KR20110078246A - Preparing method for preparing carbon fiber precursor and carbon fiber precursor using it - Google Patents

Preparing method for preparing carbon fiber precursor and carbon fiber precursor using it Download PDF

Info

Publication number
KR20110078246A
KR20110078246A KR1020090135005A KR20090135005A KR20110078246A KR 20110078246 A KR20110078246 A KR 20110078246A KR 1020090135005 A KR1020090135005 A KR 1020090135005A KR 20090135005 A KR20090135005 A KR 20090135005A KR 20110078246 A KR20110078246 A KR 20110078246A
Authority
KR
South Korea
Prior art keywords
carbon fiber
copolymer
drying
fiber precursor
fiber
Prior art date
Application number
KR1020090135005A
Other languages
Korean (ko)
Other versions
KR101074963B1 (en
Inventor
조원섭
방윤혁
김병한
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020090135005A priority Critical patent/KR101074963B1/en
Publication of KR20110078246A publication Critical patent/KR20110078246A/en
Application granted granted Critical
Publication of KR101074963B1 publication Critical patent/KR101074963B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/18Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polymers of unsaturated nitriles, e.g. polyacrylonitrile, polyvinylidene cyanide
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D10/00Physical treatment of artificial filaments or the like during manufacture, i.e. during a continuous production process before the filaments have been collected
    • D01D10/06Washing or drying
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/20Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products
    • D01F9/21Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F9/22Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from polyaddition, polycondensation or polymerisation products from macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyacrylonitriles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Fibers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

PURPOSE: A method of manufacturing precursor fiber for carbon fiber and a precursor fiber for carbon fiber manufactured by the same are provided to minimize deformations of the itaconic acid by optimizing drying conditions of a polymer. CONSTITUTION: The method of manufacturing precursor fiber for carbon fiber is as follows. A PAN-based copolymer is manufactured by using a water-base suspension polymerization method. The copolymer is dried and a moisture regain is 0.5wt% or less. The dried copolymer is emitted after being dissolved in a solvent.

Description

탄소섬유 전구체 섬유의 제조방법 및 이에 의해 생산된 탄소섬유 전구체 섬유{Preparing method for preparing carbon fiber precursor and carbon fiber precursor using it}Preparation method for preparing carbon fiber precursor fiber and carbon fiber precursor fiber produced thereby

본 발명은 카르복실기의 변성에 의한 도프 용해시 생성되는 겔의 발생을 줄이는 방법과 관련된 탄소섬유 전구체 섬유의 제조방법 및 이에 의해 생산된 탄소섬유 전구체 섬유에 관한 것이다. The present invention relates to a method for producing carbon fiber precursor fibers and a carbon fiber precursor fiber produced thereby, which relates to a method for reducing the generation of gels generated upon dope dissolution by denaturation of carboxyl groups.

상세하게는 아크릴로니트릴(Acrylonitrile)과 공중합 성분을 수계현탁 중합법을 이용하여 반응하고, 얻어진 중합체는 저온/진공하에서 일정 시간안에 건조과정을 거쳐 PAN 공중합체를 형성하는 단계, 유기용매에 용해후 응고욕을 거쳐 섬유형태로 응고 후 내염화, 탄화 처리를 거쳐 강도가 높은 탄소섬유를 얻을 수 있는 모우 및 단사가 적은 탄소섬유 전구섬유의 제조 방법 및 이에 의해 생산된 탄소섬유 전구체 섬유에 관한 것이다.Specifically, acrylonitrile and the copolymerized component are reacted using an aqueous suspension polymerization method, and the obtained polymer is dried in a predetermined time under low temperature / vacuum to form a PAN copolymer, and then dissolved in an organic solvent. The present invention relates to a method for producing carbon fiber precursor fibers having low wool and single yarns, which have a high strength carbon fiber after solidification, carbonization after coagulation in a fiber form, and carbon fiber precursor fibers produced thereby.

1879년 에디슨이 전구의 필라멘트용으로 대나무의 섬유를 탄화한 것으로부터 탄소섬유의 유래를 찾을 수 있다. 그후, Union Carbide사에서 레이온계 탄소섬유를 1959년 개발하였고 그로부터 초기 탄소섬유의 개발이 시작되었다. 급기야 1964년 에 연속상 탄소섬유 개발이 성공하기에 이르렀다. 탄소섬유는 제조에 사용되는 원부재료에 따라 크게 레이온계, PAN계, Pitch계로 구분되어 지는데, 현재 아크릴로니트를 기본으로 하여 제조되는 PAN계 탄소섬유가 가장 많이 사용되고 있는 실정이다. 탄소섬유를 제조하기 위해서는 세 가지 주요 공정 (중합, 방사, 소성)을 거쳐야 하는데 이는 복잡하면서 긴 공정으로 구성되어 있다. The origin of carbon fiber can be found in 1879 when Edison carbonized bamboo fiber for the filament of the bulb. Later, Union Carbide developed rayon-based carbon fibers in 1959, and the development of early carbon fibers began. In 1964, continuous carbon fiber development was successful. Carbon fiber is classified into rayon, PAN, and Pitch based on the raw materials used in the manufacture. Currently, PAN-based carbon fiber manufactured based on acrylonitrile is most commonly used. In order to produce carbon fiber, it has to go through three main processes (polymerization, spinning, firing), which is a complicated and long process.

탄소섬유의 전구체로서 이용되는 PAN계 섬유는 최종 제품인 탄소섬유를 제조하기 위한 중간제품으로써 얻어지는 탄소섬유의 품질, 성능에 큰 영향을 미친다. 특히, 아크리로니트를 단량체와 공중합체간의 농도는 탄소섬유의 물성에 큰 영향을 미친다. PAN 프리커서는 현재까지 알려진 모든 탄소섬유의 전구체중 가장 경제성이 높은 전구체로서 그 목적에 따라 습식, 건습식 또는 용융방사법등을 통해서 미세한 섬유로 제조 된다. The PAN-based fiber used as a precursor of carbon fiber has a great influence on the quality and performance of the carbon fiber obtained as an intermediate product for producing the carbon fiber as a final product. In particular, the concentration of the acrironite between the monomer and the copolymer has a great influence on the physical properties of the carbon fiber. The PAN precursor is the most economical precursor of all carbon fiber precursors known to date, and is manufactured into fine fibers through wet, dry or melt spinning according to the purpose.

일반적으로 공중합체는 다양한 목적으로 여러 가지 비닐계통의 화합물이 사용된다. 특히 탄소섬유용 전구체를 열산화하는 내염화 공정에서 공중합체의 역할은 매우 중요하다고 볼 수 있다. 아크릴로니트릴만으로 제조된 전구섬유의 경우 산화 및 고리화 반응시 발열현상이 일어나는데 이때 폭주반응이 일어나기 쉬우며, 탄화공정에서의 폭주 반응은 최종적으로 얻어지는 탄소섬유의 물성을 악화시킨다. 따라서, 카르복실기를 포함한 화합물등을(ex. 아크릴산, 메타크릴산, 이타콘산, 크로톤산, 시트라콘산, 에타쿠릴 산, 말레인산, 메사 콘산) 아크릴로니트릴 공중합체로 사용함으로써 열산화 반응성을 높이고 내염화 공정 시간을 단축하고 있다.       Generally, a copolymer of various vinyl compounds is used for various purposes. In particular, the role of the copolymer in the flame resistance process of thermal oxidation of the precursor for carbon fiber can be seen as very important. In the case of precursor fiber made of acrylonitrile only, exothermic phenomenon occurs during oxidation and cyclization reaction, and runaway reaction is likely to occur, and runaway reaction in carbonization process deteriorates physical properties of the finally obtained carbon fiber. Therefore, by using a compound including a carboxyl group (ex. Acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, etacuryl acid, maleic acid, mesaconic acid) as acrylonitrile copolymer, The flameproofing process time is shortened.

하지만, 카르복실기를 포함하고 있는 공중합체의 경우 열에 의한 변형이 쉽게 일어나며, 이러한 변형은 아크릴로니트릴계 중합체의 유기용매에 대한 용해성을 저하시키며 결국에는 도프용액 제조시 겔 발생의 주요원인이 된다. 도프에서 생성된 겔은 방사공정시 공정성을 저하시키며 모우, 단사 발생의 직접적인 원인이 되며, 더 나아가 탄소섬유 물성저하의 주요요인으로써 작용한다. However, in the case of the copolymer containing a carboxyl group, deformation by heat occurs easily, and such deformation lowers the solubility of the acrylonitrile-based polymer in the organic solvent and eventually becomes a major cause of gel generation in preparing the dope solution. The gel produced in the dope decreases the fairness during the spinning process and is a direct cause of the occurrence of woolen yarn and single yarn, and also acts as a major factor in the deterioration of carbon fiber properties.

이러한 이유로 아크릴로니트릴 용액에 있어서 겔을 줄이려는 많은 노력이 진행되어 왔다. 카르복실기와 암모니아의 중화 반응에 의해서 생성되는 겔의 양을 최소화 하기 위한 방법으로 암모니아계 물질의 최적 투입위치에 대한 연구결과가 최근 Toray사에(JP 2008-308775) 의하여 발표 되었다. For this reason, many efforts have been made to reduce gels in acrylonitrile solutions. As a method for minimizing the amount of gel produced by the neutralization reaction between carboxyl groups and ammonia, a study on the optimum dosing position of ammonia-based material was recently published by Toray (JP 2008-308775).

이타콘산을 이용하여 폴리이타콘산를 제조하는데 있어서 반응온도가 65도 이상일 경우 무수이탄콘산이 생성된다는 실험결과는 이미 다수의 연구자에 의해서 발표된봐(Yokota외 다수 Die Makromolekulare Chemie Vol 176, Year 2007; Grespos외 다수 Makromol. Chem., Rapid Commun. Vol 5, Year 1984; Velickovic외 다수 Polymer Bull. Vol 32, Year 1994) 있다. 하지만, 탄소섬유제조를 위한 전구섬유 제조시 사용된 이탄콘산의 변성 및 그에 대한 영향에 대해서는 아직까지 발표된 결과가 전무하다. In the preparation of polyitaconic acid using itaconic acid, the experimental results of the production of peat anhydride when the reaction temperature is 65 degrees or more have been published by many researchers (Yokota et al. Die Makromolekulare Chemie Vol 176, Year 2007; Grespos et al. Makromol. Chem., Rapid Commun. Vol 5, Year 1984; Velickovic et al. Polymer Bull. Vol 32, Year 1994). However, there have been no published results on the degeneration and the effects of peat acid used in the production of precursor fiber for carbon fiber production.

본 발명은 상기된 문제점을 해결하기 위하여 발명된 것으로서, 본 발명은 고물성의 탄소섬유를 제조하는데 있어서 사용되는 전구섬유 제조에 관한 것으로 중합체의 건조조건을 최적화 함으로써 이타콘산의 변형을 최소화할 수 있는 탄소섬유 전구체 섬유의 제조방법 및 이에 의해 생산된 탄소섬유 전구체 섬유를 제공함에 그 목적이 있다. The present invention has been invented to solve the above problems, the present invention relates to the production of precursor fibers used in the production of high-performance carbon fibers can be minimized deformation of itaconic acid by optimizing the drying conditions of the polymer It is an object of the present invention to provide a method for producing carbon fiber precursor fibers and carbon fiber precursor fibers produced thereby.

본 발명에 의한 탄소섬유 전구체 섬유의 제조방법은 1)수계현탁 중합법을 이용하여 PAN계 공중합체를 제조하는 단계, 2) 상기 공중합체를 건조하는 단계 및 3) 상기 건조된 공중합체를 용매에 용해후 방사하는 단계를 포함하며, 특히 건조하는 단계에서의 공중합체의 수분율이 0.5wt%이하인 것을 특징으로 한다.Method for producing a carbon fiber precursor fiber according to the present invention is 1) preparing a PAN-based copolymer using the aqueous suspension polymerization method, 2) drying the copolymer and 3) the dried copolymer in a solvent It comprises a step of spinning after dissolution, in particular the moisture content of the copolymer in the drying step is characterized in that less than 0.5wt%.

본 발명의 다른 바람직한 특징에 의하면, 건조하는 단계에서의 건조온도가 60도 이하이다.According to another preferred feature of the invention, the drying temperature in the drying step is 60 degrees or less.

본 발명의 다른 바람직한 특징에 의하면, 건조하는 단계에서의 건조시 진공정도가 730Torr이상이다.According to another preferred feature of the invention, the degree of vacuum during drying in the drying step is more than 730 Torr.

본 발명에 의한 탄소섬유 전구체 섬유는 상기된 방법에 의해 생산되며, 카복실기의 변성정도가 10%미만인 것을 특징으로 한다. Carbon fiber precursor fiber according to the present invention is produced by the method described above, characterized in that the degree of modification of the carboxyl group is less than 10%.

PAN 전구섬유의 제조방법에 있어서 수계현탁중합법으로 생성된 아크릴로니트릴계중합물을 최적조건에서 건조함으로써 공중합체의 카복실기 변형을 최소화 함으로써 유기용매에 용해시 겔화 현상을 최소화 하여 고물성을 갖는 탄소섬유 제조에 적합한 PAN계 전구섬유를 별도의 부가적인 공정없이 기존의 공정을 사용하여 제조할 수 있다. 이 방법은 더 나아가 PAN계 섬유 뿐만아니라 다른 합성섬유제조에 있어서 공중합체 변성에 의해서 발생되는 섬유의 모우, 단사 개선에도 응용이 될 수 있다.In the manufacturing method of PAN precursor fiber, the acrylonitrile-based polymer produced by the aqueous suspension polymerization method is dried under optimum conditions to minimize the carboxyl group deformation of the copolymer. PAN-based precursor fiber suitable for fiber production can be prepared using an existing process without any additional process. This method can be further applied to improve the woolen yarn and single yarn of fiber generated by copolymer modification in the manufacture of PAN-based fibers as well as other synthetic fibers.

본 발명에 의한 PAN 전구섬유의 제조방법은, PAN계 중합체를 주모노머 성분인 아크릴로니트릴(Acrylonitrile, AN)를 적어도 1종 이상의 카르복실기 함유 비닐계 공중합체와 수계현탁중합을 이용하여 반응하고, 카복실기의 변형이 없는 최적조건하에서 건조후 이를 습식 또는 건습식 방사를 이용하여 응고하여 섬유형태의 응고사를 생성하게 된다. 제조된 전구섬유를 탄화하여 고물성 탄소섬유를 제조하게 된다. 본 발명은 탄소섬유 전구섬유 제조에 있어서 카복실기의 변형을 최소화하는 방법을 제공한다.In the method for producing a PAN precursor fiber according to the present invention, a PAN polymer is reacted with acrylonitrile (AN), a main monomer component, by using at least one or more carboxyl group-containing vinyl copolymers and aqueous suspension polymerization, and carboxyl. After drying under optimum conditions without any deformation of the group, it is coagulated using wet or dry spinning to produce coagulated yarns in the form of fibers. The prepared precursor fiber is carbonized to produce a high-performance carbon fiber. The present invention provides a method for minimizing the deformation of the carboxyl group in the production of carbon fiber precursor fiber.

이하 본 발명을 더욱 상세히 설명한다.The present invention is described in more detail below.

탄소섬유 전구체 섬유의 제조방법은 1)수계현탁 중합법을 이용하여 PAN계 공중합체를 제조하는 단계, 2) 상기 공중합체를 건조하는 단계 및 3) 상기 건조된 공중합체를 용매에 용해후 방사하는 단계를 포함하고 있다.The method for preparing carbon fiber precursor fibers includes 1) preparing a PAN-based copolymer using an aqueous suspension polymerization method, 2) drying the copolymer, and 3) spinning the dried copolymer in a solvent and then spinning. It includes the steps.

수계현탁 중합법을 이용하여 PAN계 공중합체를 제조하는 단계에서의 PAN계 공중합체는, 산화-환원 게시제를 이용하여 96-98wt%의 주성분 모노머인 아크릴로니트릴과 공중합성을 가지는 1종 또는 2종이상의 모노머(ex. 아크릴산, 메타크릴산, 이타콘산, 크로톤산, 시트라콘산, 에타쿠릴 산, 말레인산, 메사 콘산) 2-4wt%를 수용액 상에서 반응하여 제조 한다. 반응시 단량체의 중량비는 15-30wt%가 바람직하며 이는 PAN 중합체의 물성에 관련이 있다. The PAN-based copolymer in the step of preparing the PAN-based copolymer by the aqueous suspension polymerization method is one or more copolymerizable with acrylonitrile, the main component monomer of 96-98wt%, by using an oxidation-reduction agent or 2-4 wt% of two or more monomers (ex. Acrylic acid, methacrylic acid, itaconic acid, crotonic acid, citraconic acid, etacuryl acid, maleic acid, mesaconic acid) are prepared by reacting in an aqueous solution. The weight ratio of monomer in the reaction is preferably 15-30wt%, which is related to the physical properties of the PAN polymer.

수계현탁 중합에서 퍼설페이트(Persulfate)계 화합물은 반응게시제로 사용되고, 바이설페이트(Bisulfite)계 화합물은 활성제로써 사용이 되었다. In the aqueous suspension polymerization, the persulfate compound was used as a reaction initiator, and the bisulfite compound was used as an activator.

공중합체를 건조하는 단계에서는 상기 수계현탁중합 방법으로 제조된 폴리아크릴노니트릴계 중합체는 1차적으로 탈수과정을 거쳐 수분을 제거하게 한다. 1차 탈수과정은 원심분리 원리를 이용하여 물을 제거하는 과정으로서, 물이 제거된 고분자는 파우더의 형태를 가지나, 아직은 다량의 수분을 포함하고 있다. 다음으로 2차적으로 65도보다 낮은 온도에서 진공펌프를 이용하여 수분을 0.5wt%미만으로 제거한다. 수분이 0.5wt% 이상인 경우에는 도프용액의 점도가 높아지며 이는 방사시 연신성이 나빠지는 원인이 되고 과량의 수분 함유시 겔화현상하는 문제가 있다.In the drying of the copolymer, the polyacrylonitrile-based polymer prepared by the aqueous suspension polymerization method is primarily used to remove moisture through a dehydration process. The first dehydration process removes water using the centrifugation principle. The water-removed polymer is in the form of a powder, but still contains a large amount of water. Secondly, the water is removed to less than 0.5wt% using a vacuum pump at a temperature lower than 65 degrees. If the moisture is 0.5wt% or more, the viscosity of the dope solution becomes high, which causes deterioration of elongation during spinning and gelation phenomenon when excessive moisture is contained.

건조시 가열온도가 60도 보다 높게되면 화학식 1과 같이 두개의 카복실기가 무수카복실기 형태로 변형이 일어나게 된다. 이타콘산의 변형 정도에 따라 아릴로니트릴계 고분자의 유기용매에 대한 용해성이 저하되며 이는 도프 제조시 겔 생성의 정 도와 연관성이 있다.  When the heating temperature is higher than 60 degrees during drying, two carboxyl groups are transformed into anhydrous carboxyl groups as shown in Chemical Formula 1. Depending on the degree of deformation of itaconic acid, the solubility of the arylonitrile-based polymer in the organic solvent is lowered, which is related to the degree of gel formation in dope preparation.

Figure 112009081933771-PAT00001
Figure 112009081933771-PAT00001

(화학식 1)(Formula 1)

건조시의 압력은 카복실기의 변성 방지를 위하여 진공정도를 730Torr이상으로 유지하는 것이 바람직하다. The drying pressure is preferably maintained at a vacuum degree of 730 Torr or more in order to prevent denaturation of the carboxyl group.

상기 건조된 공중합체를 용매에 용해후 방사하는 단계에서의 방사방법으로는 습식, 건습식방사가 가능하나 습식법으로 방사를 이용하였고 보다 상세한 방사방법은 다음과 같이 수행하였다. 고유점도는 1.6-1.9으로 제조된 PAN 중합체를 18-22중량% 농도로 DMSO (Dimethylsulfoxide)에 용해하여 용액을 제조후에 70도보다 낮은 온도에서 암모니아 가스를 pH가 8.5 투입한다. 암모니아로 중화하는 것은 공중합체의 친수성을 향상시켜 치밀한 응고 구조를 형성하기 위함이다. 방사원액을 12,000개의 구멍을 가진 방사 노즐을 통과하여 DMSO 45-60wt% (증류수 대비)을 담고 있는 응고조에 방출이 된다. 응고용매로서는 DMSO이외에 DMF, DMAc도 가능하다. 응고욕에서 생성된 응고사는 수세욕을 거치게 되며수세욕을 통과한 수세사는 후처리 공정을 거쳐 PAN계 전구섬유를 제조하였다. As a spinning method in the step of spinning the dried copolymer after dissolving in a solvent, wet or dry spinning is possible, but spinning was used as a wet method, and a more detailed spinning method was performed as follows. The intrinsic viscosity was dissolved in DMSO (Dimethylsulfoxide) at a concentration of 18-22% by weight of the PAN polymer prepared in 1.6-1.9 and ammonia gas pH 8.5 was added at a temperature lower than 70 degrees. Neutralization with ammonia is to improve the hydrophilicity of the copolymer to form a dense coagulation structure. The spinning stock is passed through a spinning nozzle with 12,000 holes and discharged into a coagulation bath containing 45–60 wt% DMSO (relative to distilled water). As the coagulation solvent, in addition to DMSO, DMF and DMAc are also possible. The coagulant produced in the coagulation bath is subjected to a washing bath, and the washing agent that has passed the washing bath has produced a PAN precursor fiber through a post-treatment process.

상기된 방법으로 제조된 탄소섬유 전구체 섬유는 카복실기의 변성정도가 10%미만으로서 우수한 물성을 가지는 탄소섬유를 생산할 수 있다. The carbon fiber precursor fiber prepared by the above method can produce a carbon fiber having excellent physical properties as the degree of modification of the carboxyl group is less than 10%.

이하에서는 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나 본 발명이 상기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited only to the above embodiment.

< < 실시예Example 1 > 1>

수용액상에서의 중합 원료 비율을 아크릴로니트릴/메틸아크릴레이트/이타콘산 = 96.3/2.5/1.2 (wt%)로 하고, 퍼설페이트/바이설페이트를 이용하여 라디칼 중합을 행하였다. 생성된 중합물은 60도에서 18시간 진공건조 (730Torr)하여 수분율을 0.5wt%이하로 한후 DMSO 용액에 용해하여 방사원액을 20wt%로 제조후 암모니아 가스를 투입하여 용액을 중화하였다. 방사원액은 건습식 방사용 탱크에 넣은 후, 12,000의 구멍을 가지 방사 노즐을 통과하여 응고욕으로 이동하게 된다. 100 m/min의 속도로 방사를 하여서 PAN 전구섬유를 제조하였다. 제조된 전구섬유를 공기 분위기하에서 240도에서 내염화하고 탄화과정을 거쳐 탄소섬유를 제조 하였다.The polymerization raw material ratio in aqueous solution was made into acrylonitrile / methyl acrylate / itaconic acid = 96.3 / 2.5 / 1.2 (wt%), and radical polymerization was performed using persulfate / bisulfate. The resulting polymer was vacuum dried (730 Torr) at 60 ° C. for 18 hours to have a water content of 0.5 wt% or less, dissolved in DMSO solution, to prepare a spinning stock solution at 20 wt%, and ammonia gas was added to neutralize the solution. After the spinning stock solution is put into a wet and dry spinning tank, it passes through a spinning nozzle having a hole of 12,000 and moves to a coagulation bath. PAN precursor fibers were prepared by spinning at a speed of 100 m / min. The precursor fiber was flameproofed at 240 degrees under an air atmosphere and carbonized to obtain carbon fiber.

< < 실시예Example 2 > 2>

실시예 1에 있어서 중합 원료의 투입비를 아크릴로니트릴/메틸아크릴레이트/이타콘산 = 97.8/1/1.2 (wt%)로 변경한 것을 제외하고 실시예 1과 같이 하였다.In Example 1, it carried out similarly to Example 1 except having changed the preparation ratio of the polymerization raw material into acrylonitrile / methyl acrylate / itaconic acid = 97.8 / 1 / 1.2 (wt%).

< < 실시예Example 3 > 3>

실시예 1에 있어서 건조 온도를 60도에서 24시간 진공건조 (730Torr)한것을 제외하고는 실시예 1과 같이 하였다.The same procedure as in Example 1 was carried out except that the drying temperature in Example 1 was vacuum dried (730 Torr) at 60 ° C. for 24 hours.

<< 실시예Example 4> 4>

실시예 1에서 건조후 얻어진 아크릴로니트릴 고분자를 40도에서 12시간 방치 전후 고분자의 카복실기의 성분을 1H NMR을 이용하여 분석하여 변성정도를 측정하였다.The acrylonitrile polymer obtained after drying in Example 1 was left at 40 degrees for 12 hours before and after the component of the carboxyl group of the polymer was analyzed by 1 H NMR to measure the degree of denaturation.

<< 실시예Example 5> 5>

실시예 4에 있어서 건조 온도를 60도로 한것을 제외하고는 실시예 4와 같이 하였다.The same procedure as in Example 4 was carried out except that the drying temperature in Example 4 was 60 degrees.

< < 비교예Comparative example 1 > 1>

실시예 1에 있어서 건조 온도를 120도에서 18시간 건조한것을 제외하고 실시예 1과 같이 하였다In Example 1 was the same as in Example 1 except that the drying temperature was dried 18 hours at 120 degrees.

< < 비교예Comparative example 2 > 2>

실시예 1에 있어서 건조를 80도에서 20시간으로 진공건조 (600Torr)한것을 제외하고는 실시예 1와 같이 하였다.      In Example 1, drying was carried out in the same manner as in Example 1 except that vacuum drying (600 Torr) was performed at 80 ° C. for 20 hours.

<< 비교예Comparative example 3>  3>

실시예 1에 있어서 건조 온도를 80도에서 14시간 진공건조 (730Torr)한것을 제외하고는 실시예 1과 같이 하였다.The same procedure as in Example 1 was carried out except that the drying temperature in Example 1 was vacuum dried (730 Torr) at 80 ° C. for 14 hours.

<< 비교예Comparative example 4>  4>

실시예 4에 있어서 건조 온도를 80도로 한것을 제외하고는 실시예 4와 같이 하였다.In Example 4, it carried out similarly to Example 4 except having set the drying temperature to 80 degree.

<< 비교예Comparative example 5>  5>

실시예 4에 있어서 건조 온도를 100도로 한것을 제외하고는 실시예 4와 같이 하였다.The same procedure as in Example 4 was carried out except that the drying temperature in Example 4 was 100 degrees.

<< 비교예Comparative example 6>  6>

실시예 4에 있어서 건조 온도를 120도로 한것을 제외하고는 실시예 4와 같이 하였다.The same procedure as in Example 4 was carried out except that the drying temperature in Example 4 was 120 degrees.

<< 비교예Comparative example 7>  7>

실시예 4에 있어서 건조 온도를 140도로 한것을 제외하고는 실시예 4와 같이 하였다.In Example 4, it carried out similarly to Example 4 except having set the drying temperature to 140 degree.

실험 결과는 표 1에 정리하였다.The experimental results are summarized in Table 1.

표 1TABLE 1

구분division 아크릴로니트릴 건조조건Acrylonitrile Drying Conditions 전구섬유물성Bulb fiber 탄소섬유Carbon fiber 온도(도)Temperature (degrees) 시간 (hr)Hour (hr) 진공 (Torr)Vacuum (Torr) 모우 (ea/m)Mou (ea / m) 강도 (GPa)Strength (GPa) 실시예1Example 1 6060 1818 730730 0.20.2 3.613.61 실시예2Example 2 6060 1818 730730 0.210.21 3.593.59 실시예3Example 3 6060 2424 730730 0.50.5 3.453.45 비교예1Comparative Example 1 120120 1818 00 3.33.3 3.063.06 비교예2Comparative Example 2 8080 2020 600600 2.52.5 3.143.14 비교예3Comparative Example 3 8080 1414 730730 1.11.1 3.373.37

또한 실시예와 비교예의 온도에 따른 카복실기의 변성정도를 도 1에 도시하였다. 도 1에서 보는 바와 같이 건조온도가 60도를 넘게 되면 카르복실기 변성정도가 10%를 넘게 되는 문제가 있다.In addition, the degree of modification of the carboxyl group according to the temperature of the Example and Comparative Example is shown in FIG. As shown in Figure 1 when the drying temperature exceeds 60 degrees, there is a problem that the degree of denaturation of the carboxyl group exceeds 10%.

도 1은 본 발명의 실시예 및 비교예와 관련하여 온도에 따른 카복실기의 변성정도에 대한 모식도이다.1 is a schematic diagram of the degree of denaturation of the carboxyl group with temperature in relation to the examples and comparative examples of the present invention.

Claims (4)

1)수계현탁 중합법을 이용하여 PAN계 공중합체를 제조하는 단계, 2) 상기 공중합체를 건조하는 단계 및 3) 상기 건조된 공중합체를 용매에 용해후 방사하는 단계를 포함하는 탄소섬유 전구체 섬유의 제조방법에 있어서,   1) preparing a PAN-based copolymer using an aqueous suspension polymerization method, 2) drying the copolymer, and 3) dissolving the dried copolymer in a solvent and then spinning the carbon fiber precursor fiber In the manufacturing method of 상기 건조하는 단계에서의 수분율이 0.5wt%이하인 것을 특징으로 하는 탄소섬유 전구체 섬유의 제조방법.The method of producing a carbon fiber precursor fiber, characterized in that the moisture content in the drying step is 0.5wt% or less. 제 1항에 있어서, 상기 건조하는 단계에서의 건조온도가 60도 이하인 것을 특징으로 하는 탄소섬유 전구체 섬유의 제조방법.  The method of claim 1, wherein the drying temperature in the drying step is 60 degrees or less. 제 1항에 있어서, 상기 건조하는 단계에서의 건조시 진공정도가 730Torr이상인 것을 특징으로 하는 탄소섬유 전구체 섬유의 제조방법.  The method of claim 1, wherein the degree of vacuum during drying in the drying step is 730 Torr or more. 제 1항 내지 제3항 중의 어느 하나의 항에 의해 제조된 탄소섬유 전구체 섬유로서, 카복실기의 변성정도가 10%미만인 것을 특징으로 하는 탄소섬유 전구체 섬유.The carbon fiber precursor fiber produced by any one of claims 1 to 3, wherein the degree of modification of the carboxyl group is less than 10%.
KR1020090135005A 2009-12-31 2009-12-31 Preparing method for preparing carbon fiber precursor and carbon fiber precursor using it KR101074963B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090135005A KR101074963B1 (en) 2009-12-31 2009-12-31 Preparing method for preparing carbon fiber precursor and carbon fiber precursor using it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090135005A KR101074963B1 (en) 2009-12-31 2009-12-31 Preparing method for preparing carbon fiber precursor and carbon fiber precursor using it

Publications (2)

Publication Number Publication Date
KR20110078246A true KR20110078246A (en) 2011-07-07
KR101074963B1 KR101074963B1 (en) 2011-10-18

Family

ID=44917727

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090135005A KR101074963B1 (en) 2009-12-31 2009-12-31 Preparing method for preparing carbon fiber precursor and carbon fiber precursor using it

Country Status (1)

Country Link
KR (1) KR101074963B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058134A (en) 2016-11-23 2018-05-31 주식회사 엘지화학 Method of preparing polyacrylonitrile based fiber and polyacrylonitrile based copolymer
KR20190019297A (en) 2017-08-17 2019-02-27 주식회사 엘지화학 Method for preparing carbon fiber
WO2019066500A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Acrylonitrile-based fiber manufacturing method
KR20190078069A (en) 2017-12-26 2019-07-04 주식회사 엘지화학 Polyacrylonitrile based oxidized fiber
KR20190084628A (en) 2018-01-09 2019-07-17 주식회사 엘지화학 Method of preparing polyacrylonitrile based fiber and polyacrylonitrile based copolymer used in the method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102501765B1 (en) 2020-12-18 2023-02-21 재단법인 한국탄소산업진흥원 Manufacturing method of precursor for pan-based carbon fiber

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR200000538T2 (en) 1997-08-27 2000-07-21 Mitsubishi Rayon Co., Ltd. Leading fiber originating from acrylanitrile to form carbon fiber.
CN101553511B (en) 2006-10-18 2012-01-11 东丽株式会社 Polyacrylonitrile polymer, process for production of the polymer, process for production of precursor fiber for carbon fiber, carbon fiber, and process for production of the carbon fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180058134A (en) 2016-11-23 2018-05-31 주식회사 엘지화학 Method of preparing polyacrylonitrile based fiber and polyacrylonitrile based copolymer
US11535957B2 (en) 2016-11-23 2022-12-27 Lg Chem, Ltd. Method for producing polyacrylonitrile-based fiber and polyacrylonitrile-based copolymer used therein
KR20190019297A (en) 2017-08-17 2019-02-27 주식회사 엘지화학 Method for preparing carbon fiber
WO2019066500A1 (en) * 2017-09-29 2019-04-04 주식회사 엘지화학 Acrylonitrile-based fiber manufacturing method
JP2020509251A (en) * 2017-09-29 2020-03-26 エルジー・ケム・リミテッド Method for producing acrylonitrile fiber
US11286580B2 (en) 2017-09-29 2022-03-29 Lg Chem, Ltd. Method for producing acrylonitrile-based fiber
KR20190078069A (en) 2017-12-26 2019-07-04 주식회사 엘지화학 Polyacrylonitrile based oxidized fiber
KR20190084628A (en) 2018-01-09 2019-07-17 주식회사 엘지화학 Method of preparing polyacrylonitrile based fiber and polyacrylonitrile based copolymer used in the method

Also Published As

Publication number Publication date
KR101074963B1 (en) 2011-10-18

Similar Documents

Publication Publication Date Title
KR101074963B1 (en) Preparing method for preparing carbon fiber precursor and carbon fiber precursor using it
EP2554725B1 (en) Method for preparing carbon fiber and precursor fiber for carbon fiber
KR100364655B1 (en) Acrylonitrile-based precursor fiber for carbon fiber, process for producing the same, and carbon fiber obtained from the precursor fiber
CN101316956A (en) Carbon fiber, process for production of polyacrylonitrile-base precursor fiber for carbon fiber production, and process for production of carbon fiber
CN110863256B (en) Preparation method of dry-jet wet-spun high-strength medium-modulus polyacrylonitrile-based carbon fiber precursor
US4001382A (en) Process for producing carbon fibers having excellent physical properties
KR20210077782A (en) Process for preparing polyacrylonitrile-based polymers with high conversion
KR101268173B1 (en) Polyacrylonitrile-based polymer solution, preparing method of the same, Carbon fiber precursor, manufacturing method of the same and manufacturing method of carbon fiber using the same
TWI422633B (en) Polyacrylonitrile-based copolymer/cnt composites, carbon fibers and fabrication method of carbon fiber
KR101490529B1 (en) Preparation method of polyacrylonitrile precursor based carbon Fiber
EP3818089A1 (en) A polymer for the production of carbon fibers and carbon fibers made therefrom
JP4887219B2 (en) Method for producing carbon fiber precursor acrylonitrile fiber
KR101148428B1 (en) Method of preparing precursors for polyacrylonitrile-based carbon fibers
JP2020015997A (en) Method for producing precursor fiber for carbon fiber
JP2018084002A (en) Method for producing polyacrylonitrile precursor fiber and method for producing carbon fiber
KR101276469B1 (en) Method of preparing precursors for polyacrylonitrile-based carbon fibers
JPS5920004B2 (en) Carbon fiber manufacturing method
CN108752521A (en) The method for preparing polyacrylonitrile-based carbon fibre polymer using mixed solvent
JP2020117634A (en) Carbon material precursor molding, method for producing the same, and method for producing carbon material using the same
CN114108136B (en) Method for producing carbon fiber
JP2015183166A (en) Acrylonitrile-based copolymer, acrylonitrile-based carbon fiber precursor fiber and method for producing carbon fiber
CN114481349B (en) Preparation method of high-strength alkali-resistant polyacrylonitrile fiber and polyacrylonitrile fiber
US12122864B2 (en) Polymer for the production of carbon fibers and carbon fibers made therefrom
CN115613164B (en) Modified polyacrylonitrile-based carbon fiber and preparation method and application thereof
JP7319955B2 (en) Carbon fiber precursor fiber bundle, flameproof fiber bundle, method for producing them, and method for producing carbon fiber bundle

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee