 형성된다. 이송 파이프(122)에 직접적으로 연결부(154)를 만드는 것이 어렵거나 여의치 않다면, 상기 연결부(154)가 AC 파워 서플라이(152)와 이송 용기(118) 사이에 대신 형성될 수 있다. 이송 파이프(122)가 이송 용기(118)와 접촉하는 경우, 이송 용기(118)에 만들어진 연결부는 상기 이송 파이프(122)에 만들어진 연결부와 동일할 것이다. 또한, 연결부(158)가 수용 용기(132)와 AC 파워 서플라이(152) 사이에 형성된다. 연결부(158)는 접지 와이어일 수 있다. 일 실시예에 있어서, 이송 파이프(122)와 수용 용기(132)는 전류를 전도시킬 수 있는 재료로 만들어진다. 다른 한 실시예에 있어서, 적어도 이송 파이프(122)의 출구 단부(138)와 수용 용기(132)의 입구 단부(140)는 전기 전도성 재료로 만들어진다. 단지 하나의 예로든 실시예에 있어서, 적어도 이송 파이프(122)의 출구 단부(138)와 수용 용기(132)의 입구 단부(140)는 플래티늄 합금으로 만들어진다. 전형적으로, 이송 파이프(122)와 수용 용기(132)의 재료는 용융 재료(108)와 반응하지 않는 재료이다.
용융 재료가 먼저 이송 파이프(122)로부터 빈 수용 용기(132)로 이송될 때, 상기 수용 용기(132)에 있는 유리 라인은 상기 수용 용기(132)의 하부에 실제로 위치되고, 상기 이송 파이프(122)의 출구 단부(143)와 상기 수용 용기(132)에서의 유리 레벨 사이의 빈 공간이 비교적 크다. 일단 연속 스트림의 용융 유리(108)가 이송 파이프(122)의 출구 단부와 수용 용기(132)의 하부 사이에서 생성된다면, 상기 이송 파이프(122)와 상기 수용 용기(132) 사이에 가해진 전압은 회로 루프를 형성하여, 상기 용융 유리(108)가 흐르는 전류에 의해 가열될 것이다. 수용 용기(132)에서의 유리 레벨(145)이 상승함에 따라, 이송 파이프(122)의 출구 단부(143)와 상기 수용 용기(132)에서의 유리 레벨(145) 사이의 빈 공간이 도 4에 도시된 바와 같이 점차로 감소될 것이다. 결국, 이송 파이프(122)의 출구 단부(143)는 도 5에 도시된 바와 같이, 수용 용기(132)에서의 용융 유리(108)에 침지되어, 상기 용융 유리가 갭(142)에 들어갈 수 있다. 가열 회로(150)에 의해 이송된 전류가 갭(142)에 있는 모든 용융 유리(108a)를 통과할 것이다.
도 5를 살펴보면, 용융 유리가 이송 파이프(122)로부터 수용 용기(132)까지 유동함에 따라, 부가적인 새로운 용융 유리가 상기 이송 파이프(122)의 출구 단부(143)로부터 상기 수용 용기(132)에 있는 유리 라인(145) 아래로 분사될 것이다. 갭(142)에 있는 용융 유리(108a)의 부가적인 능동 가열 없이도, 갭(142)에 있는 용융 유리(108a)가 상대적으로 정체될 것인데, 이를 달리 표현하면, 상기 용융 유리가 수용 용기(132)로 유도된 새로운 유리 스트림에 의해 흘러나올 가능성이 적게 된다는 것이다. 예를 들면, 가열 회로(150)를 사용하여, 전류를 갭(142)에 있는 용융 유리(108a)에 통과시킴으로써, 상기 갭(142)에 있는 상기 용융 유리(108a)가 고 온도 및 저 점도로 가열되어, 상기 용융 유리(108a)가 용융 유리 유동 밑면을 지나 보다 용이하게 흘러 나갈 수 있게 된다.
일반적으로, 전류가 AC 파워 서플라이(152)로부터 이송 파이프(122)까지 흘러, 상기 이송 파이프(122) 아래로, 환형 갭(142)에 있는 용융 유리(108a)를 통해, 수용 용기(132)를 통해 나갈 것이다. 일 실시예에 있어서, 가열 회로(150)는 먼저AC 전류를 갭(142)에 가하여(fire), 실질적으로 상기 갭(142)에 공급되는 열을 제한한다. 갭(142)에 있는 유리의 비교적 높은 국부 저항 때문에, 대부분의 파워는 갭(142)에서 소산될 것이다. 갭(142)에 있는 용융 유리(108a)의 양이 작기 때문에, 상기 양의 용융 유리는 짧은 시간에 매우 빠르게 가열될 수 있다. 갭(142)에 있는 용융 유리를 가열하는데 필요한 전압의 양은 상기 갭(142)에 있는 상기 용융 유리의 전기 저항에 따라 결정되고, 이 결과, 수용 용기(132)에 있는 용융 유리(108)에서의 이송 파이프(122)의 침지 깊이에 따라 결정될 것이다. 일 실시예에 있어서, 열을 갭(142)에 공급하는 단계는 상기 갭(142)에 있는 용융 유리의 온도를 대략 20℃ 이상, 특정 실시예에서는 적어도 25℃로, 특정 실시예에서는 적어도 30℃로, 특정 실시예에서는 적어도 40℃로, 특정 실시예에서는 적어도 50℃로 상승시키는 단계를 포함한다.
열을 갭(142)에 공급하는 여러 방법이나, 또는 상기 갭(142)에 있는 용융 유리(108a)를 상이하게 가열하는 여러 방법이 사용될 수 있다. 예를 들면, 용융 유리(108)와 반응하지 않는 적당한 재료로 만들어진 저항성 필라멘트 루프가 융 유리(108a)를 가열하기 위해 갭(142)에 배치될 수 있다. 필라멘트가 적당한 파워 소스와 연결되어 열을 갭(142)에 이송할 수 있다. 유도 가열처럼, 갭(142)에 있는 용융 유리(108a)를 가열하는 여러 방식이 또한 사용될 수 있다.
본 발명이 본 발명의 여러 장점을 갖는 제한적인 여러 실시예로 기재되어 있는 한편, 당업자라면, 본 명세서에 기재된 본 발명의 범주 내에서 본 발명에 대한 여러 변경 및 수정이 가능하다는 것을 알 수 있을 것이다. 따라서, 본 발명은 첨부된 청구범위에 의해서만 한정될 것이다.

Claims (24)

  1. 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법으로서,
    (A) 상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이에 갭이 있고, 상기 용융 재료가 상기 수용 용기의 상기 입구 단부를 넘쳐 흐르지 않으면서 상기 이송 파이프의 상기 출구 단부를 빠져나오고 상기 수용 용기의 상기 입구 단부에 들어가는 방식으로, 상기 이송 파이프와 상기 수용 용기를 배치시키는 단계;
    (B) 상기 용융 재료를 상기 이송 파이프로 이송시키는 단계와 상기 용융 재료가 상기 이송 파이프로부터 상기 수용 용기로 유동할 수 있게 하는 단계; 및
    (C) 상기 용융 재료의 유동을 용이하게 하기 위하여, 상기 갭에 있는 상기 용융 재료를 가열하는 단계를 포함하는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  2. 청구항 1에 있어서,
    상기 용융 재료는 용융 유리로 이루어지는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  3. 청구항 2에 있어서,
    상기 이송 파이프는 다운커머 파이프이고, 상기 수용 용기는 용융 인발 공정에서의 아이소파이프의 입구 파이프인 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  4. 청구항 3에 있어서,
    상기 아이소파이프의 상기 입구 파이프와 상기 다운커머 파이프 모두는 원형이고 반드시 동심인 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  5. 청구항 1 내지 4 중 어느 한 항에 있어서,
    단계 (A)에 있어서, 상기 이송 파이프의 상기 출구 단부는 상기 용융 재료에 침지되는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  6. 청구항 1 내지 4 중 어느 한 항에 있어서,
    단계 (A)에 있어서, 상기 이송 파이프의 상기 출구 단부는 상기 용융 재료에 침지되지 않는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  7. 청구항 1 내지 6 중 어느 한 항에 있어서,
    단계 (C)는 상기 갭에 있는 상기 용융 재료의 온도를 대략 20℃ 이상만큼 상승시키는 단계를 포함하는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  8. 청구항 1 내지 7 중 어느 한 항에 있어서,
    상기 용융 재료는 전기 전도성 재료이고, 단계 (C)는 상기 갭에 있는 상기 용융 재료에 전류를 흐르게 하는 단계를 포함하는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  9. 청구항 8에 있어서,
    상기 용융 재료에 전류를 흐르게 하는 단계는 상기 용융 재료의 전기분해를 반드시 야기시키지 않는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  10. 청구항 8 또는 9에 있어서,
    상기 전류는 교류인 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  11. 청구항 8 내지 10 중 어느 한 항에 있어서,
    상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부는 전기 전도성을 가지며, 단계 (C)는 상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이에 전기 전압을 가하는 단계를 포함하는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  12. 청구항 11에 있어서,
    상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이에 가해진 상기 전압은 교류 전압인 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  13. 청구항 1에 있어서,
    상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부는 반드시 동심인 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  14. 청구항 1 내지 13 중 어느 한 항에 있어서,
    상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이의 상기 갭은 반드시 환형인 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  15. 청구항 1 내지 14 중 어느 한 항에 있어서,
    상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 모두는 플래티늄 합금으로 이루어지는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  16. 청구항 1 내지 15 중 어느 한 항에 있어서,
    단계 (C)는 단계 (B) 동안에 연속으로 실행되지 않는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  17. 청구항 1 내지 15 중 어느 한 항에 있어서,
    단계 (C)는 단계 (B) 동안에 단속적으로 실행되는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  18. 청구항 1 내지 15 중 어느 한 항에 있어서,
    단계 (C)는 상기 용융 재료가 상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이의 갭을 채우기 시작한 직후에 실행되는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  19. 청구항 1 내지 18 중 어느 한 항에 있어서,
    단계 (C)는, 상기 갭에 있는 상기 용융 재료에 트랩된 함유물의 레벨이 상기 이송 파이프의 상기 출구 단부를 바로 빠져나오는 상기 용융 유리에서의 레벨과 반드시 동일하도록, 충분한 시간 간격 동안에 실행되는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  20. 청구항 1 내지 19 중 어느 한 항에 있어서,
    단계 (C)는, 상기 용융 재료가 상기 이송 파이프의 상기 출구 단부를 침지시킨 이후에, 실행되는 것을 특징으로 하는 출구 단부를 구비한 이송 파이프로부터 입구 단부를 구비한 수용 용기까지 용융 재료를 이송시키는 방법.
  21. 용융 재료 이송 장치로서,
    (i) 출구 단부를 구비한 이송 파이프;
    (ⅱ) 상기 이송 파이프의 상기 출구 단부와 수용 용기의 입구 단부 사이에 갭이 있도록, 상기 이송 파이프의 상기 출구 단부를 빠져나오는 상기 용융 재료를 수용할 수 있고, 상기 이송 파이프에 대해 배치될 수 있는 상기 입구 단부를 구비한 상기 수용 용기; 및
    (ⅲ) 상기 용융 재료가 상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이의 갭을 채운다면, 상기 갭에 있는 상기 용융 재료를 상이하게 가열할 수 있는 장치를 포함하는 것을 특징으로 하는 용융 재료 이송 장치.
  22. 청구항 21에 있어서,
    상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부는 전기 전도성 재료로 이루어지는 것을 특징으로 하는 용융 재료 이송 장치.
  23. 청구항 21 또는 22에 있어서,
    상기 (ⅲ)에 기재된 상기 용융 재료를 상이하게 가열할 수 있는 장치는 AC 전압을, 상기 이송 파이프의 상기 출구 단부와 상기 수용 용기의 상기 입구 단부 사이의 갭을 채우는 상기 용융 재료에 공급하도록 적용된 AC 파워 서플라이를 포함하는 것을 특징으로 하는 용융 재료 이송 장치.
  24. 청구항 21 내지 23 중 어느 한 항에 있어서,
    상기 이송 파이프의 상기 출구 단부는 상기 수용 용기의 상기 입구 단부로 뻗어있는 것을 특징으로 하는 용융 재료 이송 장치.
KR1020117013648A 2008-11-26 2009-11-24 정체된 용융 재료를 이동화하는 방법 및 장치 KR101655491B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/324,257 US20100126224A1 (en) 2008-11-26 2008-11-26 Mobilizing stagnant molten material
US12/324,257 2008-11-26

Publications (2)

Publication Number Publication Date
KR20110097837A true KR20110097837A (ko) 2011-08-31
KR101655491B1 KR101655491B1 (ko) 2016-09-07

Family

ID=42194979

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020117013648A KR101655491B1 (ko) 2008-11-26 2009-11-24 정체된 용융 재료를 이동화하는 방법 및 장치

Country Status (6)

Country Link
US (1) US20100126224A1 (ko)
JP (1) JP5520309B2 (ko)
KR (1) KR101655491B1 (ko)
CN (1) CN102264652B (ko)
TW (1) TWI406830B (ko)
WO (1) WO2010062874A2 (ko)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103496842B (zh) * 2013-09-22 2016-06-08 中国科学院上海光学精密机械研究所 低粘度易析晶玻璃的漏料系统
CN104961327B (zh) * 2014-03-29 2017-09-22 安瀚视特控股株式会社 玻璃板的制造方法、及玻璃板的制造装置
WO2016137913A2 (en) 2015-02-26 2016-09-01 Corning Incorporated Glass manufacturing apparatus and methods
JP7104883B2 (ja) * 2018-07-03 2022-07-22 日本電気硝子株式会社 ガラス物品の製造方法及び製造装置
JP7104882B2 (ja) * 2018-07-03 2022-07-22 日本電気硝子株式会社 ガラス物品の製造方法及び製造装置
DE102019120064A1 (de) * 2019-07-24 2021-01-28 Schott Ag Vorrichtung und Verfahren zur Herstellung von Glasbändern
JP2023549219A (ja) * 2020-11-12 2023-11-22 コーニング インコーポレイテッド ガラス製造装置
CN113754247B (zh) * 2021-09-24 2023-01-06 芜湖东旭光电科技有限公司 利用铂金通道生产玻璃基板的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080922A (ja) * 1999-09-08 2001-03-27 Nippon Electric Glass Co Ltd 溶融ガラスの供給方法および供給装置
WO2007070825A2 (en) * 2005-12-15 2007-06-21 Bruce Technology Llc Overflow downdraw glass forming method and apparatus
KR20070108126A (ko) * 2004-12-28 2007-11-08 니폰 덴키 가라스 가부시키가이샤 판유리 제조장치 및 판유리 제조방법

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US239A (en) * 1837-06-19 Machine for scraping hides
US22780A (en) * 1859-02-01 Washing-machine
US2000278A (en) * 1934-05-18 1935-05-07 Fairmount Glass Works Inc Electric furnace
USRE21863E (en) * 1935-12-28 1941-07-22 Method and apparatus op melting and fining glass
US2999511A (en) * 1956-11-09 1961-09-12 Owens Illinois Glass Co Controlling the flow of molten glass through a furnace forehearth
US3338696A (en) * 1964-05-06 1967-08-29 Corning Glass Works Sheet forming apparatus
US3421876A (en) * 1965-11-04 1969-01-14 Anchor Hocking Glass Corp Glass furnace with two separate throat passages
GB1138747A (en) * 1966-09-09 1969-01-01 Pilkington Brothers Ltd Improvements in or relating to the manufacture of flat glass
US3579318A (en) * 1968-05-02 1971-05-18 Ppg Industries Inc Method of and apparatus for forming glass sheets by drawing downwardly
BE757057A (fr) * 1969-10-06 1971-04-05 Corning Glass Works Procede et appareil de controle d'epaisseur d'une feuille de verre nouvellement etiree
US3634699A (en) * 1970-03-03 1972-01-11 Owens Corning Fiberglass Corp Condition-responsive control circuit
US4365987A (en) * 1981-11-04 1982-12-28 Corning Glass Works Apparatus and method of conditioning and conveying thermoplastic material
ATE150163T1 (de) * 1988-11-17 1997-03-15 Tetronics Res & Dev Co Ltd Verfahren zum schmelzen von stoffen
JPH06227822A (ja) * 1993-02-05 1994-08-16 Nippon Sheet Glass Co Ltd ガラス素地流出装置
CA2244306C (en) * 1997-07-31 2004-03-09 Owens-Brockway Glass Container Inc. Method and apparatus for delivering a cased glass stream
FR2774085B3 (fr) * 1998-01-26 2000-02-25 Saint Gobain Vitrage Procede de fusion et d'affinage de matieres vitrifiables
CN100534938C (zh) * 2001-08-08 2009-09-02 布鲁斯科技公司 玻璃板成形装置
JP4253254B2 (ja) * 2001-12-14 2009-04-08 コーニング インコーポレイテッド オーバーフロー・ダウンドロー・フュージョン法による板ガラスの製造装置および方法
US8042361B2 (en) * 2004-07-20 2011-10-25 Corning Incorporated Overflow downdraw glass forming method and apparatus
US7584632B2 (en) * 2005-07-28 2009-09-08 Corning Incorporated Method of increasing the effectiveness of a fining agent in a glass melt
US7748236B2 (en) * 2005-12-27 2010-07-06 Corning Incorporated Overflow downdraw glass forming method and apparatus
US20080034798A1 (en) * 2006-08-08 2008-02-14 Richard Bergman Reduced size bowl for display glass melting and delivery
WO2008103250A1 (en) * 2007-02-22 2008-08-28 Corning Incorporated Process to preserve isopipe during coupling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001080922A (ja) * 1999-09-08 2001-03-27 Nippon Electric Glass Co Ltd 溶融ガラスの供給方法および供給装置
KR20070108126A (ko) * 2004-12-28 2007-11-08 니폰 덴키 가라스 가부시키가이샤 판유리 제조장치 및 판유리 제조방법
WO2007070825A2 (en) * 2005-12-15 2007-06-21 Bruce Technology Llc Overflow downdraw glass forming method and apparatus

Also Published As

Publication number Publication date
TW201031612A (en) 2010-09-01
WO2010062874A2 (en) 2010-06-03
JP5520309B2 (ja) 2014-06-11
KR101655491B1 (ko) 2016-09-07
JP2012509845A (ja) 2012-04-26
CN102264652A (zh) 2011-11-30
CN102264652B (zh) 2014-06-04
US20100126224A1 (en) 2010-05-27
TWI406830B (zh) 2013-09-01
WO2010062874A3 (en) 2010-08-26

Similar Documents

Publication Publication Date Title
KR101655491B1 (ko) 정체된 용융 재료를 이동화하는 방법 및 장치
KR920003938B1 (ko) 유리의 용융, 정제와 균질화 방법 및 장치
TWI555709B (zh) 形成玻璃片的設備與方法
TWI246991B (en) Vacuum degassing method for molten glass flow
TWI462886B (zh) Manufacture of glass plates
TWI603936B (zh) 製造玻璃之設備及方法
US7296441B2 (en) Device and method for melting a substance with the occurrence of a low level of contamination
KR880008946A (ko) 유리 제조방법 및 장치
TW201711967A (zh) 用於增進的均質性之玻璃熔融系統及方法
KR101798292B1 (ko) 디스플레이용 글래스 기판의 제조 방법
WO2013011837A1 (ja) ガラス溶融装置、ガラス繊維製造装置及びガラス繊維製造方法
TW201109284A (en) Glass production apparatus, and glass production method
KR101522198B1 (ko) 유리판 제조 방법
KR20210030252A (ko) 유리 물품의 제조 방법, 제조 장치 및 유리 기판
CN107879597B (zh) 玻璃基板的制造方法及玻璃基板制造装置
KR102405740B1 (ko) 유리 제조 장치 및 유리 제조 방법
FI85364B (fi) Foerfarande foer bildande av planglas.
US3450516A (en) Process for melting glassmaking ingredients on a molten metal bath
WO2013011838A1 (ja) ガラス溶融装置、ガラス繊維製造装置及びガラス繊維製造方法
US3658504A (en) Float glass manufacture apparatus
JP2016124751A (ja) ディスプレイ用ガラス基板の製造方法および製造装置
WO2022255295A1 (ja) ガラス物品の製造方法
KR20160001275A (ko) 유리 제조 장치 및 이를 이용한 유리 제조 방법
KR102612688B1 (ko) 유리 물품의 제조 방법
FI86166C (fi) Foerfarande foer formning av glas.

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20190624

Year of fee payment: 4